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ABSTRACT
Two-sided markets arise when two different types of users
may realize gains by interacting with one another through
one or more platforms or mediators. We initiate a study
of the evolution of such markets. We present an empirical
analysis of the value accruing to members of each side of the
market, based on the presence of the other side. We codify
the range of value curves into a general theoretical model,
characterize the equilibrium states of two-sided markets in
our model, and prove that each platform will converge to
one of these equilibria. We give some early experimental
results of the stability of two-sided markets, and close with
a theoretical treatment of the formation of different kinds of
coalitions in such markets.

Categories and Subject Descriptors. H.3.m [Informa-
tion Storage and Retrieval]: Miscellaneous

General Terms. Economics, Experimentation, Theory

Keywords. Two-sided markets, equilibrium, preferential
attachment, coalitions

1. INTRODUCTION
When we consider network effects, we typically think of

scenarios like adoption of the telephone or fax machine, or
an instant messaging client of a particular provider, or a so-
cial networking site like Facebook or LinkedIn, in which the
benefit to each new user grows as a function of the number
of existing users on the platform.

In this paper, we consider instead network effects in two-
sided markets. Two-sided markets arise when two differ-
ent types of users may realize gains by interacting with
one another through one or more platforms or mediators.
Video game platforms such as Sony PlayStation and Mi-
crosoft Xbox compete with one another to attract users and
game developers. Users prefer platforms with many games,
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while developers prefer platforms with many users. Simi-
larly, males prefer to join online dating services with many
appropriate females, and vice versa. Auction sites connect
buyers with sellers; the buyers select a platform that offers
many products, while the sellers select a platform with many
buyers. Websites for jobs, travel, professional video, real es-
tate, automobiles, shopping, classified advertising, and so
forth, are all two-sided markets. Websites for photogra-
phy, user-generated video, and online question answering
arguably also fall into this category as most users operate as
consumers, while a few users operate as providers (of photos,
videos, or answers). There is a network effect, but the value
of a platform to a player of type A depends on the players
of type B the platform has managed to attract. We refer to
this as a cross-side network effect, to distinguish it from the
same-side network effect that occurs with fax machines or
instant messaging clients.

Some two-sided markets may display negative same-side
network effects (buyers prefer there to be few other buyers in
the market, to keep costs low; job seekers prefer there to be
few other job seekers in the market to keep competition low),
or may display positive same-side network effects (a gaming
platform may offer multi-player online games in which a user
derives value from the presence of other users on the plat-
form). However, in this paper we focus on systems that are
characterized primarily by their cross-side network effects.

A body of literature in the field of Economics has grown
up around two-sided markets focused largely on questions of
pricing; see [13] for an overview. In this paper, we consider
characterizations of the cross-side network effects in a two-
sided market, and present a general model for such markets
with a characterization of their stable equilibria.

Our contributions. We begin with an empirical study of
single platforms in the space of questions and answers. First,
we consider a set of 0.25M questions about computer pro-
gramming from Stack Overflow (stackoverflow.com) over
a one-year period. Next, we consider a set of 23M ques-
tions over 90 weeks drawn from Yahoo! Answers, a popular
general-purpose question and answer platform. We study
the rate of arrival of new question-askers (questioners) as
a function of the number of current answer-providers (an-
swerers) in the system (cross-side network effect), and as a
function of the number of questioners in the system (same-
side network effect), and then consider also the dual process
showing the arrival of new answerers into the system. We
show that different sides of the market can display radi-
cally different patterns, and that one side of the market can
change its growth behavior over the life of the system.



Based on these findings, we postulate a model for two-
sided markets. Consider the following simple example to
give a flavor of the models we will consider. A set of plat-
forms connect users to publishers. Each user and each pub-
lisher joins exactly one of the platforms (our models will
not in general require this). During each round, a new user
arrives and selects a platform with probability equal to the
fraction of publishers who have joined that platform. Then
a new publisher joins, and selects a platform based on the
fraction of users at that platform. In this simple system, the
joining decision of a user is made with direct proportional-
ity to the market share of publishers enjoyed by a given
platform, and vice versa. Due to this congruence of joining
behavior, in steady state, each platform converges to the
same share of users as publishers. The overall system also
converges to a steady-state share distribution, but the share
across platforms may be quite different.

We would like to understand how this situation changes
if a user selects a platform with probability proportional to
an arbitrary monotonically increasing function of the share
of publishers at that platform. In general, even for two plat-
forms and the simple publisher behavior above, the situation
becomes complex. There may be multiple stable equilibria
including simultaneously both trivial solutions in which a
platform dominates, and nontrivial solutions in which each
maintains non-zero share. We present a characterization of
these equilibria, and show that in our model, each platform
in the market will in expectation converge to some equilib-
rium.

We then study the share distribution of a variety of two-
sided markets using page impression data from the Yahoo!
toolbar. We are able to show that over a range of two-
sided markets, share of platforms tends to remain stable
over a broad period of time. While our data does not provide
visibility into the individual market events, this preliminary
examination agrees with the predictions of our model.

Finally, we expect that a multi-platform two-sided market
involving significant cross-side (or same-side) network effects
must incur some inefficiency due to the partitioning of the
users among the platforms. This leads us to consider situa-
tions in which two or more platforms may fruitfully form a
coalition. We define a technical coalition as an agreement by
which two platforms share their user databases, giving new
entrants the perception that each of those platforms is larger
than before. New entrants, however, join a single one of
the two platforms. We also consider a business coalition, in
which platforms perform a virtual merge, new entrants join
the new entity, and revenues are distributed to the owners
of the two original platforms according to some distribution
mechanism. We show that a properly structured business
coalition will always be of interest to all users in the market,
while a technical coalition will be of interest only if certain
share conditions are met.

2. RELATED WORK
The economic study of two-sided markets was started by

Rochet and Tirole [14] and later extended by Weyl [16].
Their work is primary focused on pricing. Lee [9] modeled
two-sided markets with a few suppliers as a strategic game
between platforms and suppliers. He showed that competi-
tion can lead to non-optimal equilibria. In another work, he
[10] also studied how vertical integration (exclusive contracts
between suppliers and platforms) affects market shares.

For certain types of products, a new customer adds value
to all existing ones. This principle is called the network ef-
fect. In 1995 Robert Metcalfe [11] postulated that the total
value of a product can grow quadratically with the number of
consumers. Subsequently, Briscoe, Odlyzko, and Tilly sug-
gested a more conservative n logn asymptotic. The detailed
studies of network effect in two-sided markets was started
by Parker and Van Alstyne [12] only recently. In partic-
ular, they modeled the case when it is profitable to have a
zero price on one side of the market. With his recent“Linked
Data” [3] initiative, Tim Berners-Lee is making another case
for network effect: he postulates that connecting structured
data on the Web will generate a lot of new value.

Much of the analysis of network effect in two-sided mar-
kets has employed game theory, but a growing body of work
instead studies competition in such markets as a random
process. In particular, the model of preferential attachment
[2, 4] has been proposed to explain degree distribution in
social networks, and recently Immorlica et al. [7] employed
another random process to model technology diffusion in so-
cial networks.

3. MODEL
A two-sided market is a system of connections between

three types of agents: users of the first type (consumers,
males, questioners), users of the second type (suppliers, fe-
males, answerers) and intermediaries (marketplaces, plat-
forms, portals). For simplicity, we will assume in our dis-
cussion that the two sides of the market are referred to as
“blue” and “green,” and will employ these terms for the re-
mainder of the paper.

Let k be the number of platforms. At any point of time,
each platform has a number of users of both types. Let
Bi(t), Gi(t) be the absolute audience sizes for platform i ∈
[k] at time t. Correspondingly, let bi(t), gi(t) be the market
shares of platform i. The market state at time t can be
described by the vector

M(t) = (B1(t), . . . , Bk(t), G1(t), . . . , Gk(t)).

In the most general setting, the evolution of the market fol-
lows the market equation: M(t+ 1) = ℱ(M(t)), where ℱ is
a stochastic function.

Ideally, the market equation should encapsulate the fol-
lowing aspects:

∙ Cross-side network effects: if a new blue user joins
some platform, then it makes the platform more at-
tractive for the green users, and vice versa.

∙ Same-side network effect: if the number of green users
grows, then it can add value to the platform through
shared reviews or shared access tools. Note however
that in some cases there might be a negative same-side
network effect: the more green users in a platform, the
higher is competition.

∙ Fitness factor: these are factors of the platform that
are external and network-independent. Pricing, brand-
ing, and usability of a platform may all contribute to
its fitness.

∙ Multi-homing: in some two-sided markets users can
join exactly only one platform, whereas in others multi-
homing is allowed.



∙ Market maturity: in an emerging market we can sim-
plify the model by saying that new users arrive but
nobody leaves. In a mature market the stream of ar-
riving users is balanced by a stream of departing ones,
and a significant number of users may switch from one
platform to another.

∙ Platform changes: platforms can arrive, depart, or
form coalitions.

∙ Individual properties of users: in the simplest model,
one can assume that only the number of users matter
in the market equation. In reality, the attractiveness
of the platform is a function of the set of its current
users, not just the cardinality of this set.

3.1 Attachment curves model
We model the evolution of a two-sided market as a tem-

poral process, but the market equation given above is very
general. We now define a particular type of two-sided mar-
kets about which we can make stronger statements. In
our model, we will employ platform-dependent attachment
curves {Vi} and {Wi} that specify the probability with which
a new user of a given type (Vi for green users, Wi for blue
users) will join platform i. Thus, V7(0.2) gives the likelihood
that a new green user will join platform 7 if the platform
has 20% market share of the blue users. Attachment curves
succinctly model cross-side network effects of various forms,
along with per-platform fitness effects that may manifest
themselves differently for different market configurations. In
the following, we will present our basic attachment curves
model, and discuss how the model may be extended to cover
many of the more complex interactions described above.

The market equations for our basic model are referred to
as the attachment curves equations, defined for platform i
as follows:(
bi(t+ 1)
gi(t+ 1)

)
= (1−�t)

(
1 0
0 1

)(
bi(t)
gi(t)

)
+�tX⃗ Vi(gi(t))

Wi(bi(t))

.

We now describe the components of these equations: the
attachment functions V,W , the change rate �t, and the join
random variable X⃗.

Attachment curves. We introduced the attachment curves
above. Each function Vi,Wi : [0, 1] → [0, 1] is monoton-
ically increasing. In many cases V (0) = W (0) = 0 and
V (1) = W (1) = 1, meaning that no green user wants to
join a platform without any blue user and every green user
is eager to sign up when all of the blue users are already
aboard.

Rate of market change. The sequence �t reflects propor-
tional shrinking of market share at time t that can be due
to (1) users leaving the market, (2) users switching from one
platform to another, or (3) total growth of market users that
makes the same absolute quantity of users represent a lesser
market share. At this point, we note a couple of important
special cases. When users arrive one at a time and no one
switches or leaves, �t = 1

t+B(0)
. In a mature market with

a constant fraction of users switching during each timestep
we have �t = �. In extending the model to cover absolute
growth rather than change in share, it may be necessary to
introduce separate birth and death rates to the model, but
our basic formulation combines these notions together.

Join random variable. The vector random variable X⃗ Vi(gi(t))
Wi(bi(t))

gives the fraction of blue users and green users joining plat-
form i.

For purposes of analysis, we define a continuous variation
of the attachment curves model as follows:

b′i(t) = −�tbi(t) + �tVi(gi(t)) + �(gi, bi, t),

g′i(t) = −�tgi(t) + �tWi(bi(t)) + �(gi, bi, t).

Here, �, � are stochastic noise functions with zero expecta-
tion.

Our basic model is focused on share effects as we use the
fraction of users of a certain type on the platform as an
input to the attachment function. One could also introduce
B(t), G(t), and t as parameters of the attachment function,
allowing different behavior at different stages of the market’s
development.

3.2 Connections to other models
We now describe the connections between the attachment

curves model and a variety of related models.

Preferential attachment. In the classic preferential at-
tachment model [2], newcomers connect to agents in the net-
work with probability proportional to their current degrees.
This is modeled as follows:

Vi(x) = Wi(x) = x.

Notice that variations of the preferential attachment model
can be encoded by suitably modifying the attachment curves:
for a general preference rule, Vi(x) ∝ x� and Wi(x) ∝ x�

or for incorporating fitness as in [4], Vi(x) ∝ min(1, x� + fi)
and W (B) ∝ min(1, x� + f ′i), and so on.

Social influence. In a broad sense many network effects
can be classified as“social influence”. Here we consider mod-
els in which an agent joins a platform (adopts a technology)
if the number of her friends already using this technology
is above some threshold. This phenomenon motivates many
models of influencers, propagation of epidemics, and tech-
nology adoption [8, 1, 7]. In the case of two-sided markets,
we assume that there is an underlying graph of “valuable
connections” between agents of two types. An agent will
join a platform if it can serve as an intermediary for a suffi-
cient number of her valuable connections. Let us show how
this informal principle can be encoded in the attachment
curves framework. Consider a mature market with G green
users and B blue users, and assume each user has p valuable
connections, of which a platform must provide at least q ≤ p
in order to attract the user. Assume that the valuable con-
nections of an incoming user are selected at random from
the G green users in the market. Then the probability that
an incoming user will join a specific market is given by the
following attachment function:

V (gi) =

∑p
j=q

(
j
giG

)(
(p−j)

(1−gi)G

)(
p
G

) .

The function W is defined analogously.

Early vs. late adopters. Adoption of a new technology or
an exchange platform will often proceed in waves: a group



of early adopters first joins the platform, attracting a sec-
ond larger group of early majority users, who in turn grant
confidence to a late majority, and so forth. This model can
be formalized by a “staircase” attachment curve. E.g.,

Vi(x) =

⎧⎨⎩ 0 x ∈ [0, 0.25)
0.5 x ∈ [0.25, 0.75)
1 x ∈ [0.75, 1]

The interpretation is that blue users will not join until the
system has 25% of all green users, then suddenly half of all
blue users are willing to sign up. When the fraction of green
users exceeds 75%, the remaining 50% of blue users also join.

Remark on Ceyhan–Mousavi–Saberi model. Very re-
cently Ceyhan, Mousavi, and Saberi present a generic model
for network effect [15]. They model a newcomer’s platform
selection by the following stochastic equation:

ijoin = arg max
i
Ai(M(t)) + �i, (1)

where Ai is an attractiveness function based on current user-
bases of platforms and �i is a stochastic noise function.

Attachment curves model has a few important differences
from (1). First, we consider two-sided markets and thus,
have a system of two equations. As shown in our experi-
mental section below, blue-to-green network effects can dif-
fer significantly from green-to-blue effects.

Second, instead of using the arg max function, we use
Bernoulli random variables. This is an important distinc-
tion. There are many cases in which two users will have very
different utilities from platforms and thus, it is not natural
to model their choice as maximization of a universal utility
plus noise. Consider a practical scenario example with two
insurance networks of doctors, one of which has two-thirds
of the market share and the other has the remaining one-
thirds. Let every user simply join the platform that hosts
its closest doctor. In this case, two-thirds of the population
will join the smaller network. As we see, postulating that se-
lection probabilities are proportional to some attractiveness
function is very natural in this case. Preferential attachment
models also use probabilities proportional to the attractive-
ness approach (as opposed to using arg max). Thus, the two
models may be appropriate in different circumstances.

Finally, the attachment curves model allows study of the
evolution of a single platform. We can start a random
“chicken-and-egg” process from 0, 0 market position and see
how far the platform will grow guided by the given attach-
ment curves and the V,W functions.

4. SINGLE-PLATFORM VIEW

4.1 A study
In this section, we study the attachment curves of a typical

two-sided market, namely, online question-answering appli-
cations. In these applications, the two sides of the mar-
ket are the questioners, i.e., the users who pose questions
to the system, and answerers, i.e., the users who answer
posed questions. Our analysis is based on two large such
portals: Yahoo! Answers (answers.yahoo.com) and the rel-
atively new company Stack Overflow (stackoverflow.com).
We first describe the two datasets we use in our experiments.

Yahoo! Answers is a question-answering portal that has
been operational since 2005. The scope of questions is general-
purpose and each question is tagged by the questioner with

pre-defined categories ranging from Arts to Entertainment
to Politics. For the purposes of our analysis, we obtained the
entire data from June 26, 2005 to April 20, 2007, spanning
about 90 weeks and about 23 million questions. The data is
of the following schema: for each question, it contains the
questioner’s id, the question’s category, the time when the
question was asked, and for each answer to the question, the
answerer’s id, and the time when the answer was provided.
Using the ids and timestamps, it is easy to extract the au-
dience sizes for both sides of the market, i.e., the number of
unique questioners Q(t) and answerers A(t) at any time t.
Figure 1 shows the growth of the audience size (i.e., unique
number of questioners and answerers) for Yahoo! Answers.
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Figure 1: Audience growth for Yahoo! Answers.

We wish to analyze the attachment curves for these plat-
forms. Recall that an attachment curve shows how the cur-
rent volume of green users at a platform will influence the
probability of a newly-arriving blue selecting that platform.
Thus, the attachment curve may be viewed as the relation-
ship between Gi(t) and ΔBi(t). Depending on the formu-
lation, the behavior of a newly-arriving blue may be deter-
mined by the share of green users at the platform, or the ab-
solute number of green users at the platform. In this experi-
ment, we have detailed information about two platforms, but
we don’t have information about the entire market. Thus,
we study the relationship between absolute number of blue
users and change in number of green users. So we consider
ΔQ(t) = Q(t+1)−Q(t) vs. A(t) and ΔA(t) = A(t+1)−A(t)
vs. Q(t). Figure 2 shows the attachment curves.

Before discussing this data, we present our second exam-
ple. Stack Overflow is a young portal, operational for the
past year. The scope of questions is restricted to program-
ming and software development, and each question is tagged
by the questioner with short free text such as c#, perl,
iphone, etc. For the purposes of our analysis, we obtained
all the question-answer data from July 31, 2008 to July 31,
2009, spanning a year and about 0.25 million questions. The
data is of the following schema: for each question, the ques-
tioner’s id, the tags attached to the question, the time when
the question was asked, and for each answer to the question,
the answerer’s id, and the time when the answer was given.
As before, we can study the audience growth and attach-
ment curves for this market. Figure 3 shows the growth and
attachment curves for Stack Overflow.
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Figure 2: Attachment curves for Yahoo! Answers.

There are several takeaways from this analysis of the at-
tachment curves.

(1) The attachment curves for both Yahoo! Answers and
Stack Overflow are monotonically increasing or constant (up
to perhaps large local variations). This justifies the mono-
tonicity assumption in the model. Also, our model’s ability
to incorporate any attachment curve is quite crucial since
from the experiments it is clear that they can be intricate.

(2) The attachment curves for Stack Overflow show a clear
difference: ΔA(t) vs. Q(t) is mostly flat whereas ΔQ(t) is in-
creasing (linearly) as a function of A(t). Thus, the question-
ers display a strong cross-side network effect, finding benefit
in the presence of larger numbers of answerers (more on this
below), while the answerers do not display such a pattern.
This shows that the attachment curves for some platforms
could be asymmetric. This asymmetry leads to a quadratic
growth in questioners (seen from the system Q′(t) ∝ A(t)
and A′(t) ∝ constant), while answerers grow only linearly.
In fact, even for submarkets in Stack Overflow, obtained by
selecting questions with tags “perl” and “iphone,” their cor-
responding attachment curves still show marked differences
between the two sides of the market (Figure 4). The attach-
ment curves for Yahoo! Answers are much less asymmetric
in comparison.

(3) It is important to clarify the relationship between
ΔQ(t), ΔA(t), Q(t), and A(t). In particular, since both
sides of the market are growing rapidly, how do we know
that the network effect is cross-side rather than same-side?
If there is a cross-side network effect at work, questioners
will grow at a rate proportional to the number of answerers,
but if this occurs during a time period in which question-
ers and answerers are growing in lockstep, then we will also
observe a strong non-causal correlation between the number
of questioners and the growth in the number of questioners.
To tease apart this distinction, we observe that, while the
two groups are both growing rapidly, there are periods dur-
ing which one accelerates faster than the other. We model
the underlying network effect as “traditional” preferential
attachment, and fit ΔQ(t) with respect to both A(t) and
Q(t) for the stable portion (last 26 weeks) of the curves in
Figure 3. The R2 value of the former is 0.93 whereas of
the latter is 0.89, showing that ΔQ(t) is better predicted
by A(t) than by Q(t) itself. From this observation, we have
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Figure 3: Growth and attachment curves for Stack
Overflow.

some confidence that our initial assumption that cross-side
network effect is a more likely explanation is supported by
the data. As we stated earlier, ΔA(t) is mostly constant but
same-side network effect marginally dominates the cross-side
network effect. For Yahoo! Answers, both ΔQ(t) and ΔA(t)
are mostly constant.

4.2 Equilibrium analysis
In this section, we consider continuous time market equa-

tions for one platform in the mature market case (hence we
omit the subscript i):

b′(t) = �V (g(t))− �b(t) + �(V (g(t)), b(t)),

g′(t) = �W (b(t))− �g(t) + �(V (b(t)), g(t)).

F
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Attachment curve

F = Questioners delta, G = Answerers, axis = bottom/left
F = Answerers delta, G = Questioners, axis = top/right
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F = Questioners delta, G = Answerers, axis = bottom/left
F = Answerers delta, G = Questioners, axis = top/right

Figure 4: Growth and attachment curves for two
submarkets in Stack Overflow: “perl” and “iphone”.



Since �, � have zero expectation, the evolution in expecta-
tion is the solution to the following system of first-order
ordinary differential equations:

b′(t) = �V (g(t))− �b(t),
g′(t) = �W (b(t))− �g(t). (2)

We assume V,W are continuous and monotonically in-
creasing on [0, 1]. Hence, they are Lipschitz continuous.
Then, by the Picard–Lindelöf theorem [6], we obtain the
following.

Theorem 1 (Uniqueness). For every starting position
b(0), g(0), there is a unique solution to (2).

We now define the notion of equilibrium points.

Definition 2 (Equilibrium point). A pair of market
shares (b, g) is an equilibrium point if the market equations
(2) imply b′ = g′ = 0.

Thus, the set of equilibrium points is a set of solutions for
the {V (g) = b;W (b) = g; } system of equations. Equilib-
rium points can be nicely visualized as follows. Take the
unit square and plot the function V and the inverse of W ,
which is also a monotonically increasing function. All the in-
tersection points are the equilibrium states. Figure 5 gives
an example. One should read the x-axis as the share of
blue users and the y-axis as the share of green users. The
green attachment curve shows the change in the share of
green users as a function of the share of blue users; the blue
attachment curve is the transpose of the function showing
change in the share of blue users as a function of the share of
green users. One may verify that a point located on one of
the arrows will in fact have a trajectory towards the marked
equilibrium points. For any point in the unit square repre-
senting a configuration of the system, the point will move
vertically towards the green curve, and horizontally towards
the blue curve, during the next (infinitesimal) evolution of
the system.

(0,0)

(1,1)

Figure 5: Representation of equilibrium points.

Definition 3 (Dominance and weak dominance).
A market position (b, g) dominates another market position
(b∗, g∗), denoted (b, g) ≻ (b∗, g∗), if b > b∗ and g > g∗.

Likewise, (b, g) ર (b∗, g∗) if b ≥ b∗ and g ≥ g∗ (weak domi-
nance).

Lemma 4 (Dominance). Let (b, g) ≻ (b∗, g∗), and let
u, u∗ be the expected evolution trajectories with starting con-
ditions (b, g) and (b∗, g∗). Then for any time t, u(t) ર u∗(t).

Proof. Assume the contrary, i.e., there is a t such that
u(t) does not weakly dominate u∗(t). Let t0 be the infimum
of such time points. By the continuity of u, u∗, and since
weak dominance holds at t, weak dominance also holds at
t0. We now do a case analysis.

If both b(t0) = b∗(t0) and g(t0) = g∗(t0), then by the
uniqueness theorem starting from t0, both trajectories will
coincide and the proof follows. If both b(t0) > b∗(t0) and
g(t0) > g∗(t0), since our functions are Lipschitz continuous,
there is a � > 0 such that the trajectory u dominates the
trajectory u∗ in the interval [t0, t0 + �], contradicting the
definition of t0.

Therefore, we only need to address the case with one
equality and one inequality. Without loss of generality, let
b(t0) = b∗(t0) and g(t0) > g∗(t0). By Lipschitz continu-
ity, for some interval of length �, we have g(t) > g∗(t) for
t ∈ [t0, t0 + �]; we will prove that b(t) ≥ b∗(t) as well. The
market equation (2) implies the following:

(b− b∗)(0) = 0,

(b− b∗)′(t) = −�(b− b∗)(t) + �(V (g(t))− V (g∗(t))).

By the monotonicity of attachment, the last term stays non-
negative in the [t0, t0 + �] interval. Thus, equivalently,

(b− b∗)(0) = 0,

(b− b∗)′(t) + �(b− b∗)(t) = p(t),

where p(t) = �(V (g(t))−V (g∗(t))) ≥ 0. This is a first-order
linear ordinary differential equation, whose explicit solution
can be written as

(b− b∗)(t) = e−a(t)
(∫

p(t)ea(t)dt+ C

)
, with

a(t) =

∫
�dt.

The initial condition implies C = 0. Since p(t) ≥ 0, it follows
that (b− b∗)(t) ≥ 0, for t ∈ [t0, t0 + �]. This contradicts the
definition of t0.

Theorem 5 (Convergence to equilibrium). The ex-
pected evolution in a mature market always converges to
equilibrium state.

Proof. Since the unit square is compact, the expected
evolution trajectory u(t) must have at least one accumu-
lation point. We do a case analysis on the number and
dominance characteristics of the accumulation points.

Case 1. Suppose there is only one accumulation point
u0. Then the whole trajectory converges to u0, since oth-
erwise, one can find a second accumulation point for the
subsequence of positions bounded away from u0. Since the
full trajectory converges to u0, the market equation (2) im-
plies a zero derivative at u0. Indeed, suppose the deriva-
tive is v ∕= 0. Then, by Lipschitz continuity, there is a
� > 0 such that infinitely many times in the future, points
on the expected evolution trajectory will be of the form



u0 + v� + O(�2). This contradicts the convergence to u0.
Therefore, if there is only one accumulation point, the tra-
jectory converges to this point, which is an equilibrium state.

Case 2. Suppose there are two accumulation points u∗, u∗∗

such that u∗ ≻ u∗∗. We call all points that dominate u∗/3+
2u∗∗/3 to be the surplus area, and all points dominated by
2u∗/3 + u∗∗/3 to be the deficit area. There is some interval
I1 = [t − 
, t + 
] during which the evolution trajectory u
stays in the deficit area. Since u∗∗ is a accumulation point,
there is a second interval I2 = [t+�−
, t+�+
] in which the
trajectory u stays in the surplus area. Applying dominance
to any pair of time points in intervals I1 and I2, we obtain
a third time interval I3 = [t+ 2�− 2
, t+ 2�+ 2
], in which
u must stay in the surplus area. Iterating this argument ℓ
times, we get the interval Iℓ+2 = [t + 2ℓ� − 
, t + 2ℓ� + 
],
in which the trajectory u stays in the surplus area. Thus in
the future there will be arbitrary long periods during which
the trajectory stays in the surplus area.

Now, let t∗, �∗ be some time points when u(t∗) is in the
surplus area but u(t∗ + �∗) is in the deficit area. Then by
the dominance lemma, u(t∗ + 2�∗) ≺ u(t∗ + �∗) will be in
the deficit area as well. Repeating this argument ℓ times,
we have that u(t∗ + ℓ�∗) will be in the deficit area for any
positive integer ℓ.

These two statements (arbitrary long stays in the surplus
area and arithmetic progression of stays in the deficit area)
cannot hold simultaneously. This completes the argument
for this case.

Case 3. Finally, assume there is more than one accumula-
tion point, but no such point dominates another. Let u∗ be
a accumulation point that minimizes b − g and u∗∗ be the
one that maximizes b − g; these exist since the set of accu-
mulation points is compact. Note that u∗, u∗∗ are unique
and different, for otherwise we have a pair of dominating
accumulation points, or only one accumulation point.

By the market equation (2), b’s derivative at u∗∗ is strictly
smaller than at u∗. Indeed, b∗ < b∗∗ and g∗ > g∗∗, thus
−�b∗ > −�b∗ and �V (g∗) ≥ �V (g∗∗) by monotonicity. Thus,
either u∗ or u∗∗ has a non-zero derivative. Without loss of
generality, let v ∕= 0 be the market derivative at u∗.

Since we have a Lipschitz continuous ordinary differential
equation without t in it, and since u∗ is a accumulation
point for our trajectory u(t), there exists � > 0 such that
for any t ∈ [−�, �], U∗(t) is also a accumulation point, where
U∗ is a solution to our equation with the initial condition
U∗(0) = u∗. Note, that U∗(t) = u∗ + vt + o(t). Now, we
compare these new accumulation points to u∗. First of all,
they cannot have both b and g bigger than u∗ has since this
will be Case 2. Likewise, they cannot have both coordinates
smaller than u∗. They also cannot have b smaller, but g
larger, since it contradicts the choice of u∗ (minimizing b−g).
Thus, the new accumulation points can only reside in the
quadrant of points containing “bigger b” and “smaller g”.
However, since v ∕= 0 either with positive t or with negative
t, the U∗ trajectory will depart from the only permitted
quadrant. This completes the argument.

5. MULTIPLATFORM VIEW
In this section, motivated by the empirical observations

in Section 4, we study the evolution of multi-platform two-
sided markets with attachment curves. We begin with a

small experiment to understand whether two-sided markets
in practice tend to display stable share configurations, or
tend to display wandering or unstable share.

5.1 Multiplatform markets: A study
To perform this experiment, we employ a subset of the

Yahoo! toolbar data, which contains the list of urls visited
by a user (whose id is anonymized). The period of evaluation
for about one year, starting June 28, 2008.

We analyze three distinct two-sided markets, and a set of
platforms within each market, as follows.

∙ Air travel reservation, where the providers are Orb-
itz, Expedia, Kayak, Travelocity, Tripadvisor, Yahoo!
Travel, and Mobissimo.

∙ Personals, where the providers are match.com, eharmony.
com, Yahoo! Personals, and plentyoffish.com.

∙ Used cars, where the providers are usedcars.com, cars.
com, autotrader.com, Edmunds, Carmax, kbb.com,
and Ebay Motors.

Using the toolbar data, we record how many times a user
visits one of the above websites each day. In this way, the
market shares can be computed. (We point out the obvious
caveat that this data could be biased since it is based only
on the Yahoo! toolbar users.) Figure 6 shows the market
shares for the three markets, aggregated for each week.

The figures show that over a one-year period in the rapidly-
changing internet space, these markets seem to exhibit sta-
ble equilibria. We will revisit this observation in light of our
theoretical analysis below.

5.2 Multiplatform view analysis
Let us find an instance of the attachment curves model

that can explain the “constant market shares” observation
discussed earlier. Let us consider a mature market with the
classic attachment rule: a green user will join the platform
with probability proportional to its blue market share taken
to some power � ≥ 0. Let k be the number of platforms.

Theorem 6. If � = 1, then any market share position
of the form b1 = g1, . . . , bk = gk is an equilibrium state. If
� < 1, then the flat market share b1 = g1 = ⋅ ⋅ ⋅ = bk = gk =
1/k is the only equilibrium state. If � > 1, then the flat
market shares and market tipping (one platform controls the
full market) are the only equilibrium states.

Proof. In equilibrium, the market equation (2) yields

0 = b′i(t) = (1− �)bi(t) + �
g�i (t)∑
g�j (t)

.

Thus, the equilibrium states satisfy the following system of
equations:

gi =
b�i (t)∑
b�j (t)

,

bi =
g�i (t)∑
g�j (t)

.

It is easy to check that the market positions from the state-
ment of the theorem satisfy this system and hence are equi-
librium states. To prove that there are no other equilib-
rium states, let us consider the platform with the maximum
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Figure 6: Relative audience shares for various multiplatform markets.

(across both blue and green) market share, and without loss
of generality, let this be b1. If � > 1, then excluding the flat
or market-tipping positions, the above system implies that
g1 > b1, which contradicts the choice of b1. If � < 1, then
excluding the flat shares position, the above system implies

b1 ≤
maxj g

�
j∑

g�j
< max

j
gj ≤ b1,

which is again a contradiction.

Suppose we start with b1(0) = g1(0), . . . bk(0) = gk(0). If
� = 1, then this state will not change since it is already in
equilibrium. On the other hand, if � ∕= 1, then the mar-
ket will either flatten or tip. Thus, the identity attachment
curves V (x) = W (x) appear to be a good model to explain
the market share stability observed in Figure 6.

5.3 Coalition analysis
We use the model with identity attachment curves to an-

alyze the potential partnerships in two-sided markets. We
consider multi-platform two-sided markets, in which the value
is derived from connecting the blue and green users. It seems
likely that the platform providers will consider merging or
otherwise unifying in order to unlock the value available by
connecting the green users of one platform with the blue
users of the other, and vice versa. If such a scheme gener-
ates more overall value, then perhaps an arrangement can
be structured so that both platforms benefit.

Thus, it is natural to consider the formation of various
types of coalitions in multi-platform two-sided markets. Here,
we will analyze the situations in which it is beneficial to form
coalitions. For concreteness, we will make reference to “sup-
pliers” and “consumers” in this discussion, as an example of
the green and blue users in the market.

Metcalfe [11] advocated the extreme position that the
value of a network should be estimated as the square of the
number of users, based on the potential connections that
are enabled by the network. In this section, we follow this
observation by assuming that the revenue generated by a
platform is proportional to the product of the number of
suppliers and the number of consumers, i.e., the revenue is
proportional to the number of connections between the two
sides of the market. We do not take a stance in the vocif-
erous and ongoing debate about whether Metcalfe’s law is
reasonable; Briscoe, Odlyzko, and Tilly [5] advocate a more
conservative revenue model of n logn, which would lead to a
different set of entirely reasonable conclusions. However, for
simplicity, in this version we limit our attention to “Metcalfe
revenue.”

We study two types of coalitions: technical and business.
A technical coalition between several platforms is an agree-
ment to share the data they collect from suppliers and make
it available to all their consumers; this is purely a data shar-
ing agreement that presents to consumer the view that each
platform in the coalition appears to have available a larger
number of suppliers. A business coalition is a technical coali-
tion in which any additional revenue generated due to the
formation of the coalition is redistributed among the part-
ners according to some prior agreement that was made when
the coalition was formed.

A coalition is beneficial to an individual platform if it
earns more money compared to operating on its own. A
coalition is beneficial if it is beneficial to all its users. Finally,
a coalition is stable if no sub-coalition can earn more revenue.

For the following results, we assume that both V and W
are linear attachment curves. Therefore, the steady-state gi
and bi share values have gi = bi; we will refer simply to gi
for simplicity. Let m be the total number of suppliers and
n be the total number of consumers.

Theorem 7. In a k-platform market, if all the market
shares are less than 1√

k
, then the full technical coalition is

beneficial under Metcalfe’s law.

Proof. Let g1, . . . , gk be the initial market shares, g1 +
⋅ ⋅ ⋅+gk = 1. By the structure of the market model, if the ith
platform stays out of any coalitions, then its market share
is expected to stay the same. Thus, by Metcalfe’s law, its
expected revenue is g2imn. After a full technical coalition is
formed, from the supplier’s point of view, all platforms be-
come equally attractive since any consumer can be reached;
the same is true for consumers. Thus, the market shares will
move from g1, . . . , gk to being uniform. Now, the new rev-
enue of any platform is mn/k, since it connects 1/k suppliers
to all consumers as well as 1/k consumers to all suppliers.
By our assumptions, g2i < 1/k and thus in the limit, all
platforms earn more than prior to the coalition. For plat-
forms with an initial market share below 1/k, coalition both
increases the revenue and the market share; thus, it is ben-
eficial throughout the whole process. For platforms with
an initial market share above 1/k, coalition immediately in-
creases the profits but slowly decreases the market shares.
Because of that, and since in the limit coalition is beneficial,
it is beneficial at all times.

It is easy to see that beneficial technical coalitions need
not be closed under subset. Indeed, consider market shares
proportional to 1, 1, 4, 5. The first two platforms can form a



beneficial coalition; the first three will not (as the third plat-
form will lose money); however all four can form a beneficial
coalition again.

Theorem 8. For all markets, a full stable business coali-
tion can be formed under Metcalfe’s law.

Proof. Let g1, . . . , gk be the initial market shares, g1 +
⋅ ⋅ ⋅ + gk = 1. Let the revenue sharing agreement allocate a
share gi (that is proportional to its initial market share and
not to its initial revenue share) of total coalition revenue
to every platform i. The total revenue of the full coalition
is mn, by Metcalfe’s law. Thus, the revenue-in-coalition for
the ith platform is gimn. Suppose platforms i1, . . . , iℓ decide
to drop out of full coalition to form their own alliance. By
the market model, the market share of this new alliance will
stay constant at the level of gi1 + ⋅ ⋅ ⋅+giℓ . Then, their total
revenue will be (gi1 + ⋅ ⋅ ⋅+ giℓ)2mn, which is always smaller
than the revenue of alliance users within the full coalition,
i.e., (g1 + ⋅ ⋅ ⋅+ gk)2mn.

Naturally, a question arises: what is the“optimal”or“fair”
revenue redistribution? Consider the simplest case of two
platforms with equal market share. Their standalone profits
are mn/4 and their total in-coalition revenue is mn. Thus,
the allocation of “extra profit” of mn/2 is an instance of the
ultimatum game. This observation leads us to the following
open problem: can revenue redistribution in any market be
decomposed into two parts, namely, necessary payments and
ultimatum payments?

6. FURTHER WORK
The key directions for further work are:

∙ Find a fast algorithm that, given piece-wise linear at-
tachment curves and a starting condition, computes
the equilibrium points.

∙ Analyze the stability of market evolution under vari-
ous models of noise. Techniques from [4, 15] might be
relevant here.

∙ Study the predictive power of the attachment curves
model. How useful are the attachment curves to pre-
dict the future evolution of a two-sided market?

∙ Find the optimal revenue redistribution schemes for
coalitions in two-sided markets.

∙ Study investment strategies. Knowing the attachment
curves, should a platform owner invest extra effort
(say, marketing campaign) to attract more green or
blue users? How much should be spent? Is there a
“cheap” way to create a snowball effect?
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