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Abstract 

The introduction of asymmetric embedded multiplier blocks in recent Xilinx FPGAs complicates the 

design of larger multiplier sizes. The two different input bitwidths of the embedded multipliers lead to 

two different shifting factors for the partial products that must be summed. This makes even the most 

straightforward multiplier design less intuitive. In this thesis, I present a methodology and set of 

equations to automatically generate Verilog hardware description code for arbitrary multiplier sizes 

composed of arbitrarily-sized asymmetric embedded multiplier cores. The presented technique also 

uses intelligent rearrangement of the multiplier block outputs into partial product terms to reduce the 

overall delay of the circuit. Multipliers created with this generator are faster and use fewer DSP blocks 

than either those created using Xilinx Core Generator or those created by simply using the ‘*’ operator 

in Verilog. It also uses fewer LUTs than those created using the ‘*’ operator. Finally, the presented 

generator can create multipliers larger than possible with Core Generator, and is limited only by the 

number of available embedded multipliers. 
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1 Introduction 
Multiplication is an important arithmetic function for many applications [1][2]. A key requirement for 
many of the DSP applications to achieve their needed performance is the availability of processing 
elements such as adders, multipliers, dedicated hardware for division and square root [3][4].  Modern 
FPGAs provide a heterogeneous mixture of different hardware blocks, such as dedicated memory 
blocks, carry-chains for addition and multipliers. These embedded multipliers have been included in the 
FPGAs for some time to improve multiplication performance [5][6][7][8][9].  Many DSP applications are 
highly-parallel, and thus demand a large number of these dedicated resources; furthermore, because 
the size of the embedded multiplier blocks is fixed within a particular FPGA family, larger multipliers are 
composed of multiple of these embedded blocks [10][11]. 

Decimal-digit: One decimal digit [0-9] 

Digit: A grouping of binary bits, equal in bit-width to one of the inputs of the embedded multiplier block.  

Digit-product: The result of multiplying two digits or two decimal-digits together. 

Partial-product: Grouping of one or more digit-products into a partial result. For hand-multiplication, 
partial-products generally group the digit-products created by the same lower-operand digit. 

Symmetric multiplier block: An n × n multiplier, where the inputs have equal bitwidth. The output is 2n 
bits. 

Asymmetric multiplier block: An n × m multiplier, where n ≠ m, and the output is m + n bits. 

Input: An input to a single embedded multiplier block, representing a single digit of an operand 

Operand: A data word processed by the larger multiplier we construct from smaller embedded 
multipliers. 

Figure 1: Definition of terms used in this thesis 

The composition of large multipliers from small ones is relatively straightforward when the multiplier 
blocks are symmetrical—both inputs have equal bitwidth. However, some of the modern FPGAs now 
have asymmetric multiplier blocks [7][8], where the multiplier block inputs (and thus the digit-sizes used 
for each operand) differ in bit-width. This complicates the composable multiplier design; the shifts of 
digit-products that make up each partial product differ from the shifts of the partial products relative to 
one another. These terms are defined in Figure 1. As a result, digit-products from a given digit of an 
operand overlap in bit-positions, potentially increasing the additions required. In this work, we present a 
general methodology to apply the “divide and conquer approach” to implement large multipliers using 
asymmetric multiplier blocks. We divide the process into three steps namely: Operand Decomposition, 
Partial Product Generation and Partial Product summation. We implemented an automatic generator 
tool in MATLAB that produces synthesizable hardware description code for any given required 
multiplication computation using arbitrarily-sized (designer-specified) asymmetric multiplier blocks. 
[12].   
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2 Related Work 
Previously, FPGAs supported multiplication only through the use of a collection of fine-grained logic 
structures. Mapping multipliers to these structures is inefficient due to the small granularity and large 
interconnection delays. Now FPGA vendors include dedicated, specialized multiplier blocks in their 
devices [5][13][7][8], which reduces the delay overheads of configurability and interconnections. These 
blocks often also include adders to implement multiply-accumulate operations; in these cases they are 
generally referred to as “DSP blocks”. Multiplications that are larger than the “native” embedded 
multiplier size must be composed from these embedded blocks, but this still provides dramatic 
improvement over constructing those large multipliers out of lookup-table (LUT) based logic. 

The “divide and conquer” approach to construct large multipliers out of a set of small, symmetric 
multiplier blocks is a well-known technique [10][11][14][15]. The main steps involved in this process are 
(1) split the input operands into smaller multi-bit “digits”, (2) multiply the digits to form digit-products 
and generate a set of partial products by concatenating the digit-products, and finally (3) sum the 
generated partial products. In [15], the authors provide an overview of some of the popular techniques 
to compose a large multiplier using smaller symmetric blocks with focus on Xilinx Virtex-II devices. An 
improved multiplication approach and its application to the special case of squaring have been 
presented in [16]. The authors also present design techniques of parameterized fixed-point integer 
multiplication and fractional division units which use a hybrid of the embedded 18x18 multipliers and 
LUTs present in the Xilinx Virtex-II devices. The techniques in [15][16] are well suited for smaller sized 
integer computations. 

In [14], the authors present an efficient methodology for the implementation of multiplication and 
squaring functions for large unsigned integers. They propose a general architecture for the multiplier 
and squarer which are composed by using smaller symmetric multiplier blocks. They explore timing- and 
area-oriented organizations of the partial products. In [17], the authors explore the design space of 
implementing large-size signed and unsigned multipliers using multi-granular embedded multipliers as 
found in the DSP blocks in Altera’s FPGAs [5]. These multipliers can be configured to operate as 9x9, 
18x18 or 36x36-bit multipliers.  

The authors in [18] explore three alternative types of large integer multiplier generation for FPGAs: 
Karatsuba-Ofman algorithm, non-standard tiling (an alternate, less regular form of divide and conquer) 
and specialized squarers. The Karatsuba-Ofman algorithm trades multiplications for additions by 
rearranging the creation of partial products and thereby reducing the number of multipliers/DSP blocks 
required. This methodology uses symmetric multiplier blocks. Their non-standard tiling technique 
optimizes large multiplier implementations using asymmetric multipliers. They decompose input 
operands using a mix of the two multiplier block input sizes (24 × 17 multipliers in the target Xilinx 
Virtex-5 device), each operand is decomposed into a mix of 24-bit digits and 17-bit digits, some of which 
may overlap. The resulting digit-products are carefully re-combined to form the final product. The aim is 
to minimize the overall multiplier block requirement. Furthermore, they use LUTs to implement small 
digit-products. The authors demonstrate this approach specifically for 41 x 41, 58 x 58 and 65 x 65 
multipliers, but do not yet generalize the approach to arbitrary sizes. The work also does not discuss 
strategies for summing the resulting partial-products. 

Wallace [19] and Dadda [20], introduced efficient compressor trees in the context for parallel 
multiplication which are widely used for ASICs and custom designs to speed-up the partial product 
summation. However, the LUT structures and fast-carry chains propagate chains in FPGAs blocks favor 
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the carry propagate adders (CPAs) [10][11]. The compressor tree adds multiple operands of a given bit 
size using carry save adders (CSAs) [10][11], as opposed to an adder tree which adds multiple operands 
using carry propagate adders. The authors in [21] present techniques to efficiently map compressor 
trees onto modern FPGA devices. 

Finally, other techniques to optimize multiplication focus on fine-grained manipulations that are  
suitable for ASIC or custom implementations [22][23][24][25]. However, because FPGAs are multi-
purpose devices, they must support more general multiplication structures. Thus these approaches are 
not ideal in most cases for multiplier implementation in FPGAs, particularly for large multiplications of 
two variables. This work instead focuses on attempting to find the best way to make use of the existing 
hardware already provided in FPGA devices. 

  



 

12 

 

3 Composable Multipliers with Symmetric Multiplier Blocks 
Composing a larger multiplier using smaller multipliers is similar to “long multiplication”—the method 
generally used to perform multiplication by hand (Figure 2). Each decimal digit of one operand is 
multiplied by each decimal-digit of the other, but only one digit-product can be computed at a time. 
Digit-products for a particular decimal-digit of the lower operand are aggregated as they are computed; 
the “tens” digit of the digit-product is carried to the next position. It is then summed with the “ones” 
digit of the next digit-product. The complete result of processing one decimal-digit of the lower operand 
against all decimal-digits of the upper operand is a single partial-product. The definition of these terms 
as used in this thesis is given in Figure 1. For the Figure 2 example of that has three digits in the upper 
operand and three digits in the lower, we have three partial-products, P0, P1, and P2, each created from 
three digit-products. 

X2 X0X1

Y2 Y0Y1

10
2
×X2Y0+10×X1Y0+X0Y0

10
2
×X2Y1+10×X1Y1+X0Y1

10
2
×X2Y2+10×X1Y2+X0Y2

P1

P0

P2

Z  

Figure 2: Long (hand) multiplication of two three-digit decimal numbers, where the “carries” of digit-products 
are immediately incorporated into the partial-products. 

Like long-multiplication, we can divide our large binary operands into sets of digits that we can multiply 
using the smaller embedded multiplier blocks. If several multiplier blocks can be used to generate digit-
products, waiting for the carry-out of the previous digit-product before combining it with the lower part 
of the next digit-product to compute the next digit of the partial-product (as in long-multiplication) 
creates a long critical path. Instead, with enough multiplier blocks, all digits from the top operand can be 
simultaneously multiplied with all digits from the bottom operand, creating a set of digit-products equal 
in number to the product of the digit counts of the operands. 

The “divide and conquer approach” is explained as follows. Each digit is equal in bit-width to the input 
size of the multiplier blocks. For example, if the operand size for the needed large multiplier is 48 bits, 
with 8×8 multiplier blocks the operands would each contain 48/8 = 6 digits, and each digit would be 8 
bits wide. If the operand size is not an exact multiple of the digit-size, it is zero-padded to fill the most-
significant digit. Next, each digit from one operand is multiplied with each digit from the other operand, 
creating the set of digit-products. We will use this term throughout the paper to refer to the outputs of 
the embedded multipliers. These digit-products are shifted to the correct position depending on the 
position of the source digits in the input operands. The digit-products are then summed, generally using 
a tree of adders. 

Figure 3 illustrates creating a larger multiplier from nine parallel (smaller) symmetric n × n multiplier 
blocks [10][11][14][17]. The bitwidth of each operand (X and Y) is three times the input bitwidth of the 
multiplier blocks. This could happen, for example, if each operand were 24 bits wide and we used 8×8 
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multipliers, or if each operand were 6 bits wide and we used 2 × 2 multipliers. The number of required 
multipliers is the product of the digit counts of the two operands, which in this case is 3 × 3 = 9. 

X2 X0X1

Y2 Y0Y1

X0Y0

X2Y0

X1Y0

X0Y1

X2Y1

X1Y1

X0Y2

X2Y2

X1Y2

Z

n

n

2n

2n

n

n

2n

2n

3n

3n

4n

 

Figure 3: Multiplication of two binary values using parallel symmetric multiplier blocks to generate digit-
products. Digit-products are summed with an adder tree. 

Like long multiplication, we show the digit-products for digit Y0 above the digit-products for digit Y1, 
which in turn are above those for digit Y2. Within the set of digit-products for a given lower-operand 
digit, each successive term is shifted by one digit position (n-bits) to the left. Also, each group of digit-
products for a given lower-operand digit is shifted by one digit position (n-bits) relative to the digit-
product group for the previous lower-operand digit. These shifts are based on the relative locations of 
the digits in the input operands. Note that because the embedded multiplier blocks are symmetric, the 
shift of digit-products within a group is equal to the relative shift between groups. The digits within a 
group are shifted by the digit size of X (n-bits), and the groups are shifted by the digit size of Y (n-bits). 
Finally, note that within a partial-product grouping, the upper half of one digit-product overlaps exactly 
with the lower half of the next digit-product. 

After we create these digit-products, we can treat each digit-product as a separate partial product. The 
partial products are combined using an adder tree to produce the final result (labeled Z in the figure). 
The early stages of the tree may first combine digit-products from the same group and then sum the 
results for each group. However, the depth of the complete tree is still no less than  𝑙𝑜𝑔2𝐷 , where D is 
the number of digit-products. 

The adder tree depth can be reduced by grouping adjacent but non-overlapping digit-products 
[10][11][14][17]. This grouping requires only concatenation, not addition, and thus no computational 
latency. Figure 4 shows the digit-products from Figure 3 rearranged in this method, with widest 
groupings listed towards the top. This creates a total of five partial-products, compared to the nine in 
Figure 3. Some digit-products cannot be grouped with any others because of overlaps. An adder tree 
that processes the nine individual digit-products shown in Figure 3 requires four levels; an adder tree 
that processes the five combined partial-products from Figure 4 requires only three levels. The size of 
the adders needed for the tree is not overall increased, since the original adder tree of Figure 3 would 
have required adders just as wide in its later levels. The benefit is that some of the digit-products are 
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“summed” by concatenation instead of actual addition, avoiding adder levels and carry chains in those 
cases. 

X0Y0X1Y1X2Y2

X2Y1 X1Y0

X0Y1X1Y2

X2Y0

X0Y2

P0

P1

P2

P3

P4

n

n

2n

n

n

 

Figure 4: The same digit-products as Figure 3 but rearranged to reduce the depth of the required adder tree by 
first concatenating non-overlapping digit-products. 

Each Xilinx Virtex-4 DSP48E block contains one signed 18x18 bit multiplier unit and a 48-bit 
addition/subtraction unit [26]. The multiplier unit can perform a 17x17 bit unsigned multiplication with 
the last bit of each input operand indicating the sign of the operand. The output of the multiplier can be 
cascaded to the adder of another DSP48E block with a fixed 17-bit shift dedicated routing.   

Each Altera Stratix-II DSP block contains four 18x18 multipliers and two levels of adders [5]. It can also 
be configured to implement a 36x36 unit. Unlike the Xilinx Virtex-4 DSP48E block, it can implement the 
18x18 unsigned multiplications. In Stratix-III device family two half-DSP blocks are grouped as a block 
[13]. A half-DSP block contains four 18x18 multipliers, two 36-bit adders and a 44-bit adder/accumulator 
unit, which has a cascaded input from the other half-DSP block in its group.  
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4 Composable Multipliers with Asymmetric Multiplier Blocks 

Section 0 applied the divide-and-conquer strategy to compose large multiplications using symmetric 

multiplier blocks. Some have suggested expanding the technique to asymmetric multipliers blocks 

where one of the two multiplier block inputs is a multiple of the other by using multiple blocks to form a 

“square” multiplier, and then building the complete multiplier from a set of (pre-composed) square 

multipliers, again turning the problem into one of composition using symmetric blocks [11].  The use of 

asymmetric multiplier blocks has been suggested, but not explored [10]. However, embedded multiplier 

blocks in FPGAs may not have one input size that is a multiple of the other; in fact, the current FPGAs 

that have asymmetric multipliers have a 24 × 17 multiplier size [7][8]. Little work has yet examined 

methods for using these asymmetric multipliers to best advantage. One proposed technique shows, for 

a set of specific multiplier sizes, efficient methodologies to decompose operands and generate partial 

products. That work is potentially complementary to the work presented in this thesis, but does not 

examine the step of partial-product summation. 

Figure 5 illustrates applying the divide-and-conquer strategy using asymmetric embedded multiplier 

blocks. In this example, the X operand is divided into two n-bit digits, and the Y operand into three m-bit 

digits. X and Y may each be 6 bits wide, with X divided into two 3-bit digits, and Y divided into three 2-bit 

digits, for use with a 2×3 embedded multiplier block. As before, the number of required multiplier blocks 

for parallel multiplication of the operand digits is the product of the digit counts of the two operands. In 

Figure 5, 2×3 = 6 embedded multiplier blocks are required to produce the six digit-products. Unlike in 

the symmetric case, X1Y0 and X0Y1 do not exactly overlap positions; X1Y0 is offset by n bits, whereas X0Y1 

is offset by m bits. More specifically, the digit-products within a group of digit-products produced for the 

same lower-operand digit are offset from one another by n bits (the digit size of the upper operand), but 

the inter-group offset is m bits (the digit size of the lower operand). 

X0X1

Y2 Y0Y1

X0Y0

X1Y0

X0Y1

X1Y1

X0Y2

X1Y2

Z

n

m

n+m

n

n
2m

m

n

 

Figure 5: Digit-products and their positions when using asymmetric n × m embedded multiplier blocks. X is 

decomposed into n-bit digits and Y into m-bit digits. 
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To reduce the depth of the partial-product adder tree for the asymmetric multiplier block case, we can 

use a digit-product concatenation technique similar to what was used for symmetric multipliers. 

Applying this technique to the problem shown in Figure 5 gives the set of partial products shown in 

Figure 6. Although initially this shape may appear identical to Figure 4, the two different shift factors are 

an important feature. In the symmetric case there may be multiple ways to choose which digit-products 

to group into partial products because of the uniform shifting; in the asymmetric case the choices are 

more constrained, and digit-products within adjacent partial-products in the figure partially overlap. The 

original set of six partial products given in Figure 5 would require a three-level adder tree; the 

rearranged set given in Figure 6 requires only a two-level adder tree. 

P0

P1

P2

P3

X0Y0

X1Y0

X0Y1

X1Y1

X0Y2

X1Y2

n

m
m

n+m

 

Figure 6: The same digit-products as Figure 5 rearranged similarly to Figure 4. Note the difference in offsets 

compared to the symmetric case. 

The Xilinx Virtex-5 and Virtex-6 DSP48E blocks contain one signed 25x18 bit multiplier unit and a 48-bit 

addition/subtraction unit [7][8]. The multiplier unit can perform a 24x17 bit unsigned multiplication 

because the most-significant bit of each operand is reserved as a sign, not data, bit. As in case of the 

Virtex-4 devices, the output of the multiplier can be cascaded to the adder of another DSP48E block 

(“chained”) with a fixed 17-bit shift dedicated routing. However, this is only useful when the required 

shift amount is exactly 17-bits. As discussed previously, the shift amount between partial products is not 

a fixed 17 bits in all cases. The summation of partial products thus requires a more complex summation 

tree, since it cannot take full advantage of DSP-block “chaining”. This work focuses on using these 

asymmetric DSP blocks more efficiently in composable multipliers and presents a general methodology 

for their creation in the following sections. 
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5 Automatic Generation Method 

In this section we present our method for composing a large size multiplication using the smaller 

asymmetric embedded blocks. The embedded multipliers are n × m in size, where n and m represent the 

bitwidths of the two multiplier inputs, and n ≠ m. The multiplier that we create from the embedded 

cores implements Z = X × Y, where operands X and Y may or may not have equal bitwidths. We separate 

the process of implementing the X×Y multiplier into three steps: operand decomposition, partial product 

generation (which includes the concatenation step), and partial product summation. Note that the 

presented operand decomposition step defines new variables used in later steps to simplify equations. 

5.1 Operand Decomposition 

The first step is to decompose the input operands into sets of digits that match the input sizes of the n × 

m embedded multiplier blocks. Unlike when using symmetric embedded multipliers, we have two 

possible options to consider for decomposition: we can decompose X by n and Y by m, or X by m and Y 

by n. The number of digits obtained by decomposing each of the input operands determines the total 

number digit-products or the total number of the DSP blocks needed for the implementation. The input 

operands are decomposed into multiples of the input sizes n × m embedded multiplier blocks.  If the 

input size of an operand is not an exact multiple of the inputs (m, n) of the embedded multiplier, the last 

digit obtained by the decomposition is zero-padded to match the nearest multiple. Exploiting the 

leading zeros and approaches similar to the non-standard tiling [18] is a task considered for future.  

The goal in this step therefore is to minimize the total number of digit-products and hence, the total 

number of partial product summations.  To minimize the number of used multiplier blocks, we should 

choose the decomposition that minimizes the number of digit-products. The number of digit-products is 

the product of the number of digits in each of the the two operands (CX × CY). Thus we compare the two 

options given in Figure 7, and choose the CX and CY pair that gives the smallest CX × CY product. If both 

options result in an equal product, we choose the option with the smallest CX + CY sum, because the 

number of overall additions needed is CX + CY - 1. Next, based on the chosen decomposition, we choose 

our “upper” operand A and “lower” operand B for generating the partial products, such that B has as 

many or more digits than A. This simplifies the notation in the generation algorithm. Finally, we set j to 

be the digit size of A, and k to be the digit size of B (where {k = n, j = m} or {k = m, j = n}, depending on 

the decomposition chosen). The algorithm for this process is given in Figure 7. 
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let 𝐶𝑋𝑁 =  
𝑋𝑏𝑖𝑡𝑤𝑖𝑑𝑡 ℎ

𝑛
  and 𝐶𝑌𝑀 =  

𝑌𝑏𝑖𝑡𝑤𝑖 𝑑𝑡 ℎ

𝑚
  

let  𝐶𝑋𝑀 =  
𝑋𝑏𝑖𝑡𝑤𝑖𝑑𝑡 ℎ

𝑚
  and 𝐶𝑌𝑁 =  

𝑌𝑏𝑖𝑡𝑤𝑖𝑑𝑡 ℎ

𝑛
  

 

if (CXN × CYM) < (CXM × CYN) then decompose X by n and Y by m  

else if (CXM × CYN) < (CXN × CYM) then decompose X by m and Y by n 

else if (CXN + CYM) < (CXM + CXN) then decompose X by n and Y by m 

else if (CXM + CYN) < (CXN + CYM) then decompose X by m and Y by n 

else arbitrarily decompose X by n and Y by m 
 

if X decomposed by n then CX = CXN, else CX = CXM 

if Y decomposed by n then CY =  CYN, else CY = CYM 

if (CX < CY) then  A = X, CA = CX, B = Y, CB = CY 

else  A = Y, CA = CY, B = X, CB = CX 

let j = n if A decomposed by n, else j = m 

let k = m if B decomposed by m, else k = n 
 

Now we have: 

𝐴 =  2 𝐶𝐴−1 𝑗𝐴𝐶𝐴 −1 + 2 𝐶𝐴−2 𝑗𝐴𝐶𝐴−2 + ⋯ + 2𝑗𝐴1 + 𝐴0  

𝐵 =  2 𝐶𝐴−1 𝑘𝐵𝐶𝐵−1 +  2 𝐶𝐵−2 𝑘𝐵𝐶𝐵−2 + ⋯ + 2𝑘𝐵1 +  𝐵0  

Figure 7: Decomposition of operands for use with asymmetric embedded multiplier blocks. 

5.2 Partial Product Generation 

The multiplier output Z is calculated as shown in Equation 1. The digit-products of this equation can also 

be represented as a grid (Figure 8). Digit-products in the grid are not shown shifted to their exact 

positions as in Figure 6; instead the grid highlights different ways of grouping digit-products. Figure 5 

represents a “horizontal” grouping, and Figure 6 represents a “diagonal” grouping. Digits along the same 

line (horizontal, vertical, or diagonal) are grouped into the same partial product before the partial 

products are summed. A horizontal grouping most closely mimics long multiplication, but a diagonal 

grouping can use concatenation to group digit-products instead of addition (unlike horizontal and 

vertical groupings). Figure 9 shows the diagonal grouping for the general case. 

𝑍 =  𝐴 × 𝐵 

=   2 𝐶𝐴−1 𝑗 𝐴𝐶𝐴−1 + 2 𝐶𝐴−2 𝑗 𝐴𝐶𝐴−2 + ⋯ + 2𝑗 𝐴1 + 𝐴0 ×  2 𝐶𝐵−1 𝑘𝐵𝐶𝐵−1 + 2 𝐶𝐵−2 𝑘𝐵𝐶𝐵−2 + ⋯ + 2𝑘𝐵1 + 𝐵0  

=  2 𝐶𝐴−1 𝑗+ 𝐶𝐵−1 𝑘𝐴𝐶𝐴−1 𝐵𝐶𝐵−1 + (2 𝐶𝐴−1 𝑗+ 𝐶𝐵−2 𝑘𝐴𝐶𝐴−1𝐵𝐵−2) + ⋯ +  2 𝐶𝐴−1 𝑗+𝑘𝐴𝐶𝐴−1 𝐵1 

+  2 𝐶𝐴−1 𝑗 𝐴𝐶𝐴−1 𝐵0 +  2 𝐶𝐴−2 𝑗+ 𝐶𝐵−1 𝑘𝐴𝐶𝐴−2 𝐵𝐶𝐵−1  + ⋯+  2 𝐶𝐴−2 𝑗+𝑘𝐴𝐶𝐴−2 𝐵1 

+  2 𝐶𝐴−2 𝑗 𝐴𝐶𝐴−2 𝐵0 + ⋯ +  2𝑗+ 𝐶𝐵−1 𝑘𝐴1𝐵𝐶𝐵−1 +  2𝑗 + 𝐶𝐵−2 𝑘𝐴1𝐵𝐶𝐵−2 + ⋯ +  2𝑗 +𝑘𝐴1𝐵1 

+  2𝑗 𝐴1𝐵0 +  2 𝐶𝐵−1 𝑘𝐴0 𝐵𝐶𝐵−1 +  2 𝐶𝐵−2 𝑘𝐴0𝐵𝐶𝐵−2 + ⋯+  2𝑘𝐴0𝐵1 +  𝐴0𝐵0  

Equation 1: Computing the final product Z from operand A with CA j-bit digits and operand B with CB k-bit digits 



 

19 

 

Diagonal

ACA-1 B1

ACA-1 B2

ACA-1 B3

.

.

.

.

ACA-1 BCB-2 ACA-2 BCB-2 ACA-3 BCB-2 A1 BCB-2 A0 BCB-2

A0 B1

A0 B2

A0B3

.

.

.

.

ACA-2 B1

ACA-2 B2

ACA-2 B3

.

.

.

.

A1 B1

A1 B2

A1 B3

.

.

.

.

ACA-1 BCB-1 ACA-2 BCB-1 ACA-3 BCB-1 A1 BCB-1 A0 BCB-1

ACA-1 B0 ACA-2 B0 ACA-3 B0 A1 B0 A0 B0

Vertical

Horizontal

 

Figure 8: Grid of digit-products produced when multiplying the CA digits of A (j bits each) with the CB digits of B (k 

bits each). Partial products are formed by grouping digit-products horizontally, vertically, or diagonally as 

shown. Figure 5 represents a horizontal digit grouping, Figure 6 represents a diagonal grouping. If CA = CB the grid 

is a square; if CA ≠ CB, the grid is a rectangular, taller than it is wide (because decomposition forces CA ≤ CB). 
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Figure 9: Diagonally-grouped partial products created with asymmetric multiplier blocks, like Figure 6 but for the 

general case. Partial products come from three regions, the “Upper”, “Middle” and “Lower”, which we re-

partition into “Top” and “Bottom” 
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The arrangement of digit-products shown in Figure 9 creates three partial product “regions”. The Middle 

region contains all of the “widest” partial-products (those with the maximum number of concatenated 

digit-products). The Upper contains digit-products on diagonal lines up and to the left of the Middle 

lines. The Lower contains the digit-products on diagonal lines down and to the right of the Middle lines. 

The bitwidth of Middle partial-products are identical. The bitwidth of partial-products in the Upper and 

Lower regions grows (shrinks) linearly. The first Middle partial-product is not shifted; its least-significant 

bit is position zero. Successive Middle partial-products are each shifted by k bits to the left with respect 

to the previous Middle partial-product. In the Upper region, the widest partial-product begins at 

position j; each partial-product above it is shifted j bits further to the left than the one below. In the 

Lower region, the least-significant bit of the widest partial-product is shifted k bits to the left of the 

least-significant bit of the last partial-product in the Middle region. Each successive Lower partial-

product is shifted k more bits to the left. To determine how many partial-product terms should lie in the 

Upper, Middle, and Lower regions, we use the calculations given in Table 1. These equations are based 

on the calculations performed in Figure 7; for example, they require that CA ≤ CB. 

Region # of Partial Products Partial-Product Bitwidth 

Middle 𝑪𝑩 − 𝑪𝑨 + 𝟏 𝑪𝑨 × (𝑗 + 𝑘) 

Upper 𝑪𝑨 −  1 
𝑠 × (𝑗 + 𝑘) 

where  𝟎 ≤ 𝒔 < 𝑪𝑨 − 𝟏 

Lower 𝑪𝑨 −  1 
(𝑪𝑨 + 𝑪𝑩 − 1 − s) × (𝑗 + 𝑘) 

where  𝑪𝑩 ≤ 𝒔 < 𝑪𝑨 + 𝑪𝑩 − 𝟏 
 

Table 1: Bitwidths of partial-products for each region, where s is the index of partial-product given in Figure 9. 

For our adder trees, we re-partition the partial products using two methods. In one method, we create 

separate adder trees for the portions labeled “Top” and “Bottom” in Figure 9, then sum the result. 

When the total number of partial products is odd and therefore cannot be evenly split between Top and 

Bottom, we combine the “middle” term into the Top grouping. In the other method, we create the 

adder tree from the entire set of partial products, without region subdivision. These adder tree 

strategies are discussed further in the following section. 

5.3 Partial Product Summation 

The number of the terms in each region is related to the sizes of the inputs of the asymmetric multiplier 

and the resulting number of digits in our operands (Table 1). The total number of partial products is 

CA+CB-1, which is controlled by the number of digits in operands A and B. The number of partial products 

in the Upper and Lower regions is controlled by the number of digits of the operand with the smallest 

digit count (A). The number in the middle region is then calculated by subtracting the number of upper 

and lower terms from the total number of partial products. The goals of this stage can be twofold: 

minimize the overall delay of the implementation or minimize the overall resources used resulting in 

lesser area.  The FPGAs blocks favor the Carry Propagate Adders and we rely on the Xilinx synthesizer 

tools to optimize for the Verilog ‘+’ operator. The overlaps of the partial product terms vary according to 
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the region belong. To exploit this region-wise overlap patterns the following four adder strategies are 

considered.  

5.3.1 Delay Table 

In [27], the authors present a method of constructing a delay table to aid in the generation of adder 

trees. The rows and columns of the delay table represent all the partial products which need to be 

added at a given level. The entries of each column indicate the required size of the adder to add the 

column partial product to the partial product of each row. Using the delay table, one first chooses the 

smallest possible adder in the entire table. The partial products belonging to the row and column of the 

corresponding entry are then marked as used and excluded from further consideration. The process is 

repeated, finding the next-smallest adder at each step until all partial products have been used. If the 

number of partial products is odd, the single remaining partial-product at the end of this process is 

incorporated into the new delay table constructed for the next level of addition. The other entries of this 

table are the sum results from the first table. The algorithm repeats until the final sum is obtained. We 

can consider all of the partial products in a single adder-tree construction, or divide the partial products 

into top and bottom regions and apply the algorithm separately in each region. The step of constructing 

the delay table in both the cases is illustrated in section 5.4.3 

5.3.2 Outside-in 

An alternative approach is to process partial-products from the “outside in”, combining the topmost 

partial-product with the bottom-most partial-product and repeating the addition steps until all the 

partial products are consumed in the first level. If the number of partial products in the first level is odd, 

the final partial product (the middle partial product) is considered in the next stage of addition. This 

strategy is applied at each level of the partial-product summation and is close to what is also used in [14] 

where the strategy is explored for summing partial-products for multipliers using symmetric (rather than 

asymmetric) embedded blocks. Similar to the previous strategy, the partial-products could be processed 

as a single whole block or be divided into top and bottom regions. Section 5.4.3 illustrates the process 

for both the above cases of Outside-In approach. 

5.3.3 Addition types 

When summing two partial products, we take advantage of the fact that their least-significant positions 

do not align. The sum of two partial products is thus partly a concatenation and partly a sum. We call 

this addition as “Ripple Adder” (RA). The other alternative is to keep track of the carry-bits generated 

from various levels of the partial product additions and defer the processing of these carry bits until the 

final stage. In this case we refer only to the carry-out bit at the most-significant position where the two 

summed partial-products overlap (and thus it is not a true “Carry Save” adder). The strategy allows for 

more concatenations and minimizes the overall resources required for the addition stage. This type of 

adder is called “Carry Vector Adder” (CVA). The carry vector holds the generated carry-out bits for every 

step of the partial-product summations, and allows individual addition steps to only add the overlapping 

portions of the partial products and concatenate both the lower and upper non-overlapping portions. If 

more than one carry-bit would be generated for a given bit-position, the tool currently instead uses a 

Ripple Adder. However, this case does not occur for the experiments presented in this thesis, which use 
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a 24 × 17 multiplier size, because the two digit-sizes do not share any common factors. The adder tree 

strategies discussed in the previous section can use either of the two adder types. There is a separate 

carry vector for each region when the partial-products are separated into Top and Bottom regions. The 

scenarios for each adder type depending on the overlap patterns are shown in Figure 10 and Figure 11.  
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Figure 10: Addition/concatenation scenarios for the Ripple Adder 
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Figure 11: Addition/concatenation scenarios for the Carry Vector Adder where they differ from the Ripple Adder 
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5.4 Example of Composing 64x64 Multiplier From 24x17 Multiplier Blocks 

Given below is the illustration of applying all the methods discussed above to the case of a 64x64 

multiplication composed by using 24x17 embedded multipliers. This creates a Z = X × Y multiplier, where 

X and Y are each equal to 64 bits, m = 24 bits, and n = 17 bits. 

5.4.1 Step 1: Operand Decomposition  

Option 1: Decompose 𝑋 by 𝑛 and 𝑌 by 𝑚, 

𝐶𝑋𝑁 =  
64

17
 = 4 , 𝐶𝑌𝑀 =  

64

24
 = 3 

Option 2: Decompose 𝑋 by 𝑚 and 𝑌 by 𝑛, 

𝐶𝑋𝑀 =  
64

24
 = 3 , 𝐶𝑌𝑁 =  

64

17
 = 4 

Since ( 𝐶𝑋𝑁  ×  𝐶𝑌𝑀  )  = ( 𝐶𝑋𝑀  ×  𝐶𝑌𝑁  )  and ( 𝐶𝑋𝑁 + 𝐶𝑌𝑀  )  = ( 𝐶𝑋𝑀 + 𝐶𝑌𝑁  ) , Decompose arbitrarily, 

𝐶𝑋 = 𝐶𝑋𝑁  , 𝐶𝑌 =   𝐶𝑌𝑀  

We have, ( 𝐶𝑋  > 𝐶𝑌  )  

𝐴 = 72  , 𝐶𝐴 =  𝐶𝑌𝑀 = 3 , 𝑗 = 24 

𝐵 = 68  , 𝐶𝐵 =  𝐶𝑋𝑁 = 4 , 𝑘 = 17 

The multiplier structure to be implemented is actually 72 × 68 instead of 64 × 64 . The unused bits in 

the last digits of A and B are zero-padded to make the obtained digits integral multiples of 24 and 17. 

Equation 2: Decomposed Example Operands 

𝐴 =  22𝑗𝐴2 + 2𝑗𝐴1 + 𝐴0 

𝐵 =  23𝑘𝐵3 +  22𝑘𝐵2 + 2𝑘𝐵1 + 𝐵0 

5.4.2 Step 2: Partial Product Generation  

Figure 12 shows the digit-products obtained and their alignments with respect to each other. Digit-

products belonging to the same digit of the lower operand B shift by the bit-width j of the smaller 

multiplier and the digit-products belonging to different digits of the lower operand B shift by bit-width k 

of the smaller multiplier. 
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Figure 12: The digit-products of the 72 x 68 multiplier 
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Figure 13: Grid Illustrations for the (a) Horizontal, (b) Vertical and (c) Diagonal Groupings 

For the current example, the number of additions required for the horizontal, vertical and diagonal 

groupings and the number of generated partial products are given in the table below.  
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Grouping # of Partial Products Total number of additions 

Horizontal 4 11 

Vertical 4 11 

Diagonal 6 5 

Table 2: Partial Product Groupings 

The partial-products generated by the horizontal and vertical groupings require adders to combine the 

digit-products belonging to the same digit of operand B and A respectively whereas, the partial-products 

obtained by the diagonal grouping are mere concatenations of the non-overlapping digit-products. 

Although, the diagonal grouping yields more number of partial-products compared to the horizontal and 

vertical groupings, it requires the least number of overall additions to obtain the final result. The 

horizontal grouping and the vertical grouping would require the same number of addition operations 

but the required size of the adders for the two groupings would differ due to the different shifts 

between the generated partial products. Table 3 shows the start and the end bit positions of each 

partial product term along with the bitwidth of each term. 
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A2B1

j+k

A2B2
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j

A0B1A1B2A2B3 k

A0B2A1B3 2k

3k

P4

P5  

Figure 14: Partial Products obtained by the Diagonal Grouping 

Term Bitwidth Start Bit End Bit 

P0 41 48 88 

P1 82 24 105 

P2 123 0 122 

P3 123 17 139 

P4 82 34 115 

P5 41 51 91 

Table 3: Partial Product bitwidth, and start and end bit positions 

5.4.3 Step 3: Partial Product Summation  

Figure 14 shows the six partial products obtained by the diagonal grouping for the given example. Once 

the partial products are obtained the last step is the partial product summations which yield the final 

results. The partial product summation is a multilevel addition step and we consider the two mentioned 

adder types to illustrate the tree generation methods. We have six partial products to sum and hence, 

require three levels of addition. 
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5.4.3.1 Ripple Adder (RA) 

Delay Table – Whole (DW) 

Based on the Delay-Table method tables below (Table 4, Table 5) list the possible adders at each level 

and the adder size selected for each column is shown in bold. Note that the partial-products are treated 

as one whole block. 

LEVEL 1 P0 P1 P2 P3 P4 P5 

P0 −      

P1 59 −     

P2 76 100 −    

P3 93 117 124 −   

P4 69 83 90 107 −  

P5 42 56 73 90 66 − 

Table 4: Adders at Level 1 – Delay Table Whole (Ripple Adder) 

LEVEL 2 P0_P5  P1_P4 P2_P3 

P0_P5 −   

P1_P4 70 −  

P2_P3 94 118 − 

Table 5: The adders at Level 2 – Delay Table Whole (Ripple Adder). The partial products summed to form the 

values at this level are indicated in the table heading. 

Level 3:  P0_P5_P1_P4 + P2_P3         (119-bit adder) 

Delay Table – Top and Bottom (DTB) 

The strategy of constructing the delay table can also be applied by splitting the partial products in Figure 

14 into two regions: Top and Bottom. The tables below (Table 6, Table 7, Table 8) list the possible adders 

at each level and the adder size selected for each column is shown in bold for each region. 

LEVEL 1 (TOP) P0 P1 P2 

P0 −   

P1 59 −  

P2 76 100 − 

Table 6: The adders at level 1 for Top Region – Delay Table Top & Bottom (Ripple Adder) 

LEVEL 1 (BOTTOM) P3 P4 P5 

P3 −   

P4 107 −  

P5 90 66 − 

Table 7: The adders at level 1 for Bottom Region– Delay Table Top & Bottom (Ripple Adder) 
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LEVEL 2  

TOP P0_P1 + P2  (100-bit adder) 

BOTTOM P4_P5 + P3  (107-bit adder) 

Table 8: The adders at level 2 – Delay Table Top & Bottom (Ripple Adder). P0_P1 is the sum of partial products 

P0 and P1 that were summed in level 1, P4_P5 is the sum of P4 and P5 in level 1. 

Level 3: P0_P1_P2 + P4_P5_P3)            (125-bit adder) 

Outside-in Whole (OIW) 

For the example considered, the adders at each level for the outside-in method treating the partial 

products as a whole results in the same adders as in the delay table – whole method. 

Outside-in – Top & Bottom (OITB) 

The outside-in method can also be applied by splitting the partial products in Figure 14 into two regions: 

Top and Bottom. The tables below (Table 9, Table 10, Table 11), list the possible adders at each level and 

the adder size selected for each column is shown in bold for each region. 

LEVEL 1 (TOP) P0 P1 P2 

P0 −   

P1 59 −  

P2 76 100 − 

Table 9: The adders at level 1 for Top Region – Outside-in Top & Bottom (Ripple Adder) 

LEVEL 1 (BOTTOM) P3 P4 P5 

P3 −   

P4 107 −  

P5 90 66 − 

Table 10: The adders at level 1 for Bottom Region – Outside-in Top & Bottom (Ripple Adder) 

LEVEL 2  

TOP P0_P2 + P1  (101-bit adder) 

BOTTOM P3_P5 + P4  (108-bit adder) 

Table 11: The adders at level 2 – Outside-in Top & Bottom (Ripple Adder). P0_P2 and P3_P5 are the sums 

generated in level 1 from the indicated partial products. 

Level 3: P0_P2_P1) + P3_P5_P4)            (126-bit adder) 

5.4.3.2 Carry Vector Adder (CVA) 

Delay Table – Whole (DW) 

Based on the Delay-Table method tables below (Table 12, Table 13) list the possible adders at each level 

and the adder size selected for each column is shown in bold. The generated carry bits for each addition 
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are stored in the Carry Vector which is added after the last stage of addition. Note that the partial-

products are treated as one whole block. 

LEVEL 1 P0 P1 P2 P3 P4 P5 

P0 −      

P1 41 −     

P2 41 82 −    

P3 41 82 106 −   

P4 41 72 82 82 −  

P5 38  41 41 41 41 − 

Table 12: The adders at level 1 – Delay Table Whole (Carry Vector Adder) 

LEVEL 2 P0_P5 P1_P4 P2_P3 

P0_P5 −   

P1_P4 44 −  

P2_P3 44 92 − 

Table 13: The adders at level 2 – Delay Table Whole (Carry Vector Adder). P0_P5, P1_P4, and P2_P3 were 

created in level 1 by summing the indicated partial products  

Level 3: P0_P5_P1_P4 + P2_P3              (92-bit adder) 

Level 4: P0_P5_P1_P4_P2_P3 + CarryVector            (52-bit adder) 

Delay Table – Top & Bottom (DTB) 

The strategy of constructing the delay table can also be applied by splitting the partial products in Figure 

14 into two regions: Top and Bottom. The tables below (Table 14, Table 15, Table 16), list the possible 

adders at each level and the adder size selected for each column is shown in bold for each region. The 

generated carry bits for each addition are stored in the Carry Vector which is added after the last stage 

of addition in each region. Note the top and bottom regions each hold a carry-vector. 

LEVEL 1 (TOP) P0 P1 P2 

P0 −   

P1 41 −  

P2 41 82 − 

Table 14: The adders at level 1 for Top Region – Delay Table Top & Bottom (Carry Vector Adder) 

LEVEL 1 (BOTTOM) P3 P4 P5 

P3 −   

P4 82 −  

P5 41 41 − 

Table 15: The adders at level 1 for Bottom Region– Delay Table Top & Bottom (Carry Vector Adder) 
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LEVEL 2  

TOP P0_ P1 + P2 – 82 bit-adder 

BOTTOM P4_ P5 + P3 – 82 bit-adder 

Table 16: The adders at level 2 – Delay Table Top & Bottom (Carry Vector Adder). P0_P1 and P4_P5 are sums 

created in level 1 from the indicated partial products. 

Level 3 (Top): P0_P1_P2 + CarryVector-Top          (18-bit adder) 

Level 3 (Bottom): P4_P5_P3 + CarryVector-Bottom            (25-bit adder) 

Level 4: TopSum + BottomSum              (125-bit adder) 

Outside-in Whole (OIW) 

For the example considered, the adders at each level for the outside-in method treating the partial 

products as a whole results in the same adders as in the delay table – whole method. 

Outside-in – Top & Bottom (OITB) 

For the example considered, the adders at each level for the outside-in method treating the partial-

products as a whole results in the same adders as in the delay table – top & bottom method. 
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6 DSP-Only Implementation 

The DSP48E blocks in the Xilinx Virtex-5 and Virtex-6 architectures support various functions including 

multiply, multiply-and-accumulate (MAC), three-input add, barrel shifting, pattern detect, comparator 

and bit-wise logic functions [7][8]. The DSP48Es are organized as columns and include dedicated routing 

paths between the blocks which allow them to be efficiently connected together to implement a wider 

range of DSP functionality. 

 

Figure 15: Simplified DSP48E functionality [7] 

The DSP48E block has a 25 x 18 bit multiplier where the direct input A can accept a 30-bit input, of which 

25 bits are used for the multiplier and the direct input B has 18 bit input (Figure 15). The full 30 bits of A 

can be concatenated with the 18 bits of B as an input to a logic operation or addition/subtraction in the 

remaining DSP block logic. The direct input C can accept a 48 bit input which can be added to the result 

of the 25 x 18 bit multiplier. The blocks also include pipeline registers, but we do not yet handle 

pipelined multiplier generation. The output P is the result of a multiply or multiply-and-accumulate 

operation. The PCIN input is the cascaded carry input from the output of a previous block. There is also a 

dedicated 17-bit cascaded output bus which can feed into the adder/subtractor of the next DSP48E 

block. This bus is, at least in part, specifically intended to aid in the composition of larger multipliers. 

A DSP48E block’s 48-bit adder can implement the required addition operations for composable 

multipliers by cascading the output of one digit-product multiplication to the adder input of the next 

block, summing the results of multiple stages. These computations can be efficiently pipelined by using 

the included pipeline registers of the DSP48E block. The throughput of such an implementation would 

improve greatly compared to our proposed implementations that primarily use LUTs for the addition 

steps, and do not yet support pipelining. However, the latency of the implementation using this DSP 

block “chaining” is significantly increased, which can be a problem for latency-sensitive applications [28]. 

For comparison, we implemented a generator that uses cascaded DSP blocks, and does not use any LUTs 

for the partial-product summations. We configure and generate a multiplier module using the Xilinx 

Core-Generator tool which creates a 24 x 17 bit multiply and 48 bit accumulate structure using the A, B, 
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and C direct inputs of the block. The operand decomposition step is unchanged. Each digit-product, 

however, now represents a separate partial-product to be summed. We organize these according to  

increasing order of their least-significant bit positions. Each digit-product is then connected to the C 

input of the next DSP48E block that computes the next digit-product in the order described above. The 

final DSP block computes the final product. At each stage, some bits of the final product are finalized, 

which means that they do not need to be routed to the following DSP block. This prevents the required 

adder size from exceeding the available adder size in each DSP48E block. Figure 16 shows the 64 x 64 bit 

multiplier organization using the only the DSP48E blocks. The partial products are ordered according the 

start bit positions which is shown in Table 17.  
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Figure 16: 64 x 64 multiplier implemented using DSP blocks only 

Partial-Product Start bit End bit 

A0B0 0 40 

A0B1 17 57 

A1B0 24 64 

A0B2 34 74 

A1B1 41 81 

A2B0 48 88 

A0B3 51 91 

A1B2 58 98 

A2B1 65 105 

A1B3 75 115 

A2B2 82 122 

A2B3 99 139 

Table 17: Organization of Partial-Products according to the increasing order of Start bit positions of the 64 x 64 

bit multiplier shown in Figure 16  
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7 Results 

Our generator program can target any asymmetric multiplier size, but to compare results of different 

multiplier design styles, we set the multiplier size parameters to match the asymmetric multipliers in the 

Xilinx Virtex-5 DSP48E blocks described in section 0. We currently only generate combinational 

structures, although the above techniques could be extended to incorporate pipeline stages. The best 

location for the pipeline stages would depend on the depth of the adder trees.  

Our multiplier designs were synthesized on the Xilinx Virtex-5 XC5VLX155 (speed grade -2) device using 

the XST tool (version 10.1) with optimization goal set to speed and using normal optimization effort. The 

device contains 128 of the DSP48E blocks. In all designs, we describe additions using Verilog, and allow 

XST to choose whether to implement the additions in the DSP48E blocks or in LUT-based logic.  

7.1 Operand Decomposition 

We first test the case in the operand decomposition step where CXN × CYM = CXM × CYN, and demonstrate 

that it does in fact matter in that case which decomposition we choose. For this experiment, we 

implemented a 64 × 128 multiplier (X = 64, Y=128) using Ripple Adder and the Outside-in Whole (OIW) 

strategy. For n = 24, m = 17 we get CXN × CYM = 3 × 8 = 24 and CXM × CYN = 4 × 6 = 24. Our results in Table 

18 confirm that we should pick to decompose X by m and Y by n, which we determine by finding that CXN 

+ CYM = 11, and CXM + CYN = 10. We then choose the decomposition to be CXM × CYN as this would result in 

lesser number of partial product terms and hence, the required number of adders. From the table we 

observe that by choosing to decompose X by m improves combinational delay by 8.8%, and saves 9.2% 

of the LUTs.  

Decomposition DSPs LUTs Delay (ns) 

64 by 24, 128 by 17 

CXN = 3, CYM = 8 
24 1161 11.978 

64 by 17, 128 by 24 

CXM = 4, CYN = 6 
24 1054 10.919 

Table 18: Comparing different possible decompositions when CXN × CYM = CXM × CYN for a 64 × 128 multiplier. 

7.2 Partial Product Generation 

Next, we examined the different partial-product generation methods. We compared horizontal, vertical, 

and our chosen diagonal method for 64 × 64 multiplication. The results in Table 19 show that the 

diagonal regrouping of the terms helps to reduce the overall combinational delay 24.1% and helps in 

area savings by 33.23% on average compared to the horizontal and vertical groupings.  



 

33 

 

`Partial Product 

Generation 
DSPs LUTs Delay (ns) 

Horizontal 12 683 11.556 

Vertical 12 597 12.319 

Diagonal 12 456 9.350 

Table 19: Comparison of different partial product generation methods for a 64 × 64 multiplier 

7.3 Adder Tree Generation and Adder Types 

We compared the different adder types and adder tree generation strategies (Delay Table-Whole (DW), 

Outside-in Whole (OIW), Delay Table-Top & Bottom (DTB) and Outside-in Top & Bottom (OITB)) using 

640 different test cases (see tables in appendix). We varied the sizes and aspect ratios of the multipliers 

(by targeting different numbers of terms in the Upper, Lower and Middle regions. We also use two 

different adder types (Ripple Adder and Carry Vector Adder). In one set of cases, we the number of 

Upper and Lower region terms and varied the number of terms in the Middle region, and in another we 

fixed the number of terms in the Middle region and varied the number of terms in the Upper and Lower 

regions. We present the results for 96 x W bits multiplier where operand X is 96 bits and we vary W 

ranging from 68 to 221 bits. We compare each strategy on the basis of DSP48E count (Table 20), LUT 

count and combinational delay (Figure 17, Figure 18, Figure 19 and Figure 20). Delay Table-Whole (DW) 

results in the best area-oriented organization for the composed multipliers for both the Ripple and the 

Carry Vector Adders. The Delay Table strategy applies a greedy approach to repeatedly select the 

smallest adder possible for the remaining additions within each stage of the adder tree. On average, 

Outside-in Whole (OIW) results in the least combinational delay for both the Ripple and Carry Vector 

Adders. Because there are exception cases where one of the other strategies is either smaller or faster, 

further investigation is required to understand the way the synthesizer tools implement the additions 

specified by the generated Verilog code, which uses the ‘+’ operator. 

Multiplier (X x Y) DSP48Es 

96x68 16 

96x85 20 

96x102 24 

96x119 28 

96x136 32 

96x153 36 

96x170 40 

96x187 44 

96x204 48 

96x221 52 

Table 20: 96 x W multiplier  DSP48E usage  
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Figure 17: 96 x W multiplier Combinational Delay for Ripple Adder 

 

Figure 18: 96 x W multiplier Combinational Delay for Carry Vector Adder 
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Figure 19: 96 x W multiplier LUT usage for Ripple Adder 

 

Figure 20: 96 x W multiplier LUT usage for Carry Vector Adder 

Figure 21 and Figure 22 show the effects of using a Ripple Adder versus a Carry Vector Adder. Generally, 

the Ripple Carry Adder type results in a smaller delay. This is likely due to the increased routing 

congestion and additional adder level caused by the Carry Vector Adder, and the fact that the dedicated 

carry chain hardware in the FPGA makes the upper portion of the addition avoided by the CVA fairly fast 

in the RA. There is, however, some noticeable variation across bitwidths. However, the LUT count 

required for the RA vs. CVA (they have equal DSP48E usage) grows smoothly with increasing bitwidth, 

and the Carry Vector Adder structures create smaller multipliers. This is due to the fact that the CVAs 

concatenate non-overlapping upper sections of the addition, whereas the RAs must still propogate the 

carry through those positions (Figure 10 and Figure 11). 
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Figure 21: 96 x W multiplier Combinational Delay for DW and OIW (RA versus CVA) 

 

Figure 22: 96 x W multiplier Combinational Delay for DW and OIW (RA versus CVA) 

7.4 Comparison to Other Composable Multipliers 
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methodology as “Asym”. First, we compare to the “Naïve” approach of just expressing the multiplication 

in Verilog as Z = X × Y. Second, we use Xilinx Core Generator (CoreGen) to create multipliers. Because 

Core Generator restricts generated multiplier sizes to 64 × 64 or smaller, these data points are only 
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(Sym) [14] that treats each 24 × 17 multiplier as a 17 × 17 multiplier, and uses the diagonal partial-

product generation method described in section 5.2.The adder trees for the Sym multipliers were 

implemented using a strategy similar to the Outside-In Whole. Although this is clearly inefficient, the 

purpose of this particular baseline is to highlight the importance of considering asymmetry in multiplier 

generation.  

We compare each of these multiplier methods on the basis of DSP48E count, LUT count, and 

combinational delay. All multipliers are generated as combinational-only designs. Future work that adds 

automated adder tree pipelining would also compare pipelined versions of these multipliers. We test a 

set of large multiplier sizes where both operands have equal width, ranging from 17 to 128 through 

(Figure 23, Figure 25 and Figure 27). We also test a set of large multiplier sizes where one operand is 

fixed at 64 bits, and the other varies from 17 to 128 through (Figure 24, Figure 26 and Figure 28).  

 

Figure 23: W × W multiplier combinational delay 
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Figure 24: 64 × W multiplier combinational delay 

 

Figure 25: W × W multiplier DSP48E usage 
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Figure 26: 64 × W multiplier DSP48E usage 

 

Figure 27: W × W multiplier LUT usage 
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Figure 28: 64 × W multiplier LUT usage 

The results show that for all tested multiplier sizes, our generation method (Asym) uses fewer DSP48E 

blocks than any of the compared methods. Among all multiplier designs, the Asymmetric multipliers use 

the minimum possible DSP block count. This is because our generator uses the full 24×17 multiplier size, 

and because we choose our operand decomposition specifically to minimize the DSP block count. The 

number of DSP blocks required by CoreGen is very similar to what is needed for the Symmetric (Sym) 

multipliers, indicating that CoreGen does not fully exploit the asymmetric multipliers. The Naïve results 

are also close to that of the CoreGen results in terms of DSP block use; it appears to use a similar 

methodology. 

7.5 Cascaded (Non-Tree-Based) Partial Product Summation 

Finally, we compare all multiplier designs that compute both digit-products and additions entirely in DSP 

blocks: Coregen and Asym-DSP (section 6). Again, we test a set of large multiplier sizes where both 

operands have equal width, ranging from 17 to 128 through (Figure 29 and Figure 31). We also test a set 

of large multiplier sizes where one operand is fixed at 64 bits, and the other varies from 17 to 128 

through (Figure 30 and Figure 32). All the designs are tested on the basis of the DSP blocks count and 

the combinational delay. For comparison purposes we also include the original Asym results from the 

previous section. 

The results show that the Asym-DSP method uses the minimum possible number of DSP48E blocks 

(when forcing all digit-products to be computed and summed using DSP blocks) for any given multiplier 

size as it utilizes the full 24x17 multiplier. CoreGen breaks down the multiplier using symmetric 17×17 

multiplications for most of the partial products. This is because the DSP blocks provide dedicated routing 

between them that provides a fixed 17-bit shift between chained blocks, followed by a summation of 

the DSP block product with the shifted value which results in larger DSP48E counts comparatively. The 

only exception to the use of 17×17 multipliers is at the most significant digit-products that do not 
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require shifting—these can use the full multiplier capabilities, as given in the multiplier example from 

the DSP48E guide [7]. 

The combinational delay of Asym-DSP closely follows that of CoreGen. However, for the version of 

Coregen we used, multipliers with the operand size beyond 64 bits cannot be realized. Asym-DSP can 

realize multipliers implemented by using only DSP blocks for any arbitrary specified multiplier as desired 

by the user. This is very efficient in terms of LUT usage (no LUTs are required for the adders). 

 

Figure 29: W × W multiplier combinational delay 

 

Figure 30: 64 × W multiplier combinational delay 
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Figure 31: W × W multiplier DSP48E usage (Asym and Asym-DSPs have the same DSP usage) 

 

Figure 32: 64 × W multiplier DSP48E usage (Asym and Asym-DSPs have the same DSP usage) 

 As explained in section 6, the DSP48E block architecture includes only a fixed shift of 17 bits is 
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used in our Asymmetric multipliers. Thus, this solution, although area-efficient, may not be suitable 

when latency is an issue. It is likely to be a better solution to make use of a small amount of LUTs in our 

Asymmetric designs in exchange for greatly reduced latency and the faster (but less flexible) DSP blocks. 
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8 Future Work  

The generated multipliers could use fewer multiplier blocks by implementing the digit-products for the 

uppermost digits in LUTs if those uppermost digits are incomplete (i.e., use far fewer bits than the 

multiplier block digit size). This could also be augmented to use non-standard tiling [18] and applying the 

partial-product rearrangement (concatenation) and summation tree techniques to the resulting partial 

products. 

The partial-product summation stage can be further improved by considering the compressor tree 

mappings for the summation of the operands [21]. Currently, we choose the approach of just specifying 

the additions by using the Verilog “+” operator and let the vendor tools optimize the implementation. 

Improving the addition stages would further reduce the latency of the large multipliers. 

The Karatsuba-Ofman algorithm [18] is a good choice in cases where the smaller multiplier is symmetric 

and reduces the overall number of DSP blocks required by trading the multiplications for additions. We 

believe a candidate solution for cases when the smaller multiplier is asymmetric would be to employ the 

Vedic multiplication algorithm [29][30]. The Vedic algorithm trades the multiplications for additions but 

reduces the overall multiplications compares to the Karatsuba-Ofman algorithm. The algorithm can also 

take into account of the binary ones and zeros present in the input operands and accordingly determine 

the number of steps for partitioning. Mapping a hybrid solution consisting of the existing divide-by-

conquer approach and the Vedic algorithm for modern FPGAs is a work for future.  
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9 Conclusions 

This thesis presented a new automated multiplier generator technique that creates large multipliers out 

of asymmetric embedded multiplier blocks, as are present in some of the newer commercial FPGAs. 

Designing a larger multiplier out of smaller multiplier building blocks is more complex for asymmetric 

than for symmetric multiplier blocks because there are two different shift factors involved (and various 

combinations of them), and partial products do not line up as exactly. We demonstrated that the 

decomposition of the two operands must be carefully approached, and that concatenating some of the 

partial products before they enter the adder tree for partial-product summation provides significant 

benefit. 

Although our technique could be applied to any sized asymmetric blocks, we demonstrated its benefit 

by applying our method to the Xilinx Virtex-5 FPGA, which contains asymmetric hard multiplier cores. 

We explored a variety of adder generation strategies and addition types. We compared our generated 

multipliers with Naïve multipliers (using a single Verilog “*” operator to multiply the complete 

operands), multipliers created using Xilinx Core Generator, and multipliers created using a previous 

method designed for symmetric embedded multiplier blocks. In general, our generated multipliers using 

asymmetric blocks had a lower combinational delay. LUT count was equal to or lower than nearly all 

compared designs apart from the Core Generator version, which does not use any LUTs and solutions 

using carry-vector optimizations resulted in fewer LUTs.  All the asymmetric multiplier designs used the 

same or fewer (usually fewer) DSP blocks than all other compared designs. However, as a percent of 

overall FPGA resources, LUT use of our multipliers is low compared to DSP block use. We demonstrated 

that a Ripple Adder is more effective for minimizing delay, but a Carry Vector Adder results in lower LUT 

usage. We also demonstrated that asymmetric multiplier designs can be implemented using only the 

DSP48E blocks (i.e., by using the adders included within them) is an area efficient solution but has a 

greatly increased latency.  Our proposed approach of using DSP blocks to multiply asymmetric digits and 

LUT-based partial-product summation results in multipliers that are overall both smaller and lower-

latency than those created using these other common techniques. 
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Appendix 

Table 21, Table 22, Table 23, Table 24 and Table 25 show the tests cases used to compare the four adder 
generation strategies for both the addition types for our generated multipliers using the asymmetric 
24 × 17 multipliers in the Virtex-5. 
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Table 21: DSP48E usage for different multiplier sizes 

Multiplier 
(X x Y) 

DSPs 
 

Multiplier 
(X x Y) 

DSPs 

48x34 4 
 

72x51 9 

48x51 6 
 

72x68 12 

48x68 8 
 

72x85 15 

48x85 10 
 

72x102 18 

48x102 12 
 

72x119 21 

48x119 14 
 

72x136 24 

48x136 16 
 

72x153 27 

48x153 18 
 

72x170 30 

48x170 20 
 

72x187 33 

48x187 22 
 

72x204 36 

    

Multiplier 
(X x Y) 

DSPs 
 

Multiplier 
(X x Y) 

DSPs 

96x68 16 
 

120x85 25 

96x85 20 
 

120x102 30 

96x102 24 
 

120x119 35 

96x119 28 
 

120x136 40 

96x136 32 
 

120x153 45 

96x153 36 
 

120x170 50 

96x170 40 
 

120x187 55 

96x187 44 
 

120x204 60 

96x204 48 
 

120x221 65 

96x221 52 
 

120x238 70 

 

Multiplier 
(X x Y) 

DSPs 
 

Multiplier 
(X x Y) 

DSPs 

48x34 4 
 

48x51 6 

72x51 9 
 

72x68 12 

96x68 16 
 

96x85 20 

120x85 25 
 

120x102 30 

144x102 36 
 

144x119 42 

168x119 49 
 

168x136 56 

192x136 64 
 

192x153 72 

216x153 81 
 

216x170 90 

Multiplier 
(X x Y) 

DSPs 
 

Multiplie
r (X x Y) 

DSPs 

48x68 8 
 

48x85 10 

72x85 15 
 

72x102 18 

96x102 24 
 

96x119 28 

120x119 35 
 

120x136 40 

144x136 48 
 

144x153 54 

168x153 63 
 

168x170 70 

192x170 80 
 

192x187 88 
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Table 22: Combinational Delay (ns) for Ripple Adder Designs 

Method 48x34 48x51 48x68 48x85 
48x 
102 

48x 
119 

48x 
136 

48x 
153 

48x 
170 

48x 
187 

DW 6.622 7.286 8.975 9.160 9.275 9.265 9.831 10.671 11.164 11.344 

OIW 6.622 7.286 8.138 8.738 8.728 9.319 9.536 10.710 10.814 11.058 

DTB 6.810 7.100 8.664 8.848 9.494 9.941 11.138 11.535 12.102 12.474 

OITB 6.810 7.100 8.749 9.005 9.640 10.109 10.636 10.969 11.827 12.227 

           
Method 72x51 72x68 72x85 

72x 
102 

72x 
119 

72x 
136 

72x 
153 

72x 
170 

72x 
187 

72x 
204 

DW 8.791 8.979 9.826 10.235 11.632 10.836 11.266 11.368 12.267 12.176 

OIW 8.286 9.425 9.351 9.728 10.089 11.350 11.409 11.760 11.774 12.207 

DTB 8.392 8.716 9.704 10.146 11.511 11.819 12.362 12.900 13.116 13.658 

OITB 8.365 8.802 9.513 10.006 10.892 11.347 12.391 12.709 12.749 13.184 

           
Method 96x68 96x85 

96x 
102 

96x 
119 

96x 
136 

96x 
153 

96x 
170 

96x 
187 

96x 
204 

96x 
221 

DW 9.782 10.466 11.830 12.151 12.673 12.940 13.379 12.735 13.446 13.469 

OIW 9.887 10.349 10.541 11.728 11.444 12.336 12.257 12.930 13.106 13.686 

DTB 9.663 10.198 11.590 11.990 12.371 12.629 13.308 13.555 14.027 14.393 

OITB 9.286 9.800 10.461 10.971 12.381 12.634 13.129 13.674 14.135 14.615 

           
Method 

120x 
85 

120x 
102 

120x 
119 

120x 
136 

120x 
153 

120x 
170 

120x 
187 

120x 
204 

120x221 120x238 

DW 11.754 11.996 12.383 13.018 13.299 13.926 14.348 14.766 15.213 15.889 

OIW 10.662 12.458 12.033 12.677 12.687 13.429 13.352 13.901 14.424 15.558 

DTB 11.183 12.117 12.082 12.399 13.449 14.074 14.206 14.992 15.637 15.862 

OITB 10.317 10.893 12.080 12.452 12.786 13.208 14.183 14.583 14.993 15.380 

 

Method 48x34 72x51 96x68 120x85 144x102 168x119 192x136 216x153 

DW 6.622 8.791 9.782 11.754 12.286 13.627 15.322 16.814 

OIW 6.622 8.286 9.887 10.662 12.248 13.593 14.727 15.632 

DTB 6.810 8.392 9.663 11.183 12.489 13.219 14.719 16.437 

OITB 6.810 8.365 9.286 10.317 11.756 12.764 13.983 15.392 

         
Method 48x51 72x68 96x85 120x102 144x119 168x136 192x153 216x170 

DW 7.286 8.979 10.466 11.996 12.696 14.065 15.219 17.342 

OIW 7.286 9.425 10.349 12.458 13.217 14.398 15.437 17.434 

DTB 7.100 8.716 10.189 12.117 12.542 13.857 15.117 17.441 

OITB 7.100 8.802 9.800 10.893 12.218 13.427 14.934 16.065 
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Method 48x68 72x85 96x102 120x119 144x136 168x153 192x170 
 

DW 8.975 8.946 11.830 12.383 13.814 14.698 16.710 
 

OIW 8.138 9.351 10.541 12.033 13.286 14.410 15.716 
 

DTB 8.644 9.704 11.590 12.082 13.518 14.669 16.429 
 

OITB 8.749 9.513 10.461 12.080 12.884 14.170 15.577 
 

         
Method 48x85 72x102 96x119 120x136 144x153 168x170 192x187 

 
DW 9.160 10.235 12.151 13.018 14.041 15.084 17.514 

 
OIW 8.738 9.728 11.728 12.677 13.765 14.823 16.972 

 
DTB 8.848 10.146 11.990 12.399 13.940 15.085 16.992 

 
OITB 9.005 10.006 10.971 12.452 13.385 14.837 16.024 
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Table 23: Combinational Delay (ns) for Carry Vector Adder Designs 

Method 48x34 48x51 48x68 48x85 
48x 
102 

48x 
119 

48x 
136 

48x 
153 

48x 
170 

48x 
187 

DW 7.728 8.413 9.647 9.343 9.829 10.421 11.005 11.499 11.446 12.218 
OIW 7.728 8.413 9.215 10.057 9.891 10.397 10.606 11.763 11.832 12.006 
DTB 7.802 8.189 9.638 10.100 10.694 11.087 11.723 12.274 13.047 13.576 
OITB 7.802 8.189 9.629 10.026 10.694 11.087 11.723 12.274 13.047 13.576 

           
Method 72x51 72x68 72x85 

72x 
102 

72x 
119 

72x 
136 

72x 
153 

72x 
170 

72x 
187 

72x 
204 

DW 9.935 10.053 10.511 10.846 11.528 12.311 12.285 12.820 12.876 13.287 
OIW 9.488 10.517 10.394 10.905 11.046 12.687 12.401 12.858 12.795 13.467 
DTB 9.488 9.719 10.856 11.143 12.312 12.734 13.380 13.882 13.850 14.172 
OITB 9.361 9.761 10.667 11.072 12.170 12.477 13.380 13.882 13.850 14.172 

           
Method 96x68 96x85 

96x 
102 

96x 
119 

96x 
136 

96x 
153 

96x 
170 

96x 
187 

96x 
204 

96x 
221 

DW 10.967 11.513 12.506 12.542 12.824 13.295 13.366 14.126 13.974 14.607 
OIW 10.934 11.372 11.811 12.883 12.654 13.304 13.510 14.672 14.332 14.583 
DTB 10.924 11.122 12.621 13.107 13.310 13.721 14.077 14.517 14.966 15.273 
OITB 10.599 10.871 11.693 12.196 13.481 13.874 14.249 14.703 15.241 15.686 

           
Method 

120x 
85 

120x 
102 

120x 
119 

120x 
136 

120x 
153 

120x 
170 

120x 
187 

120x 
204 

120x221 120x238 

DW 12.974 13.055 13.072 13.451 13.587 14.348 14.300 15.057 15.474 16.542 
OIW 11.984 13.424 13.081 13.940 13.849 14.299 14.443 15.451 15.344 16.642 
DTB 12.403 12.713 13.255 13.776 14.240 14.893 15.483 16.017 16.350 16.918 
OITB 11.781 12.270 13.182 13.850 14.053 14.607 15.429 15.930 16.271 16.662 

 

 

 

 

Method 48x34 72x51 96x68 120x85 144x102 168x119 192x136 216x153 

DW 7.728 9.935 10.967 12.974 13.485 14.788 15.777 17.790 

OIW 7.728 9.488 10.934 11.984 13.280 14.683 15.803 17.050 

DTB 7.802 9.488 10.924 12.403 13.100 14.547 15.743 17.541 

OITB 7.802 9.361 10.599 11.781 12.820 14.544 15.259 16.562 

         
Method 48x51 72x68 96x85 120x102 144x119 168x136 192x153 216x170 

DW 8.413 10.053 11.513 13.055 13.893 14.960 16.294 18.625 

OIW 8.413 10.517 11.372 13.424 14.339 15.391 16.323 18.802 

DTB 8.189 9.719 11.122 12.713 13.782 14.685 16.388 18.219 

OITB 8.189 9.761 10.871 12.270 13.660 14.376 15.514 17.200 
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Method 48x68 72x85 96x102 120x119 144x136 168x153 192x170 
 

DW 9.647 10.511 12.506 13.072 14.364 15.391 17.403 
 

OIW 9.215 10.394 11.811 13.081 14.293 15.340 16.717 
 

DTB 9.638 10.856 12.621 13.255 14.685 15.709 17.631 
 

OITB 9.629 10.667 11.693 13.182 13.962 15.184 16.593 
 

         
Method 48x85 72x102 96x119 120x136 144x153 168x170 192x187 

 
DW 9.343 10.846 12.542 13.451 14.425 15.749 18.088 

 
OIW 10.057 10.905 12.883 13.940 14.853 16.063 18.617 

 
DTB 10.100 11.143 13.107 13.776 15.072 16.475 18.365 

 
OITB 10.026 11.072 12.196 13.850 14.382 15.661 17.302 
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Table 24: LUT usage for Ripple Adder designs 

Method 48x34 48x51 48x68 48x85 
48x 
102 

48x 
119 

48x 
136 

48x 
153 

48x 
170 

48x 
187 

DW 107 199 283 350 425 486 545 624 690 798 

OIW 107 199 299 375 516 569 737 804 881 930 

DTB 123 206 289 371 471 581 682 799 849 940 

OITB 123 206 307 389 489 599 735 852 884 976 

           
Method 72x51 72x68 72x85 

72x 
102 

72x 
119 

72x 
136 

72x 
153 

72x 
170 

72x 
187 

72x 
204 

DW 305 434 592 624 859 973 1085 1204 1288 1407 

OIW 320 456 613 804 923 1115 1252 1460 1598 1823 

DTB 330 454 596 799 860 991 1133 1264 1405 1587 

OITB 346 494 634 852 934 1059 1218 1371 1563 1738 

           
Method 96x68 96x85 

96x 
102 

96x 
119 

96x 
136 

96x 
153 

96x 
170 

96x 
187 

96x 
204 

96x 
221 

DW 606 770 952 1168 1357 1505 1629 1781 1932 2079 

OIW 624 794 1013 1246 1451 1701 1855 2122 2282 2567 

DTB 635 824 988 1138 1321 1505 1686 1878 2079 2242 

OITB 677 865 1083 1255 1454 1635 1869 2018 2230 2418 

           
Method 

120x 
85 

120x 
102 

120x 
119 

120x 
136 

120x 
153 

120x 
170 

120x187 120x204 120x221 120x238 

DW 985 1171 1425 1696 1960 2224 2428 2589 2752 2933 

OIW 1048 1259 1502 1795 2100 2368 2683 2926 3251 3469 

DTB 1032 1238 1462 1684 1906 2109 2352 2572 2794 3036 

OITB 1120 1401 1641 1830 2106 2328 2584 2798 3126 3333 

 

Method 48x34 72x51 96x68 120x85 144x102 168x119 192x136 216x153 

DW 107 305 606 985 1465 1995 2657 3311 

OIW 107 320 624 1048 1547 2128 2822 3670 

DTB 123 330 635 1032 1500 2078 2752 3505 

OITB 123 346 677 1120 1681 2335 3098 3987 

         
Method 48x51 72x68 96x85 120x102 144x119 168x136 192x153 216x170 

DW 199 434 770 1171 1677 2275 2985 3740 

OIW 199 456 794 1259 1784 2441 3159 4047 

DTB 206 454 824 1238 1773 2389 3130 3875 

OITB 206 494 865 1401 1976 2719 3498 4527 
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Method 48x68 72x85 96x102 120x119 144x136 168x153 192x170 
 

DW 283 592 952 1425 1952 2593 3284 
 

OIW 299 613 1013 1502 2114 2788 3598 
 

DTB 289 596 988 1462 2036 2714 3458 
 

OITB 307 634 1083 1641 2292 3057 3950 
 

         
Method 48x85 72x102 96x119 120x136 144x153 168x170 192x187 

 
DW 350 624 1168 1696 2293 2979 3694 

 
OIW 375 804 1246 1795 2466 3189 4040 

 
DTB 371 799 1138 1684 2282 3018 3758 

 
OITB 389 852 1255 1830 2569 3350 4341 
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Table 25: LUT usage for Carry Vector Adder designs 

Method 48x34 48x51 48x68 48x85 
48x 
102 

48x 
119 

48x 
136 

48x 
153 

48x 
170 

48x 
187 

DW 107 184 265 335 402 471 539 607 673 757 

OIW 107 184 265 335 433 520 634 739 787 873 

DTB 124 208 291 374 457 550 631 730 797 881 

OITB 124 208 291 374 457 550 631 730 797 881 

           
Method 72x51 72x68 72x85 

72x 
102 

72x 
119 

72x 
136 

72x 
153 

72x 
170 

72x 
187 

72x 
204 

DW 298 405 532 651 775 890 1013 1127 1251 1369 

OIW 298 405 532 651 775 909 1052 1204 1363 1530 

DTB 331 456 580 704 827 951 1074 1199 1324 1466 

OITB 331 456 580 704 827 951 1074 1199 1324 1466 

           
Method 96x68 96x85 

96x 
102 

96x 
119 

96x 
136 

96x 
153 

96x 
170 

96x 
187 

96x 
204 

96x 
221 

DW 566 718 876 1044 1191 1350 1500 1656 1805 1961 

OIW 566 718 876 1044 1191 1379 1545 1748 1928 2151 

DTB 620 786 950 1115 1281 1445 1608 1774 1941 2106 

OITB 620 786 950 1115 1280 1444 1610 1776 1941 2106 

           
Method 

120x 
85 

120x 
102 

120x 
119 

120x 
136 

120x 
153 

120x 
170 

120x187 120x204 120x221 120x238 

DW 924 1110 1308 1507 1718 1920 2128 2324 2536 2736 

OIW 924 1110 1308 1507 1718 1920 2128 2360 2606 2841 

DTB 990 1195 1401 1606 1813 2020 2225 2430 2637 2844 

OITB 990 1195 1401 1606 1813 2020 2225 2430 2636 2843 

 

Method 48x34 72x51 96x68 120x85 144x102 168x119 192x136 216x153 

DW 107 298 566 924 1357 1854 2451 3146 

OIW 107 298 566 924 1357 1854 2451 3146 

DTB 124 331 620 990 1442 1977 2594 3292 

OITB 124 331 620 990 1442 1977 2594 3292 

         
Method 48x51 72x68 96x85 120x102 144x119 168x136 192x153 216x170 

DW 199 434 770 1171 1590 2139 2786 3502 

OIW 199 456 794 1259 1593 2143 2786 3502 

DTB 206 454 824 1238 1690 2266 2924 3661 

OITB 206 494 865 1401 1690 2266 2924 3661 
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Method 48x68 72x85 96x102 120x119 144x136 168x153 192x170 
 

DW 265 532 876 1308 1811 2416 3094 
 

OIW 265 532 876 1308 1811 2416 3094 
 

DTB 291 580 950 1401 1937 2554 3252 
 

OITB 291 580 950 1401 1937 2554 3252 
 

         
Method 48x85 72x102 96x119 120x136 144x153 168x170 192x187 

 
DW 335 651 1044 1507 2062 2692 3412 

 
OIW 335 651 1044 1507 2062 2692 3412 

 
DTB 374 704 1115 1606 2184 2842 3581 

 
OITB 374 704 1115 1606 2184 2842 3581 

 
 

 

 

 

 


