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On many current and emerging computing architectures, single-precision calculations are at least
twice as fast as double-precision calculations. In addition, the use of single precision may reduce
pressure on memory bandwidth. The penalty for using single precision for the solution of linear
systems is a potential loss of accuracy in the computed solutions. For sparse linear systems, the
use of mixed precision in which double-precision iterative methods are preconditioned by a single-
precision factorization can enable the recovery of high-precision solutions more quickly and use
less memory than a sparse direct solver run using double-precision arithmetic.

In this article, we consider the use of single precision within direct solvers for sparse symmetric
linear systems, exploiting both the reduction in memory requirements and the performance gains.
We develop a practical algorithm to apply a mixed-precision approach and suggest parameters
and techniques to minimize the number of solves required by the iterative recovery process. These
experiments provide the basis for our new code HSL MA79—a fast, robust, mixed-precision sparse
symmetric solver that is included in the mathematical software library HSL.

Numerical results for a wide range of problems from practical applications are presented.
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1. INTRODUCTION

A common task in scientific software packages is solving linear systems

Ax = b, (1)

where A is a large sparse symmetric matrix and b is the known right-hand side.
There are two common approaches to the solution of such systems:

—Direct methods. These are generally variants of Gaussian elimination,
involving a factorization PAPT → LDL T of the system matrix A, where
L is a unit lower triangular matrix, D is block diagonal matrix (with 1 × 1
and 2 × 2 blocks), and P is a permutation matrix. The solution process is
completed by performing forward and then backward substitutions (i.e., by
first solving a lower triangular system and then an upper triangular system).
Direct methods are popular because, when properly implemented, they are
generally robust and achieve a high level of accuracy, making them suitable
for use as general-purpose black-box solvers for a wide range of problems.
The main limitation of direct methods is that the memory required normally
increases rapidly with problem size.

—Iterative methods. These involve some iterative scheme and are often based
on using Krylov subspaces of A. In general, their performance is dependent
upon the availability of an appropriate preconditioner. For large-scale prob-
lems, a carefully chosen and tuned preconditioned iterative method will often
run significantly faster than a direct solver and will require far less memory;
indeed, for very large problems, an iterative method is often the only avail-
able choice. Unfortunately, for many of the “tough” systems that arise from
practical applications, the difficulties involved in finding and computing a
good preconditioner can make iterative methods infeasible.

In this article, we are concerned with using a direct method to obtain an
approximate solution to (1) and then applying an iterative method to refine the
solution to improve its accuracy. In other words, we use the direct factorization
as a preconditioner for an iterative solver. All our results are obtained using
multifrontal solvers, but much of our work will apply equally to left- and right-
looking supernodal solvers. Modern direct solvers for sparse matrices make
extensive use of Level 3 BLAS kernels [Dongarra et al. 1990] in their aim to
achieve close to dense performance on modern cache-based architectures (see,
e.g., Gould et al. [2007] for an overview of currently available sparse symmetric
direct solvers). But direct solvers also perform sparse scatter operations (these
involve taking the entries of a dense vector and putting, or scattering, them
into a sparse vector). While the speed of the BLAS operations is limited largely
by latency and the flop rate, the scatter operations are limited more by memory
bandwidth and latency. With the recent emergence of multicore processors and
with future chips likely to have ever larger numbers of cores, the data transfer
rate and memory latency are expected to become an ever tighter constraint
[Graham et al. 2004].

Computing and storing the matrix factor L in single precision (by which
we mean working with 32-bit floating-point numbers) rather than in double
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precision not only offers significant reductions in data movement but gives
storage savings. In the dense case, L is the same size as the original matrix so
that, assuming the original matrix A is retained (it can be overwritten by L if
it is no longer needed), holding L in single precision reduces the total memory
by 25%. For a sparse direct solver, the savings in its memory requirements are
closer to 50% since the storage is dominated by that required for L which, while
sparse, generally contains many more entries than A. As a result, using single
precision allows the sparse solver to be used to solve larger problems (or those
with denser factors). Single precision is potentially particularly advantageous
for an out-of-core sparse direct solver (i.e., one that stores the factors and pos-
sibly some of the work arrays in files) because the amount of disk access is also
approximately halved.

In addition to the advantages of memory savings and reduced data move-
ment, single-precision arithmetic is currently more highly optimized (and hence
faster) than double-precision computation on a number of architectures, such
as commodity Intel chips, Cell processors and general-purpose computing on
graphics cards (GPGPU). Buttari et al. [2007a] reported differences as great
as a factor of 10 in speed. Thus it is highly advantageous to carry out as much
computation as possible on these chips using single-precision arithmetic.

In general, direct solvers use double-precision arithmetic, although some
packages (including those from the HSL mathematical software library [HSL
2007]) also offer a single-precision version. The accuracy required when solving
system (1) is application dependent. If the required accuracy is less than about
10−5 (which may be all that is appropriate if, e.g., the problem data is not
known to high accuracy), single-precision may often be used. However, users
frequently request greater accuracy or, if the problem is very ill conditioned,
higher precision may be necessary to obtain a solution that is accurate to at
least a modest number of significant figures. In such cases, the double-precision
version of the solver has traditionally been used. Motivated by the advantages
of using single-precision on modern architectures, recent studies [Arioli and
Duff 2008; Buttari et al. 2007b, 2008] have shown that it may be possible to use
a matrix factorization computed using the single-precision version of a direct
solver as a preconditioner for a simple iterative method that is used to regain
higher precision.

Our aim is to design and develop a library-quality mixed-precision sparse
solver for the solution of symmetric (possibly indefinite) linear systems and
to demonstrate its performance on problems from practical applications. Our
mixed-precision solver, which is included within HSL, is called HSL MA79.
HSL MA79 is a serial code that is built upon the HSL multifrontal solvers MA57
[Duff 2004] and HSL MA77 [Reid and Scott 2008, 2009b]. HSL MA77 is an out-of-
core solver that is specifically designed for solving large problems. By employing
it within HSL MA79, HSL MA79 can also be used as an out-of-core solver, enabling
it to solve much larger problems than would otherwise be possible. Working
out-of-core can add a significant overhead to the time required to factorize and
then solve a linear system. In our numerical experiments, we consider whether
the savings achieved by performing the factorization in single precision and
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storing the single-precision factor data in files can offset the time required
by the additional solves (each of which involves reading the factor data from
disk) that are needed by the iterative procedure used to recover double preci-
sion accuracy. In addition to providing users with a mixed-precision solver that
is efficient (in terms of both memory requirements and computation times),
portable and easy-to-use, our main contribution in this article is to explore
how to combine the direct solvers with iterative refinement and with FGM-
RES [Saad 1994] and, in particular, how to choose and tune the parameters
involved to ensure HSL MA79 is robust and suitable for use both as a black-box
linear solver and as a tool for experimenting with mixed-precision solution
techniques.

This article is organized as follows. We end this introduction by describing
our test environment. Section 2 describes the algorithms used in our mixed-
precision solver and, using numerical experiments, establishes default values
for the parameters involved, extending both the work of Buttari et al. [2008]
and the preliminary MATLAB experimental results of Arioli and Duff [2008].
Section 3 describes our Fortran 95 implementation of the mixed-precision solver
HSL MA79. Numerical results for HSL MA79 are given in Section 4 and our conclu-
sions are presented in Section 5. The availability of the codes discussed in this
article is covered in Section 6.

1.1 Test Environment

All reported experiments in this article are performed on a Dell Precision T5400
with two Intel E5420 quad core processors running at 2.5 GHz backed by 8 GB
of RAM. In all our tests, we use the Goto BLAS [Goto and van de Geijn 2008]
and the gfortran-4.3 compiler with -O1 optimization. Although our test ma-
chine has multiple cores, we used only sequential BLAS, as preliminary ex-
periments with the threaded BLAS seemed to show negligible performance
increases (in some cases they gave decreases) in a sparse solver context. All
timings were elapsed times in seconds. We worked with two test sets; all but
three of the problems were drawn from the University of Florida Sparse Matrix
Collection [Davis 2007] and all are symmetric with either real or integer valued
entries.

—Test Set 1. Small to medium matrices with n ≥ 1000 and at most 107 entries
in the upper (or lower) triangular part. This set comprises 330 problems.

—Test Set 2. Medium to large matrices with n ≥ 10000. This set comprises 232
problems.

We note that 170 problems belong to both sets. The problems were held as two
test sets because it was more practical to perform a lot of tests on the smaller
test problems. Furthermore, MA57 was not able to solve the largest problems in
Test Set 2 (because of insufficient memory); for these, the out-of-core facilities
offered by HSL MA77 were needed. In all our experiments, we used threshold
partial pivoting with the threshold parameter set to u = 0.01 (thus all the test
problems were treated as indefinite, even though some are known to be positive
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Table I. Summary of IEEE 754-2008 Standard, Comparing Single and
Double Precision

Single Double
Sign + exponent + mantissa 32 = 1 + 8 + 23 64 = 1 + 11 + 52
Epsilon (min ε : 1 + ε �= 1) 2−24 ≈ 6.0 × 10−8 2−53 ≈ 1.1 × 10−16

Underflow threshold 2−126 ≈ 1.2 × 10−38 2−1022 ≈ 2.3 × 10−308

Overflow threshold (2 − 2−23) × 2127 (2 − 2−52) × 21023

≈ 3.4 × 1038 ≈ 1.8 × 10308
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Fig. 1. The performance of single- (SGEMM) and double- (DGEMM) precision matrix-matrix multipli-
cation for a range of sizes of square matrices. These experiments used the Goto BLAS.

definite). Furthermore, we scaled the test problems using the HSL package MC77
(the ∞-norm scaling was used) [Hogg and Scott 2008; Ruiz 2001].1

We end this section by summarizing in Table I the IEEE floating-point stan-
dard [IEEE 2008]. Of particular interest are the epsilon values, which effec-
tively limit the precision in direct solvers.

2. ALGORITHM

As we have already observed, single-precision operations can be performed
much faster than double-precision, speeding up core operations (this was ex-
plained in detail in [Buttari et al. 2007b]). This is illustrated in Figure 1.
Here we show the performance of the Level 3 BLAS kernel for matrix-matrix
multiplication in single precision (SGEMM) and in double-precision (DGEMM) for

1In our tests, the direct solvers were unable to solve problems GHS indef/boyd1 and GHS indef/

aug3d with this choice of scaling so, in these instances, we scaled using MC64 [Duff 2004; Duff and
Koster 2001].
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Fig. 2. The ratios of the times required by the factorization phase of the sparse direct solver MA57
when run in single and double precision (the problems are a subset of Test Set 1).

square matrices of order up to 1000. Since GEMM is used extensively within
modern sparse direct solvers (including MA57 and HSL MA77), this demonstrates
the potential advantage of performing the factorization using single precision.
Figure 2 shows how this translates into a performance gain for the factorization
phase of MA57 (here the test set comprises the subset of Test Set 1 problems that
take at least 0.01 s to factorize in double precision on our test machine). While
we do not see gains of quite the factor of 2 that was achieved for SGEMM, we do see
worthwhile improvements on the larger problems, that is, those taking longer
than about 1 s to factorize. Here GEMM operations dominate the factorization
time, whereas, on the smaller problems, integer operations as well as book-
keeping are more dominant and for such problems there may be little reward
in terms of computation time in pursuing a mixed-precision approach.

In our early runs of MA57, floating-point underflows caused single precision to
underperform double. This was because of the way modern Intel CPUs handle
such events. We were able to reduce this problem by setting a processor flag to
flush denormals to zero, avoiding a cascade of slow operations, although there
is still a potential speed drop if a significant number occur (indeed, a similar
situation can occur in double-precision but is less common because of the much
larger exponent range). There was also one test matrix (not shown in Figure 2)
for which the ratio of the single-precision to the double-precision factorization
time was well in excess of 2. This was an indefinite problem and although in both
cases the pivot sequence was the same, during the factorization this sequence
was modified to maintain numerical stability more in the double- than in the
single-precision case, resulting in a higher flop count and dense factor.
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Algorithm 1. Mixed-precision solver.

Input: Requested accuracy γ
Set prec = single
do

Factorize PAP T as LDL T using precision prec
Solve Ax = b and compute β.
if β ≤ γ then exit
Perform iterative refinement (Algorithm 2)
if β ≤ γ then exit
Perform FGMRES (Algorithm 3)
if β ≤ γ then exit
if prec = single then

Set prec = double
else

Set error flag and exit
endif

end do

Our aim was to perform a single-precision factorization and then, if nec-
essary, use double-precision postprocessing to recover a solution to the desired
precision. For maximum efficiency, we wanted to try the cheapest algorithm first
and, only if this failed, did we want to resort to applying more computationally
expensive alternatives. In the worst case, we would fall back to performing a
double-precision factorization.

Setting r = b− Ax, we define the norm of the scaled residual (the backward
error) to be

β = ‖r‖∞
‖A‖∞‖x‖∞ + ‖b‖∞

. (2)

We require that the computed solution x satisfies β ≤ γ , where γ is a parameter
chosen by the user. If β ≤ γ is satisfied, we say that the requested accuracy has
been achieved. This provides a stopping criteria in our algorithms. We note that,
in the case where we scale A prior to the factorization, the unscaled matrix is
retained for any iterative method used to refine the solution and (2) is used
with the unscaled A for checking the accuracy (see also Hogg and Scott [2008]).

Algorithm 1 summarizes the basic mixed-precision approach. The factor-
ization is performed in single precision then, if the scaled residual β ex-
ceeds γ , mixed-precision iterative refinement (Algorithm 2) is performed. If
the requested accuracy has not yet been achieved, mixed-precision FGMRES
(Algorithm 3) is used and, finally, if β is still too large, a switch is made to double
precision and the computation restarted. In the next two sections, we discuss
the iterative refinement and FGMRES steps.

2.1 Iterative Refinement

Iterative refinement is a simple first-order method used to improve a computed
solution of (1); it is outlined in Algorithm 2. Here βk is the norm of the scaled
residual (2) on the kth iteration and i maxitr is the maximum number of iter-
ations. The system Ax = b and the correction equation Ayk+1 = rk are solved
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Algorithm 2. Mixed-precision iterative refinement.

Input: Single-precision factorization of A, double-precision right-hand size b,
requested accuracy γ , minimum reduction δ and i maxitr

Solve Ax1 = b (using single precision)
Compute r1 = b− Ax1 and β1 (using double precision)
Set k = 1
do while (βk > γ and k < i maxitr)

Solve Ayk+1 = rk (using single precision)
Set xk+1 = xk + yk+1 (using double precision)
Compute rk+1 = b− Axk+1 and βk+1 (using double precision)
if βk+1 > δβk or ‖rk+1‖∞ ≥ 2‖rk‖∞ then Set error flag and exit (stagnation)
Set k = k + 1

end do
x = xk

Algorithm 3. Mixed-precision FGMRES right preconditioned by a direct solver with
adaptive restarting. Norms here are 2-norms.

Input: Single-precision factorization of A, double-precision right-hand size b,
γ , δ, f maxitr, restart, max restart

Solve Ax = b
Compute r = b− Ax and β
Initialise j = 0; βold = β; xold = x
do while (β > γ and j < f maxitr)

βold = β
Initialise v1 = r/‖r‖, y0 = 0, k = 0
do while(

∥∥‖r‖e1 − Hk yk

∥∥ ≥ γ (‖A‖‖x‖ + ‖b‖) and k < restart)
k = k + 1 (Increment restart counter)
j = j + 1 (Increment iteration counter)
Solve Azk = vk and compute w = Azk
Orthogonalize w against v1, . . . , vk to obtain a new w. Set vk+1 = w/‖w‖
Form Hk , a trapezoidal basis for the Krylov subspace spanned by v1, . . . , vk

(Full details of this step may be found in Saad [2003])
yk = arg miny

∥∥‖r‖e1 − Hk yk

∥∥
(Minimize residual over the Krylov subspace)

end do
Set Zk = [z1 · · · zk]
Compute x = x + Zk yk , r = b− Ax and compute new β
if β ≥ δβold
restart = 2 × restart
if restart > max restart then Set error flag and exit

end if
if β > βold

x = xold
else

xold = x; βold = β
end if

end do

using the computed single-precision factors of A. There are a number of ways
this could be done depending on what data type conversions we perform. In
Algorithm 2, “solve Ax = b using single precision” means that we transform
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Table II. Number of Problems in Test Set 1 for Which Iterative Refinement Achieved
Requested Accuracy (γ = 5 × 10−15) Using a Range of Values of the Improvement Parameter

δ (i maxitr= 10) (Results for our default setting are in bold.)

δ 0.001 0.01 0.05 0.07 0.08 0.1 0.2 0.3 0.4 0.5 ∞
Converged 194 227 252 256 258 259 264 265 265 265 268

Failed 136 103 78 74 72 71 66 65 65 65 62

the input right-hand side vector bfrom double to single precision, use the single-
precision factorization of A to solve for x in single precision, and then transform
x from single to double precision. This allows us to use an unmodified single-
precision version of the solution phase of our direct solver. The transformations
between single- and double-precision vectors are done by taking copies that are
transitory and exist only for the duration of the solve; all vectors are otherwise
kept in double precision.

Skeel [1980] proved that, to reduce the scaled residual to a given precision,
it is sufficient to compute the residual and the correction in that precision.
However, since we wished to obtain residuals with double-precision accuracy
using factors computed in single precision, we performed the forward and back
substitutions (which we refer to as the solves throughout the rest of this arti-
cle) in single precision and compute the residuals and corrected solution xk+1
in double precision. This mixed-precision version of iterative refinement was
also used by Buttari et al. [2007b] and Buttari et al. [2008], while Demmel
et al. [2009] used a similar scheme for overdetermined least-squares problems,
further developing bounds on the forward error.

Iterative refinement generally decreases the residual significantly for a num-
ber of iterations before stagnating (i.e., reaching a point after which little
further accuracy is achieved), although for some problems (including the test
problems HB/bcsstm27, Cylshell/s3rmq4m1, and GHS psdef/s3dkq4m2 that were
considered in Arioli and Duff [2008]), a large number of iterations are needed
before any substantial reduction in the residual is achieved. To detect stagna-
tion (and thus avoid performing unnecessary solves), we employed a minimum
improvement parameter δ. A large δ allows the iterative refinement to continue
until the maximum number of iterations has been performed. This increases
the likelihood of convergence at the expense of carrying out additional itera-
tions for problems that have stagnated before reaching the requested accuracy
γ . The number of additional iterations can be reduced or eliminated by choosing
a small δ. The condition ‖rk+1‖∞ ≥ 2‖rk‖∞ detects numerical issues where xk+1
explodes but the residual βk+1 remains small due to scaling by xk+1. For dif-
ferent values of δ, Table II reports the number of problems belonging to Test
Set 1 that achieved the requested accuracy when factorized using MA57 in sin-
gle precision and then corrected using mixed-precision iterative refinement.
We see that values in the range [0.05, 0.5] have a similar success rate of just
under 80%. We chose as our default δ = 0.3 as this provides a good compro-
mise between the number of problems that converged (259) and minimizes the
wasted iterations on the remainder—62% of the problems that failed with this
δ used the same number of solves as for δ = 0.001, and only 4 of the 65 re-
quired more than two additional iterations before stagnation was recognized.
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We remark that the package MA57 includes an option (which we did not use)
to perform iterative refinement (using the same precision as the factorization)
and, by default, it uses δ = 0.5 (see also Demmel et al. [2006] and Higham
[1997]).

Our implementation of iterative refinement also offers an option to terminate
once a chosen number i maxitr of iterations has been performed. An upper
limit on the maximum number of iterations can be established by considering
the following example. Assume the initial scaled residual is β = 10−7 and the
default improvement parameter δ = 0.3 is used. If stagnation has not occurred,
after 13 iterations the scaled residual must be less than 1.6×10−14 and, after 15
iterations, less than 4.8 × 10−15. Based on our experiments, we set the default
value to i maxitr = 10 (note that for most of our test examples we found that
either the requested accuracy was achieved or stagnation was recognized before
this limit was reached).

2.2 Preconditioned FGMRES

For our examination of FGMRES, we used the 62 problems from Test Set 1 that
failed to achieve the requested accuracy using iterative refinement with any δ.
We call this the Reduced Test Set 1.

In Algorithm 1, FGMRES [Saad 1994] refers to a right-preconditioned vari-
ant of FGMRES. Arioli et al. [2007] have shown that, in cases where iterative
refinement fails, FGMRES may succeed and is more robust than either iterative
refinement or GMRES. Arioli and Duff [2008] proved that a mixed-precision
computation, where the matrix factorization is computed in single-precision
and the FGMRES iteration in double-precision, gives a backward stable algo-
rithm. We note that their result is given for the restart counter k in Algorithm 3
sufficiently large and so is not of practical use in our case because we will only
use a small number of iterations.

Our variant of FGMRES, shown as Algorithm 3, is essentially that given in
Arioli and Duff [2008] but additionally uses an adaptive restart parameter. Here
f maxitr is the maximum number of iterations and e1 denotes the first column
of the identity matrix. Algorithm 3 uses double precision throughout except for
the solution of the systems involving A; for these systems, we have the ability
to perform the forward and backward substitutions in either single or double
precision, as we detail below. Our adaptive restarting strategy relies on a similar
concept to the minimum improvement parameter in iterative refinement—we
expect to reduce the backward error in the outer iterations and, if the reduction
is too small, we increase the restart parameter (up to a specified maximum
max restart). If there is no reduction in the backward error β (although in exact
arithmetic the convergence of FGMRES is nonincreasing, in finite-precision
arithmetic the backward error may increase), we restore the solution from the
previous outer iteration before restarting. In our experiments, we compared
adaptive restarting with using a fixed restart parameter. We found that a small
initial value for the adaptive restart parameter (typically less than or equal to 4)
reduced the number of iterations required to obtain the requested accuracy and
enabled us to solve some problems that failed to converge with a fixed restart;
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Table III. Comparison of Performance of FGMRES Using Single- and Double-Precision Solves
Following Single-Precision Factorization for a Range of Restart Parameters on Reduced Test

Set 1 (δ = 0.3, f maxitr=128, max restart=128)

restart = 1 2 4 8 16
Problems failed for both single- and double-precision solves 23 23 23 23 23
Problems solved using double- but not single-precision solve 5 5 5 5 5
Average difference in number of solves (see (3)) 14.9 15.6 16.2 12.9 12.9
Average ratio of number of solves (see (4)) 2.8 2.5 3.1 2.1 2.1

the strategy had little effect for larger initial values. All FGMRES results in
this article are hence based on this adaptive restarting algorithm.

An alternative to the “solve using single precision” described in Section 2.1
is to convert the computed factors from single to double precision and then
use the double-precision version of the solution phase of our direct solver. The
additional memory needed for this can be limited by writing a special-purpose
single-to-double solve routine that takes the double-precision right-hand side b
together with the single-precision factorization of A and returns the computed
solution x in double precision. To avoid holding the factorization in both single
and double precision, the routine converts the single-precision entries of L to
double precision only as they are required and discards them afterwards. For
our multifrontal solvers, the additional double-precision storage needed is at
most that required for the largest frontal matrix. We refer to this technique as
solve using double precision.

Performing the solves using single-precision has obvious speed advantages
per iteration, but, if solving using double-precision results in a lower iteration
count, it may be faster overall. Our experiments using a range of values for the
adaptive restart parameter showed that, in all cases, using double precision
reduces the total number of solves required. Table III attempts to capture to
what extent the double-precision approach is better. Shown here are

—the number of problems that fail to converge using either single- or double-
precision solves;

—the number of problems that converge only using double-precision solves;
—the arithmetic mean of the number of extra solves needed when solving using

single precision, that is,
1

|P|
∑
i∈P

(
Solvesi(single) − Solvesi(double)

)
, (3)

where Solvesi(double) (Solvesi(single)) is the number of solves used for prob-
lem i when using double- (single-) precision solves, and P is the set of prob-
lems on which both single- and double-precision solves converge to the re-
quested accuracy.

—The geometric mean of the ratio of the number of solves using single precision
to the number using double precision, that is,

(∏
i∈P

Solvesi(single)
Solvesi(double)

) 1
|P|

. (4)
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A possible explanation of the good performance of the solves using double preci-
sion is that the norms used in FGMRES are 2-norms rather than the ∞-norms
used elsewhere in this article, and are prone to larger error accumulation as a
result, which higher precision may help to counter.

We comment that a constant number of failing problems regardless of the
restart value is what we expect from our adaptive restarting procedure.

The reduction in the number of solves when using double precision has to be
set against the increased time per solve compared to single precision. On our
test computer, the time for a solve in double precision is approximately twice
that in single precision; hence if the ratio of the number of solves in single preci-
sion to those in double is more than 2 (as is the case in the last line of Table III)
then double precision is faster, while also allowing us to solve more problems.
As a result, in the remainder of this article we use double-precision solves for
FGMRES. Note that iterative refinement will still use single-precision solves
as similar experiments showed there to be no significant benefit in using dou-
ble precision. In particular, although more iterations were carried out, iterative
refinement still eventually stagnates on the problems belonging to the Reduced
Test Set 1.

In Table IV, we report the number of solves performed within FGMRES for
a range of values for the adaptive restart parameter on the 39 problems in the
Reduced Test Set 1 for which FGMRES was successful. The results indicate that
restart = 4, 8, or 16 was generally the best choice; restart = 4 was taken to
be the default. We observe that for some problems a higher restart parameter
resulted in a larger number of iterations. This was because the termination
conditions were only tested when the algorithm was restarted; higher values
of restart tested for termination less frequently.

3. IMPLEMENTING THE MIXED-PRECISION STRATEGY

In this section, we discuss the design and development of our new mixed-
precision solver HSL MA79. The code is written in Fortran 95 and, at its heart,
uses the HSL direct solvers MA57 [Duff 2004] and HSL MA77 [Reid and Scott 2008,
2009b]. We start by giving a brief overview of these solvers, highlighting some
of their key features that are important for HSL MA79.

3.1 MA57

MA57 is designed to solve sparse symmetric linear systems (1); the system ma-
trix may be either positive definite or indefinite. The multifrontal method is
used [Duff and Reid 1983]. A detailed discussion of the design of MA57 and its
performance is given by Duff [2004]. Relevant work on the pivoting and scaling
strategies available within MA57 is given by Duff and Pralet [2005, 2007].

In common with other HSL solvers, MA57 is available in both double- and
single-precision versions. It offers a range of options, including solving for mul-
tiple right-hand sides, computing partial solutions, error analysis, a matrix
modification facility, and a stop and restart facility. Although the default set-
tings for the control parameters should work well in general, there are several
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Table IV. Number of Solves Performed within FGMRES for Reduced Test Set 1 Using a
Range of Values for restart Following Unsuccessful Iterative Refinement. (For each
problem, the best result is in bold. Results are shown for δ = 0.3, f maxitr= 64, and
max restart=64. The 23 problems that failed for all values of restart are not shown.)

restartProblem
1 2 4 8 16

Boeing/bcsstk35 49 48 64 48 48
Boeing/bcsstk38 3 4 4 8 8
Boeing/crystk01 15 14 12 8 8
Boeing/crystk02 3 6 4 8 8
Boeing/crystk03 3 6 4 8 8
Boeing/msc01050 7 6 4 8 8
Cunningham/qa8fk 3 6 4 8 8
Cylshell/s3rmq4m1 11 10 8 8 8
Cylshell/s3rmt3m1 17 12 4 8 8
DNVS/ship 001 48 48 48 64 64
GHS indef/cont-201 25 24 20 16 16
GHS indef/cvxqp3 23 22 32 24 24
GHS indef/ncvxbqp1 11 8 8 8 8
GHS indef/ncvxqp5 10 10 8 8 8
GHS indef/sparsine 14 14 12 16 16
GHS indef/stokes128 1 2 4 8 8
GHS psdef/oilpan 11 10 8 8 8
GHS psdef/s3dkq4m2 40 16 16 8 8
GHS psdef/s3dkt3m2 17 16 16 16 16
GHS psdef/vanbody 31 30 28 24 24
Gset/G33 2 2 4 8 8
HB/bcsstm27 13 12 8 8 8
Koutsovasilis/F2 3 6 4 8 8
ND/nd3k 2 2 4 8 8
Oberwolfach/gyro 10 8 8 8 8
Oberwolfach/gyro k 10 8 8 8 8
Oberwolfach/t2dah 7 6 4 8 8
Oberwolfach/t2dah a 7 6 4 8 8
Oberwolfach/t2dal 7 6 4 8 8
Oberwolfach/t2dal a 7 6 4 8 8
Oberwolfach/t2dal bci 7 6 4 8 8
Oberwolfach/t3dh 3 6 4 8 8
Oberwolfach/t3dh a 3 6 4 8 8
Oberwolfach/t3dl 3 6 4 8 8
Oberwolfach/t3dl a 3 6 4 8 8
Pajek/Reuters911 15 12 12 8 8
Schenk IBMNA/c-56 31 30 28 16 16
Schenk IBMNA/c-62 31 30 28 24 24
Simon/olafu 16 12 16 8 8

parameters available to enable the user to tune the code for his or her problem
class or computer architecture.

Like many modern symmetric direct solvers, MA57 has three distinct phases:
an analyse phase that works only with the sparsity pattern to set up data
structures for the factorization, the numerical factorization phase that uses
these data structures to compute the matrix factor, and a solve phase that
may be called any number of times after the factorization is complete to solve
repeatedly for different right-hand sides.
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The efficiency of a direct method, in terms of both the storage needed and
the work performed, is dependent on the order in which the elimination oper-
ations are performed, that is, the order in which the pivots are selected. For
symmetric matrices that are positive definite, the pivotal sequence chosen us-
ing the sparsity pattern of A alone can be used during the factorization without
modification. For symmetric indefinite problems, a tentative pivot sequence is
chosen based upon the sparsity pattern (treating zeros on the diagonal as en-
tries) and this is modified if necessary (possibly to include 2 × 2 pivots) during
the factorization to maintain numerical stability. MA57 offers the user a num-
ber of ordering options, including variants of the minimum degree algorithm
[Amestoy et al. 1996, 2004] and multilevel nested dissection through an inter-
face to the well-known MeTiS package [Karypis and Kumar 1999]. Based on
the study by Duff and Scott [2005], by default, MA57 chooses between MeTiS and
approximate minimum degree (avoiding problems with dense rows [Amestoy
et al. 2007; Dollar and Scott 2009]).

3.2 HSL MA77

HSL MA77 [Reid and Scott 2008, 2009b] is also a multifrontal solver designed to
solve positive definite and indefinite sparse symmetric systems. It too has sep-
arate analyse, factorize, and solve phases. A fundamental difference between
MA57 and HSL MA77 is that the latter is an out-of-core solver, that is, it is designed
to allow the matrix data, the computed factors, and some of the intermediate
work arrays to be held in files. The advantage of this is that it enables much
larger problems to be solved.

Storing data in files potentially adds a significant overhead to the time re-
quired to factor and then solve the linear system. To minimize this overhead,
Reid and Scott [2009a] have written a set of Fortran subroutines that manage
a virtual memory system so that actual input/output occurs only when really
necessary. These routines are available within HSL as the package HSL OF01
and are used by HSL MA77 to efficiently handle all input and output. Results
reported by Reid and Scott [2009b] illustrated the effectiveness of HSL OF01
in minimizing the out-of-core overhead; they also presented results for prob-
lems that were too large for MA57 to solve on their test machine. On problems
that MA57 is able to solve, the performance of HSL MA77 is favorable: on some
problems it is faster than MA57, while on others the converse is true. The main
exception is the solve time. The factor L has to be read from file once for the
forward substitution and then again (in reverse order) for the back substitu-
tion. This is independent of the number of right-hand sides. Thus, for a sin-
gle right-hand side (or small number of right-hand sides), the solve phase of
HSL MA77 can be significantly more expensive than the corresponding phase of
MA57, although for a large number of right-hand sides there is a smaller relative
difference.

As with MA57, HSL MA77 offers a range of options. These include allowing the
files to be replaced by arrays (so that, if there is sufficient space, the data is all
stored in main memory). The user can specify the initial sizes of these arrays
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and an overall limit on their total size. If an array is found to be too small, the
code will continue using a combination of files and arrays. Another important
option allows the user to specify whether he or she is running the code on a
32-bit or 64-bit architecture. On a 64-bit machine, it is possible to run problems
with much larger frontal matrices (on a 32-bit machine, the maximum front
size is limited to approximately 16,000).

We remark that HSL MA77 requires the user to input the pivot order. This
can be computed by calling MeTiS or the HSL package MC47 that implements
an approximate minimum degree algorithm; alternatively, the analyse phase
of MA57 may be used to select the pivot sequence. Each of these alternatives
computes a pivot order of 1 × 1 pivots; 2 × 2 pivots may be selected during the
factorization. In some cases, it may be advantageous to specify a tentative pivot
sequence that includes 2 × 2 pivots; HSL MA77 allows the user to do this. A pivot
order that contains 2 × 2 pivots may be found using the package HSL MC68, and
this remains an area of active research.

3.3 Design of HSL MA79

HSL MA79 has been designed to provide a robust and efficient implementation
of Algorithm 1 for both positive-definite and indefinite systems, using exist-
ing HSL packages as its main building blocks. In particular, it uses the direct
solvers MA57 and HSL MA77 and the implementation of FGMRES offered by MI15,
together with the scaling packages MC30, MC64, and MC77. HSL MA79 includes a
range of options but it is not our intention to incorporate all possibilities avail-
able within the direct solvers MA57 and HSL MA77. Instead, we have designed a
general-purpose package that is straightforward to use and, by restricting the
number of parameters that have to be set, we do not require the user to have
a detailed knowledge and understanding of all the different components of the
algorithms used.

The following procedures are available to the user.

(1) MA79 factor solve accepts the matrix A, the right-hand sides b, and the
requested accuracy. Based on the matrix, it selects whether to use MA57 or
HSL MA77; by default, single precision is selected as the initial precision. The
code then implements Algorithm 1. The matrix factorization is retained for
further solves.

(2) MA79 refactor solve uses the information returned from a previous call
to MA79 factor solve to reduce the time required to factorize and solve
Ax = b. The sparsity pattern of A must be unchanged since the call to
MA79 factor solve; only the numerical values of the entries of A and b may
have changed. By default, the precision for the factorization is chosen based
on that used by MA79 factor solve. The matrix factorization is retained for
further solves.

(3) MA79 solve uses the computed factors generated by MA79 factor solve
(or MA79 refactor solve) to solve further systems Ax = b. Multi-
ple calls to MA79 solve may follow a call to MA79 factor solve (or
MA79 refactor solve).
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(4) MA79 finalize should be called after all other calls are complete for a
problem. It deallocates the components of the derived data types and
discards the matrix factors.

We now discuss the first three of the preceding procedures in more detail
(the finalize routine needs no further explanation).

3.3.1 MA79 factor solve. On the call to MA79 factor solve, the user must
supply the entries in the lower triangular part of A in compressed sparse col-
umn (CSC) format and may optionally supply a pivot order. If no pivot order
is supplied, one is computed using the analyse phase of MA57. Statistics on the
forthcoming factorization (such as the maximum frontsize, the number of flops,
and the number of entries in the factor) are also computed. These are exact
for the factorization phase of MA57 if the problem is positive definite; otherwise,
they are lower bounds for MA57 and estimates of lower bounds for HSL MA77.
By default, the statistics are used to choose the direct solver. MA57 is selected
unless one or more of the following holds.

(1) It is not possible to allocate the arrays required by MA57. (We allow the user
to specify a maximum amount of memory, and, if the predicted memory
usage for MA57 exceeds this, we use HSL MA77.)

(2) The matrix is positive definite with a maximum frontsize greater than 1500.
(3) The matrix is not positive definite and the user-supplied pivot sequence

includes 2 × 2 pivots.
(4) The user has chosen HSL MA77.

The choice in list item (2) was made on the basis of numerical experimentation
(see Reid and Scott [2009b]). The main motivation for selecting MA57 as the
default solver is that HSL MA77 is primarily designed as an out-of-core solver
and this incurs an overhead (which may be significant if the problem is not
very large). Furthermore, the process of refactorizing in double precision is
also more expensive for HSL MA77 because it is necessary to reload the matrix
data and repeat its analysis phase (this can be avoided for MA57).

At the start of the factorization with MA57, HSL MA79 allocates the required
arrays based on the analyse statistics If larger work arrays are later needed
because of delayed pivots, HSL MA79 attempts to use the stop and restart facility
offered by MA57 but, if there is insufficient memory to allocate sufficiently large
arrays, HSL MA79 switches to HSL MA77. This may add a significant extra cost as
MA77 analyse must be called and the factorization completely restarted.

By default, HSL MA79 works in mixed precision following Algorithm 1 and
its development through Section 2. The user may, however, choose to perform
the whole computation in double precision. In this case, HSL MA79 provides a
convenient interface to MA57 and HSL MA77 (albeit without the full flexibility
and options offered by each of these packages individually). This facilitates
comparisons between mixed and double precision. Working in double precision
throughout may be advisable for very ill-conditioned systems or for very large
problems for which repeated calls to the solve routine MA79 solve are expected.
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HSL MA79 includes a number of scaling options, provided by the HSL packages
MC30 (Curtis and Reid’s [1972] method minimizing the sum of logarithms of the
entries), MC64 (symmetrized scaling based on maximum matching by Duff and
Koster [Duff and Koster 2001; Duff and Pralet 2005]), and MC77 using the 1-
or ∞-norms (iterative process of simultaneous norm equilibration [Ruiz 2001]).
The default is the ∞-norm equilibration scaling from MC77 because recent tests
[Hogg and Scott 2008] on a large number of problems from practical applications
have shown that, in general, this provides a good fast scaling.

HSL MA79 offers complete control of the parameters in Algorithms 2 and 3,
in addition to the ability to disable any particular method of recovering pre-
cision in Algorithm 1 (e.g., the user may specify that the use of iterative re-
finement is to be skipped). It also supports tuning of the major parameters af-
fecting the performance of the factorization phase, such as the block size used
by the dense linear algebra kernels that lie at the heart of the multifrontal
algorithm.

By default, the requested accuracy is achieved when β given by (2) is less than
a user-prescribed value γ . However, HSL MA79 also allows the user to specify,
using an optional subroutine argument on the call to MA79 factor solve, an
alternative measure of accuracy. If present, it must compute a function β =
f (A, x, b, r) that is compared to γ when testing for termination. For example,
it may be used to test for the requested accuracy in the 2-norm or using a
component-wise approach.

An important feature of MA79 factor solve is that it returns detailed infor-
mation on the solution process. This includes which solver was used and the
precision, together with details of the matrix factorization (the number of en-
tries in the factor, the maximum frontsize, the number of 2 × 2 pivots chosen,
the numbers of negative and zero pivots) and information on the refinement
(the number of steps of iterative refinement, the number of FGMRES itera-
tions performed, and the total number of calls to the solution phase of MA57 or
HSL MA77). In addition, the full information type or array from the factorization
code (MA57B or MA77 factor) is returned to the user.

We note that the user can pass any number of right-hand sides b to
MA79 factor solve. In particular, the user can set the number of right-hand
sides to zero. In this case, the routine will only perform the matrix factorization
in the requested (or default) precision.

3.3.2 MA79 refactor solve. We envisage that a user may want to factorize
and solve a series of problems with the same sparsity pattern as the original
matrix A but different numerical values. In this case, HSL MA79 takes advantage
both of the pivot sequence used within MA79 factor solve and of the experience
gained on the initial factorization.

On a call to MA79 refactor solve, the user must input the values of the
entries in both the lower and upper triangular parts of the new matrix in CSC
format, with the entries in each column in order of increasing row index. This
format (which is the format the original matrix is returned to the user in on
exit from MA79 factor solve) is required so that HSL MA79 can avoid, before the
factorization begins, taking and manipulating additional copies of the matrix
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(for large problems, this avoidance is important). Having the matrix in this form
also has the side benefit of allowing a more efficient matrix-vector product.

3.3.3 MA79 solve. After a call to MA79 factor solve, MA79 solve may be
called to solve for additional right-hand sides. If MA57has been used (or HSL MA77
was run in-core), the cost of each additional solve is generally small but, if
HSL MA77 was run with the factors held on disk, the solve time can be significant
(see Reid and Scott [2009b]). If the solve is performed at the same time as the
factorization, the entries of L are used to perform the forward substitution as
they are generated, cutting the amount of data that must be read (and hence
the time) for the solve approximately in half.

3.4 Errors and Warnings

HSL MA79 issues two levels of errors: fatal errors that cause the computation to
terminate immediately and warnings that are intended to alert the user to what
could be a problem but which will not prevent the computation from continuing.
In either case, a flag is set (with a negative value for an error and a positive
value for a warning) and a message is optionally printed (the user controls the
level of diagnostic printing). Examples of fatal errors include a user-supplied
pivot order that is not a permutation and calls to routines within the HSL MA79
package that are out of sequence.

A warning is issued if the user-supplied matrix data contains out-of-range
indices (these are ignored) or duplicated indices (the corresponding matrix en-
tries are summed). A warning is also issued if the matrix is found to be singu-
lar or if MA57 was requested but HSL MA77 is used because of insufficient main
memory. Note that more than one warning may be issued. At the end of the
computation, a warning is given if the requested accuracy was not obtained
after all allowable fall-back options were attempted. In particular, if the factor-
ization has been performed in single precision, the requested accuracy may not
be achieved on a call to MA79 solve without resorting to a double-precision fac-
torization. In this case, because this cannot occur within MA79 solve, the user
should call MA79 refactor solve, explicitly specifying the factorization is to be
performed in double precision.

Full details of errors and warnings and of the levels of diagnostic printing
are given in the user documentation for HSL MA79.

4. NUMERICAL RESULTS

In this section, we present results obtained using Version 1.1.0 of HSL MA79.
This uses Version 3.2.0 of MA57 and Version 4.0.0 of HSL MA77. Our experiments
were performed on the machine and test examples described in Section 1. The
requested accuracy was β < 5×10−15 and, unless stated otherwise, we used the
default settings for all the HSL MA79 parameters (in particular, the parameters
chosen in Section 2 are used to control the solution recovery).

Figures 3 and 4 compare the performance of mixed-precision and double pre-
cision for Test Sets 1 and 2, respectively, with MA57 selected as the direct solver
within HSL MA79 for Test Set 1 and HSL MA77 for Test Set 2. If the requested
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Fig. 3. Ratio of times to solve Equation (1) with HSL MA79 in mixed-precision and double-precision
modes on Test Set 1 using MA57 as the solver, with accuracy γ = 5 × 10−15.
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Table V. Number of Problems That Exited at Each Stage of
Algorithm 1 Implemented as HSL MA79

Test Set 1 Test Set 2
MA57 HSL MA77

After iterative refinement 265 81% 157 68%
After FGMRES 40 12% 45 19%
After fall-back to double-precision 24 7% 28 12%
Failed 1 <1% 2 1%

accuracy was only achieved by falling back on a double-precision factoriza-
tion, the mixed-precision time included the double-precision factorization time.
From Figure 3, we see that, if the time taken by HSL MA79 in double precision
is less than about 1 s, there is generally little or no advantage in terms of com-
putational time to using mixed precision (in fact, for a number of problems,
running in double precision is almost twice as fast as using mixed precision).
However, for the larger problems within Test Set 1, mixed precision outper-
formed double precision by more 50%. For the problems in Test Set 2 with
the out-of-core solver HSL MA77, on our test machine mixed precision is only
recommended if the double-precision time is greater than about 10 s. For prob-
lems that run more rapidly than this, the savings from the single-precision
factorization are not large enough to offset the cost of the additional solves
(which, in this case, involve reading data from disk). Of course, if the user
is prepared to accept a less accurate solution (i.e., the requested accuracy γ

is chosen to be greater than 5 × 10−15), this will affect the balance between
the mixed-precision time (which will decrease as fewer refinement steps will
be needed) and the double-precision time (which, in many instances, will be
unchanged).

In Table V, we report the number and percentage of problems in each test
set for which the requested accuracy was achieved after iterative refinement
and after iterative refinement followed by FGMRES. We also report the num-
ber of problems that had to fall back to a double-precision factorization to
achieve the requested accuracy and the number that failed to achieve this
even in double precision. There were just two such problems: GHS indef/boyd1
and GHS indef/blockqp1 (these had final scaled residuals of 6.2 × 10−14 and
2.9 × 10−14, respectively).

As expected, when mixed precision failed to reach the requested accuracy,
HSL MA79 spent longer establishing this fact than if double precision was used
originally. Thus it is essential for a potential user to experiment to see whether
the mixed-precision approach will be advantageous for his or her application
and computing environment.

It is of interest to consider not only the total time taken to solve the system
(1), but also the times for each phase of the solution process in mixed precision
and in double precision. Table VI reports timings for the various phases for a
subset of problems of different sizes from Test Set 2. The problems are ordered
by the total time required to solve (1) using double precision. The time for the
analyze phase (which here includes the time to scale the matrix) is independent
of the precision.

ACM Transactions on Mathematical Software, Vol. 37, No. 2, Article 17, Publication date: April 2010.



Mixed-Precision Solution of Sparse Symmetric Linear Systems • 17:21

T
ab

le
V

I.
T

im
es

to
S

ol
ve

E
qu

at
io

n
(1

)
fo

r
S

u
bs

et
of

P
ro

bl
em

s
fr

om
T

es
t

S
et

2
w

it
h
H
S
L
M
A
7
9

U
si

n
g
H
S
L
M
A
7
7

as
S

ol
ve

r.
(m

de
n

ot
es

m
ix

ed
pr

ec
is

io
n

an
d

d
de

n
ot

es
do

u
bl

e
pr

ec
is

io
n

.T
h

e
n

u
m

be
rs

in
pa

re
n

th
es

es
ar

e
it

er
at

io
n

co
u

n
ts

.-
in

di
ca

te
s

it
er

at
iv

e
re

fi
n

em
en

t
(o

r
F

G
M

R
E

S
)

w
as

n
ot

re
qu

ir
ed

.)

T
ot

al
A

n
al

yz
e

Fa
ct

or
iz

e
It

er
at

iv
e

re
fi

n
em

en
t

F
G

M
R

E
S

β

P
ro

bl
em

m
d

m
d

m
d

m
d

m
d

H
B
/
b
c
s
s
t
k
1
7

0.
30

0.
25

0.
10

0.
11

0.
14

0.
06

(5
)

-
-

-
1.

17
e-

15
1.

24
e-

16
B
o
e
i
n
g
/
c
r
y
s
t
m
0
3

1.
08

1.
09

0.
64

0.
33

0.
44

0.
09

(3
)

-
-

-
3.

78
e-

16
4.

80
e-

16
B
o
e
i
n
g
/
b
c
s
s
t
m
3
9

3.
86

3.
97

3.
66

0.
11

0.
30

0.
09

(2
)

-
-

-
2.

31
e-

15
1.

28
e-

16
R
o
t
h
b
e
r
g
/
c
f
d
1

6.
22

8.
41

2.
98

2.
48

5.
43

0.
69

(3
)

-
-

-
1.

41
e-

16
2.

32
e-

16
R
o
t
h
b
e
r
g
/
c
f
d
2

11
.8

14
.6

4.
97

5.
27

9.
62

1.
39

(3
)

-
-

-
1.

69
e-

16
2.

74
e-

16
I
N
P
R
O
/
m
s
d
o
o
r

28
.7

20
.2

5.
39

9.
64

11
.8

2.
70

(3
)

-
10

.1
(8

)
-

2.
96

e-
16

2.
64

e-
16

N
D
/
n
d
6
k

29
.7

38
.8

5.
33

20
.3

33
.1

3.
77

(8
)

-
-

-
3.

67
e-

15
1.

68
e-

15
G
H
S
p
s
d
e
f
/
a
p
a
c
h
e
2

61
.8

66
.1

19
.8

29
.1

46
.4

12
.5

(6
)

-
-

-
1.

79
e-

16
1.

43
e-

15
K
o
u
t
s
o
v
a
s
i
l
i
s
/
F
1

63
.5

79
.1

16
.9

36
.1

60
.1

9.
10

(4
)

-
-

-
1.

75
e-

15
2.

16
e-

16
L
i
n
/
L
i
n

57
.4

79
.9

10
.8

39
.3

66
.4

7.
26

(5
)

2.
69

(1
)

-
-

3.
20

e-
16

2.
03

e-
16

N
D
/
n
d
1
2
k

10
4

14
9

14
.5

78
.0

13
4

11
.5

(8
)

-
-

-
1.

00
e-

15
2.

07
e-

15
P
A
R
S
E
C
/
G
a
3
A
s
3
H
1
2

34
8

53
7

21
.6

30
2

51
1

24
.3

0
(8

)
5.

86
(1

)
-

-
3.

27
e-

15
3.

37
e-

16
N
D
/
n
d
2
4
k

37
2

57
0

36
.5

29
7

53
2

36
.5

(9
)

-
-

-
1.

02
e-

15
2.

94
e-

15
G
H
S
i
n
d
e
f
/
s
p
a
r
s
i
n
e

40
9

54
0

18
.4

31
4

51
7

5.
28

(2
)

4.
92

(1
)

70
.5

(1
6)

-
4.

20
e-

16
3.

51
e-

16
P
A
R
S
E
C
/
S
i
3
4
H
3
6

78
3

12
87

38
.7

70
6

12
36

37
.7

(6
)

12
.1

(1
)

-
-

4.
91

e-
16

2.
71

e-
16

G
H
S
p
s
d
e
f
/
a
u
d
i
k
w
1

81
0

13
29

65
.7

62
0

12
62

12
0

(7
)

-
-

-
4.

67
e-

15
5.

84
e-

17
P
A
R
S
E
C
/
G
a
1
0
A
s
1
0
H
3
0

11
87

20
46

51
.6

10
82

19
76

53
.3

(6
)

18
.7

(1
)

-
-

2.
96

e-
16

1.
96

e-
16

P
A
R
S
E
C
/
S
i
8
7
H
7
6

60
58

93
10

15
3

47
03

88
15

12
02

(7
)

34
4

(1
)

-
-

6.
64

e-
16

1.
95

e-
16

ACM Transactions on Mathematical Software, Vol. 37, No. 2, Article 17, Publication date: April 2010.



17:22 • J. D. Hogg and J. A. Scott

5. CONCLUSIONS AND FUTURE DIRECTIONS

In this article, we have explored a mixed-precision strategy that is capable of
outperforming a traditional double-precision approach for solving large sparse
symmetric linear systems. Building on the recent work of Arioli and Duff [2008]
and Buttari et al. [2008], we have designed and developed a practical and robust
sparse mixed-precision solver; the new package HSL MA79 is available within
the HSL Library. Numerical experiments on a large number of problems have
shown that, in about 90% of our test cases, it was possible to use a mixed-
precision approach to get accuracy of 5 × 10−15; in the remaining cases, it was
necessary to resort to computing a double-precision factorization (or to accept
a less accurate solution). HSL MA79 is designed to allow an automatic fall back
to double precision and is tuned to minimize the work performed before this
happens. However, although we have demonstrated robustness, our experience
is that, in terms of computational time, the advantage of using mixed precision
is limited to large problems (how large will depend on the direct solver used
within HSL MA79, on the computing platform, and also on the requested accu-
racy); the user is advised that experimentation with his or her problems will
be necessary to decide whether or not to use mixed precision.

Future work on HSL MA79 will focus on more efficiently recovering double-
precision accuracy in the case of multiple right-hand sides; this will lead to the
replacement of the MI15 implementation of FGMRES with a specially modified
variant of FGMRES, which may require a different adaptive restarting strategy.
Our current implementation of HSL MA79 requires that the original matrix A
reside in memory throughout the factorization. This is not a requirement for
the out-of-core solver HSL MA77 and we would like to remove it from HSL MA79 by
offering an interface that allows A to be supplied by the user in a file. We would
additionally like to collect more large problems to test and refine our code on.

Throughout this article, we have considered factorizing A in single precision
combined with recovery using double precision. However, this does not have to
be the case. Provided the condition number of the matrix is less than the recip-
rocal of the requested accuracy γ , the theory [Arioli and Duff 2008] supports
recovery to arbitrary precision. In this case, the refinement must be carried out
in extended precision. It is also possible to perform a factorization in double
precision and then recover to higher precision. This will be the subject of a
separate study.

6. CODE AVAILABILITY

All the codes discussed in this article have been developed for inclusion in
the mathematical software library HSL. All use of HSL requires a license.
Individual HSL packages (together with their dependencies and accompanying
documentation) are available without charge to individual academic users for
their personal (noncommercial) research and for teaching; licenses for other
uses involve a fee. Details of the packages and how to obtain a license plus
conditions of use are available online.2

2www.cse.stfc.ac.uk/nag/hsl.
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