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ABSTRACT
This paper presents a principled approach to one of the many little-
studied aspects of computer security which relate to human behav-
ior. Advantages of involving users who usually have strong analytic
ability to detect violations and threats but not primarily responsible
for security have been well emphasized in the literature. In this
work we propose a reinforcement framework for enabling collab-
orative monitoring of policy violations by the users. We define
a payoff model to formalize the reinforcement framework. The
model stipulates appropriate payoffs as reward, punishment, and
community price according to reporting of genuine or false vio-
lations, non-reporting of the detected violations, and proactive re-
porting of vulnerabilities and threats by the users. We define prob-
abilistic robustness property of the resulting system and constraints
for economic feasibility of the payoffs. For estimating the parame-
ters in the payoff model, system and user behaviors are modeled in
terms of probabilistic finite state machines (PFSM) and likelihood
of the success of the model is specified using Probabilistic Compu-
tation Tree Logic (PCTL). PRISM model checker based automated
quantitative analysis elicits the process of the estimation of various
parameters in the model using PFSMs and PCTL formulas.
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1. INTRODUCTION
With the increasing size of today’s organizations having dynam-

ically changing asset base (physical and logical), designing appro-
priate security policies and their enforcement to maintain confiden-
tiality and integrity of these assets are becoming increasingly dif-
ficult. One of the noticeable limitations of the existing security
frameworks is that user base of assets is differentiated from the se-
curity administrators who design and enforce the security policies.
Therefore, it appears a natural proposition that if securing confi-
dentiality and integrity of certain types of assets is considered as
a collective responsibility of the users and security administrators,
the security enforcement would enhance positively. For example, a
malicious user making destabilizing changes in a code base could
be better monitored and reported for doing so by the associated
team members, who have probably better knowledge of it or can
better detect it than the centrally administered monitoring mecha-
nisms.

To make users responsible for the security of the assets (in partic-
ular critical assets), a plausible approach may be to involve them in
different aspects of security including threat perception and mon-
itoring the violations of policies. Now-a-days, all these opera-
tions are mainly taken care by a limited group of administrators.
They define security policies, devise means to enforce them, and
monitor continuously to detect possible violations. However, a
large enterprise-wide organization typically has tens of thousands
of employees and many more roles/tasks/permissions, and even
larger number of assets and contexts present at any point of time.
Thus, understanding the multitude of security requirements and
their enforcement for a large organization is not only difficult but
also error-prone. It would be a better solution, if different groups
formed based upon business focus, roles, emerging contexts, and
tasks also participate in defining security policies and are entrusted
with collective monitoring of the policy violations. In early 90s,
Greenwald [14] advocated similar philosophy in the context of dis-
tributed resource management and access control and proposed a
Distributed Compartment Model, which allows users to manage
resources across different administrative domains with increased
independence from central system administrators. Also Vimercati
and Samarati [10] proposed a model with local user autonomy in
access control for federated databases.

In this paper we consider the problem of collaborative enforce-
ment and monitoring of security policies. To guide individuals
and groups for this, there needs to be a well-defined framework.



This framework should be easy to follow for devising measures
to ensure overall implementation of such collaborative monitoring
efforts. Also as an organization’s policies change over time, the
framework should be such that it can effectively adapt with the
changes. Unfortunately existing models of security do not con-
sider such collaborative aspects and thus there is a need to devise
one such.

In this work, we present a formal framework for devising poli-
cies to enable collaborative monitoring against policy violations.
Importantly, presented framework does not imply that the employ-
ees take up the additional roles of security completely, however in
certain scenarios, where they could have more effective role in en-
forcing the policies and are directly impacted by the violations, it is
indeed desirable that they take proactive participation. A few such
representative scenarios are discussed next to motivate the need for
having a model for collaborative monitoring by the users:

Sensitive Data Manipulation: Suppose a (disgruntled) employee
or a group of employees has privileged shared access to sensitive
data or device, e.g. strategic documents, design documents, source
code, or sensitive infrastructure control and attempts to manipulate
the data or device by introducing disruptive changes. Chances are
higher that other users (e.g. supervisors) also having access rights
would be able to detect such disruptive manipulation since they
have the required semantic understanding to determine the poten-
tial impact owing to such changes with the contents.

Photo ID cards – Changing identities: Now-a-days most of the
corporate organizations provide their employees with photo printed
smart cards, which enable access to different facilities around. How-
ever, in a large organization, it might not be possible for the limited
number of security staffs to monitor if everyone present in the or-
ganization is indeed using his/her own access cards. And if an in-
truder is somehow able to get such a smart card, it could enable his
access to the facilities and could potentially cause serious threats.
However, it is more likely that when such intruder tries to access
these facilities, other users familiar with the facility might notice
and report the presence of such unfamiliar intruder than his getting
detected by an existing monitoring infrastructure.

Informal transfer of sensitive IP: Suppose Alice and Bob, be-
ing part of an R&D department work on some sensitive projects.
During their visit to a scientific conference, Foe, a friend of Bob,
working for a competitor organization meets Bob and they discuss
their ongoing research, where Alice happens to join them. Alice
may notice that their discussions might amount to disclosure of the
crucial IP, not yet legally protected. Alice on noticing this can bring
it to the notice to authorities and help the organization in protecting
the IP as soon as possible.

A discussion on the deliberate coding violations by program-
mers and IP theft also appears in [15] highlighting the potential loss
which such violations may cause to the organizations especially in
the context of safety critical applications.

In these scenarios a social framework always provides wider
scope and depth for monitoring the violations than any existing
monitoring infrastructure. This is especially true for the context
dependent logical resources, i.e., some data, significance of which
is realized only when considered with respect to specific contexts,
e.g. design documents and source code having product specific in-
terpretation and significance. Such resources are most vulnerable to
‘semantic manipulations’ and securing them using automated mon-
itoring is either not feasible or would be very costly.

A special class of such threats is known as insider threat [8, 38,
18, 4, 3], which is a pressing problem for most of the organizations
today. Recent studies on insider threats in finance and banking sec-
tor indicate that often other users (85%) had some amount of prior

knowledge of the possible threat [33]. Indeed, in 61% of the cases,
insiders responsible for the threats were actually detected by the
people who were not responsible for the security. In another study,
it was estimated that more than 25% of the frauds were actually
reported by non-security users involving customers and other co-
workers [6].

A collaborative monitoring could then be considered as a kind
of social networking based monitoring mechanism whereby each
member having access on shared resources is expected to monitor
for the compliance and specifically report the instances of viola-
tions of the associated security policies or potential threats. The
fundamental question, which arises in such a scenario, is as to how
can such a collaborative monitoring framework be made effective
since there may not exist any prior (latent) positive network effect
for users to monitor against the security violations. The network ef-
fect is often considered a fundamental prerequisite for the success
of any collaborative networking phenomenon. Network effect [25,
21, 29] is generally expressed as a utility function which deter-
mines some useful value compared to the price paid for an actively
engaged user in a network in terms of the size of the network. For
a positive network effect such a utility function must be non de-
creasing w.r.t. the number of users in the network for a sufficient
range.

Drawing inspiration from the organic unity represented in the bi-
ological systems against attacks and socio-psychological studies on
security and human motivation, in this work, we propose a reward-
punishment based reinforcement framework for enabling collabo-
rative monitoring of policy violations by extrinsically inducing pos-
itive network effect in the system. To this aim, the framework stipu-
lates appropriate payoffs as rewards, punishments, and community
price according to the reporting behavior of the users on genuine
or false violations, non-reporting of the detected violations, and
proactive reporting of potential vulnerabilities and threats. We use
a payoff matrix based mechanism to formalize the framework.

The rest of the paper is organized as follows: In Section 2 we
set the background context for the model including assumptions
and socio-psychological studies on extrinsic motivation. Section 3
formally elaborates the payoff model followed by discussion on im-
plementation issues in Section 4. In Section 5 we present a proba-
bilistic model for analyzing the collaborative monitoring behavior
under proposed framework and discuss experimental work using
PRISM model checker in 6. Section 7 presents a discussion on
the potential limitations of the presented framework and Section 8
concludes the article.

2. THE FRAMEWORK
Before we discuss the model further, let us specify the underly-

ing assumptions:

2.1 Assumptions
Observability: Proposed model assumes that all genuine oc-

currences of policy violations have an ‘observable impact’ on the
system, which could be determined by the security administrators.
Thus we only consider such violations, which affect the state of the
system and do not consider other kinds of ‘silent’ violations not
affecting the system as far as the observable state of the system is
concerned. This in turn, implies that security administrators will
always be able to identify and validate the occurrence of a viola-
tion even if it remains undetected by the users. This assumption
thus avoids the cases of false positives as further discussed in the
Section 7.

Detection: A violation is considered to be detected only when
it is reported to be done so (either by users or some monitoring



device). Therefore if a violation occurs but is not reported by any
of the witnesses (or captured by the monitoring device), it would
be considered undetected.

Policy Synthesis: Model assumes that security policies are de-
fined a priory. Nonetheless, it is possible that as a by product of the
monitoring process, existing policies are refined or new policies
may potentially be integrated into the framework as determined by
the existing policy synthesis machinery. For example, certain se-
quence of events (each event is an operation on an object by some
subject) might enable other access restriction violations, and there-
fore reporting the final access violation in terms of the scenarios
consisting of these sequence of events might give rise to new set of
access restrictions.

Policy Completeness and Consistency: Policies are also as-
sumed to be contradiction free, mutually consistent, and complete.
Lack of contradiction in a policy definition and mutual consistency
among policies are required to avoid the cases of ambiguity in their
interpretation by the users and for determining whether a scenario
should actually be considered as a violation or not. On the other
hand, the policy completeness requirement ensures that decisions
could be made in all related scenarios. We discuss more on this
assumption in Section 7 on ‘Challenges in Collaborative Security’.

Policy Awareness: Model assumes that users have necessary
knowledge of legitimate accesses/policies and capability to detect
and report genuine violations. In the beginning, however, users
may not have complete knowledge of the policies and with time, as
violations would be reported, these would reinforce the awareness
of the users. We will discuss more on this assumption in Section 4
on ‘Implementation Issues’.

2.2 Socio-psychological Dimension
The justification to externally induced network effect comes from

the numerous studies in social psychology on the role of extrinsic
motivation in affecting individual and group attitudes and behav-
iors [37, 30, 9, 11]. These studies provide insights into what are
the usual behavioral effects of various kinds of rewards and pun-
ishments. Some of the conclusions from these studies are quite
important while we discuss in the next section the mechanism for
collaborative monitoring. These are discussed next:

1. Extrinsic rewards can be important motivator to start new
(community) behaviors in the individuals.

2. Group punishment mechanisms usually play an important
role in the continuation of the intuitively justified commu-
nity behaviors. Individuals in groups tend to exert pressure
(though not always explicitly) on other individuals to avoid
themselves from paying community punishments owing to
the violations caused by others.

3. Apart from rewards, punishments are also used as negative
reinforcement tools for the individuals, who try to avoid such
punishments by following the expected behaviors. Nonethe-
less, unless expected behaviors have been internalized by the
individuals, the withdrawal of such negative reinforcements
may put individuals at the risk of reverting to the old situa-
tion.

4. Sociological studies on the concept of locus of control [34,
35] reveal that individuals show increased motivation towards
activities when they perceive better control over their envi-
ronment. In essence collaborative security lets users have
a say in designing policies and monitoring their violations,
which would give them a sense of better control over the as-
sets and policies they are using and in turn over the security

environment against the current scenario where they have lit-
tle or no say on these aspects.

Kabay [19, Chap. 35] also discusses the importance of applying
socio psychological understanding of individual and group behav-
ior while designing security policies. For example, he emphasizes
on the need for having policies and environment of rewarding em-
ployees for reporting security violations.

Based upon this understanding, we will next formally define the
payoff matrix model as an enabling mechanism for the collabora-
tive monitoring.

3. THE PAYOFF MATRIX MODEL
Let us consider a system consisting of subjects (processes/users)

accessing shared resources according to specific (security) policies.
The policies may specify that an object has some access restrictions
(e.g. copy operation on a specific File not allowed) or may direct
the behavior of the subjects (e.g. a user must not share her pass-
word).

Formally, let the set of subjects be

S = {s1, s2, . . . , sn}
and let there be finitely many 1 ways to violate a security policy
resulting into a set of violations as

Vio = {vio1 , vio2 , . . . , viom}
We do not assume that policies remain fixed. If a policy changes,

that would get reflected in the set of associated violations.
Let us associate with each subject, two types of time varying pay-

off matrices for each relevant policy violation. These are depicted
in Fig. 1 and Fig. 2.

Notations: All the entries in the tables are functions of time im-
plying that their actual value, at any time, might be dependent upon
the previous events or past behaviors of the players. t is the time
variable with granularity of reporting occurrences. Further,
Rij(t): Reward for player si on reporting true primary violation
vioj .
CPj (t): (absolute value) Community price associated with true
primary violation vioj .
P ′

ij(t): (absolute value) The payoff for player si for not reporting
true primary violation vioj .
Θij(t): Reward for player si on reporting potential violation (or
threat) on vioj .
Pij(t): (absolute value) The payoff for player si for false reporting
on violation vioj .
rij(t): Reward for player si on reporting true secondary violation
on vioj .
cpj(t): (absolute value) Community price associated with true sec-
ondary violation on vioj .
p′

ij(t): (absolute value) The payoff for player si for not reporting
true secondary violation on vioj .
∂ij(t): Reward for player si on reporting potential secondary vio-
lation on vioj .
pij(t): (absolute value) The payoff for player si for false reporting
of a secondary violation on vioj .
#: Undefined value.

The first payoff matrix in Fig. 1 defines the payoffs associated
with the ith player si for her reporting behavior on jth policy vio-
lation vioj .

1In cases where Vio is an uncountable set, suitable equivalence re-
lation needs to be defined which could partition Vio into finitely
many classes such that all the violations in each class could be con-
sidered equivalent for defining payoffs.



Primary Payoffs True
Violations

False
Violations

Reported Rij(t) Pij(t)
Non Reported + Undetected CPj(t) #
Detected + Not Reported P`ij(t) #
Threat Reporting #

Figure 1: The Payoff table for the Reporting behavior on Pri-
mary Violations

Secondary Payoffs True
Violations

False
Violations

Reported rij(t) pij(t)
Non Reported + Undetected 0 #
Detected + Not Reported p`ij(t) #
Threat Reporting #

Figure 2: The Payoff table for the Reporting behavior on Sec-
ondary Violations

We treat non-reporting of a policy violation itself to be a viola-
tion, which may invite punishment. We argue that in the absence of
such treatment it might not be possible to give rise to a dynamically
evolving and increasingly secure system. Therefore second payoff
matrix in Fig. 2, defines the payoffs associated with the ith player
si for the jth policy violation vioj on the reporting behavior of si

for non reporting of vioj by some other player.
Formally, let us consider the primary and secondary the payoff

matrices for the subjects against each policy violation:

〈( ¯PT1, ¯ST1) . . . ( ¯PTn, ¯STn)〉
where each player si is associated with primary payoff tables

¯PTi = [T P
i1 , T P

i2 , . . . T P
im]

and secondary payoff tables

¯STi = [T S
i1, T

S
i2, . . . T

S
im]

such that T P
ij , T S

ij denote the payoff tables corresponding to policy
violation vioj .

In Fig. 1 on Primary Payoffs, first column - True Primary Viola-
tion represents the case when a genuine violation of a policy has oc-
curred – impact of which is assumed to be observable later on. The
second column - False Primary Violation represents false violations
where player si may act on the basis of a fabricated violation – a
violation impact of which would never be observed. Such false vio-
lations might well be based on unreliable or unverified information
sources. Reporting of these violations should invite punishment
since they might be aimed toward falsely implicating others and
being based upon non verifiable claims.

Rows categorize the reporting behavior of the players. We con-
sider the cases of reporting of violations after they have occurred
and of potential violations reported in advance, which may occur if
suitable measures on enforcing the policies are not kept in place.

When a violation occurs, either si would report such a violation
(having detected it) [Row 1] or it will go unreported. The case of
non-reporting is further classified into two categories: i) Row 2 rep-
resents the scenario where si did not report and violation remained
undetected (that is, no one else also reported it.) ii) Row 3 repre-
sents the scenario where si detected a violation but did not report

it, while some other player detected as well as reported it – to es-
tablish such a case – we need to consider another payoff matrix as
depicted in Fig. 2, which captures detection and reporting of such
non reporting instances. The last row is meant to capture a potential
violation or threat reported by si.

In the second table on Secondary Payoffs, first column - True
Secondary Violation - represents that case, where player si detects
a violation and also detects some other player(s) detecting the same
violation though not reporting it. On the other hand, second column
- False Secondary Violation - represents that scenario, where player
si may act on the basis of a false or fabricated scenario and blame
that such a scenario was witnessed by some other players but they
did not report it. To elaborate these further, next we discuss each
payoff entry in the tables.

In the following discussion, PriTable[m,n] and SecTable
[m,n] would denote the cell in mth row and nth column in Pri-
mary Payoff Table and Secondary Payoff Table respectively, where
row/column indexing starts from 1.

3.1 Primary Payoff Table
The reporting behavior and corresponding payoffs for genuine

(true) violations are represented in the first column and are dis-
cussed next:

PriTable[1,1]: Represents the scenario where player si detects
violation vioj and duly reports it and is rewarded with Rij(t). Ac-
tual value of the rewards could be determined based upon the char-
acteristics of the violation vioj , reporting delay etc. and can very
well vary over time. Increase in the clearance level for subjects
as defined in various mandatory access control models [2] can be
considered as an example for such a reward.

In case majority of the players who detected and reported the
violation also report that player si did not actually detect the viola-
tion but reported it only to get share in the reward, her reward could
be withdrawn.

As discussed further in Section 7, in this paper we limit our scope
to only reporting of the violations and do not consider the aspect of
who committed the violation. However there exist a special case of
self-reporting, where a user reports a violation committed by her-
self. Since positive rewards for such self-reporting might give rise
to instances of deliberate violations with reporting by the users for
their advantage, we suggest that in such cases the rewards should
be kept to 0 (e.g., intangible positive feedbacks.)

PriTable[2,1]: Represents the scenario where a violation occurs
but it is not reported by any of the associated players. This covers
both the cases where violation was detected by some of the play-
ers but none of them reported it or when it remained undetected
and hence was not reported. Notice that owing to the assumption
of observability, even if a violation remains undetected, the conse-
quences of the violation will still be observed in the future and thus
it would get identified by the system administrators.

In such a case, each player pays a community price for it as de-
noted by -CPj (t). In case, if violations occur repeatedly, value of
CPj (t) might also increase. Otherwise if the frequency of simi-
lar violations decreases over time, value of CPj (t) might also de-
crease.

Consider, for example, a source code is being changed or copied
and transferred by some of the members of the project team and
none of those who had knowledge of it reported it. Since its impact
would be anyway felt at some stage later, all the associated players
need to bear some loss for this.

Such a community price to be paid by each associated member



is considered to be a critical component if such a model has to give
rise to a dynamically evolving and increasingly secure system with
collective responsibility. However in some cases, there might ex-
ist legal constraints, which limit explicit community punishments
(e.g., Geneva Convention.) In such cases value of CPj (t) could
be set to 0 (or an intangible punishment like negative group feed-
backs.)

PriTable[3,1]: Represents the scenario where player si detects
a violation but does not report it. We term it as secondary violation
to distinguish it from the primary violation. Such a claim would
be valid only when there exists some other player sk, who also de-
tects/witnesses the same violation vioj and also detects that it has
been witnessed by player si and sk reports so. Note that sk can
also be a neutral monitoring device by which such a claim can be
derived as well as verified. Therefore it is necessary to consider the
cell PriTable[3,1] for player si only in conjunction with the cell
SecTable[1,1] for some other player sk.

−P ′
ij(t) denotes the price player si needs to pay for such non

reporting of a violation. It can be argued that repeated occurrences
of such non-reporting by a player must invite even harsher punish-
ments, that is, P ′

ij(t) could be set as P ′
ij(t) = c.P ′

ij(t − 1), where
c is some constant greater than one.

The difficult part in such a scenario is to validate the correctness
of the claim reported by player sk that player si witnessed the pri-
mary violation! In general it would require environment specific
proofs (e.g. audio-video recordings etc.) However we believe that
bare difficulty of proving such should not exclude such a scenario
from the discussion.

PriTable[4,1]: Represents the scenario complimenting the sce-
narios considered in the earlier rows. Here player si proactively
reports a potential violation and is therefore rewarded with Θij(t).

Since a potential violation cannot be observed, it is assumed that
it is logically possible to verify its truth by generating some hypo-
thetical scenario where such violation would become possible. For
example, for a newly created logical object, its owner subject/user
might report potential access violations with the existing assess en-
forcement policies.

The reporting behavior and corresponding payoffs for false vio-
lations are represented in the second column and are discussed next:

PriTable[1,2]: Represents the scenario where player si falsely
reports that violation vioj has occurred in order to implicate other
users, so need to be punished with −Pij(t). Again actual value of
such punishment may depend upon the characteristics of the viola-
tion vioj , past behavior of the player si etc. For example, in case,
si is found to be repeatedly reporting false violations for implicat-
ing other users, associated punishments could increase correspond-
ingly. Notice that every genuine violation is assumed to have some
observable impact hence falsity of any such reported violation is
verifiable (see the assumption of Observability).

PriTable[2,2]: Captures the scenario where violation vioj has
neither occurred nor has it been reported by si. It is associated
with #, an undefined value.

PriTable[3,2]: This cell is meant to complete the table which
captures an inherently false scenario where player si does not re-
port a false primary violation (which of course cannot be detected
by anyone else!) It is also associated with undefined value #.

PriTable[4,2]: Represents the scenario where player si reports
a false potential violation. Similar to above, falsity of such a vio-
lation can be logically derived. We associate 0 value for the cor-
responding cell since it might not possible to prove that player si

reported such false potential violation only with malicious inten-
tions and incomplete information or a faulty analysis might be the
basis for such a conclusion by si.

3.2 Secondary Payoff Table
The reporting behavior and corresponding payoffs for genuine

(true) secondary violations are represented in the first column and
are discussed next:

SecTable[1,1]: The first cell in the table represents the scenario
where player si detects a violation and also detects that some other
player(s) is(are) detecting the same violation but not reporting it.

This cell event can be true only if for the same player, event
corresponding to PriTable[1,1] is also true: it is a consistency
check which states that secondary violation can be detected (and
reported) only in conjunction with primary violation and not in iso-
lation. The reward associated with this as represented by rij(t).

SecTable[2,1]: Represents the scenario where a secondary vi-
olation occurs but it is not reported by any player. That means,
there exists some user sα, who detected the vioj but did not report
it. Also none of the other users having knowledge of this reported
against sα. Since it appears that in general independently establish-
ing this is quite difficult and a secondary violation would not have
serious negative impact on the whole community, we chose to give
0 as the value in this cell.

SecTable[3,1]: Represents the scenario where player si detects
a secondary violation but does not report it. This is the case where
it could be assumed from the context of the primary violation that
with high probability several players must have detected such a vi-
olation but none of them reported it. In such a case, each player
pays a community price for such complicity as denoted by -cpj(t).

This should be distinguished from the situation discussed in Pri-
Table[2,1], where a primary violation occurs but is not reported.
The crucial difference is that there might exist certain situations,
where primary violation would be by nature undetectable (e.g. when
a violation occurs in isolation), therefore would go unreported as
well - this is the case for PriTable[2,1]. On the other hand, there
might also exist scenarios where primary violation must have been
witnessed by or known to at least one player but was never reported
(e.g. data manipulation on a shared document.), such cases are con-
sidered here.

Notice that we do not demand here that again some third player
detects and reports such non-reporting of a secondary violation
since we assume that it might not be possible in practice to con-
tinue to such an extent and such consideration might indeed lead to
an indefinite regression.

SecTable[4,1]: Represents the scenario where player si reports
on a possible violation vioj and also that some other player(s)
would detect the same violation but would not report it. This ba-
sically means si would be characterizing the potential behavior of
certain other players who have greater probability of witnessing
some violation vioj . We associate some reward ∂ij(t) with it.

The reporting behavior and corresponding payoffs for non exist-
ing false secondary violations are represented in the second column
and are discussed next:



SecTable[1,2]: Represents the scenario where player si (falsely)
reports that some other user(s) witnessed violation voij but did not
report it so would to be punished with -pij(t).

Notice that false secondary violation cannot be considered in iso-
lation and need to be considered only in conjunction with either a
true primary violation or in conjunction with a false primary vio-
lation. This is because if si has to report that some other user sk

witnesses violation voij , then si must also be reporting that viola-
tion vioj occurred, which would imply that either PriTable[1,1]
or PriTable[1,2] is also true for si.

SecTable[2,2]: Captures the scenario where no secondary vi-
olation has actually occurred and it has not been reported as well.
# denotes an undefined value.

SecTable[3,2]: This cell captures an inherently false scenario
where player si does not report a false secondary violation (which
of course cannot be detected by anyone else!) It is also associated
with undefined value #.

SecTable[4,2]: Represents the scenario where player si reports a
potential false secondary violation. Such scenarios does not appear
to have any serious relevance, hence we associate # with it.

3.3 Model Design Justification
A natural question which arises is the correctness and effective-

ness of the model. This is important since collaboration by defini-
tion of the word cannot be guaranteed, in general.

Claim: Assuming that there do not exist factors undermining the
reporting behavior of individuals, under the proposed design of the
payoff matrix model, at any point, individual gains from reporting
true primary violations are always positive.

Proof: The claim is based upon the following observation on the
payoff matrix design: Suppose a player detects a primary violation.
She would be faced with two choices – either she would proceed
ahead and report the violation or she would not. In case of the
former choice, she becomes entitled to receive the reward, which is
a non negative value. Whereas, if she decides to remain silent on
the violation, she is taking a risk of either loosing some value as
a part of community price (provided no one else reports it either)
or the risk of being punished for secondary violations in case there
exist some other player who detected the violation and also detected
that this player too had witnessed the same and the second player
reports both of these violations.

So in case there do not exist factors, which counter these pay-
off matrix based rewards and punishments and motivate a player to
remain silent on the violation, she would always be better off by
reporting the violations detected. Ξ

This claim justifies the design of the model to be consistent with
the motivation. The pay-off matrix model also discourages a user
who understands the dynamics of the model not to falsely implicate
another subject for a violation. Since the model only considers
observable violations (Section 2.1), i.e., the violations impact of
which can be observed, it rules out the possibility that a member
of a group will be successful in alleging against a colleague by
reporting a violation that has never occurred. Now it is possible
that a subject may report an observed violation to be committed by
someone who actually has not committed the violation. However,
other users may also have detected the violation and reported the
same. So by falsely implicating someone, the subject takes the
risk of getting double punishment - one for not reporting the actual

violation (violation committed by actual violator) and the other for
reporting a false violation. Thus, by implicating a subject falsely
for a violation, she always incurs the risk of getting punished.

In the pay-off matrix model, a subject is given reward for per-
ception of a potential threat, but no punishment is given for wrong
perception of a threat. There is a tread-off in giving and not giving
punishment for reporting potential violation wrongly. If punish-
ment is given for reporting an wrongly presumed potential threat
(here we assume that the security administrators are able to deter-
mine if a reported potential violation is indeed possible to happen
in future), then the subjects may not be willing to report a potential
violation in the fear of getting it proved to be wrong, and getting
punishment. On the other hand, there may be a many false pos-
itives among the reported potential violations. However, we have
decided not to keep any punishment for reporting a wrong potential
violation, as the pay-off matrix is defined for each group separately,
and we assume that the members of a group have good judgments
in identifying potential threats associated with the assets belonging
to the group.

3.4 Economics of Payoff Tables
The idea that not reporting a violation would be treated as a vi-

olation could be a source of interesting social mechanisms. For
example, it is possible that the system can apparently finance it-
self with no investment or revenue. This becomes possible when
punishment for not reporting a detected primary violation, that is,
-P ′

ij(t) is set at the same level as the reward for reporting the corre-
sponding secondary violation, i.e., rij(t) + P ′

ij(t) = 0 and rest all
other parameters are set to 0. Here a user reporting secondary vio-
lation would be earning at the cost of that user who did not report
the primary violation. Therefore, we need to introduce additional
constraints on the parameters to avoid the scenarios which are eco-
nomically infeasible.

For an instance of vioj at time t, let MaxLossj(t) be the max-
imum possible loss, which could have happened if the violation re-
mained undetected and let ActualLossj(t) be the actual loss even
after the violation was duly reported. Therefore the effective gain
from reporting can be estimated as

Δj(t) = [MaxLossj(t) − ActualLossj(t)]

In case when violation goes unreported, Δj(t) = 0 otherwise
Δj(t) > 0. Next, for all vioj ∈ Vio and ∀t, we define the fol-
lowing constraints:∑

si∈S

[Rij(t) + rij(t)] ≤ Δj(t) +
∑
si

P ′
ij(t) (1)

∑
si∈S

P ′
ij(t) ≤ Δj(t) (2)

∑
si∈S

CPij(t) ≤ MaxLossj(t) (3)

∑
si∈S

Θij(t) ≤ MaxLossj(t) (4)

Eq.(1), guarantees that for every violation vioj , total rewards
received by all the users who reported the violation or reported sec-
ondary violation on it are no more than the effective gain by report-
ing it plus the punishments meted out to those users who did not
report the violation even having detected it.

Eq.(2) guarantees that for every violation vioj , total punishment
for the secondary violation is not more than the effective gain which
resulted by reporting it. Eq.(3) also similarly guarantees that total
community punishment meted out to all the members is not more
than the loss owing to the violation.



Eq.(4) guarantees that for every reported threat, which might oc-
cur, the total rewards received by all the reporting users is no more
than then maximum loss possible owing to the violation (assuming
that it also goes undetected).

4. IMPLEMENTATION ISSUES
In case of users as actual subjects, implementation of the col-

laborative monitoring model demands suitable framework for dis-
mantling the information on the proposed payoff matrices to all the
users as well as mechanisms for reporting the primary or secondary
violations. Actual reporting structure for various policies and asso-
ciated violations may differ based upon the organization type, type
of the policy, user base, nature of the violations, and other associ-
ated environmental factors. For example, a user on a managerial
position might report a violation, might receive a report from other
users, and also could be an authority to enforce payoffs. Also as-
sociated payoff need to be decided in a time varying manner to
render the system adaptive together with adequate confidentiality
measures for protecting the identities of the reporting users.

4.1 Rewards and punishments: how to decide?
In general deciding appropriate rewards and punishments is crit-

ically dependent on the nature of the policy violations, their im-
pact on the organization, ease of detecting them by the community
members, and the nature of the groups associated with monitoring
the policy violations etc. For example, with mandatory access con-
trol based security frameworks, employed for highly confidential
assets (e.g. in military establishments), objects are differentiated
according to their sensitivity levels, and the subjects are catego-
rized based on their trust levels. Usually user accesses to different
objects are limited according to their trust levels. There can be a
number of schemes for defining the rewards and punishment cri-
teria in terms of these levels. A simple scheme may be where a
reward implies the increase in the trust level of a particular user,
and punishment results into decrease in her trust level.

In reporting a violation, time is one of the important parameters.
In general, the potential loss owing to a violation increases with
increase in the reporting delay. So, reporting time may also play a
role in deciding the reward for reporting a violation.

Let λ(s) denote the trust level of subject s, and μ(o) denote the
sensitivity level of an object o. The reward for reporting a violation
of an access restriction on object o by subject s can be considered
as follows:

λ(s) := λ(s) + f(μ(o), rt)

where f(μ(o), rt) is any monotonically nondecreasing function of
the sensitivity level o, and rt, which denotes the reporting delay
such that the value returned by the function increases with the in-
crease in the value of μ(o) and decreases with the increase in the
value of rt.

A reward can alternately be defined in terms of reduction in loss
owing to the timely reporting the violation. For example,

Reward(s, o) = α.(MaxLoss − ActualLoss)

where α is some constant in the interval [0..1].
Other parameters for rewards and punishments could also be de-

fined accordingly for any given system set up.
We next discuss some generic guidelines based upon the studies

on extrinsic motivation.

1. Reward induced behaviors in individuals tend to stop once
the rewards are withdrawn (overjustification effect [13]). This
fact places important constraints on deciding the rewards.

For example, if rewards need to be withdrawn, it should be
done gradually and also whenever intrinsic motivation is present,
non tangible rewards (e.g., praise or recognition) should be
preferred over tangible rewards.

2. Individuals evaluate the value of the rewards, which in turn
determines their motivations for the tasks underlying the re-
wards, as compared to their current conditions (socio-economic
status, responsibilities etc.) Hence rewards need to cater the
satisfaction level of the individuals before they become ef-
fective.

3. Community price works as a negative reinforcement mecha-
nism on the group level. Hence it would motivate people to
monitor violations to avoid paying such price. Therefore for
it to be effective, it is important that community prices are
enforced strictly in the beginning though they should always
be reduced as soon as reporting behavior has been adequately
reinforced within the community.

4. Punishments for false reporting and secondary violations also
work as negative enforcement for the individuals.

As noted for the assumption of policy-awareness in Section 2.1,
sometimes users may not have the complete knowledge of a policy
and therefore they might not be able to interpret correctly a wit-
nessed scenario as an instance of a violation of the policy and there-
fore may fail to report it. Therefore it is suggested that for the first
time, i.e., t = 0, if user does not report a witnessed violation, pun-
ishment for this (see PriTable[3, 1]) may be exempted if it turns out
that the user was genuinely not aware that the witnessed scenario
was a violation. Also it is possible that a user reports a false vi-
olation (see PriTable[1, 2]) because of the incomplete knowledge
of the policy, that is, a user might presume a scenario as a vio-
lation though there is none, e.g., during an audit, people external
to the group may be legally given some confidential information,
however a user may presume it to be a violation and might falsely
report this. In such cases also it is suggested that Pij(0) = 0.

4.2 Correctness Properties
Let rvio(t) be the number of violations per unit time distributed

over t, e.g. distribution on the number of violations per year. Sim-
ilarly for the rate of reporting, let rrep(t) denote the distribution of
the number of cases reported for true violations per unit time. Let
rfalse_pri(t) and rfalse_sec(t) denote the distributions for the rate of
occurrence of false primary and false secondary violations respec-
tively.

Then probability distribution for the occurrence as well as re-
porting of a true violation can be approximated as

rrep(t)

rvio(t)

Since unlike the traditional security models, the proposed model
is actually a monitoring model, we define the following robustness
properties:

Probabilistic Robustness: A monitoring policy is termed as
probabilistically weakly robust if over a course of time the rate of
detections and reporting of true violations reaches the rate of ac-
tual violations and the rate of reporting of false violations decrease.



Formally,

lim
t→∞

rrep(t)

rvio(t)
= 1

lim
t→∞

rfalse_pri(t) = 0

lim
t→∞

rfalse_sec(t) = 0

Probabilistic Strong Robustness: A monitoring policy is called
probabilistically strongly robust if over a course of time the rate of
access restriction violations steadily reduces. Formally,

lim
t→∞

rvio(t) = 0

5. PROBABILISTIC MODEL FOR PARAM-
ETER ESTIMATION

Dynamics of collaborative monitoring depends on various fac-
tors. Firstly, not all policy violations are equally likely to be de-
tected. Moreover, if a user detects a violation, whether she would
actually report the violation or not depends on different factors, for
example, the rewards she would get for reporting, the punishment
that she would invite if she does not report, and also any hidden in-
centives associated with not reporting the violation. Therefore, we
model the system as a probabilistic system, more precisely as a ba-
sic Markov Decision Process (MDP without rewards), to estimate
certain reporting probabilities and experimentally demonstrate how
model checking based approach can help an administrator deter-
mine different parameters in the Payoff Matrix. In practice, the
model needs to be initialized using Bayesian probabilistic estimates
by the administrators using historical data or other associated anal-
ysis to support these estimates. However as we discuss later, some
of these probabilities get refined iteratively as new data becomes
available over time.

Let pdetj be the probability that a violation vioj could be de-
tected by any subject, which indicates the inherent difficulty in de-
tecting the violation. Similarly let pdet_secij denote the probability
that subject si detects a secondary violation by any other subject on
violation vioj . The probability ppri

ij denotes that the subject si ∈ S
will report a primary violation vioj . Similarly the probability psec

ij

denotes that the subject si will report a secondary violation on vioj .
We next define a motivation index, mij for a subject si to report

a violation vioj . Motivation index is a measure of the motivation a
subject has for reporting a violation. The motivation index can be
considered to be determined by the following factors:

1. Individual gain from the reward.

2. Fear of Community price or punishment for secondary vio-
lation.

3. A number of factors that collectively can act as a deterrent for
reporting the violation. For example, personal relationships
with the violators or potential collusion, incentives offered
by the violators, possible altruism, or delusional, consistent
irrationality.

In general quantitative measures for these factors are situational,
however we may consider the following measure for defining mij :

mij = |T P
ij [1, 1]| + max{|T P

ij [2, 1]|, |T P
ij [3, 1]|} − Ωj

where T P
ij [1, 1] is the reward, si would gain for reporting true vio-

lation vioj , T P
ij [2, 1] is the corresponding community price if none

of the subjects detecting the violation report it, and T P
ij [3, 1] is the

punishment for the secondary violation, that is, the loss si would

have in case she does not report the violation but in turn some other
subject reports against him for doing so. Ωj indicates the effect of
the factors that collectively can act as a deterrent for reporting the
violation (point 3 above). For simplicity, it is defined as a fraction
δ ∈ [0, 1] of the MaxLossj , which is the maximum loss caused
by the violation:

Ωj = δ ∗ MaxLossj

In this definition we assume that the factors which would work
against reporting a violation could be indirectly considered as be-
ing related with the ‘share’ in the gain subject si may have by not
reporting the violation. Under such formulation, a probabilistically
weakly robust monitoring policy would require that violations by
a group of users should be very difficult so that most of the users
in the group other than the violator himself may become potential
witnesses.

As a mathematical simplification, we also enforce that mij ≤
M , where M is some large positive constant upper bounding mij .
We further assume that the probability of reporting a violation by
si is related to mij as follows:

ppri
ji =

{ mij

M
if mij ≥ 0

0 if mij ≤ 0
(5)

Next consider that the number of subjects detecting a violation
vioj follows a probability distribution with mean k. So that, at any
instance, for vioj a subset of subjects Sj = {si1 , si2 , . . . , sik} ⊆
S detect the violation. Note that the probability that Sj = ∅ at
any instance is 1 − pdetj . Based upon these, we can estimate the
following:

The probability with which the violation vioj will be reported is

1 −
∏

sl∈Sj

(1 − ppri
lj )

For each player sl ∈ Sj , let us consider the subset of the players
who notice sl detecting vioj as Yl = {sl1 , sl2 , . . . , slr} ⊆ Sj . The
probability that at least one of the players from Yl would report the
secondary violation against sl can be estimated as

ξlj = 1 −
∏

st �=sl∈Yl

(1 − psec
tj )

In general, we can chose Yl either nondeterministically or prob-
abilistically. Under nondeterministic choice the probability that
other players would report the secondary violation against sl can
be estimated as

ξnd
lj = 1 −

∑
Yl∈2

Sj

[
∏

st �=sl∈Yl

(1 − psec
tj )]

Probabilistic choice on the other hand demands a probability mea-
sure

Distj : Sj × 2Sj �→ [0, 1]

For sl ∈ Sj and Yl ⊆ Sj , Distj(sl, Yl) is the probability that all
the subjects in Yl notice sl detecting violation of vioj . We require
that ∑

sl∈Sj∧Yl⊆Sj

Distj(sl, Yl) = 1

Then the probability that other players would report the secondary
violation against sl can be estimated as

ξprob
lj = 1 −

∑
Yl∈2

Sj

[Distj(sl, Yl) ∗
∏

st �=si∈Yl

(1 − psec
tj )]



Based upon the claim above, we can estimate the probability
with which a secondary violation will be reported as∑

sl∈Sj

(1 − ppri
lj ) ∗ ξlj

Let us next estimate the probabilities corresponding to possible
reporting behaviors by a subject on a violation vioj :

Consider the case where a subject si ∈ Sj reports both primary
as well as secondary violations. Using Distj, we can estimate the
probability that si would detect a secondary violation as

ξsec
i =

∑
sl �=si∈Sj∧si∈Yl⊆Sj

Distj(sl, Yl)

Therefore the probability that si would report both primary as well
as secondary violations for vioj is

ppri
ij ∗ psec

ij ∗ ξsec
i

Consider the case where si reports primary violation but not the
secondary violations, even though she may detect them. The prob-
ability of such occurrence depends on the probability that si would
report primary violation on vioj , probability that si would detect
a secondary violation, and the probability that si would not report
this secondary violations. As the case above, the total probability
for this case is

ppri
ij ∗ ξsec

i ∗ (1 − psec
ij )

On the other hand, consider the case where si reports primary vi-
olation but not the secondary violations since si did not actually
detect that. The probability of such occurrence is

ppri
ij ∗ (1 − ξsec

i )

Finally consider the case where si does not reports primary vio-
lation and so by design of the model would not report secondary
violations too. The probability of such occurrence is

(1 − ppri
ij )

6. EXPERIMENTAL ANALYSIS
For experimental analysis of the above system model we use

PRISM model checker [22] and express desired properties in terms
of PCTL (Probabilistic Computation Tree Logic) [16]. PRISM is
a tool for formal modeling and analysis of systems which exhibit
probabilistic behavior including MDPs and provides support for au-
tomated analysis of a wide range of quantitative properties of these
models.

6.1 Modeling with PRISM
For any model-checking activity the behavior of the underlying

system is abstracted as transition system. In order to construct and
analyze a model with PRISM, it needs to be be specified in the
PRISM language, a simple, state-based language, based on the Re-
active Modules formalism of Alur and Henzinger [1].

The fundamental components of a PRISM model are modules.
A model is composed of a number of modules which interact with
each other. A module contains a number of local variables. The
values of these variables at any given time constitute the state of
the module. The global state of the whole model is determined
by the local state of all modules. The behavior of each module is
described by a set of commands. A command is of the following
form:

[ ]condition ⇒
p1 : update1 + p2 : update2 + . . . + pn : updaten;

The condition acts as a guard which is a predicate over all the
variables in the model (including those belonging to other mod-
ules). Each updatei describes a transition which the module can
make with probability pi if the condition is true . A transition
is specified by giving new values to the variables in the module,
possibly as a function of other variables.

The PRISM model in this work consists of two kinds of mod-
ules: A module for the ‘environment’ considered to be generating
violations and a module for a subject detecting either primary vi-
olation or both primary and secondary violations. These modules
are discussed next:

6.2 Environment Module
We capture the occurrence of a violation in an environment mod-

ule in the PRISM model as depicted in Figure3. The violations are
assumed to be occurring independent of each other. Therefore, we
consider only one violation in our experiments and study the con-
sequences related to it. We will omit the subscripts for the violation
in the following discussion.

States of environment module are denoted by state_env vari-
able and the states of subject si are represented using state_subi.
A violation may occur only when the system is in a stable state.
When all the subjects complete their reporting activities related to
the violation, the system again returns to the stable state. The state
transition diagram of the model of environment is shown in Fig-
ure 3.

1

1

IF(C1) S1 

          IF(C2) S2 

   C1 :: state_sub1 = stable ∧ state_sub2 = stable ∧ ... ∧ state_subn = stable; 
   C2 :: state_sub1 = end ∧ state_sub2 = end ∧ ... ∧ state_subn = end; 
   S1:: state_env := violation; S2:: state_env := stable; 

  Stable 
 
Violation 

Figure 3: State Transition diagram for the Environment Mod-
ule

6.3 Module for a Subject Detecting only Pri-
mary Violations

Figure 4 depicts the transition diagram for a subject. Referring
to the figure, a subject stays in a stable state when no violation oc-
curs. When a violation occurs, as captured by the condition C1 in
the Figure 4, a subject may or may not detect the violation based on
detection probability. Therefore, from the stable state, the subject
can go to state detected with probability pdet and to state end with
probability 1− pdet. If the subject is in detected state, it can either
report the violation with its reporting probability prep and transit
to reported state, or it may not report the violation with probability
1 − prep and in turn may transit to the end state. After report-
ing the violation the subject finally moves to end state. When all
subjects are in their end states and there is no more activities from
the subjects regarding the violations, environment module can then
move to its stable state. When environment is in stable state after a
violation, all the subjects also move to their stable states.

We use a flag to distinguish two different possible behaviors of
a subject after detecting a violation. In stable state, the flag is set
to 0. If a subject reports the violation, its flag is set to 1 on taking
a transition to the state reported. Otherwise if the subject does not
report the violation after detecting it, its flag is set to 2. When the
subject moves from end state to the stable state, the flag is set to



0. This flag is used in writing PCTL properties and for modeling
secondary violation, discussed next.

              IF(C2) 
             S1, I0 

1
S2 

    End 
 IF(C1) S2  

1 

Detected 

Reported 

pdet_i 
prep_i, 
S4 

1- pdet_i 
1 - prep_i 
S3 

  IF(C1)  

C1 :: state_env = violation; C2 :: state_env = stable; I0:: flagi := 0;
S1:: state_subi := stable;  S2:: state_subi := end; S3:: flagi := 2; 

S4::flagi := 1; 

 I0 
  Stable 

1 

Figure 4: State Transition diagram for a Subject si Detecting
only Primary Violations

6.4 Module for a Subject Detecting both Pri-
mary and Secondary Violations

As depicted in the Figure 5, the module for a subject reporting
only the primary violations can be extended to capture the activity
of the subject related to secondary violations. The primary con-
dition of detecting and reporting a secondary violation is that the
subject has to report the corresponding primary violation also. So
in the model of a subject for primary violation if the subject is in
reported state, the subject may detect secondary violation by the
other subject. We shall illustrate the model for two subject system.
From the reported state, the subject may detect a secondary vio-
lation with probability pdetsec and may move to sec_vio_detected
state with probability pdet_sec and end state with probability 1 −
pdet_sec. From sec_vio_detected state, the subject may move to
sec_vio_reported with probability prep_sec or may move to the end
state with probability 1− prep_sec. If a subject reports a secondary
violation after detecting it, its flag is set to 3, otherwise the flag is
set to 4. In Figure 5 flagi denotes the flag for the subject for which
we are considering the model and flagj corresponds to the other
subject.

6.5 The Combined System
The combined system can be represented as

Sys : {θ}[Env ||Sub1 || . . . ||Subn ]

Where Env denotes the environment module used for generating
violations. Sub1 . . . Subn model the behavior of the subjects s1,
s2, . . . , sn. θ specifies the initial values of variables.

6.6 Properties of Interest
In order to estimate the desired probabilities, we specify proper-

ties in PCTL. Since nondeterminism is involved, PRISM calculates
the maximum and the minimum probability of a property being sat-
isfied considering the best and worst cases after resolving all non-
determinism. For primary violation, we are interested in estimating
the probability of a violation to be reported by at least one subject.
The following PCTL property specifies this:

Pmin =?[(s = 1) ⇒ F
(
‘Report ′&(s = 0)

)
]

Where s denotes the state of the environment module. Predicate
(s = 0) checks if the environment module is in stable state and
(s = 1) checks whether environment module is in violated state.
f1, f2, . . . , fn denote the flag associated with subjects s1, s2, . . . ,

 

I0 

IF(C3) 
1- pdet_sec_i 

  Stable 

   End 

 Detected Reported 

IF(C1) 
      pdet_i 

prep_i, 
flagi := 1   IF(C1) 

   1- pdet_i 

1 - prep_i, 
flagi := 2 

 1 

      IF(C2) 
      I0 

Sec_Vio_
Detected 

Sec_Vio_
Reported 

prep_sec_i, 
flagi := 3 

1- prep_sec_i 

IF(C3) 
pdet_sec_i 

   flagi := 4 

IF(C4) 
1 

C1:: state_env = violation; C2 :: state_env = stable;  
C3:: flagj = 2; C4 :: flagj  2; I0:: flagi := 0 

Figure 5: State Transition diagram for a Subject Detecting Pri-
mary and Secondary Violations

sn. When value of a flag is 1, it indicates that the corresponding
subject has reports the violation. Therefore, the predicate ‘Report′

is defined as Report ≡ ((f1 = 1)|(f2 = 1)| . . . |(fn = 1)) denot-
ing that at least one of the subject detects and reports the violation.
F is the ‘eventually’ or ‘in the future’ operator. Finally, the prop-
erty states that Pmin is the minimum probability that if a violation
occurs, it would be eventually reported by at least one subject.

The next property specifies the probability of reporting a sec-
ondary violation by subject s1 against subject s2:

Pmin =?[(f2 = 2) ⇒ F((f1 = 4)&(s = 0))]

where (f2 = 2) denotes that subject s2 has detected but not re-
ported the primary violation, thus committed a secondary violation.
(f1 = 4) denotes that subject s1 has reported this secondary viola-
tion.

6.7 Experimental Results
Experimental evaluation provides insights as to how different pa-

rameters such as detection probability, motivation index, and num-
ber of subjects contribute to reporting probability of a violation. In
discuss here the experiments on primary violation. In the experi-
ments, one of the three parameters was kept constant and remaining
two parameters were varied to determine the effect of the changes
in these parameters on the reporting probability. A C program was
developed to automate the process of generating these PRISM mod-
els with these parameters and a property file containing the proper-
ties discussed before. Finally, the required probability is extracted
from the output file populated by the PRISM.

Figure 6 shows the variation of reporting probability with changes
in the number of subjects and motivation index for detection prob-
ability = 0.5. Administrator can get useful insight from this kind of
experiment. If an administrator can determine the detection prob-
ability for a policy violation from her experience, and if the num-
ber of associated subjects is also known, the required value of the
motivation index can be assessed to achieve a particular reporting
probability for the violation. This knowledge would in turn be used
to determine the values for different entries in the payoff matrix for
a subject-violation pair corresponding to the evaluated motivation



Figure 6: The variation of reporting probability with changes
in the number of subjects and motivation index for detection
probability = 0.5

index and associated reporting probability.
Figure 7 shows the variation of reporting probability with changes

in the detection probability and the motivation index for number of
users = 5. This is useful in the scenarios where a group of subjects
are associated with an asset for which different violations are pos-
sible, and detection probabilities for these violations are also dif-
ferent. Figure 7 will give an administrator useful information about
the motivation index for different violations for the same group of
subjects.
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Figure 7: The variation of reporting probability with the
changes in the detection probability and motivation index for
number of users = 5

6.8 A Note on Determining and Updating De-
tection Probabilities

While deploying the collaborative monitoring system, the ad-
ministrator has to determine the detection probability for a viola-
tion from her experience and historical analysis of the violations
in past. This approach may get subjective, and sometimes the esti-
mated values might be far away from the correct values. However

to deploy the collaborative monitoring system, it is required to start
with some values for detection probability. With some enhance-
ment in the analysis, it is possible to have a better estimate of de-
tection probability for some violation using the values for the total
number of violations, the number of primary violations reported by
a subject, and the number of secondary violation reported against
the subject over a period of time.

Let us assume that the time period which is considered for esti-
mating the detection probability of a subject si for violation vioj

is d time units. Let, in these d time instances, number of primary
violation reported against violation vioj is N . Also, the number
of primary violation reported by subject si is np and the num-
ber of secondary violation reported against subject si is ns. So,
if the actual detection probability of subject si for violation vj is
pdet_actual, then

pdet_actualij ≥ np + ns

N

So, the administrator now has a new estimate for the detection prob-
ability of a subject for a violation. Let us denote this new detection
probability of subject si for violation vioj as:

pdet_newij =
np + ns

N

Now the administrator needs to run the experiment again to get es-
timate of new reporting probability, or to estimate new motivation
index for achieving the previous reporting probability. Note that
the detection probabilities now may be different for different sub-
jects. Though in our previous discussion, we have considered same
detection probability for all the subjects, the model can be easily
enhanced for different detection probability for different subjects,
as the models for individual subjects are independent from each
other.

7. CHALLENGES FOR COLLABORATIVE
SECURITY

Success of collaborative security entails a member in an organi-
zation to report violations against her known colleagues. However,
a member of a group, where the members enjoy camaraderie, may
not always be willing to report a violation (especially in the be-
ginning) committed by a colleague, assuming that her action could
bring punishment to her fellow member(s) and may in turn endan-
ger her own social isolation in the group. This brings the challenge
of setting the reward and punishment policies suitably so that they
can effectively counteract any reason that thwarts a member in a
group to report a violation. Selecting the types of reward is yet
another challenge. As the research in the area of motivational psy-
chology demonstrates, individuals differ in their preferences for re-
wards - some people may be motivated by monetary rewards, while
some others may be more interested in recognition, while others
may aspire for career advancement, and on certain scenarios in-
dividuals may not even prefer having any explicit (or tangible) re-
wards and just an enabling framework for reporting and consequent
reduction in the potential loss to the organization itself would be
sufficient for them. Indeed a reward is an ‘abstract token’ working
as a psychological catalyst for the motivation of the users. Simi-
larly punishment is also an ‘abstract token’ to demotivate users for
not reporting the observed violations. The challenge present here
is that since the same reward may not motivate all the members
equally, this in turn might affect their reporting behaviors also.

Another challenge for collaborative security is setting up ade-
quate regulatory controls so that the fundamental privacy rights of
the members of the organization can be preserved. Maintaining



anonymity of a person who reports a violation is often critical, as
most people do not want to be perceived as whistle-blowers (or ‘in-
formers’) by their colleagues and face social isolation. Sometimes
this might make it difficult to punish the offender as punishing an
offender would require an witness in most of the cases. In this re-
spect, punishment against secondary violations should be beneficial
as that would motivate all the witnesses of a violation to report it.
Also studies on social conformity [5, Chap. 7],[24] (also known as
‘normative conformity’ [7]) demonstrate that often individuals fear
to get into those acts alone which are not so well accepted yet by
others in the group (e.g., reporting against peers) and prefer acting
only in groups. On the other hand, studies on social loafing [20]
and bystander effect [36] demonstrate that often individuals also
feel a ‘diffusion of responsibility’ [23] when they are part of larger
groups unless they are assigned clearly defined individual respon-
sibilities. These conflicting factors demand that strong and effec-
tive initiatives to enforce collaborative security need to be adopted,
which could counter the conformity biases, minimize negative peer
influences [12], and motivate individuals to take leading roles in the
process according to the prevailing socio-cultural environment in
the groups/organization. In this respect consideration of secondary
violations again could work as effective control for the individuals
and could help reducing the bystander effect.

Next let us consider the assumption of policy consistency and
completeness as described in Section 2.1. In practice, it might be
difficult to meet these requirements always. However, it turns out
that these are critical for the success of the collaborative monitor-
ing framework we discuss in this paper. To see this, consider the
case of contradictions in policy definition. If a policy is not contra-
diction free, there would exist scenarios where it will be possible
to interpret these scenarios both as a violation of the policy as well
as in accordance with the policy. This may also imply an ambi-
guity in the interpretation of its observable impact on the system
(ref. ‘axiom of observability’ in Section 2.1). Therefore if a user
reports it as a violation, she might expect due rewards, while sys-
tem administrators might conclude otherwise and deny that reward
to her. This in turn would negatively impact the motivation of the
users to further report the violations in future. On the other hand, if
a user concludes that the witnessed scenario does not constitute as
a violation, she might not report on it, however some other users or
the system administrators might interpret it differently and might
impose punishment on her for non-reporting - which would again
result in reduced motivation for further reporting. Therefore, it is
absolutely necessary that policies are free from contradictions and
are mutually consistent. Wherever it is not possible, a balanced ap-
proach towards deciding rewards and punishments might possibly
help in dealing with it.

In the collaborative monitoring model, as the users are involved
in detecting and reporting a violation, it may give an impression
that the reported violations may have many false positives - a mem-
ber in a group may allege falsely against some other member in the
group to gain personal advantage or to cause harm to the colleague.
However, as the model only considers observable violations, i.e.,
the violations impact of which can be observed, this would rule
out the possibility that the member will be successful in alleging
against a colleague by reporting a violation that has never occurred.
It is, though, possible that a user may report an observable viola-
tion to be committed by someone who actually has not. However,
the payoff structure as stipulated in this paper, is limited to the re-
porting of the ‘occurrence of the violation’ and leaves it outside the
scope as to ‘who actually committed the violation?’ and also ‘who
has been blamed for it by the reporting users?’, though both these
aspects are often tightly coupled. The primary reason for such a

scope limitation is that the truth of who actually committed the vi-
olation can only be established through forensic investigation and
even after using sophisticated and reliable mechanisms it is possi-
ble that non-violators are suspected as violators owing to various
confounding circumstantial reasons. Therefore, we do not expect
that reporting users would be able to always suspect/identify cor-
rectly the actual violators and therefore do not stipulate any reward
(or punishment) for merely reporting (correctly or falsely) who the
violator(s) was(were) and leave such aspects to the pre-existing se-
curity enforcement mechanism. However, effectiveness of such
post reporting investigations and enforcement of the punishment to
the violators (or those who are proved to be framing non-violators
knowingly) could also have an impact on the future reporting be-
havior of the users (especially if the existing law and enforcement
system is not so effective) since these would act as pointers for
their justification towards determining the overall utility and effec-
tiveness of the reporting actions. Indeed, for a concrete realization
of the presented framework, it is important to decide who verifies
the reported violation and who approves the payouts, which would
be determined by the existing corporate governance structure and
policies of the organization.

Finally, a big computational challenge for the proposed proba-
bilistic model for parameter estimation (Section 6) is how to make
it scalable to meet the needs of large organizations. The success
of the payoff model largely depends on estimating the values of re-
wards and punishments properly. The experimental setup presented
for estimating different parameters of a payoff matrix does not ap-
pear to scale well. However, our hope is that with the advancement
of tools and techniques in the field of formal methods, we will be
able to reason about larger systems in near future. Moreover, the
collaborative security model is modular in the sense that the model
considers individual groups separately. Therefore, we do not need
to always think about scaling the framework up to the whole or-
ganization level, the framework needs to be capable of scaling up
to the group levels. The size of different groups based on different
context may be of varying size though.

8. CONCLUSION AND POINTERS FOR FU-
TURE WORK

This paper presents a principled approach to one of the many
little-studied aspects of computer security which relate to human
behavior. Existing security frameworks often differentiate user base
of assets from the security administrators who design and enforce
the security policies. However, in many aspects of security, it is
the user who is best suited to detect and prevent violations which
currently lie beyond the scope of available security enforcement
mechanisms. This is especially true for the violations on context
dependent logical resources, e.g., some data, significance of which
is realized only when considered with respect to specific contexts.
Such resources are often vulnerable to ‘semantic manipulations’
and securing them using automated monitoring is either not feasi-
ble or would be very expensive.

In this respect, involving users, who usually have strong analytic
ability to detect violations and threats but are not primarily respon-
sible for security, can be quite advantageous. In this work, we have
presented a generic reinforcement framework for enabling monitor-
ing and detection of (potential) violations by these users. The prob-
abilistic analysis, associated state-transition model for PRISM, and
the experiments demonstrate how specific parameters can be es-
timated for determining the reward-punishment based policies for
collaborative monitoring.



In our experiments, we implicitly assumed that individual moti-
vation alone can determine the likelihood of reporting of a violation
by a user as modeled by Eq 5, which is still a high level abstraction
and leaves the scope of further work in this direction. The objective
of this work would be to relate human behavior with intrinsic or ex-
trinsic rewards and losses in a more detailed manner. Work in the
direction of human behavior modeling [32] would contribute con-
cretely toward this goal. Further analysis would require modeling
the reporting behavior of users for secondary violations in a general
setting involving n players. This may in turn enable a derivation of
closed form solutions for optimal estimates of parameters in the pay
off model for various security scenarios. In practical situations dis-
tributed and collaborative strategies may also be required for such
estimates. Also, we need to model more realistically the external
environmental factors which could control the reporting behavior
of the users. Such modeling would give rise to extended game the-
oretic model for the overall system, equilibrium of which may shed
further practical insights on designing policies for collaborative se-
curity.

The nature of emergent network effects [21, 25] under the pro-
posed reward-punishment based reinforcement framework is yet
another direction for future investigations. Currently when a new
user joins a collaborative network/group, the detection probability
for the violation(s) against the policies associated with the group
would increase under the normal assumptions. This would in turn
reduce the chances of other users fined for community price. This
essentially induces ‘+ve’ network effect. Also on the other side,
new members increase the overall probability of detecting secondary
violations in the group, which would also in turn may have an ef-
fect on other users reporting the detected violations. These network
effects become even more important in the presence other environ-
mental factors e.g., community structure [28, 27]. Development of
analytical and/or experimental models to study the emergent macro
level properties of the system e.g., plateau and reverse effects, small
world effects, network resilience, and phase transitions [26] may
potentially help in this direction.

User driven policy synthesis is an important aspect of collabora-
tive security approach. In this work, we only consider users report-
ing violations and leave it upon the existing policy synthesis ma-
chinery to use these reported violations for defining new policies or
refining existing ones. An important problem to be addressed when
users are allowed to add new policies is the consistency checking
and completeness analysis.

It is also interesting to analyze how learning could be enabled in
the system. One way to introduce learning in the system is for de-
ciding optimum values for the payoff parameters e.g., rewards and
punishments. Modifying the system to learn about inconsistencies
could also be considered as another direction for future work.

The framework could be extended with decoy violations, which
could be used to test the possible user and group response behav-
iors for detection and reporting. Also if suitably designed, decoy
violations could induce ‘decoy-effect’ (or ‘asymmetric dominance
effect’) [17] in the system motivating users to prefer to reporting
rather than not. Though decoy violations appear to have impor-
tant role to play in the beginning, we need to understand if they
also necessarily hold long term effects in the context of collabora-
tive security. Also, the degree of correspondence between decoy
violations and the Prisoner’s Dilemma [31], in particular, iterated
Prisoner’s Dilemma needs to be further explored.
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