
UbiREMOTE: Framework
for Remotely Controlling Networked Appliances

through Interaction with 3D Virtual Space

Kohta Kiyokawa†, Shinya Yamamoto ‡,¶, Naoki Shibata §,¶, Keiichi Yasumoto †,¶ and
Minoru Ito†

† Nara Institute of Science and Technology, Ikoma,Nara 630-0192, Japan
‡ Tokyo University of Science Yamaguchi, Yamaguchi 756-0884, Japan

§ Shiga University, Hikone,Shiga 522-8522, Japan
¶ Japan Science and Technology Agency, CREST

kota-k@is.naist.jp, shiny-ya@ed.yama.tus.ac.jp, shibata@biwako.shiga-u.ac.jp,
yasumoto@is.naist.jp, ito@is.naist.jp

ABSTRACT
In this paper, we propose a framework named “UbiRE-
MOTE” for controlling information appliances connected to
a home network with a unified and intuitive user interface
from a remote place. The UbiREMOTE framework provides
users with a way to control appliances in a home through
a virtual space drawn on a mobile terminal screen which
reflects the latest conditions of the real appliances and the
rooms in the home. With UbiREMOTE, a user controls
appliances by (1) moving to the front of an appliance, (2)
choosing the appliance to control and (3) pushing buttons
on the virtual remote controller which imitates the real re-
mote controller for the appliance or the real console. In this
paper, we propose a method to improve the drawing speed of
3D virtual space on mobile terminals and a method for au-
tomatically reflecting condition changes of the real space in
the virtual space. We implemented the methods and evalu-
ated the performance. The results showed that the proposed
methods can be practically used on small mobile terminals.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: Graph-
ical user interfaces (GUI)

General Terms
Algorithms

Keywords
information appliances, mobile terminals, remote control,
lightweight 3D rendering

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MMSys’10,February 22–23, 2010, Phoenix, Arizona, USA.
Copyright 2010 ACM 978-1-60558-914-5/10/02$5.00.

1. INTRODUCTION
In recent years, appliances and information devices that

can be connected to a network (information appliances, here-
after) have been becoming popular. In order to control infor-
mation appliances via network, frameworks such as UPnP[1],
DLNA[2], OSGi[3] and ECHONET[4] have been developed.
One of the objectives of connecting information appliances
to a network is to control those devices remotely. One might
want to control an air conditioner at home or start record-
ing a TV program before leaving the workplace. It would
also be useful to remotely watch elders or the stuation in
a house through a camera. Some commercial companies
are providing these services[5]. However, most of the exist-
ing services/techniques for remotely controlling information
appliances are text-based, which may not be intuitive and
could sometimes be confusing if many devices are connected
to the network.

In this paper, we propose a framework named “UbiRE-
MOTE” for controlling many information appliances con-
nected to a home network with a unified and intuitive user
interface from a remote place. UbiREMOTE provides the
following four functions: (i) an intuitive display of the real
appliances and the rooms in the home through 3D virtual
space graphics, rather than a text-based display, (ii) an in-
terface for users to intuitively choose the appliances to con-
trol by moving the viewpoint in the virtual space, (iii) dis-
playing the latest conditions and positions of appliances and
the latest environmental conditions (such as temperature) in
the room through the 3D view, and (iv) a mechanism to im-
prove the drawing speed of the 3D virtual space on mobile
terminals without a powerful 3D rendering capability.

We assume that UbiREMOTE is used with UPnP-capable
information appliances. However, Simple Service Discovery
Protocol (SSDP) used in UPnP requires IP multicast, which
is not always supported by the Internet. In order to control
appliances from a remote place with UPnP, UbiREMOTE
encapsulates the UPnP communication with TCP packets.

In order to improve the drawing speed of 3D graphics
on mobile terminals, we can use server-side rendering tech-
niques in which 3D scenes are rendered in a server and con-
verted to an MPEG movie, and played back on the terminal.
However, delay could be problematic when interacting with
the 3D graphics scenes. In the proposed method, we create

���������	��

����

������� � �
� ������� �����

� �����	�
!�

"#��� � �$���

"#��� � �$���

% �	&!� �'" �
� �(& �����)� � � ���*� � �,+ �
-'� � �,. ���0/21��3"#�

% ���)� � �4"#��� � �
��� � ���
& ������1�1�� � ���'"#�'/

576'6�8 9 :(;3<'=3>

? >@='A

B7C D EGF E2H!HJI@K@L�L�M	N	O IGPRQ0O K@N

"#�������3" �

S�TVU � � �R. ���
W 1��3"#�YX � � ��� &
�'"#�

��1����$� � �

/0Z'��" + �
����� [\�

Figure 1: Internal Behavior of UbiREMOTE

many still pictures of 3D virtual space taken from various di-
rections, and surround the viewpoint with these pictures. In
this way, we can reduce the number of 3D objects rendered
by the terminal.

As for (iii) reflecting the latest positions of appliances in
the virtual space, we attach an accelerometer with a Zig-
Bee communication device to each appliance, and detect the
movement of appliances. We also discuss attaching several
ZigBee devices on the walls of the room, and detect the posi-
tions of appliances based on the localization technique with
the ZigBee devices. As for changes of environmental condi-
tions (e.g., temperature or humidity), we discuss a successive
synchronization technique to a UbiREMOTE terminal.

In order to evaluate UbiREMOTE, we implemented a
UbiREMOTE remote controller prototype on a tablet PC,
and conducted an experiment with three information ap-
pliances in a room. The experiment showed that the time
required for the appliances to react to a user’s operation is
about 3 seconds, which is fast enough to control appliances
from a remote place. We also confirmed that the proposed
lightweight 3D rendering technique improved the drawing
speed by about 90 times.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview and the challenges for implementing
UbiREMOTE. Section 3 explains the technique for improv-
ing the drawing speed of 3D virtual space on mobile ter-
minals. Section 4 explains the method for reflecting the
changes of real appliances on the virtual space. Section 5
presents the implementation. We give the experimental eval-
uation and the related work in Sections 6 and 7, respectively.
Finally, we conclude the paper in Section 8.

2. UBIREMOTE OVERVIEW
In this section, we first describe the target environment

and the objective of the UbiREMOTE framework, and clar-
ify the desirable features and the basic structure. Then, we
give the structure of the proposed framework.

2.1 Target Environment and Objective
UbiREMOTE framework handles a service that allows a

user to control information appliances in the home from a
remote place (remote controller service, hereafter). The op-
erating environment of UbiREMOTE is shown in Fig. 1.
We suppose that all of the target appliances are connected
to the network, and a home server can be connected from
the Internet.

The objective of the UbiREMOTE framework is to sat-
isfy the following conditions upon providing the remote con-
troller service.

��� ����� �	��
�

���
����� � � ��� ��������������

��� ��� � �
�� �!
����
� � ��� �

� ��" ��� ��# �

� � ��$

%&� ����'	�(

���
'�� ��) � ��� �

*�� +	� � � # ��'�� ��� $
� ���,��� �
������ � � #

- . / 0 1

Figure 2: Operation on UbiREMOTE (Turning on
a light)

(1) Everyone can intuitively control appliances.

(2) Appliances can be controlled from a remote place via
the Internet.

(3) Operating conditions of appliances can be monitored.

(4) Room conditions can be monitored.

As for (1), in order to solve the low usability in text-based
remote control methods of home appliances, we reproduce
the space with networked home appliances (target space) as
a 3D virtual space, in which users can control and monitor
the appliances. When users interact with the virtual space,
we let them freely move the viewpoint in the virtual space
by operating the remote terminal, as if they were in a real
home. For this purpose, as shown in Fig. 2, we provide a
user interface in which a user moves the viewpoint to the
front of the target appliance, selecting the appliance object
to pop up a control window, and operating the appliance
through the window. This feature provides users an intu-
itive and familiar way of controlling appliances by using a
control window imitating the real remote controller for each
appliance.

As for (2), we target a home network and appliances based
on UPnP (Universal Plug and Play) and provide a mecha-
nism to control each appliance from a remote place with a
UPnP-based protocol.

As for (3), we reduce the labor of users in checking and
configuring a lot of appliances distributed around the home.
In order to achieve this, we provide functions for monitoring
the operating conditions of appliances through the virtual
space displayed in the user’s terminal.

As for (4), we allow the users to grasp the condition of
the real space by indicating the positions and the operating
conditions of appliances and room conditions such as tem-
perature. In order to achieve this, we provide functions for
measuring positions of appliances and room condition and
displaying the latest measurement results. With these func-
tions, users can intuitively control the temperature settings
of air conditioners before leaving their workplaces or check
if they turned off heaters after they left home.

2.2 Structure of UbiREMOTE
As in Fig. 1, the mobile terminal controls information

appliances through the home network. The sensors in the
home measure environmental conditions such as tempera-
ture and humidity in the rooms, and positions and operating
conditions of the appliances. These data are collected in the
server and reflected in the mobile terminal screen through
the synchronization of the data between the server and the
mobile terminal.

���������
	��
���������
	��

���������
	��
���������
	��

���
� �����������������
 "!�#%$���&

'(����)+* �-,.��	 /10-23�

4 �-265�0���7 � 4 / �
	
����0�8�9 7 �;:
� 4 ����,<5�=�>?	����;@���	A7 �;:

B�� 4C4CD ��7 230�,�7 �
�EB��
�-,<	��
9 9 ��	

FHG�G�9 7 0���2I�;�

B��
�-,<	��
9 9 ��	
/ �
	;0�G�G�9 7 0��;23�;�

�<G�0;2I��7 �-/ �
	 4 0�,�7 �
�

* ��G D ,�@���J;7 23�

KML<N�O L3P.Q(R SIN T�U VXW<QAR T-S
R S
Q+Y6LHZ[R U Q+\MWMO�]�^MW3P�L

T�_IQAWMR S
Q+YML
T�^ML6U W<QAR SI`EP�T�SMa�R QAR T�SM]

TMN-W6^[^[O R W6SMP�LI]

P�T-SIQ+U T�O.W6^[^[O R W6SMP�LI]

Figure 3: Structure of UbiREMOTE framework

Figure 4: Turning on a light by control window

The UbiREMOTE framework roughly consists of (1) a
user interface module and (2) a communication controller
module, as shown in Fig. 3.

2.2.1 User Interface
This module has the following three functions: (1) light-

weight 3D rendering, (2) viewpoint movement and selecting
an appliance in the virtual space, and (3) controlling and
monitoring the selected appliance.

As for (1), we display the arrangement and the operating
conditions of the appliances (light, TV and air conditioner)
in the target space with 3D graphics from any viewpoint
on the remote terminal screen. We provide a function for a
user to move the viewpoint in the virtual space as if he/she is
walking in the real house, and view the space with appliances
from any angle. We also provide a function for collaborating
with the communication controller module to obtain the op-
erating conditions (e.g., on-off status of power, target tem-
perature/humidity of air-conditioner, channel/volume set-
tings of TV, etc.) of each appliance and room conditions
sensed by sensors, and to reflect the obtained information
in the virtual space. For example, if the viewpoint is moved
and it is looking at a light in the living room, the com-
munication controller module communicates with the real
light device and obtains its operating conditions (on/off, or
brightness setting, etc.) and a scene showing that the light
is turned on is rendered as shown in Fig. 4.

UbiREMOTE is used with a small mobile phone with a
touch panel (like iPhone). However, displaying the virtual
space requires powerful 3D graphics processing capability,
and thus making mobile phones render the virtual space
smoothly is difficult. We built a mechanism for enabling
smooth 3D rendering on these small mobile phones with-
out powerful hardware. We will describe this mechanism in
Section 3.

As for (2), we create a mechanism for users to move the
viewpoint or select an appliance by using the touch panel
on the phone.

As for (3), we create a mechanism for users to control
an appliance through a popup control window imitating the
real remote controller displayed on the mobile terminal. Fig.
4 is a snapshot of when a control window has popped up.

2.2.2 Communication Controller
This module has the following three functions: (1) com-

municating with the server and an appliance in the target
space (home), and controlling the appliance as the user spec-
ifies, (2) obtaining the operating conditions of appliances
and room conditions sensed from the sensors in the appli-
ances, and (3) obtaining the room conditions or the positions
of the appliances from the multiple sensors deployed in the
room. We describe the details of (3) in Section 4.

3. LIGHTWEIGHT 3D GRAPHICS PROCESS-
ING IN UBIREMOTE

In this section, first we give requirements for 3D graphics
processing in a lightweight computing device, and propose
basic ideas. Then, we describe the details of our proposed
method.

3.1 Requirements
We set the following requirements for lightweight 3D graph-

ics processing.

(R1) The view of the 3D virtual space should be smoothly
drawn and updated in a lightweight computing device.

(R2) Perceived quality of the resulting view should not be
greatly spoiled by lightweight 3D graphics processing.

(R3) Response time until the latest view of the target space
is reflected should be reasonably short.

For (R1), we need a technique to simplify 3D graphics
rendering that matches the 3D walkthrough-type interface.
For this purpose, most 3D graphics processing should be
moved from a client to a server. For (R2), we need to reduce
3D graphics quality for lightweight processing, but we also
need to maintain sufficient usability. 3D graphics quality
should be reduced for lightweight processing while we main-
tain sufficient usability. For (R3), when a user operates an
appliance, its status should be immediately reflected in the
view of the virtual space displayed on the client’s screen.

3.2 Basic Ideas for Lightweight 3D Rendering
First, we consider a server-client based lightweight 3D pro-

cessing technique as shown in Fig. 5, where a server renders
the 3D graphics of the virtual space including all objects,
captures a 2D image of the graphics from a specified view-
point, and sends the image to a client. This technique allows

��� �������	����
 ���
 � ���������	���
�������������	�������

 ���������

� � ��������
 � �!�!���

" � #$�������!�%�

����� &���� '(#$)	
 * �+�����,�-
 ����*

�%��./�0��#1���2�	��* ��3

Figure 5: Server-client based 3D graphics processing

��� �����	�
� �
� ����� �������� ������� � ���
������

����� �
�����
��!
�"�
�# � � # �%$'& � �
!��	�� (# &��
�
) # �%$'& � �
!����
� (# &����

�*,+�- .0/1+32,4 56237
8 239�: ;0<�5�: />=@?%;3A1.
B1C .0DEA�F�G%: A

9�: - =�F3?%4>/IH3?'A1.J: /
- .%H�4 ?'AI.'5�2
;

+%.3- .%K

Figure 6: Cubic virtual space

the client to draw the 3D virtual space without 3D graphics
processing. However, it takes time to create and transmit
a 2D image to the client. Such delay occurs in the follow-
ing cases: (1) when the user changes viewpoints or direc-
tions in the virtual space; and (2) when the user operates
an appliance and the appearance of its status in the virtual
space should be updated. Since the above technique gen-
erates some delay whenever the user moves or operates ap-
pliances, the walkthrough-type interface cannot be achieved
effectively.

In order to cope with requirement (R1), we adopt a tech-
nique that creates 2D images corresponding to multiple views
from a viewpoint with different directions for the virtual
space, and sends the created 2D images to the client (see
Fig. 6). This technique reduces the graphics update delay
as well as the number of 3D objects that must be drawn in
the client, since the 2D images surround the viewpoint, and
therefore the 3D graphics re-rendering is not required even
when the user moves the viewpoint or direction in the virtual
space. For requirement (R2), we adopt a technique in which
the client renders the 3D graphics of only appliances near
the viewpoint. The reason is that a user is likely to move
the viewpoint to near an appliance when he/she wants to
operate it. It would also be better to draw objects near
the viewpoint as 3D graphics, since the 2D image of nearby
objects tends to be distorted by changing view direction.

The above techniques for coping with (R1) and (R2) are
illustrated in Fig. 7. The client draws only a small num-
ber of 3D objects in real time within its 3D graphics pro-
cessing power, and the server draws the virtual space with
other 3D objects, creates 2D background images, and sends
the images to the client. Then, the client composes the 2D
background images and the 3D graphics of some of the ob-
jects into one image to be shown on the screen. We call the
resulting image drawn by this technique pseudo 3D virtual
space,hereafter.

����������	�

������� ���������

����������
���� 	 � ����!"�$#������

%�&'

(�)���� �

�"��#���	*#�
��$� � �
+�

Figure 7: Superposing 3D object on 2D background
image

In the following subsections, we describe details of the pro-
posed technique to draw and update the pseudo 3D virtual
space.

3.3 Pseudo Virtual Space Drawing Technique
As shown in Fig. 6, the proposed technique uses a vir-

tual cube with a certain size that surrounds a viewpoint.
The objects in the cube are drawn as 3D graphics and the
other objects outside the cube are drawn as six background
images put on the cube faces. The cube size is determined
in advance, taking into account the 3D graphics processing
power of the client machine. When too many objects are
included in the cube, the cube size is reduced.

3.4 Updating Pseudo Virtual Space
In order to maintain the perceived quality of the pseudo

virtual space, we update the background images put on cube
faces whenever the viewpoint moves a specified distance.
That is, as shown in Fig. 8, we consider the circle with
radius r at the center of the cube, and we create the new
background images for the new viewpoint when the view-
point moves outside the circle. The server receives the new
viewpoint and direction, and creates new background images
for the cube faces. Here, the radius r is determined, tak-
ing into account the client’s 3D graphics processing power,
graphics update delay, etc.

As explained above, the pseudo virtual space is smoothly
drawn and updated on the client’s screen. When the user
operates an appliance inside the cube, its status is immedi-
ately reflected on the screen since the client draws the object
by itself. However, the status of objects outside the cube are
not reflected until the background images for cube faces are
updated. This would not be a big problem since the user
should move the viewpoint near the target appliance before
operating it.

Fig. 9 shows the message sequence between the server
and the client. When the viewpoint moves outside the circle
(moving distance is more than r), the client sends an up-
date request with the new viewpoint and the direction to
the server. When the server receives the request, it creates
the background images and sends them with 3D object data
inside the new cube back to the client. Finally, the client
displays the new pseudo virtual space on its screen by draw-
ing the 3D objects inside the cube on the new background
images.

���������
	��
	��
��	

� ������	���������� � ���������

���������
	�������	�� �
�����
���! #"������ � �

$ % �&"&���

�
� $ � 	�'��
�
���
�!�(�
���(���(��	�� $ �

��	���� 	����

)*�
+ $ � "
+ $ �&',��� $ � 	

- � ������	��������#� $ +&�
	��
��.
/*���������
	����&	��

0����! 1"������ � � $ % ��"����
	��2�
�2���
�(��	����

0����! #"����3� � �
$ % ��"������
��4 �����
���
�(5 ���#���

- � ����� � �
	(��6�����#� $ +��
.
/,���!�����
	3�(��	��

Figure 8: Updating pseudo virtual space according
to viewpoint movement

������� �	�
���
	�
����� �	�

������� �	�
���
	�
����� �	�

����� �������� � �����

��������� ��� ��!�� �"�
#%$ � �&�(')�*� !��

+(, '.-0/"�&!213� $

� 4 , /��(5

�(6748!��(� �"/ $ � 59� , ��'0�

: 4 , /��;' , �"�*13�<� �(/

: 4 , /��;' , �"�*13�<� �(/

=(����� , '0��48���"��!�>

'.1 + � '��(� � �)1 , �?5	� , '0�

�(6748!��(� �"/ $ � 59� , ��'0�

=(����� , '0��48���"��!�>

'.1 + � '��(� � �)1 , �?5	� , '0�

Figure 9: Message sequence between server and
client

4. REFLECTING REAL SPACE STATUS INTO
VIRTUAL SPACE

In this section, first we give requirements for reflecting
change in the real space into the virtual space, then describe
the proposed method for reflecting changes of the physical
quantities and the appliance locations in the real space into
the virtual space.

4.1 Requirements
In a real space, locations and operating conditions of ap-

pliances are likely changed by inhabitants’ manual opera-
tions. If the virtual space information does not reflect the
real space status, an unexpected result may be produced
when a user operates an appliance. For instance, suppose
that a user wants to turn on an air conditioner to cool a room
when the room temperature shown in the virtual space is
high. However, if another user has already turned on the air
conditioner by manual operation and the room temperature
has already been regulated to a comfortable degree, further
operation to the appliance will be unnecessary. Also, if the
location of an appliance has been changed but is not re-
flected in the virtual space, then an unexpected result may
occur. For instance, a user turns on a heater that seemed
to be in a safe location in the virtual space, but the heater
has been moved near a curtain in the real space.

���������
	 �
��������������	 ���
�������
	 ��	 ��������������� 	 �����
 ��

!#"%$'&)(�*%$#+," -/.10�2�3%$%&�(,*%$#+,"

46587�9 :;9 5�< =?>6@1>6ACB6:1B�@;7 D6>6E F6B

GIH J8H K
L)M N8N�O

PIQ6OSR?Q6M TVU�W8M Q X8Y
Z W8O[H \�H U] ^6_
`?N6aIH U�H N�KbN?c�d H L Z U1afe6_6g h�_
i
i
i

i
i
i

0
"#j�& "%+�2

(�kmln"po#$'& 3%"%(
+rq%$'s�t�"%u

Figure 10: Reflecting real space information into
virtual space

Accordingly, the following information should be reflected
in the virtual space:

1. actual room conditions such as temperature and hu-
midity in each room,

2. actual location of each appliance, and

3. actual operating condition of each appliance.

In the following subsections, we propose techniques to re-
flect the above information about the real space into the
virtual space displayed on a terminal, as shown in Fig. 10.

4.2 Reflecting room conditions
We deploy some sensor nodes in the real space that sense

temperature, humidity, illuminance, etc. and communicate
with a home server via ZigBee[6]. We can use SunSPOT
as a sensor node, which can sense temperature, illumina-
tion, and acceleration at the location where it is deployed.
Multiple SunSPOTs can form a wireless sensor network and
exchange the sensed data with each other. It is also easy
to add a new node or remove an existing node to/from an
existing network. Since ZigBee’s wireless transmission range
is between 10m and 75m, we deploy one SunSPOT in each
room. Even in this case, multiple SunSPOTs deployed in
different rooms can communicate with each other.

We suppose that the home server is equipped with a Zig-
Bee device and thus can communicate with the deployed
SunSPOTs. Each SunSPOT sends the sensed value with its
ID to the home server when it detects a certain change be-
tween the current value and the previous value shown in the
virtual space for each target monitoring item. For example,
if the room temperature changes by 2 degrees (this thresh-
old can be specified by the user), the SunSPOT in the room
sends the new temperature to the home server so that the
value is sent to the client and reflected in the virtual space
on the client screen as shown in Fig. 11.

4.3 Detecting and reflecting change of appli-
ance location

Location of an appliance in the virtual space is based on
the initial locations given beforehand. When an appliance
is moved, it should be accelerated. By attaching SunSPOT
to each movable appliance (e.g., TV, cooling fan, heater,

� � ��� ����� 	
	
�
��
������ � � �
������� � ���

Figure 11: Displaying latest real space information
on virtual space

etc.), we can automatically detect the moving action of the
appliance. When acceleration disappears for a certain time
interval, we regard that the appliance is placed at a new
location and fixed. Then, we apply the localization tech-
nique to estimate its new position. For example, we can
use a technique proposed in [7] that uses ZigBee nodes. In
each room, we deploy several anchor nodes with their accu-
rate positions at the fixed location on a wall, ceiling, etc. In
localization, when appliance movement is detected, each an-
chor node sends a beacon packet to the SunSPOT attached
to the target appliance. Then the SunSPOT measures RSSI
(received signal strength indicator) of the packet for each
anchor and sends the result to the home server. By using
the RSSI information, the server determines the new appli-
ance position and subsequently updates the position in the
virtual space.

5. UBIREMOTE IMPLEMENTATION
In this section, we describe an example case to implement

the remote controller software based on the UbiREMOTE
framework on a tablet PC with Windows XP Tablet PC
Edition. We implemented the software in Java and Java
Runtime Environment 1.6.5. We used OpenGL 2.1 (JOGL)
as a 3D graphics processing environment and CyberLink for
Java [8] as a UPnP library.

5.1 Implementation of user interface module
This module achieves the 3D virtual space drawing func-

tion and the intuitive user interface function.
The 3D virtual space drawing function visualizes the dy-

namic behavior of the appliances and the change of physical
quantities in the real space by changing the shape and/or
color of the appliances, lighting, etc. in the 3D virtual space.
We draw the virtual space on the terminal screen from the
first person view.

We implemented the lightweight 3D rendering mechanism
proposed in Sect. 3. Fig. 12 depicts the virtual space ap-
pearance from the inside (left figure) and the outside (right
figure) of the cube. To create the proposed lightweight 3D
rendering mechanism, we need to implement mechanisms to
(1) draw the pseudo virtual space, (2) appropriately update

Figure 12: Virtual space appearance from inside
(left) and outside (right) of cube

background images put on cube faces, and (3) download the
3D object data of each appliance inside the cube. Mecha-
nism (1) is implemented by letting the home server render
the image of the virtual space and send it as a JPEG image
to the remote controller terminal via HTTP. We used an
image of 220×320 pixels for the side faces of the cube and
128×128 for the upside (ceiling) and the downside (floor)
faces. For mechanism (2), as explained in Sect. 3.4, we
specify a circle with radius r (we used 1.5 m in the imple-
mentation) in the cube and let the terminal send an update
request when the viewpoint moves out of the circle. After
sending the request, the terminal waits to receive all im-
ages for the new cube. When all the images are received, it
changes the position and the direction of the cube and re-
places the images on the cube faces. For mechanism (3), we
did not implement the dynamic object data download mech-
anism in this version. Instead, we let the terminal have all
object data beforehand.

As the intuitive user interface function, we implemented
a mechanism that allows the user to select an appliance and
to move the viewpoint using the features of the touch panel
screen interface. We implemented the following functions:

• changing the view direction or moving the viewpoint
by touching a specific area on the screen,

• selecting an appliance just by touching its graphic on
the screen

• showing a popup control window dedicated to each
appliance and operating the appliance by touching the
buttons/switches on the window.

In Fig. 13, we show example operations for turning on
a lamp. Initially, the lamp is turned off as shown in the
upper part of Fig. 13 (a). First, the user touches the lamp
object on the screen, then a control window for the lamp
pops up (the bottom of Fig. 13(a)). By tapping the power
button on the window, the lamp in the real space and that
in the virtual space are turned on as shown in Fig. 13(b).
The lamp is turned off by similar operations. Other kinds
of appliances can also be operated in a similar way. For
instance, if a user wants to change the channel of a TV from
channel 1 (soccer) to channel 2 (news), the user just touches
the screen area, causing the TV object to display the TV’s
control window, and taps the button representing channel
2.

As shown in the above example, UbiREMOTE allows
users to operate appliances with intuitive user interfaces.
When we want to add a new appliance so that it can be op-
erated by UbiREMOTE, we simply prepare 3D object data
for the appliance and its control window.

�������

��� 	
����
�

Figure 13: Operation for turning on/off lamp

� � ����� ���� �

Figure 14: Automatically generated control window
(left-side) and customized windows (right-side)

The control window of each appliance can automatically
be generated based on changeable parameters. In this case,
the user needs to customize the window according to the
controllable parameters of the appliance and the user’s pref-
erence as shown in Fig. 14. By defining the control window
for each sensor device deployed in the real space, we can
show the sensed value to the user through the control win-
dow.

5.2 Implementation of communication controller
module

In order to operate appliances via the Internet, we im-
plemented this module to communicate with appliances via
the home server. The communication architecture is shown
in Fig. 15. The user interface module and the communica-
tion controller module are executed on the remote controller
terminal and the home server, respectively.

To allow the client terminal to communicate with UPnP-
ready appliances based on UPnP protocols, we create a
TCP/IP tunnel between the client and the server that en-
capsulates the UPnP communication. We implemented this
tunneling mechanism by using the network simulator used
in the UbiREAL simulator [9]. The network simulator pro-
vides APIs of the TCP/IP protocol stack that are compati-
ble with java.net so that virtual network devices executed
on the simulator can communicate with each other as if they
were connected to the same LAN. The provided APIs can be
invoked from a remote computer through TCP/IP so that
any protocols including UPnP protocols can be executed on
the simulator. It also provides a gateway function between
virtual devices (on the simulator) and real networked de-

��������� �	� ��
 �
� ����� �����
������� �����

���	� �
!#"$�&%(' �

)�*�+-,/.	0-1

24365 7�+8*40 9;:�<�* <=.	>?>A@�7�5 <�:B+C5 .	7D<�.	7�+C0;.	E

Figure 15: Communication architecture

������� � �
	��
� ��� ���
�
�� ���������� ������� ���� !�"
#%$'&�$�()�$�(

*,+.-/+021'+�354 +

687.9;: < =
>�?

@�=�ACBD7.ECF

G � ��H�� I J H'K
�
L

M J N;O��

P ����� �
I

Q R�S T U�T V�WYX�V�Z [�\CV^]/[�R�\CT [�_ _ V�T

Figure 16: Experimental configuration

vices. This technique enables the remote control of UPnP
appliances through the Internet where UPnP protocols are
not routed in general.

The client-side software (UI module) can monitor the IDs,
allowed operations, operating conditions, etc. by the UPnP
functionality. When a user initially executes the software
on the terminal, it receives from the home server the infor-
mation of the viewpoint, background images for the cube,
position and object data for each appliance inside the cube,
and draws the pseudo virtual space on the terminal screen.
When a user remotely operates an appliance, the terminal
invokes UPnP methods to operate the target appliance and
also changes/redraws the graphics of the corresponding 3D
object on its screen.

6. EVALUATION
In this section, we evaluate the proposed framework by

measuring the time for appliances to react to the operation
by a remote terminal. We also evaluate the performance im-
provement by the proposed lightweight 3D rendering tech-
nique.

6.1 Response Time
We first measured the response time when operating ap-

pliances by a remote controller terminal (referred to by client,
hereafter). The setting for this experiment is shown in Fig.
16.

We evaluated two cases: (a) operating appliances in the
home where they are placed, and (b) remotely operating ap-
pliances from a remote place via the Internet and a cellular
network. In case (a), the client is connected to the home

Table 1: Delay in controlling by UbiREMOTE
delay for
controlling

overall delay with

appliances with infrared
controller

UbiREMOTE

(a)WLAN (b)cellular

electric ON 0.540 sec 0.94 sec 3.22 sec
fan OFF 0.550 sec 0.92 sec 3.04 sec
light ON 0.133 sec 0.73 sec 2.98 sec

OFF 0.204 sec 0.61 sec 3.13 sec
heater ON 0.413 sec 0.93 sec 3.18 sec

OFF 0.440 sec 0.84 sec 3.30 sec
average 0.380 sec 0.828 sec 3.141 sec

network using a wireless LAN (IEEE 802.11b). In case (b),
we used a 3G cellular network to connect the client to the
home server via the Internet. The home server is connected
to the Internet by a wired LAN in both cases.

We used a ThinkPad X61 notebook PC with Core 2 Duo
L7500 1.60GHz, 2GB of memory, and Intel(R) 965 graphics
processor as a client terminal. We used a desktop PC with
Core 2 Quad 2.4GHz, 3GB of memory, and Geforce 8800GT
GPU as a home server. Since only few UPnP-capable in-
formation appliances are available on the market, we used
a USB infrared remote controller to actually control each
appliance. We executed a network simulator that tunnels
UPnP-based protocols between the client and the server,
software for making each appliance visible/controllable as
a UPnP device, and the server-side software on the home
server.

We measured the time for each appliance to react to ON/
OFF operations by a user. We compared the measured time
with the case where the appliances are operated using an
ordinary infrared remote controller.

The average response time of 10 trials is shown in Table
1. The result shows that appliances can be controlled in
0.83 sec. via a wireless LAN, and 3.14 sec. via a cellular
network. Since the time includes the delay by an infrared
remote controller, the actual overhead of UbiREMOTE is
0.45 sec. and 2.76 sec, respectively. The time is fast enough
to control appliances from a remote place.

6.2 Rendering Speed

6.2.1 Data Size
We captured images of the virtual space and measured

the image size. We determined the size of the image to be
220 × 320 pixels according to the display size of an ordinary
mobile terminal. We used 128 × 128 pixel images for the
ceiling and the floor of the cube, since we do not need fine
images for those cube faces. All these images are compressed
by JPEG, and the total size of six images for the cube was
less than 80KB.

6.2.2 Time for Downloading Images
We measured the time for downloading images by a mobile

terminal. We uploaded 300-KB images to a web server using
a SoftBank 930SH cell phone. This cell phone has the capa-
bility to communicate with HSDPA. We tried downloading
the images 10 times from a place with a good radio con-

Table 2: Frame rate
number of
appliance
objects (in
cube)

polygons frame
rate
(fps)

method to
draw all
3d objects

20 200000 1

proposed
method

20(0) 108 120

proposed
method

20(1) 2100 100

proposed
method

20(2) 4208 90

dition. The average download rate (throughput) was 779.2
Kbps. From the measured data size in the previous section,
the time to download images would be 0.62 sec, which is fast
enough for prefetching images in cube update.

6.2.3 Frame Rate
We measured the frame rate for rendering the virtual

space. In this experiment, we measured the screen update
frequency (frame rate) of OpenGL in the case of no commu-
nication. The rendering speeds for the method that draws
all 3D objects and the proposed method when 1 - 3 objects
are included in the cube are shown in Table 2. In this ex-
periment, we used the tablet PC with Microsoft Windows
XP Professional, Core 2 Duo, 2.0GB of memory and Mobile
Intel(R) 965 Chipset.

Compared with the method that draws all objects, the
rendering speed was improved to a great extent in the pro-
posed method. The frame rate was high enough even when
we added two objects (each has about 2,000 polygons) in
the cube.

6.3 Appearance
We checked the feeling of discomfort by the appearance

of the pseudo virtual space. We asked 5 graduate students
with ages between 22 and 25 to answer the 3 questions below
after walking around in the pseudo virtual space drawn by
the proposed method.
(1) Whether he/she felt strange or not

All participants answered that they did not feel anything
wrong if the viewpoint was close to the center of the cube.
They also answered that the 3D objects placed within the
cube, as shown in Fig. 17, looked natural. However, they
felt strange to some extent when the viewpoint was far from
the center of the cube, as shown in Fig. 18.
(2) Whether operations were comfortable or not

All of them answered that they had no problem.
(3) Whether he/she could distinguish each appli-

ance from others or not
All of them answered that it was basically OK, but one of
them answered that it was hard to identify distant appli-
ances.

Figure 17: Inside-cube object in pseudo virtual
space

Figure 18: Appearance of pseudo virtual space from
near corner of cube (left) and from position near
wall (right)

6.4 Observation
Through experiments, we confirmed that the downloading

time and rendering speed were satisfactory, and the data
transfer via a cellular network did not have a large delay.

Also, we confirmed that the appearance of the graphical
interface did not spoil the usability so much. Although the
testees pointed out that they felt strange when the viewpoint
was far from the center of the cube, we can cope with this
problem by adjusting the cube size when the viewpoint gets
too far from the center.

7. RELATED WORK
In this section, we address existing studies related to the

UbiREMOTE framework and the proposed lightweight 3D
rendering technique, according to the following two cate-
gories: remote control techniques for information appliances
and lightweight 3D rendering techniques.

7.1 Remotely Controlling Information Appli-
ances

So far, some studies have been proposed for remotely con-
trolling multiple information appliances over a network.

Smetters et al. proposed a software environment named
Instant Matchmaker for controlling information appliances[10].
This environment mediates between a user and appliances,
and he/she can remotely turn on/off appliances with a mo-
bile phone. To improve reliability, only registered mobile
phones can be used for remote control.

Toshiba Corporation proposed a service named TOSHIBA

FEMINITY[11] that allows users to control information ap-
pliances using a PC or a mobile phone from a remote loca-
tion. This service is realized by Bluetooth communication
between a home server and appliances. With this service, a
user usually controls an appliance through a function menu,
which does not imitate the dedicated remote controller for
the appliance. Therefore, it may be sometimes difficult for
users to understand which appliance he/she is currently con-
trolling, and he/she may control the wrong appliance.

Nakamura et al. proposed a protocol called Remote Appli-
ance Control Protocol (RACP) for controlling information
appliances over a network[12]. They evaluated the overhead
and the usability when a user remotely controls an ordinary
appliance using an infrared remote controller with RACP.
However, they have not evaluated the cases of operating ap-
pliances connected to a home network. Also, this protocol
is not intended to improve the usability for appliance oper-
ations.

These traditional studies for remotely controlling infor-
mation appliances assume that users use a simple interface
that does not imitate the real controller. This makes these
methods difficult to use for inexperienced users.

7.2 Light-Weight 3D Rendering Techniques
The existing techniques for reducing the computational

load for 3D rendering can be roughly classified into three
categories: server-side rendering, 3D geometry data com-
pression, and video streaming.

7.2.1 Server-side rendering
Server-side rendering methods use image warping tech-

niques. Mark et al. proposed a server-side rendering method
for displaying a 3D image when a user moves a viewpoint in
an interactive 3D rendering like virtual space walk-through[13].
In this method, when the server receives the new viewpoint
information, it creates an image for the 3D space from this
viewpoint and sends the image to the client.

Chang et al. proposed a method using a similar technique
for a light-weight client such as a PDA[14]. However, it is
difficult to achieve a function to choose and operate a 3D
object of a scene in a short response time, since this method
displays only a 2D reference image.

Thomas et al. proposed another server-side rendering
method[15]. In this method, the position and the direction
for capturing images are optimized to construct the virtual
space with a small number of images. The server renders a
new scene only when the user moves into a region where the
images are not prepared. While this method saves required
network bandwidth, new images have to be rendered every
two to four frames. Furthermore, the camera selection al-
gorithm influences the appearance of the virtual space since
the amount of error in the warping process is influenced by
the algorithm.

7.2.2 3D Geometry Data Compression
There are many studies on reducing the number of poly-

gons in 3D geometry data[16]. However, data compression is
inevitable for our purpose since the available wireless band-
width is limited.

Aliaga et al. proposed a software architecture for walk-
through between buildings in a virtual space[17]. In this
method, the amount of data is reduced by searching for sim-
ilar images from the previously transmitted images. How-

ever, it is difficult to use this method in our framework since
many images have to be transmitted to a client beforehand.

7.2.3 Video Streaming
The video streaming technique is another client/server

technique in which the server renders images for the 3D
space from the user’s viewpoint and transmits the images to
a client as video data. Some of the well-known video codecs
support video streaming[18, 19, 20]. It is possible to capture
3D scenes and encode them to a video of some codec at a
server, and transmit the video from the server to a client.
Winter et al. proposed a method based on video streaming
to reduce the processing load for thin-clients[21]. However,
this method supposes to use a high-speed wired network
of 100Mbps for the high-resolution video streaming that is
basically impossible in a mobile phone. Also, there is the
problem of a large response time for each user’s operation
of an appliance.

8. CONCLUSION
In this paper, we proposed the UbiREMOTE framework

for remotely controlling multiple information appliances con-
nected to a home network with a unified and intuitive user
interface. We also proposed a lightweight 3D graphics pro-
cessing technique for mobile terminals to improve the draw-
ing speed of a 3D virtual space and a technique for au-
tomatically reflecting changes in the target real space to
the virtual space. UbiREMOTE allows inexperienced users
to intuitively operate and monitor information appliances
through the Internet anytime from anywhere. We imple-
mented a UbiREMOTE prototype on a tablet PC and con-
ducted evaluation experiments. As a result, we confirmed
that the proposed techniques could achieve remote control-
ling and monitoring of information appliances with a small
delay. Moreover, the proposed light-weight 3D rendering
technique achieved sufficient rendering speed to be used in
practical environments.

As part of future work, we will evaluate the usability of
the proposed 3D virtual space interface by comparison with
existing user interfaces in terms of the consumed time and
the error rate in operating appliances. Also, we are planning
to implement the proposed methods on mobile phones such
as iPhone and evaluate the performance.

9. REFERENCES
[1] The UPnP Forum：UPnP Forum,

http://www.upnp.org/.

[2] Digital Living Network Alliance: Digital Living
Network Alliance, http://www.dlna.org/.

[3] OSGi Alliance: OSGi Alliance, http://www.osgi.org/.

[4] ECHONET CONSORTIUM: ECHONET
CONSORTIUM, http://www.echonet.gr.jp/.

[5] NTT Neo Service: U-Concent service,
http://www.ntt-neo.com/news/2007/070419.html/.

[6] ZigBee Alliance: ZigBee, http://www.zigbee.org/.

[7] Gonçalo, G. and Helena, S.: “Indoor Location System
using ZigBee Technology,” Proc. of 3rd Int’l. Conf. on
Sensor Technologies and Applications
(SENSORCOMM 2009), pp. 152–157 (2009).

[8] Konno, S.: “CyberLink Development Package for
UPnP Devices,” http://cgupnpjava.sourceforge.net/.

[9] Nishikawa, H., Yamamoto, S., Tamai, M., Nishigaki,
K., Kitani, T., Shibata, N., Yasumoto, K., and Ito,
M.: “UbiREAL: Realistic Smartspace Simulator for
Systematic Testing,” Proc. of UbiComp2006,
LNCS4206, pp. 459-476 (2006).

[10] Smetters, D.K., Balfanz, D., Durfee, G., Smith, T.F.,
and Lee,K.H.: “Instant Matchmaking: Simple and
Secure Integrated Ubiquitous Computing
Environment,” Proc. of 8th Int’l. Conf. on Ubiquitous
Computing (UbiComp 2006)，LNCS4206，pp.
477–494 (2006).

[11] Masao, S., Shunro, K., and Morio, H.: “Extension of
FEMINITY (TM) Series Home Network System for
Toshiba Network Home Appliances,” TOSHIBA
REVIEW, Vol.57，No.10 (2002).
http://www.toshiba.co.jp/tech/review/2002/10/index.htm.

[12] Nakamura, M., Tanaka, A., Igaki, H., Tamada, H.,
and Matsumoto, K.: “Adapting Legacy Home
Appliances to Home Network Systems Using Web
Services,” Proc. of Int’l. Conf. on Web Services
(ICWS 2006), pp.849–858 (2006)．

[13] Mark, W.: “Post-Rendering 3D Image Warping:
Visibility, Reconstruction, and Performance for
Depth-Image Warping,” Technical Report: TR99-022
of University of North Carolina at Chapel Hill (1999).

[14] Chang, C. and Ger, S.: “Enhancing 3D Graphics on
Mobile Devices by Image-Based Rendering,” Proc. of
3rd IEEE Pacific Rim Conf. on Multimedia, pp.
1105–1111 (2002).

[15] Thomas, G., Point, G., and Bouatouch, K.: “A
Client-Server Approach to Image-Based Rendering on
Mobile Terminals,” Technical Report RR-5447 of
INRIA (2005).

[16] Shikhare, D., Babji, S.V., and Mudur, S.P.:
“Compression techniques for distributed use of 3D
data,” Proc. of 15th Int’l. Conf. on Computer
Communication, pp.676 – 696 (2002).

[17] Aliaga, D., Rosen, P., Popescu, V., and Carlbom, I.:
“Image warping for compressing and spatially
organizing a dense collection of images,” Signal
Processing: Image Communication, Vol. 21, Issue 9,
pp.755–769 (2006).

[18] ISO/IEC: “Information technology –Coding of
audio-visual objects– Part 2: Visual,” ISO/IEC
14496-2:2001(E) (2001).

[19] ITU-T: “Recommendation H.264: Advanced video
coding for generic audiovisual services,” also an ISO
standard as ISO/IEC 14496-10 (2005) .

[20] BBC: “Dirac Specification, Version 2.2.0,”
http://dirac.sourceforge.net/DiracSpec2.2.0.pdf.

[21] De Winter, D., Simoens, P., and Deboosere, L.: “A
hybrid thin-client protocol for multimedia streaming
and interactive gaming applications,” Proc. of 2006
Int’l. Workshop on Network and Operating System
Support for Digital Audio and Video (NOSSDAV
2006) (2006).

