
Quantifying Load Imbalance on Virtualized Enterprise
Servers

Emmanuel Arzuaga
Department of Electrical and Computer

Engineering
Northeastern University, Boston, MA

earzuaga@ece.neu.edu

David R. Kaeli
Department of Electrical and Computer

Engineering
Northeastern University, Boston, MA

kaeli@ece.neu.edu

ABSTRACT
Virtualization has been shown to be an attractive path to
increase overall system resource utilization. The use of live
virtual machine (VM) migration has enabled more effective
sharing of system resources across multiple physical servers,
resulting in an increase in overall performance. Live VM
migration can be used to load balance virtualized clusters.
To drive live migration, we need to be able to measure the
current load imbalance. Further, we also need to accurately
predict the resulting load imbalance produced by any mi-
gration.

In this paper we present a new metric that captures the
load of the physical servers and is a function of the resident
VMs. This metric will be used to measure load imbalance
and construct a load-balancing VM migration framework.
The algorithm for balancing the load of virtualized enter-
prise servers follows a greedy approach, inductively predict-
ing which VM migration will yield the greatest improvement
of the imbalance metric in a particular step. We compare
our algorithm to the leading commercially available load bal-
ancing solution - VMware’s Distributed Resource Scheduler
(DRS). Our results show that when we are able to accu-
rately measure system imbalance, we can also predict future
system state. We find that we can outperform DRS and im-
prove performance up to 5%. Our results show that our ap-
proach does not impose additional performance impact and
is comparable to the virtual machine monitor overhead.

Categories and Subject Descriptors
D.4 [Operating Systems]: Performance

General Terms
Experimentation,Measurement, Performance

Keywords
Virtualization, Dynamic Resource Allocation, VM Migra-
tion

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOSP/SIPEW’10, January 28–30, 2010, San Jose, California, USA.
Copyright 2010 ACM 978-1-60558-563-5/10/01 ...$10.00.

1. INTRODUCTION
Virtualization technologies have a rich history, dating back

to the 1960s with IBM’s System/360 and 370 [5]. Current
commercial solutions are dominated by VMware ESX Server
[19], Microsoft Hyper-V [12] and Sun xVM [16]. Other popu-
lar virtualization platforms include Citrix XenSource [2] and
Xen – both of these provide open source solutions. There
are open source versions of xVM as well.

Server virtualization is currently used to consolidate loads
[7], enhance the utilization of physical systems [1] and pro-
vide a level of isolation and security for applications [23].
This has opened the door for the use of virtual machines
in clusters of physical systems. However, in order to bet-
ter utilize the resources in these systems, it is necessary to
have the ability to dynamically allocate resources to the run-
ning VMs. Figure 1 depicts such a scheme. VM2 is being
migrated from Physical Server1 to Physical Server2 by the
Virtualization Manager. The Virtualization Manager selects
which VM to migrate based on an imbalance measurement.
Notice that while the migration is taking place, the VM is
completely functional, hence the term live migration.

Dynamic migration of virtual machines maximizes the uti-
lization of system resources by balancing server loads [4, 13].
In order to guarantee good system performance, it is very
important to place VMs in physical hosts that are underuti-
lized (rather than overloading part of the system). In this
paper we study the effects of Dynamic Resource Allocation
via live VM migration on virtualized enterprise servers. To
evaluate our algorithms, we run online transaction process-
ing (OLTP) workloads based on the TPC-C benchmark [17].
We present an imbalance metric based on the variation in
load measured on the physical servers. This metric is the
input to our VM migration algorithm. It is critical for the
metric to accurately predict future system state. We have
developed a greedy algorithm for VM migration, choosing
the VM movement that obtains the greatest improvement
in the imbalance metric at a particular step. The main con-
tributions of our work are:

1. we present a metric that captures the load of a virtu-
alized enterprise server based on its current resident
VMs,

2. we demonstrate how the server load metric can drive a
load balancing VM migration algorithm and can also
be used to predict future server state, and

3. we provide an open source Dynamic Resource Allo-
cation Framework for VMs that is an alternative to
commercial products such as VMware’s DRS.

235

Figure 1: Live VM Migration Process.

VMware DRS [18] is the commercial application that per-
forms dynamic resource allocation in VMware Virtual Cen-
ter (VC). It monitors overall system behavior and migrates
VMs to balance the load by issuing VMotion commands. As
it is a commercial product, there is limited information avail-
able on DRS internals. However, available documentation
shows that it uses some form of per-resource imbalance using
their concept of VM shares and entitlements and produces a
metric based on the standard deviation of the per-resource
imbalance values of the system.

The rest of this paper is organized as follows. In Section 2
we provide a definition of the Virtualized Server Load (VSL)
in a physical server as a function of the VMs running on
it. Section 3 presents our imbalance metric and the VSL
Inductive Balancing Method (VIBM). Section 4 discusses
the characteristics of the OLTP workload and the physical
system used. Results of our experiments are presented and
analyzed in Section 5. Section 6 discusses related work and
Section 7 presents conclusions and areas for future work.

2. QUANTIFYING SERVER LOAD

2.1 Desirable Properties of a Virtualized Server
Load Metric

A common approach for quantifying physical server load is
to measure the utilization of its resources (e.g., CPU time,
memory utilization, network and disk I/O traffic). Virtu-
alization introduces another layer of abstraction on top of
a physical server – virtual machines only know about vir-
tualized hardware resources, while the hypervisor manages
both virtual and physical hardware resources. As a result, it
becomes more challenging to balance performance in terms
of per-VM utilization of system resources given this added
layer of abstraction. Working at the hypervisor level allows
us to isolate each VMs’ virtual and physical resource con-
sumption and enables us to isolate the resource consumption
of a particular VM when making predictions on the overall
system balance.

Another desirable property of a virtualized server load
metric is that it can be used on heterogeneous systems. Real-
world cluster systems are rarely homogeneous, so in order
for this metric to apply to a variety of system configurations,
we need to quantify the load of a server in a manner that
does not depend on fixed resource units. A unitless metric
allows the direct comparison of different servers in the sys-
tem regardless of their internal components.

2.2 Virtualized Server Load
For the purpose of defining such a metric, let S be the set

of physical servers and V MHost be the set of virtual ma-
chines currently running on physical server Host, (Host ∈
S). Then, the Virtualized Server Load (V SLHost) can be
expressed as:

V SLHost =
X

resource

Wresource ×

P

v∈V MHost

vresourceusage

Hostresourcecapacity
,

(1)
where resource ∈ {CPU, memory, disk} and Wresource is a
weight associated with each resource.

Note that this load measure has no units and starts at 0
when the VMs resource usage is zero. The maximum value
depends on the assigned weight values (Wresource) in the
case when the VMs consume all of the available resource.
V SLHost varies dynamically, depending on the VMs running
on the physical system (Host). This fact makes it suitable
for a range of system characteristics such as a load balancing
metric.

3. MAINTAINING A BALANCED SYSTEM

3.1 Load Imbalance Metric
Load balancing has been one of the most important tech-

niques used to improve resource utilization and system per-
formance in parallel and distributed systems. Although pre-
vious work has focused on specific balancing algorithms [15,
21, 22], it is difficult to directly apply them to virtualized
servers. Additionally, we need to take into consideration the
impact that the virtualization layer imposes on system re-
sources. The virtualization layer can signficantly change the
known behavior of a workload running on a physical system.

A typical imbalance metric based on the resource utiliza-
tion of physical servers is the standard deviation of the CPU
utilization [21]. The reasoning behind this metric is that if
the server loads are evenly distributed, the standard devia-
tion will be small. The smaller this metric, the greater the
load balance in the system. Although CPU utilization is
generally a good predictor of system performance, the use
of such a metric for load balancing does not take into con-
sideration memory, network or disk I/O performance. In the
case of a more complex workload such as VMs running com-
mercial workloads, relying only on CPU information may
lead to undesireable results.

In the previous section, we defined a server load metric
that is a function of VM resource usage. This metric con-
siders information specific to each VM when quantifying the
load of a particular physical server. This metric takes into
consideration the usage of multiple resources by the VMs
resident on the system. Based on this definition, we can
generate a load set L that contains the V SL values corre-
sponding to all physical servers (∀ physical servers ∈ S).
The desired system imbalance metric can then be defined in
terms of the coefficient of variation of L:

CL =
σL

µL

(2)

As shown, CL is defined as the ratio of the standard devia-
tion σL over the mean µL. The coefficient of variation CL is
used in many areas of computer science including queueing

236

theory [8]. This metric captures the dispersion of the values
assumed by a variable in a way that does not depend on the
measurement unit. The higher the CL, the greater the vari-
ation in the measured values. Note that this metric will give
us a tighter bound than using only the standard deviation.
For example, if we use CL to predict future system state
after migrating a set of VMs, the metric accounts for the
migration set that not only reduces σL, but that recognizes
changes in µL as well.

However, there are some problems that must be taken into
consideration when using the CL as an imbalance metric.
The most evident problem is in cases where µL is zero. For
these cases, CL will be undefined. Similar problems may
occur if the V SL returns non-positive values. This is not
an issue for our V SL metric, as long as we use positive
values in Wresource. Thus, the only part we need to worry
about is the case where µL becomes zero. The only time this
could happen is when all servers are idle or when the virtual
machine monitor (VMM) is not consuming any resources.
Although these cases are extremely rare, in order to avoid
this problem, we define our imbalance metric as:

IMetric :

(

0, if no VMs are active

CL, otherwise
(3)

Figure 2 shows the behavior of this metric for different
throughput values of a virtualized system running an online
transaction processing OLTP workload. As seen, this metric
captures the variability of V SL across all hosts in S and
reducing this metric produces a load-balanced set of servers
that provides a higher system throughput. In this work the
weight values (Wresource) in Equation 1 are assumed to be
equal. Following work will analyze the potential of tuning
such values to improve or change the migration criteria.

Figure 2: CL as a function of throughput in
Transactions-per-Minute (TpM). For lower CL val-
ues there are higher TpM values.

3.2 Virtualized Server Load Inductive Balanc-
ing Method

Based on IMetric, we can start to design a method for
balancing server load. The general problem of dynamically
allocating VMs to physical servers has been shown to be
similar to bin-packing [7] or knapsack [14] problems, both

Algorithm 1: VIBM

IMetric ←− CL

while IMetric ≥ threshold do
src←− host ∈ S : V SLhost = Max(L)
for vcandidate ∈ V Msrc do

for (target ∈ S) 6= src do
predict benefit of migrating vcandidate to
target

compute Lcandidate

Lcandidate :

8

>

<

>

:

V SLtarget ←− V SLtarget + vcandidate

V SLsrc ←− V SLsrc − vcandidate

insert (vcandidate, src, target,Lcandidate) to
Candidates

end

end
select candidate from Candidates :
Min(CLcandidate

)

IMetricPREDICT ED
←− CLcandidate

if IMetricPREDICT ED
< IMetric then

promote candidate to migrate
IMetric ←− IMetricPREDICT ED

else
do not promote candidate

end

end

classic NP-Hard problems. We present a heuristic solution
that follows a greedy approach by inductively selecting the
VM migration that will yield the greatest improvement of
the imbalance metric at its present state. This greedy lo-
cal approach guarantees that we will seek migrations that
minimize the value of the IMetric over the current running
interval of the system. We have named this approach the
VSL Inductive Balancing Method (VIBM). The method is
presented in Algorithm 1.

The VIBM algorithm starts by determining that the sys-
tem is unbalanced, that is, if IMetric is greater than some
threshold value. Whenever it is over threshold, VIBM looks
for migration candidates. The first step in this search is
to select the physical system with the highest V SL as the
source host to select migration candidates from. VIBM then
computes a prediction of the new IMetric by applying the
candidate migration to the corresponding target physical
system load (V SLtarget) and subtracts it from the load of
the source server (V SLsrc). The vcandidate migration that
provides the smallest CLcandidate

value will be selected for
promotion. If the IMetricPREDICT ED

is below the current
system IMetric, the candidate gets promoted, otherwise the
system is unchanged. The VIBM migration handler is noti-
fied of the promoted vcandidate and is in charge of performing
the corresponding migrations.

4. EXPERIMENTAL SETUP

4.1 Workload Characteristics
Our experiments present results from running a simple

CPU-intensive microbenchmark and an OLTP workload. The
CPU-intensive workload issues simple integer operations sim-
ilar to the Dhrystone benchmark [20]. It is used to show the

237

accuracy of VIBM to predict system state. The OLTP work-
load is used for performance tests. It is implemented based
on the TPC-C specification [17], which models an online
wholesale supplier managing orders. Order-entry provides
a conceptual model for the benchmark, with the underly-
ing components being typical of any OLTP system. Ta-
ble 1 shows the five transaction types and their read/write
characteristics. The transactions operate against a rela-
tional database composed of 9 tables. Transactions generate
reads, writes, and rollbacks. The application uses primary
and secondary key access. Our OLTP workload consists of
warehouses, each containing 10 terminals, as outlined in the
TPC-C specification. The terminal interface consists of a
Linux terminal that displays information about the current
transaction being performed.

Table 1: OLTP Transactions

Transaction Access Pattern
New-order read/write
Payment read/write
Delivery read/write

Order-status read
Stock-level read

4.2 Used System
The experimental setup for testing our imbalance met-

ric and VM migration algorithms is shown in Figure 3. It
consists of three physical servers using VMware’s Virtual
Infrastructure (VI) version 3. One of the ESX servers ser-
vices storage I/O over an iSCSI shared SAN to the other
two physical systems. The two ESX servers sharing the
SAN constitute the system under test. The servers have
two 2.33 GHz Intel Xeon EM64T dual-core processors with
a 4GB memory configuration sharing a 700GB iSCSI SAN.
The iSCSI SAN is supported by an EMC CLARiiON CX300
storage array via fibre channel. The fibre channel connec-
tion is made through a McData Sphereon 1440 fibre channel
switch. The server has a dedicated LUN of 1 TB, consisting
of 7 HDDs with a RAID 5 configuration. The ESX servers
have shared access to 700GB of this LUN. The VM files are
stored on this storage system.

As Figure 3 shows, both ESX servers are administrated by
VMware’s VC Server. The VIBM migration handler frame-
work attaches to the VC server using the VMware VI SDK
for Perl. The VI SDK is an API that allows the extraction
of performance information from a cluster of ESX servers
administered by VC. It also enables the scripting of system
administration activities such as turning on/off VMs, col-
lecting ESX server performance statistics, as well as invok-
ing VMotion to migrate VMs. The VIBM migration han-
dler connects to VC and calculates the Virtualized Server
Loads (V SLS) for each physical host. After generating the
V SLS , it computes the actual IMetric for the system. If
the system is unbalanced, it triggers the VIBM algorithm
and attempts to balance the system load accordingly, issu-
ing VMotion calls with the selected migrations.

The main reason for choosing the VMware VI API for the
implementation of the VIBM migration handler prototype
is the presence of an available commercial product in VC
that could be used as a baseline to evaluate the effective-
ness of our VIBM framework (DRS). Even though the cur-

Figure 3: Experimental System.

rent VIBM migration handler uses this API, there are other
VM Hypervisors that provide the capability of extracting
the same information. In particular, the Xen hypervisor
provides a set of profiling tools and an API that is robust
enough to provide the same information to the VIBM migra-
tion handler [3, 6, 11]. Thus, the VIBM migration handler
can be reconfigured to use those other hypervisors with mi-
nor changes. This is a robustness that DRS lacks because
of being an built in feature of VC.

Our experiments are designed to compare the effective-
ness of our improved imbalance metric IMetric. We present
results for three different migration policies: no migrations,
VMware DRS and VIBM. VIBM results will be compared
to those of DRS when configured with an aggressive migra-
tion setting. Running with this configuration, DRS makes
recommendations even if the suggested migration only pro-
vides a slight improvement in the overall system balance.
We want DRS to be as aggressive as possible to provide a
very competitive baseline.

The VIBM migration handler will be in charge of monitor-
ing the whole system and proposing load balancing solutions.
Our implementation of the VIBM migration handler allows
the selection of the type of migration scheme that will be
performed during the workload analysis. In this way, we can
compute the predicted IMetric associated with each migra-
tion scheme to understand and evaluate its overall behavior.

Table 2: VM sizes and names

Large VM Small VM
VM1 VM4 VM5
VM2 VM6 VM7
VM3 VM8

The evaluated system contains 8 VMs, using two different
sizes (in terms of virtual resources; CPUs and memory), as
shown in Figure 3. The larger VM configuration consists of
two virtual CPUs and 1GB of main memory. The smaller
VM has one virtual CPU and 512MB of main memory. Both

238

VM configurations have 50GB virtual hard disks. Table 2
shows the VM names and sizes. The following sections will
explain in more detail our experiments.

5. VIBM RESULTS

5.1 IMetric Analysis

5.1.1 Predicting System State
In order to test the utility of VIBM to increase overall

system balance, we ran two sets of tests. The first configured
6 VMs, 2 large VMs and 4 small. This experiment tested
what the system balance improvements would be if we added
an idle system to our cluster. For this particular test, we
used the initial placement of the 6 VMs as shown in Table 3.
A CPU-intensive workload was run on each VM. The VIBM
algorithm migrated VM1 to ESX 2 in the first iteration,
VM4 in the second iteration and VM6 in the third. After
making those changes, the IMetric of the system was reduced
by more than 40%. Figure 4 shows the results. As we can
see, each migration resulted in an improvement in the overall
system IMetric value. We can also see that the actual state
is very close to the state predicted by the VIBM algorithm,
with errors ranging from 0-3.6%.

Table 3: Initial VM placement

Experiments ESX 1 ESX 2
VM1 VM2

6 VMs VM4 VM5 idle
VM6 VM7
VM1 VM2

8 VMs VM4 VM5 VM3 VM8
VM6 VM7

The second test consisted of comparing the VIBM migra-
tion pattern with that of VMware’s DRS. For this experi-
ment we used the CPU-intensive workload and the 6 VM
system configuration. We made separate runs of the VIBM
migration handler configured to use DRS and VIBM. Fig-
ure 5 compares the results of the recommendations provided
by VIBM versus those offered by DRS. The VIBM algorithm
elects to migrate VM1 to ESX 2 in the first iteration and
then migrates VM4 in the second iteration. After that, the
system is well-balanced, reducing the IMetric by more than
60%. DRS, on the other hand, suggests different movements
for this workload. DRS moves VM2 to ESX2 which results
in an improvement of close to 37% in the IMetric. Figure 5
also shows the accuracy of the predicted IMetric when ei-
ther DRS or VIBM is used to find the next migration, and
compares this prediction to the actual value after the mi-
gration has taken place. As we can see, the predicted values
are within 2.8 and 2.9% of the actual values. These results
suggest that IMetric is a good metric in terms of predicting
future system behavior after a move.

5.2 VIBM-DRS Comparison
Now that we have shown that IMetric is very accurate

in terms of predicting future system states, we also want
to compare VIBM to DRS in terms of performance. For
this purpose, we focus on the relationship between IMetric

Figure 4: Accuracy of IMetric prediction for a set of
VIBM migrations.

and system performance. To study this question, we use
the OLTP workload. Two sets of experiments are designed
using the initial placement configurations of 6 VMs and 8
VMs discussed earlier. The workload parameters used in our
OLTP implementations vary based on the size of the VMs
used, as shown in Table 4.

We begin by letting the system warm-up for 25 minutes
prior to starting the VM migration routines. After this
warm-up period, the system runs for one hour while the VM
migration handler is migrating VMs following either DRS or
VIBM recommendations. These results are also compared
to a no-migration scheme. Table 5 shows the average IMetric

value and the average transaction throughput obtained for
the 6 VM and 8 VM performance tests. As we can see, a high
IMetric value corresponds to a lower transaction through-
put and vice-versa. From the previous results we can see
that by minimizing IMetric we can potentially achieve higher
throughput. Figure 6 shows the behavior of IMetric for the 6
VM (a) and 8 VM (b) experiments. We can see that VIBM
produces the lower IMetric values throughout the workload
execution. By observing the results in Table 5 and Figure 6,
we can see that VIBM provides a greater reduction in the
IMetric and hence obtains better performance.

Figure 7 presents results running the OLTP workload.
Normalized throughput numbers are presented, computed
by recording the number of new order transactions per minute
(TpM), divided by the global maximum number possible ob-
tained by running single runs of small and large VMs with-
out any resource contention, and linearly scaling those values
to the configuration used in the experiment. In the 6 VM ex-
periment, VIBM obtains a 3% increase in performance when
compared to DRS. The 8 VM results show a larger difference
between the two methods, with a consistent performance ad-
vantage for VIBM of 5% over DRS. As we can see in both
cases, VIBM produced the best total throughput, obtaining
the same transaction throughput as the single run results.
The main reason for such high performance numbers is that
the bottleneck in the system is the iSCSI SAN. Any other
latencies are hidden by the latency of the storage system.
Given that this effect is equal in each scheme, the results
give us confidence that using VIBM introduces little over-

239

0 1 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

VM Migrations

Im
ba

la
nc

e
M

et
ric

VIBM
DRS
Actual

(a)

0 1 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

VM Migrations

Im
ba

la
nc

e
M

et
ric

VIBM
DRS
Actual

(b)

Figure 5: Comparing the accuracy of IMetric prediction following different migration recommendations: DRS
(a) and VIBM (b). Notice how VIBM selects the migrations that better reduce IMetric.

head and is comparable to the overhead that VirtualCenter
already introduces.

Table 4: VM OLTP workload description

Warehouse Number of
Number Terminals

Large VM 5 50
Small VM 2 20

Table 5: IMetric and Throughput Relation

Migration 6 VMs 8 VMs
Method IMetric TpM IMetric TpM

No Migrations 0.99 128.98 0.89 174.63
DRS 0.81 133.96 0.71 193.20

VIBM 0.70 149.10 0.61 203.52

6. RELATED WORK
Our work implements a VM migration framework based

on a new imbalance metric. We are interested in using this
framework to evaluate how well V SL increases workload
throughput. The study of VM Migration through Virtu-
alized Server Environments has gained popularity, as VM
technology emerges as one of the most commonly deployed
solutions for server consolidation.

Most previous work on VM migration has focused on dy-
namic resource management. However, these techniques are
oriented towards managing individual system virtualized re-
sources. Choi et al. [1] proposed an autonomous learning
method for threshold-based VM migration. In their work,
they focus on dynamically changing the migration thresh-
olds. They base their approach on a migration history log

that keeps records of previous migrations and proposes new
migrations following the observed behavior of the system.
They use User-Mode Linux (UML) VMs. Their approach is
similar to ours for developing an imbalance metric, but only
considers the standard deviation of CPU resources. Their
results show that their learning approach tends to obtain
better results than a pure threshold-based scheme. How-
ever, these results are heavily dependent on the imbalance
metric used. Since they chose to use the standard deviation
of CPU utilization, they cannot characterize the true spread
of values captured by IMetric.

Park et al. [14] propose a self-managing solution that takes
into consideration application service level objectives (SLOs),
and an optimization model based on linear programming
(LP), specifically a Branch-and-Bound solution to the Bi-
nary Multiple Knapsack Problem [10]. They propose an op-
timal solution to their problem based on the implemented
cost function applied to each VM. However, they mention
as a limitation the fact that their approach can produce
migration cycles in which a heavily used server migrates a
VM continuously because it unstabilizes the system on each
migration. Our method avoids this problem by migration
throttling if the predicted IMetric is greater than or equal to
the current value.

Kochut and Beaty [9] developed an analytical model of
virtual machine migration that provides estimates of the
expected gain in response time due to the selected migra-
tion. The model is based on queueing theory [8] and takes
into consideration the characteristics of a virtualized envi-
ronment such as migration cost and overhead. They present
simulations using data center CPU resource utilization traces.
They assume that the physical servers follow an M/M/1
queue behavior to derive the response time equations for
the system. The migrations are performed by selecting the
one that minimizes the response time of the system.

The work most similar to ours is by Khanna et al. [7],
which targets application performance management. Their
work introduces the concept of server consolidation, where

240

1 2 3 4 5 6 7 8 9 10
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

TIME

Im
ba

la
nc

e
M

et
ric

VIBM DRS No Migrations

(a)

1 2 3 4 5 6 7 8 9 10
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

TIME

Im
ba

la
nc

e
M

et
ric

VIBM DRS No Migrations

(b)

Figure 6: A comparison of IMetric values over time per used method for: (a) 6 VM, and (b) 8 VM experiments.
VIBM obtains the lowest average IMetric for both experiments.

��
��
��
��

��
��
��
��

�
�
�
�

No Migrations DRS VIBM

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

 0.000

 0.200

 0.400

 0.600

 0.800

 1.000

8−VM6−VM

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t (

Tp
M

)

Figure 7: OLTP Transaction Throughput (TpM)
for: 6 VM, and 8 VM experiments. VIBM migra-
tions produce a higher TpM in the two experiments.

the goal is to reduce the number of servers in a data center
by sharing one server between multiple applications. The
applications are isolated from one another using one VM
per application. The authors define the residual capacity as
the unused resources in a physical server that may be used
by a VM being migrated to it. The authors explain that a
physical host needs to have a high residual capacity in order
to accommodate incoming VMs, therefore their migration
metric is based on maximizing the variance of the residual
capacities of the physical servers and also considers the cost
of the migration. In our case, we can see some similari-
ties between minimizing CL and maximizing the variance of
residual capacity. However, our method does not consider
migration cost, and targets maximizing overall resource us-
age instead of reducing local usage.

7. CONCLUSIONS
In this paper we introduced a new virtualized server load

metric that is based on the current resident VM resource us-
age named V SL. We also described a new imbalance metric
that is based on the variation in load present on the physi-
cal servers. Our new imbalance metric was shown to provide
predictions of future system behavior with high fidelity (i.e.,
with an error margin of less than 5%). This new imbalance
metric was used to drive our new load balancing method
(VIBM) on a virtualized enterprise server.

VIBM implements a greedy approach, selecting the VM
migration that yields the most improvement of the imbal-
ance metric at each time step. VIBM was implemented using
the VMware VI SDK for Perl. The VIBM migration han-
dler is an open source solution that interacts with VMware’s
VirtualCenter Server to migrate VMs between the managed
ESX hosts. Our new algorithm was compared to VMware
DRS – VIBM produced a VM migration pattern that re-
duced the overall imbalance metric. Our results showed that
by accurately predicting the imbalance metric to guide VM
migration can result in higher workload throughput, increas-
ing performance by 2-5% over VMware’s DRS.

In future work we plan to enhance the VIBM algorithm by
considering migration cost estimates. We will also study how
typical quality-of-service measures associated with commer-
cial virtualization systems, such as shares and entitlements,
affect overall resource utilization and migration patterns. Fi-
nally, we would like to expand the utility of the V SL metric
by applying it other important areas in virtualized enterprise
server management such as power management. We are par-
ticularly interested in the impact of the weights (Wresource)
in Equation 1 to characterize the system behavior as it re-
lates to power.

8. ACKNOWLEDGMENTS
We would like to acknowledge the support provided by

VMware’s VMAP program. This work was supported in
part by an NSF Major Research Instrumentation Grant (Award
Number MRI-0619616), the Institute for Complex Scientific

241

Software, and from the Gordon-CenSSIS, the Bernard M.
Gordon Center for Subsurface Sensing and Imaging Systems,
under the Engineering Research Centers Program of the Na-
tional Science Foundation (Award Number EEC-9986821).

9. REFERENCES
[1] H. W. Choi, H. Kwak, A. Sohn, and K. Chung.

Autonomous learning for efficient resource utilization
of dynamic vm migration. In ICS ’08: Proceedings of
the 22nd annual international conference on
Supercomputing, pages 185–194, New York, NY, USA,
2008. ACM.

[2] Citrix Systems Inc. Citrix XenSource.
http://citrix.com/English/ps2/products/product.asp?

contentID=683148.

[3] Citrix Systems Inc. Xenserver SDK documentation.
http://docs.xensource.com/XenServer/4.0.1/api/.

[4] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration
of virtual machines. In NSDI’05: Proceedings of the
2nd Symposium on Networked Systems Design &
Implementation, pages 273–286, Berkeley, CA, USA,
2005. USENIX Association.

[5] R. P. Goldberg. Survey of virtual machine research.
Computer, 7(6):34–45, June 1974.

[6] D. Gupta, R. Gardner, and L. Cherkasova. Xenmon:
Qos monitoring and performance profiling tool.
Technical Report HPL-2005-187, HP Labs, 2005.

[7] G. Khanna, K. Beaty, G. Kar, and A. Kochut.
Application performance management in virtualized
server environments. In Network Operations and
Management Symposium, 2006. NOMS 2006. 10th
IEEE/IFIP, pages 373–381, April 2006.

[8] L. Kleinrock. Queueing Systems. Volume I: Theory.
John Wiley and Sons, New York, 1975.

[9] A. Kochut and K. Beaty. On strategies for dynamic
resource management in virtualized server
environments. In Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems, 2007.
MASCOTS ’07. 15th International Symposium on,
pages 193–200, Oct. 2007.

[10] S. Martello and P. Toth. Knapsack Problems:
Algorithms and Computer Implementation. John
Wiley and Sons Ltd, Chichester, England, 1990.

[11] A. Menon, J. R. Santos, Y. Turner, G. J.
Janakiraman, and W. Zwaenepoel. Diagnosing
performance overheads in the xen virtual machine
environment. In VEE ’05: Proceedings of the 1st
ACM/USENIX international conference on Virtual
execution environments, pages 13–23, New York, NY,
USA, 2005. ACM.

[12] Microsoft Corp. Microsoft Hyper-V.
http://www.microsoft.com/windowsserver2008/en/us/

hyperv-main.aspx.

[13] M. Nelson, B.-H. Lim, and G. Hutchins. Fast
transparent migration for virtual machines. In
USENIX Annual Technical Conference, General
Track, pages 391–394, 2005.

[14] J.-G. Park, J.-M. Kim, H. Choi, and Y.-C. Woo.
Virtual machine migration in self-managing
virtualized server environments. In Advanced
Communication Technology, 2009. ICACT 2009. 11th
International Conference on, volume 03, pages
2077–2083, Feb. 2009.

[15] L. D. Rose, B. Homer, and D. Johnson. Detecting
application load imbalance on high end massively
parallel systems. In Euro-Par, pages 150–159, 2007.

[16] Sun Mircrosystems Inc. Sun xVM. http://www.sun.
com/software/products/xvmopscenter/index.jsp.

[17] Transaction Processing Council. The TPC-C
benchmark. http://www.tpc.org.

[18] VMWare Inc. VMware Distributed Resource
Scheduler.
http://www.vmware.com/products/vi/vc/drs.html.

[19] VMWare Inc. VMware vSphere 4.
https://www.vmware.com/products/vsphere/.

[20] R. P. Weicker. Dhrystone: a synthetic systems
programming benchmark. Commun. ACM,
27(10):1013–1030, 1984.

[21] Z. Xu, R. Huang, and L. Bhuyan. Load balancing of
dns-based distributed web server systems with page
caching. In Parallel and Distributed Systems, 2004.
ICPADS 2004. Proceedings. Tenth International
Conference on, pages 587–594, July 2004.

[22] X. Yang, H. Dai, Y. Tang, and X. Yi. A general metric
of load balancing in delta-range. In APPT, pages
311–321, 2003.

[23] M. Zhao and R. J. Figueiredo. Experimental study of
virtual machine migration in support of reservation of
cluster resources. In VTDC ’07: Proceedings of the 3rd
international workshop on Virtualization technology in
distributed computing, pages 1–8, New York, NY,
USA, 2007. ACM.

242

