
12

Nomadic Pict: Programming Languages,
Communication Infrastructure Overlays, and
Semantics for Mobile Computation

PETER SEWELL

University of Cambridge

PAWE���L T. WOJCIECHOWSKI

Poznań University of Technology

and

ASIS UNYAPOTH

Government Information Technology Services, Thailand

Mobile computation, in which executing computations can move from one physical computing de-
vice to another, is a recurring theme: from OS process migration, to language-level mobility, to
virtual machine migration. This article reports on the design, implementation, and verification
of overlay networks to support reliable communication between migrating computations, in the
Nomadic Pict project. We define two levels of abstraction as calculi with precise semantics: a low-
level Nomadic π calculus with migration and location-dependent communication, and a high-level
calculus that adds location-independent communication. Implementations of location-independent
communication, as overlay networks that track migrations and forward messages, can be expressed
as translations of the high-level calculus into the low. We discuss the design space of such overlay
network algorithms and define three precisely, as such translations. Based on the calculi, we design
and implement the Nomadic Pict distributed programming language, to let such algorithms (and
simple applications above them) to be quickly prototyped. We go on to develop the semantic theory
of the Nomadic π calculi, proving correctness of one example overlay network. This requires novel
equivalences and congruence results that take migration into account, and reasoning principles for
agents that are temporarily immobile (e.g., waiting on a lock elsewhere in the system). The whole

This work was funded in part by EPSRC grants GR/L62290, GR/N24872, GR/T11715, EP/C510712,
EP/F036345, and EP/H005633, a Wolfson Foundation Scholarship for P. T. Wojciechowski, a Royal
Thai Government Scholarship for A. Unyapoth, and a Royal Society University Research Fellowship
for P. Sewell.
Authors’ addresses: P. Sewell, Computer Laboratory, University of Cambridge, J. J. Thomson Av-
enue, Cambridge CB3 0FD, UK; email: Peter.Sewell@cl.cam.ac.uk; P. T. Wojciechowski, Institute of
Computing Science, Poznań University of Technology, Piotrowo 2, Poznań 60-965, Poland; email:
Pawel.T.Wojciechowski@cs.put.poznan.pl; A.Unyapoth, Government Information Technology Ser-
vices, National Science and Technology Development Agency, Ministry of Science and Technology,
Thailand; email: asis@gits.net.th.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 0164-0925/2010/04-ART12 $10.00
DOI 10.1145/1734206.1734209 http://doi.acm.org/10.1145/1734206.1734209

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1734206.1734209&domain=pdf&date_stamp=2010-04-22

12:2 • P. Sewell et al.

stands as a demonstration of the use of principled semantics to address challenging system design
problems.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network
Protocols; C.2.4 [Computer-Communication Networks]: Distributed Systems; D.3.3 [Pro-
gramming Languages]: Language Constructs and Features; F.3.1 [Logics and Meaning of
Programs]: Specifying and Verifying and Reasoning about Programs; F.3.2 [Logics and Mean-
ing of Programs]: Semantics of Programming Languages

General Terms: Algorithms, Design, Languages, Theory, Verification

ACM Reference Format:
Sewell, P., Wojciechowski, P. T., and Unyapoth, A. 2010. Nomadic Pict: Programming languages,
communication infrastructure overlays, and semantics for mobile computation. ACM Trans. Pro-
gram. Lang. Syst. 32, 4, Article 12 (April 2010), 63 pages.
DOI = 10.1145/1734206.1734209 http://doi.acm.org/10.1145/1734206.1734209

1. INTRODUCTION

Mobile computation, in which executing computations can move (or be moved)
from one physical computing device to another, has been a recurring focus
of research, spanning disparate communities. The late 1970s and the 1980s
saw extensive work on process migration, largely in the setting of operat-
ing system support for local-area distributed computation, using migration
for load-balancing, checkpointing, etc. This was followed in the late 1990s
by work on programming language support for mobility, largely in the mo-
bile agent community, aiming at novel wide-area distributed applications. The
late 1990s also saw work on semantics, using the tools of process calculi and
operational semantics. In parallel, there has been a great deal of interest in
the related areas of mobile code, popularized by Java applets, in which exe-
cutable (but not yet executing) code can be moved, and in mobile devices, such
as smartphones, PDAs, and the other devices envisaged in ubiquitous com-
puting, which provide applications for both mobile computation and mobile
code. Recently, the late 2000s have seen a renewed interest in mobile com-
putation, now driven by the rise of virtualization systems, such as VMWare
and Xen, which support migration of client OS images. These are finally re-
alizing the prospect of commercial commodity computation, in which manage-
ment of services and applications can be decoupled from physical machines in
a datacenter, and in which flexible markets for computational resources can
emerge.

Building systems with mobile computation, whether it be at the hypervisor,
OS process, or programming language level, raises challenging problems, rang-
ing from security concerns to interaction between changing versions of the in-
frastructure. In this article we focus on one of these problems: that of providing
reliable communication between migrating computations, with messages being
delivered correctly even if the sending and receiving computation migrate. Such
high-level location-independent communication may greatly simplify the devel-
opment of mobile applications, allowing movement and interaction to be treated
as separate concerns. To provide reliable communication in the face of migra-
tion, above the low-level location-dependent communication primitives of the

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:3

existing Internet Protocol (IP) network, one essentially has to build an overlay
network, to track migrations and route application messages to migrating com-
putations. This infrastructure must address fundamental network issues such
as failures, network latency, locality, and concurrency; the algorithms involved
are thus inherently rather delicate, and cannot provide perfect location inde-
pendence. Moreover, applications may be distributed on widely different scales
(from local to wide-area networks), may exhibit different patterns of commu-
nication and migration, and may demand different levels of performance and
robustness; these varying demands will lead to a multiplicity of infrastructures,
based on a variety of algorithms. Lastly, these infrastructure algorithms will
be to some extent exposed, via their performance and behavior under failure,
to the application programmer; some understanding of an algorithm will be re-
quired for the programmer to understand its robustness properties under, for
example, failure of a site.

The need for clear understanding and easy experimentation with infras-
tructure algorithms, as well as the desire to simultaneously support multi-
ple infrastructures on the same network, suggests a two-level architecture:
a low-level consisting of a single set of well-understood, location-dependent
primitives, in terms of which a variety of high-level, location-independent
communication abstractions may be expressed. This two-level approach en-
ables one to have a standardized low-level runtime that is common to
many machines, with divergent high-level facilities chosen and installed at
runtime.

For this approach to be realistic, it is essential that the low-level primitives
should be directly implementable above standard network protocols. The IP
network supports asynchronous, unordered, point-to-point, unreliable packet
delivery; it abstracts from routing. We choose primitives that are directly im-
plementable using asynchronous, unordered, point-to-point, reliable messages.
This abstracts away from a multitude of additional details (error correction, re-
transmission, packet fragmentation, etc.) while still retaining a clear relation-
ship to the well-understood IP level. It also well suited to the process calculus
presentation that we use. More substantially, we also include migration of run-
ning computations among the low-level primitives. This requires substantial
runtime support in individual network sites, but not sophisticated distributed
algorithms: only one message need be sent per migration. By treating it as a
low-level primitive we focus attention more sharply on the distributed algo-
rithms supporting location-independent communication. We also provide low-
level primitives for creation of running computations, for sending messages
between computations at the same site, for generating globally unique names,
and for local computation.

Many forms of high-level communication can be implemented in terms of
these low-level primitives, for example, synchronous and asynchronous mes-
sage passing, remote procedure calls, multicasting to agent groups, etc. For
this article we consider only a single representative form: an asynchronous
message-passing primitive, similar to the low-level primitive for communica-
tion between colocated computations, but independent of their locations, and
transparent to migrations.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

12:4 • P. Sewell et al.

This two-level framework can be formulated cleanly using techniques from
the theory of process calculi. We precisely define the low and high levels of ab-
straction as process calculi, the Nomadic π calculi, equipped with operational
semantics and type systems. The overlay networks implementing the high level
in terms of the low can then be treated rigorously as translations between these
calculi. The semantics of the calculi provides a precise and clear understanding
of the algorithms’ behavior, aiding design, and supporting proofs of correct-
ness. Our calculi draw on ideas first developed in Milner et al.’s π calculus
[Milner et al. 1992; Milner 1992] and extended in the Pict language of Pierce
and Turner [Pierce and Turner 2000; Turner 1996], the distributed join-calculus
of Fournet et al. [1996], and the JoCaml programming language [Conchon and
Le Fessant 1999].

To facilitate experimentation, we designed and implemented a Nomadic Pict
programming language based on our calculi. The low-level language extends
the compiler and runtime system of Pict, a concurrent language based on the
π calculus, to support our primitives for computation creation, migration, and
location-dependent communication. High-level languages, with particular in-
frastructures for location-independent communication, can then be obtained
by applying user-supplied translations into the low-level language. In both
cases, the full language available to the user remains very close to the pro-
cess calculus presentation, and can be given rigorous semantics in a similar
style.

We begin in Section 2 by introducing the Nomadic π calculi, discussing
their primitives and semantics, and giving examples of common programming
idioms.

In Section 3 we present a first example overlay network, expressed as a
semantics-preserving translation of the high-level Nomadic π calculus into the
low-level calculus. This is a central forwarding server, relatively simple but still
requiring subtle locking to ensure correctness.

In Section 4 we give a brief overview of the design space for such overlay
networks, presenting a range of basic techniques and distributed algorithms
informally, and discussing their scalability and fault-tolerance properties with
respect to possible applications.

For two of these more elaborate overlay algorithms, one using forwarding-
pointer chains (broadly similar to that used in the JoCaml implementation) and
one using query servers with caching, we give detailed definitions as Nomadic
π calculus translations, in Section 5 and Section 6 (and in online Appendix C)
respectively.

In Section 7 (with further details in online Appendices D, E, and F) we de-
scribe the design and implementation of the Nomadic Pict programming lan-
guage, which lets us build executable distributed prototypes of these and many
other overlay algorithms, together with simple example applications that make
use of them.

We then return to semantics, to prove correctness of such overlay networks.
In Section 8 we flesh out the semantic definition of the Nomadic π calculi
and their basic metatheory: type preservation, safety, and correspondence be-
tween reduction and labelled transition semantics, and in Section 9 we develop

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:5

operational reasoning techniques for stating and proving correctness. We

(1) extend the standard π calculus reduction and labeled transition semantics
to deal with computation mobility, location-dependent communication, and
a rich type system;

(2) consider translocating versions of behavioral relations (bisimulation
[Milner et al. 1992] and expansion [Sangiorgi and Milner 1992] relations)
that are preserved by certain spontaneous migrations;

(3) prove congruence properties of some of these, to allow compositional rea-
soning;

(4) deal with partially committed choices, and hence state the main correctness
result in terms of coupled simulation [Parrow and Sjödin 1992];

(5) identify properties of agents that are temporarily immobile, waiting on a
lock somewhere in the system; and,

(6) as we are proving correctness of an encoding, we must analyze the pos-
sible reachable states of the encoding applied to an arbitrary high-level
source program; introducing an intermediate language for expressing the
key states, and factoring out as many “house-keeping” reduction steps as
possible.

We apply these to the Central Forwarding Server overlay of Section 3, de-
scribing a full correctness proof in Section 10. Finally, we discuss related work
in Section 11 and conclude in Section 12.

This article thus gives a synoptic view of the results of the Nomadic Pict
project, covering calculi, semantics, overlay network design, programming
language design and implementation, proof techniques, and overlay network
verification. Elements of this have previously appeared in conferences: the ini-
tial calculi of Sewell, Wojciechowski, and Pierce [1998, 1999]; the program-
ming language implementation and example algorithms by Wojciechowski and
Sewell [Wojciechowski and Sewell 1999, Wojciechowski 2001, 2006]; and an
outline of the metatheory and algorithm verification of Unyapoth and Sewell
[2001]. Further details of the implementation and algorithms, and of the seman-
tics and proof, can be found in the Ph.D. theses of Wojciechowski and Unyapoth
respectively [Wojciechowski 2000b; Unyapoth 2001]. The implementation is
available online [Wojciechowski 2010].

Nomadic Pict was originally thought of in terms of computation mobility at
the programming-language level, and the terminology of the body of the article
is chosen with that in mind (we speak of mobile agents and language threads).
Later work on the Acute programming language [Sewell et al. 2007] developed
this point of view: Acute has slightly lower-level constructs than low-level No-
madic Pict for checkpointing running multithreaded computations, using which
we built a small Acute library providing the low-level Nomadic Pict primitives;
overlay-network implementations of the high-level Nomadic Pict abstraction
could be expressed as ML-style modules above that. The underlying ideas may
also be equally applicable to mobility at the virtual-machine OS image level, as
we argued in a position paper [Sewell and Wojciechowski 2008] in the Joint HP-
MSR Research Workshop on The Rise and Rise of the Declarative Datacentre.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

12:6 • P. Sewell et al.

2. THE NOMADIC π CALCULI

In this section we introduce the abstractions of the low- and high-level Nomadic
π calculi.

The main entities are sites s and agents a. Sites represent physical machines
or, more accurately, instantiations of the Nomadic Pict runtime system on phys-
ical machines; each site has a unique name.

Agents are units of running computation. Each agent has a unique name and
a body consisting of some Nomadic Pict concurrent process P ; at any moment
it is located at a particular site. An agent can migrate, at any point, to any
other site (identified by name), new agents can be created (with the system
synthesizing a new unique name, bound to a lexically scoped identifier) and
agents can interact by sending messages to each other.

A key point in the design of the low-level calculus is to make it easy to
understand the behavior of the system in the presence of partial failure. To do
so, we choose interaction primitives that can be directly implemented above
the real-world network (the Sockets API and TCP or UDP), without requiring
a sophisticated distributed infrastructure. Our guiding principle is that each
reduction step of the low-level calculus should be implementable using at most
one intersite asynchronous communication.

To provide an expressive language for local computation within each agent
body, while keeping the calculus concise, we include the constructs of a standard
asynchronous π calculus. The Nomadic Pict concurrent process of an agent
body can involve parallel composition, new channel creation, and asynchronous
messaging on those channels within the agent.

In the rest of this section we give the syntax of processes, with accompanying
definitions of values, patterns, and types, and the key points of their reduction
semantics. The full semantics is defined in Section 8 and online Appendices A
and B.

2.1 Processes of the Low-Level Calculus

The syntax of the low-level calculus is as follows, grouped into the three agent
primitives, two useful communication forms that are expressible as syntactic
sugar, and the local asynchronous π calculus.

P, Q ::= createZ a = P in Q spawn agent a with body P , on local site
| migrate to s → P migrate current agent to site s
| iflocal 〈a〉c!v then P else Q send c!v to agent a if it is co-located here,

and run P , otherwise run Q
. .

| 〈a〉c!v (sugar) send c!v to agent a if it is co-located here
| 〈a@s〉c!v (sugar) send c!v to agent a if it is at site s

. .

| 000 empty process
| P |Q parallel composition of processes P and Q
| new c : ˆI T in P declare a new channel c
| c!v output of v on channel c in current agent
| c?p → P input on channel c in current agent

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:7

| *c?p → P replicated input
| if v then P else Q conditional
| let p = ev in P local declaration

Executing the construct createZ b = P in Q spawns a new agent, with body
P , on the current site. After the creation, Q commences execution, in parallel
with the rest of the body of the spawning agent. The new agent has a unique
name which may be referred to with b, both in its body and in the spawning
agent (b is binding in P and Q). The Z is a mobility capability, either s, requiring
this agent to be static, or m, allowing it to be mobile. We return to this when we
discuss the type system.

Agents can migrate to named sites: the execution of migrate to s → P as
part of an agent results in the whole agent migrating to site s. After the migra-
tion, P commences execution in parallel with the rest of the body of the agent.

There is a single primitive for interaction between agents, allowing an atomic
delivery of an asynchronous message between two agents that are colocated on
the same site. The execution of iflocal 〈a〉c!v then P else Q in the body of
agent b has two possible outcomes. If the agent a is on the same site as agent b
then the message c!v will be delivered to a (where it may later interact with an
input) and P will commence execution in parallel with the rest of the body of b;
otherwise the message will not be delivered and Q will execute as part of b. This
is analogous to test-and-set operations in shared memory systems: delivering
the message and starting P , or discarding it and starting Q , atomically. It can
greatly simplify algorithms that involve communication with agents that may
migrate away at any time, yet is still implementable locally, by the runtime
systems on a single site.

Two other useful constructs can be expressed as sugar: 〈a〉c!v and 〈a@s〉c!v
attempt to deliver c!v (an output of v on channel c), to agent a, on the current
site and on s, respectively. They fail silently if a is not where it is expected
to be, and so are usually used only in a context where a is predictable. The
first is implementable simply as iflocal 〈a〉c!v then 000 else 000; the second as
createm b = migrate to s → 〈a〉c!v in 000, for a fresh name b that does not
occur in s, a, c, or v.

Turning to the π calculus constructs, the body of an agent may be empty (000)
or a parallel composition P |Q of processes.

Execution of new c : ˆI T in P creates a new unique channel name for
carrying values of type T ; c is binding in P . The I is a capability: as in Pierce
and Sangiorgi [1996], channels can be used for input only r, output only w, or
both rw; these induce a subtype order.

An output c!v (of value v on channel c) and an input c?p → P in the same
agent may synchronize, resulting in P with the appropriate parts of the value
v bound to the formal parameters in the pattern p. Note that, as in other asyn-
chronous π calculi, outputs do not have continuation processes. A replicated
input *c?p → P behaves similarly except that it persists after the synchro-
nization, and so might receive another value.

Finally, we have conditionals if v then P else Q , and local declarations
let p = ev in P , assigning the result of evaluating a simple value expression

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

12:8 • P. Sewell et al.

ev to a pattern p. In c?p → P , *c?p → P and let p = ev in P the names in
pattern p are binding in P . If if v then P is sugar for if v then P else 000.

For a simple example program in the low-level calculus, consider the follow-
ing applet server.

*getApplet?[a s] →
createm b =
migrate to s →

(〈a@s′〉ack!b | B)
in 000

It can receive (on the channel named getApplet) requests for an applet. This
is a replicated input (*getApplet?[a s] → . . .) so the server persists and can re-
peatedly grant requests. The requests contain a pair (bound to the tuple [a s]
of a and s) consisting of the name of the requesting agent and the name of the
site for the applet to go to. When a request is received the server creates an
applet agent with a new name bound to b. This agent immediately migrates to
site s. It then sends an acknowledgment to the requesting agent a (which here
is assumed to be on site s′) containing its name. In parallel, the body B of the
applet commences execution.

2.2 Processes of the High-Level Calculus

The high-level calculus is obtained by extending the low-level language with a
single location-independent communication primitive.

P ::= . . .

| 〈a@?〉c!v send c!v to agent a whereever it is

The intended semantics is that this will reliably deliver the message c!v to
agent a, irrespective of the current site of a and of any migrations. The high-
level calculus includes all the low-level constructs, so those low-level commu-
nication primitives are also available for interaction with application agents
whose locations are predictable. We write nπLD for the processes of the low-
level calculus, with location-dependent communication only, and nπLD,LI for
the processes of the high-level calculus, with location-dependent and location-
independent communication.

2.3 Values and Patterns

Channels allow the communication of first-order values: constants t, names
x (including channel names c, agent names a, and site names s), tuples, and
packages {|T |} v of existential types, containing a witness type T and a value v.
Patterns p are of similar shapes as values, but are subject to the condition that
the names x and type variables X that they bind are all distinct.

v ::= t | x | [v1. . .vn] | {|T |} v
p ::= | x | [p1. . .pn] | {|X |} p

The value grammar is extended with some basic functions, including equality
tests, to give expressions, ranged over by ev.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:9

2.4 Types

Typing infrastructure algorithms requires a moderately expressive type sys-
tem. We take types

T ::= B base type
| [T1. . .Tn] tuple
| ˆI T channel name
| {|X |} T existential
| X type variable
| Site site name
| AgentZ agent name

where B might be int, bool, etc., taken from a set T of base types, and X is
taken from a set T V of type variables. Existentials are needed as an infrastruc-
ture must be able to forward messages of any type (see the message and deliver
channels in Figure 2 later). For more precise typing, and to support the proof
techniques we develop in Section 9, channel and agent types are refined by an-
notating them with capabilities, ranged over by I and Z respectively. Channel
capabilities were described in Section 2.2: channels can be used for input only
r, output only w, or both rw. In addition, agents are either static s, or mobile m
[Sewell 1998; Cardelli et al. 1999].

2.5 Outline of the Reduction Semantics

Located processes and located type contexts. The basic process terms given
earlier only allow the source code of the body of a single agent to be expressed.
During computation, this agent may evolve into a system of many agents, dis-
tributed over many sites. To denote such systems, we define located processes

LP, LQ ::= @a P | LP|LQ | new x : AgentZ @s in LP | new x : ˆI T in LP

Here the body of an agent a may be split into many parts, written @a P1|. . .|
@a Pn. The construct new x : AgentZ @s in LP declares a new agent name x
(binding in LP); since this is an agent name, we have an annotation @s giving
the name s of the site where the agent is currently located. Channels, on the
other hand, are not located the construct new x : ˆI T in LP declares a new
channel name (binding in LP) and the annotation is omitted.

Correspondingly, we add location information to type contexts. Located type
contexts � include data specifying the site where each declared agent is located;
the operational semantics updates this when agents move.

�, �, � ::= • | �, X | �, x : AgentZ @s | �, x : T T �= AgentZ

For example, the following located type context declares two sites, s and s′, and
a channel c, which can be used for sending or receiving integers. It also declares
a mobile agent a, located at s, and a static agent b, located at s′.

s : Site, s′ : Site, c : ^rwInt, a : Agentm@s, b : Agents@s′

Pattern matching. When an input process receives a value v along a chan-
nel, it needs to deconstruct v, producing a substitution to be applied to its

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

12:10 • P. Sewell et al.

Fig. 1. Selected reduction rules.

continuation process. As usual, this is done with an auxiliary partial func-
tion for matching, mapping pairs of patterns and values to name substitutions,
whenever they are of the same shape.

match(, v) def= {}
match(x, v) def= {v/x}
match([p1. . .pn], [v1. . .vn]) def= match(p1, v1) ∪ · · · ∪ match(pn, vn)

match({|X |} p, {|T |} v) def= {T/X } ∪ match(p, v)

match(p, v) def= ⊥ (undefined) otherwise

Reductions. To capture our informal understanding of the calculus in as
lightweight a way as possible, we give a reduction semantics. It is defined with
a structural congruence and reduction axioms, extending that for the π calcu-
lus [Milner 1993]. Reductions are over configurations, which are pairs � � LP of
a located type context � and a located process LP. We use a judgement �
 a@s,
meaning that an agent a is located at s in the located type context �. We shall
give some examples of reductions, illustrating the new primitives, before giving
the formal definition of reduction later, in Section 8 and Appendix B. The most
interesting axioms for the low-level calculus are given in Figure 1.

An agent a can spawn a new mobile agent b, with body P , and continues
with Q . The new agent is located at the same site as a (say s, with �
 a@s).
The agent b is initially bound and the scope is over the process Q in a and the
whole of the new agent.

� � @a(R | createm b = P in Q)
−→ � � @a R | new b : Agentm@s in (@a Q | @bP)

When an agent a migrates to a new site s, we simply update the located type
context.

� � @a(R | migrate to s → Q)
−→ � ⊕ a �→ s � @a(R | Q)

A new-bound agent may also migrate; in this case, we simply update the location
annotation.

� � @a R | new b : Agentm@s′ in @bmigrate to s → Q
−→ � � @a R | new b : Agentm@s in @bQ

An agent a may send a location-dependent message to an agent b if they are on
the same site. The message, once delivered, may then react with an input in b.
Assuming that �
 a@s and �
 b@s.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:11

� � @a(iflocal 〈b〉c![] then P else Q) | @b(c?[] → R)
−→ � � @a P | @b(c![] | c?[] → R)
−→ � � @a P | @bR

If a and b are at different sites, say if �
 a@s and �
 b@s′ for s �= s′, then the
message will get lost.

� � @a(iflocal 〈b〉c![] then P else Q) | @b(c?[] → R)
−→ � � @a Q | @b(c?[] → R)

Synchronization of a local output c!v and an input c?x → P only occurs
within an agent, but in the execution of iflocal a new channel name can escape
the agent where it was created, to be used elsewhere for output and/or input.
Consider for example the next process, executing as the body of an agent a.

createm b =
c?x → (x!3 | x?n→000)

in
new d : ˆrwint in
iflocal 〈b〉c!d then 000 else 000
| d!7

It has a reduction for the creation of agent b, a reduction for the iflocal that
delivers the output c!d to b, and then a local synchronization of this output with
the input on c. Agent a then has body d!7 and agent b has body d!3|d?n→000.
Only the latter output on d can synchronize with b’s input d?n→000. For each
channel name there is therefore effectively a π calculus-style channel in each
agent. The channels are distinct, in that outputs and inputs can only interact
if they are in the same agent. This provides a limited form of dynamic binding,
with the semantics of a channel name (i.e., the set of partners that a commu-
nication on that channel might synchronize with) dependent on the agent in
which it is used; it proves very useful in the infrastructure algorithms that we
develop.

The high-level calculus has one additional axiom, allowing location-
independent communication between agents.

� � @a〈b@?〉c!v −→� � @bc!v

This delivers the message c!v to agent b irrespective of where b (and the sender
a) are located. For example, next an empty-tuple message on channel c is de-
livered to an agent b with a waiting input on c.

� � @a(P | 〈b@?〉c![]) | @b(c?[] → R)
−→ � � @a P | @b(c![] | c?[] → R)

2.6 Discussion of Design Choices

The only inter-site communication required in an implementation of the low-
level language is for the migrate to reduction, in which the body of the migrat-
ing agent a must be sent from its current site to site s. (For performance, one
might also implement the location-dependent output 〈a@s〉c!v directly, with a

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

12:12 • P. Sewell et al.

single inter-site message, rather than via the syntax desugaring into an agent
creation and migration.)

This makes it easy to understand the behavior of the implementation in
the presence of fail-stop site failure: if a site crashes, all agents are lost; and
a migration from one site to another is guaranteed to succeed if those two
sites do not fail. Elsewhere we develop distributed infrastructure algorithms
that address site failure and/or disconnection [Wojciechowski 2000b, 2001].
They use an additional primitive for timeouts, which we do not include in the
semantics in this article; our focus here is on the failure mode of message loss
for location-dependent messages to agents that are not in the specified location.

One could also envisage extending the semantics with network topology in-
formation, so that link failure and network partitions could be modeled. As far
as the operational semantics goes, that would be straightforward, but develop-
ing reasoning principles above the extended semantics would be a substantial
task.

The inter-site messages that must be sent in an implementation (representa-
tions of migrating agents, and tuple-structured location-dependent messages)
should be reliable in the face of intermittent network packet loss; our low-level
semantics does not allow messages to be spontaneously discarded. They are
also of unbounded size, and could often exceed the approximately 1500 bytes
that can be sent in a UDP datagram over Ethernet without IP fragmentation.
Hence, an implementation would send messages via TCP, not via UDP. This
raises the question of whether the low-level calculus should guarantee that
inter-site messages are received in the same order as they are sent. In favor, it
would be easy to implement ordering guarantees, if all messages from one site
to another are multiplexed on a single underlying TCP connection, and such
guarantees may be useful for some distributed algorithms. Against this, the op-
erational semantics would be much more complex, with queues of messages in
the network, and reasoning principles above it would be correspondingly more
complex. Moreover, if the low-level calculus guaranteed message ordering, it
would be natural for the high-level calculus to also guarantee it. Implementing
that, as agents migrate, would require more complex algorithms. Accordingly,
we choose simple unordered asynchronous messages, in both the low- and high-
level calculus.

A similar argument applies to the question of whether inter-site messages
should be asynchronous or synchronous. If they are implemented above TCP,
the implementation could conceivably acknowledge when each message is deliv-
ered to the destination Nomadic Pict runtime. This would add a nontrivial but
modest communication cost (especially if messages are often relatively large,
involving multiple TCP segments). However, the added semantic complexity
would be large, and efficient implementations of synchronous messaging in
the high-level calculus, between migrating agents, would be yet more complex.
Accordingly, we stay with the asynchronous choice.

Another design choice is whether one allows agents to be nested. This might
be desirable for a full-scale programming language design, but again would
complicate reasoning, and would introduce many further choices as to how
inter-agent communication happens across the nesting structure. We therefore

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:13

stay with the simple choice described before, in which new agents are created
as siblings, on the same site as their creator.

3. EXAMPLE INFRASTRUCTURE: CENTRAL FORWARDING
SERVER ALGORITHM

In this section we present our first example distributed infrastructure, the Cen-
tral Forwarding Server (CFS) algorithm. In subsequent sections we survey the
algorithm design space and present two more algorithms in detail: a forwarding-
pointers algorithm and a query server algorithm. In the last part of the article
we develop semantic techniques and prove correctness of the CFS algorithm.

The problem that these algorithms solve is to implement the high-level cal-
culus using the low-level primitives; specifically, to implement the high-level
location-independent semantics

� � @a〈b@?〉c!v −→� � @bc!v

that delivers a message to agent b irrespective of any migrations of agents
a and b. To do so, they also use nontrivial implementations of the other high-
level agent primitives, for example, adding some synchronizations around agent
migrations and creations. The algorithms are expressed as translations of the
high-level calculus into the low-level calculus.

The CFS algorithm translation is based on that in Sewell et al. [1998]. It
involves a central daemon that keeps track of the current sites of all agents
and forwards any location-independent messages to them. The daemon itself is
implemented as an agent which never migrates; the translation of a program
then consists roughly of the daemon agent in parallel with a compositional
translation of the program. When a new agent is created, it has to register with
the daemon, telling its site. Before an agent can migrate, it has to inform the
daemon about its intent, and wait for an acknowledgment. After the migration,
the agent tells the daemon it has finished moving and continues. Locks are used
to ensure that an agent does not migrate away while a message forwarded by
the daemon is on its way; this ensures that all messages forwarded from the
daemon are delivered before the agent migrates away.

This is a relatively simple algorithm, rather sequential and with a central-
ized server daemon, but it still requires delicate synchronization that is easy to
get wrong. Expressing it as a translation between well-defined low- and high-
level languages provides a solid basis for discussion about design choices, and
enables correctness proofs; the Nomadic Pict language implementation makes
it possible to execute and use the algorithm in practice.

The daemon is implemented as a static agent; the translation C�[[LP]] of a
located process LP = new � in @a1 P1 | . . . | @an Pn (well-typed with respect to
a type context �) then consists roughly of the daemon agent in parallel with a
compositional translation [[Pi]]ai of each source agent:

C�[[LP]] def= new �, �aux in
@D(. . .|Daemon)

| ∏
i∈{1. . .n} @ai (. . .|[[Pi]]ai)

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

12:14 • P. Sewell et al.

Fig. 2. The central server daemon and the interface context.

(we omit various initialization code, and will often elide type contexts �). For
each term Pi of the source language nπLD,LI, considered as the body of an agent
named ai, the result [[Pi]]ai of the translation is a term of the target language
nπLD. The body of the daemon and selected clauses of the compositional transla-
tion are shown in Figures 2 and 3. They interact using channels of an interface
context �aux , also defined in Figure 2, which in addition declares lock channels
and the daemon name D. It uses a map type constructor, which (together with
the map operations) can be translated into the core language.

The original algorithm in Sewell et al. [1998] has been modified in the fol-
lowing ways to simplify the correctness proof.

—Type annotations have been added and checked with the Nomadic Pict type
checker [Wojciechowski 2000b] (although this does not check the static/
mobile subtyping).

—Fresh channels are used for transmitting acknowledgments, making such
channels linear [Kobayashi et al. 1996]. This simplifies the proof of correct-
ness, since communication along a linear channel yields an expansion.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:15

Fig. 3. The compositional encoding (selected clauses).

—We consider programs with many agents initiated separately on different
sites, rather than only programs that are initiated as single agents (this
more general translation is needed to make our coinductive proof techniques
go through, analogous to strengthening of an induction hypothesis).

The daemon consists of three replicated inputs, on the message, register, and
migrating channels, ready to receive messages from the encodings of agents. It
is at a fixed site SD. Part of the initialization code places Daemon in parallel
with an output on lock which carries a reference to a site map: a finite map
from agent names to site names, recording the current site of every agent. Finite
maps, with lookup operation

lookup[T1 T2] a in m with
found(v) → P
notfound→ Q

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

12:16 • P. Sewell et al.

and update operation (m with a �→ v), are expressed with a standard π calculus
encoding [Unyapoth 2001, Section 6.5], so they do not need to be added as a
primitive.

The single-threaded nature of the daemon is ensured by using lock to enforce
mutual exclusion between the three replicated inputs: each of them begins with
an input on lock, thereby acquiring both the lock and the site map, and does
not relinquish the lock until the daemon finishes with the request. The code
preserves the invariant that at any time there is at most one output on lock.

Turning to the compositional translation [[.]], it is defined by induction on
type derivations. Only three clauses are nontrivial: for the location-independent
output, agent creation, and agent migration primitives. We discuss each one in
turn, together with their interactions with the daemon. For the rest, [[.]] is
homomorphic.

Location-independent output. A location-independent output 〈b@?〉c!v in
an agent a (of message c!v to agent b) is implemented simply by requesting the
central server daemon to deliver it; the request is sent to the daemon D, at its
site SD, on its channel message, using a location-dependent output:

[[〈b@?〉c!v]]a
def= 〈D@SD〉message!{|T |} [b c v]

The corresponding replicated input on channel message in the daemon

*message?{|X |} [a c v] →
lock?m →
lookup[Agents Site] a in m with
found(s) →new dack : ^rw[] in

〈a@s〉deliver!{|X |} [c v dack]
| dack?[] → lock!m

notfound→000

first acquires the lock and current site map m, then looks up the target agent’s
site in the map and sends a location-dependent message to the deliver channel
of that agent; the message also carries the name of a freshly created channel
dack. It then waits to receive an acknowledgment (on the dack channel) from
the agent before relinquishing the lock (with lock!m). This prevents the agent
from migrating before the deliver message arrives, as the migration transla-
tion (that follows) also requires the lock. Note that the notfound branch of the
lookup will never be taken, as the algorithm ensures that all agents register
before messages can be sent to them. In each agent the deliver message is han-
dled by a Deliverer process (see Figure 3), which reacts to deliver messages
by emitting a local c!v message in parallel with sending the dack message to
the daemon. The inter-agent communications involved in delivery of a single
location-independent output are illustrated next.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:17

Creation. In order for the daemon’s site map to be kept up to date, agents
must register with the daemon, telling it their site, both when they are created
and when they migrate. Each agent records its current site internally as an
output on its currentloc channel. This channel is also used as a lock, to enforce
mutual exclusion between the encodings of all agent creation and migration
commands within the body of the agent. The encoding of an agent creation in
an agent a (in Figure 3)

[[
createZ b= P in Q

]]
a

def=
currentloc?s →new pack : ^rw[], rack : ^rw[] in
createZ b=

〈D@SD〉register![b s rack]
| rack?[] →iflocal 〈a〉pack![] then

(currentloc!s | [[P]]b | Deliverer)
in
pack?[] → (currentloc!s | [[Q]]a)

where Deliverer
def= *deliver?{|X |} [c v dack] → (〈D@SD〉dack![] | c!v)

first acquires the local lock and current site s and then creates the new agent b,
as well as channels pack and rack. The body of b sends a register message to
the daemon, supplying rack; the daemon uses rack to acknowledge that it has
updated its site map. After the acknowledgment is received from the daemon,
b sends an acknowledgment to a using pack, initializes the local lock of b with
s, installs a Deliverer, and allows the encoding of the body P of b to proceed.
Meanwhile, the local lock of a and the encoding of the continuation process Q
are blocked until the acknowledgment via pack is received.

The body of b is put in parallel with the replicated input

*deliver?{|X |} [c v dack] → (〈D@SD〉dack![] | c!v
)

which will receive forwarded messages for channels in b from the daemon,
send an acknowledgment back, and deliver the value locally to the appropriate
channel.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

12:18 • P. Sewell et al.

The replicated input on register in the daemon

| *register?[b s rack] →
lock?m →
let[Agents Site] m′ = (m with b �→ s) in

(lock!m′ | 〈b@s〉rack![])

first acquires the lock and current site map, replaces the site map with an
updated map, thereby relinquishing the lock, and sends an acknowledgment to
the registering agent; the updated map records that a new agent b is located at
site s. The inter-agent communications involved in a single agent creation are
illustrated next.

Migration. The encoding of a migrate to in agent a

[[migrate to s → P]]a
def=

currentloc? →new mack : ^rw[^w[Site ˆw[]]] in
〈D@SD〉migrating![a mack]
| mack?[migrated] →
migrate to s → new ack : ^rw[] in

(〈D@SD〉migrated![s ack]
| ack?[] → currentloc!s | [[P]]a)

first acquires the output on currentloc at a (discarding the current site data).
It then creates a fresh channel mack, sends a migrating message to the daemon
with a tuple [a mack], and waits for an acknowledgment on mack.

Reacting to the message on migrating message, the daemon

| *migrating?[a mack] →
lock?m →
lookup[Agents Site] a in m with
found(s) →new migrated : ^rw[Site ˆw[]] in

〈a@s〉mack![migrated]
| migrated?[s′ ack]
let m′ = (m with a �→ s′) in

(lock!m′ | 〈a@s′〉ack![])
notfound→000

acquires its lock, looks up the current site of a in the acquired map m, creates a
fresh channel migrated, and sends it (using an LD primitive) to a along channel
mack. The daemon then waits to receive a message from migrated.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:19

Once the waiting agent a receives a message from mack, it migrates to the new
site s, then creates a fresh channel ack and sends a tuple [s ack] to the daemon
via channel migrated (using an LD primitive). Meanwhile, the local lock and
the encoding of the continuation process P is kept until the acknowledgment
via ack is received from the daemon.

When the blocked daemon receives a message on migrated, it updates the
site map, then relinquishes the lock and then sends an acknowledgment to a
at its new site. The inter-agent communications involved in the migration of a
single agent are illustrated next.

4. ALGORITHM DESIGN SPACE

Prospective applications may use some form of mobility for many different pur-
poses, for example: to improve locality of computation; to support disconnected
operation on mobile devices; to avoid transferring large volumes of data; to fa-
cilitate fault tolerance by moving computation from partially faulty machines;
or to adapt to changes in the network characteristics and in the user envi-
ronment. The different applications may have very different patterns of agent
migration and communication, and require different performance and robust-
ness properties. Agent migration would often be limited, for instance, to cases
where agents migrate only once or twice, where migration is within a local-area
network or between a few sites which are known in advance, where agents can
only migrate to or from a central site, and between a mobile computer and the
network, and so on.

In this section, we characterize some basic techniques and algorithms that
can be useful for building such application-specific infrastructures, and assess
their usefulness. We do not attempt to specify all the algorithms formally, so we
use natural language descriptions. However, almost all algorithms have been
implemented in Nomadic Pict, and the code is available with the language dis-
tribution [Wojciechowski 2010]. We also discuss informally the scalability and
fault-tolerance properties of the algorithms. We do not attempt to give quanti-
tative theoretical or empirical characterizations of the algorithms, because it
would be too hard to take under consideration all the factors which exist in

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

12:20 • P. Sewell et al.

real systems; the range of possible migration and communication patterns is
too great.

In the following sections, we describe two algorithms in more detail, pre-
senting complete executable descriptions of the infrastructure in Nomadic Pict.
They eliminate some of the drawbacks of the CFS algorithm in Section 3.

4.1 Background

We first discuss the space of all (deterministic) algorithms for location-
independent message delivery to migrating entities. Awerbuch and Peleg [1995]
(see also Mullender and Vitányi [1988]) stated the analogous problem of keeping
track of mobile users in a distributed network. They consider two operations:
“move”, for a move of a user to a new destination, and “find”, enabling one to
contact a specified user at its current address. The problems of minimizing the
communication overhead of these two operations appear to be in conflict. They
examined two extreme strategies: full information and no information.

The full-information strategy requires every site in the network to main-
tain complete up-to-date information on the whereabouts of every user. This
makes the “find” operation inexpensive. On the other hand, “move” operations
are very expensive, since it is necessary to update information at every site.
In contrast, the no-information approach does not assume any updates while
migrating, thus the “move” operation has got a null cost. On the other hand,
the “find” operation is very expensive because it requires global searching over
the whole network. However, if a network is small and migrations frequent, the
strategy can be useful. In contrary, the full-information strategy is appropriate
for a near-static setting, where agents migrate relatively rarely, but frequently
communicate with each other. Between these two extreme cases, there is space
for designing intermediate strategies, that will perform well for any or some
specific communication to migration pattern, making the costs of both “find”
and “move” operations relatively inexpensive.

Awerbuch and Peleg [1995] describe a distributed directory infrastructure
for online tracking of mobile users. They introduced the graph-theoretic concept
of regional matching, and demonstrated how finding a regional matching with
certain parameters enables efficient tracking of mobile users in a distributed
network. The communication overhead of maintaining the distributed directory
is within a polylogarithmic factor of the lower bound. This result is important in
the case of mobile telephony and infrastructures which support mobile devices,
where the infrastructure should perform well, considering all mobile users and
their potential communication to migration patterns. These patterns can vary,
depending on people, and can only be estimated probabilistically. The infras-
tructure should therefore support all migration and communication scenarios,
and optimize those scenarios which are likely to happen more often (preferably
it should adapt to any changes in behavior of mobile users dynamically). In
mobile agent applications, however, the communication to migration pattern of
mobile agents usually can be predicted precisely [Wojciechowski 2000b]. There-
fore we can design algorithms which are optimal for these special cases and
simpler than the directory infrastructure mentioned previously.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:21

4.2 Central Server Algorithms

Central forwarding server algorithm. The server records the current site of
every agent. Before migration an agent A informs the server and waits for
ACK (containing the number of messages sent from the server to A). It then
waits for all the messages due to arrive. After migration it tells the server it
has finished moving. If B wants to send a message to A, B sends the message
to the server, which forwards it. During migrations (after sending the ACK)
the server suspends forwarding. A variant of this algorithm was described in
Section 3.

Central query server algorithm. The server records the current site of every
agent. If B wants to send a message to A, B sends a query (containing the
message ID) to the server asking for the current site of A, gets the current site
s of A, and sends the message to s. The name s can be used again for direct
communication with A. If a message arrives at a site that does not have the
recipient then a message is returned saying “you have to ask the name server
again”. Migration support is as before.

Home server algorithm. Each site s has a server that records the current
site of some agents; usually the agents which were created on s. Agent names
contain an address of the server which maintains their locations. On every
migration agent A synchronizes with the server whose name is part of A’s
name. If B wants to send a message to A, B resolves A’s name and contacts A’s
server. Other details are as before.

Discussion. If migrations are rare, and also in the case of stream communi-
cation or large messages, the Query Server seems the better choice. However,
the Central Forwarding and Query Server algorithms do not scale well. If the
number of agents is growing and communication and migration are frequent,
the server can be a bottleneck. Home Servers can improve the situation. The
infrastructure can work fine for small-to-medium systems, where the number
of agents is small.

These algorithms do not support locality of agent migration and communi-
cation, that is, migration and communication involve the cost of contacting the
server, which might be far away. If agents are close to the server, the cost of
migration, search, and update is relatively low. Our algorithms clearly explore
only a part of the design space; one can envisage, for example, splitting the
servers into many parts (e.g., one dealing with agents created for each user).
An exhaustive discussion is beyond the scope of this article.

In all three, the server is a single point of failure. In these and other al-
gorithms, we can use some of the classical techniques of fault tolerance, for
example, based on state checkpointing, message logging, and recovery. We can
also replicate the server on different sites to enhance system availability and
fault tolerance, such as using the primary-backup or active replication tech-
niques (see, e.g., the tutorial by Guerraoui and Schiper [1996]). However, the
implementation of a replicated system with replica crashes and unpredictable
communication delay is a difficult task. The difficulty can be formally explained

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

12:22 • P. Sewell et al.

by theoretical impossibility results, such as the impossibility of solving consen-
sus in an asynchronous system when processes can crash [Fischer et al. 1985].
These impossibility results can be overcome by strengthening the system model
slightly [Chandra and Toueg 1996].

Mechanisms similar to Home Servers have been used in many systems
which support process migration, such as Sprite [Douglis and Ousterhout 1991].
Caching has been used, for example, in LOCUS [Popek and Walker 1986], and
V [Cheriton 1988], allowing operations to be sent directly to a remote process
without passing through another site. If the cached address is wrong a home
site of the process is contacted (LOCUS) or multicasting is performed (V). A
variant of the Central Query Server algorithm, combined with Central For-
warding Server and data caching, will be described in detail in Section 6 and
Appendix C; it also appeared in Wojciechowski and Sewell [2000].

4.3 Forwarding Pointers

Algorithm. There is a forwarding daemon on each site. The daemon on site
s maintains a current guess about the site of agents which migrated from s.
Every agent knows the initial home site of every agent (the address is part
of an agent’s name). If A wants to migrate from s1 to s2 it leaves a forwarding
pointer at the local daemon. Communications follow all the forwarding pointers.
If there is no pointer to agent A, A’s home site is contacted. Forwarding pointers
are preserved forever. This algorithm will be described in detail in Section 5.

Discussion. There is no synchronization between migration and communi-
cation as there was in centralized algorithms. A message may follow an agent
which frequently migrates, leading to a race condition. The Forwarding Point-
ers algorithm is not practical if agents perform a large number of migrations to
distinct sites (the chain of pointers grows, increasing the cost of search). Some
“compaction” methods can be used to collapse the chain, for example, movement-
based and search-based. In the former case, an agent would send backward a
location update after performing a number of migrations; in the latter case,
after receiving a number of messages (i.e., after a fixed number of “find” oper-
ations occurred).

Some heuristics can be further used such as search-update. A plausible al-
gorithm can be as follows. On each site there is a daemon which maintains
forwarding addresses (additionally to forwarding pointers) for all agents which
ever visited this site. A forwarding address is a tuple (timestamp, site) in which
the site is the last known location of the agent and timestamp specifies the age of
the forwarding address. Every message sent from agent B to A along the chain
of forwarding pointers contains the latest available forwarding address of A.
The receiving site may then update its forwarding address (and/or forwarding
pointer) for the referenced agent, if required. Given conflicting guesses for the
same agent, it is simple to determine which one is most recent using times-
tamps. When the message is eventually delivered to the current site of the
agent, the daemon on this site will send an ACK to the daemon on the sender
site, containing the current forwarding address. The address received replaces
any older forwarding address but not the forwarding pointer (to allow updating

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:23

the chain of pointers during any subsequent communication). A similar algo-
rithm has been used in Emerald [Jul et al. 1988], where the new forwarding
address is piggybacked onto the reply message in the object invocation. It is
sufficient to maintain the timestamp as a counter, incremented every time the
object moves.

A single site fail-stop in a chain of forwarding pointers breaks the chain.
A solution is to replicate the location information in the chain on k consecu-
tive sites, so that the algorithm is tolerant of a failure of up to k − 1 adjoint
sites. Stale pointers should be eventually removed, either after waiting a suf-
ficiently long time, or purged as a result of a distributed garbage collection.
Distributed garbage collection would require detecting global termination of
all agents that might ever use the pointer, therefore the technique may not
always be practically useful. Alternatively, some weaker assumptions could be
made and the agents decide arbitrarily about termination, purging the pointers
beforehand.

4.4 Broadcast Algorithms

Data broadcast algorithm. Sites know about the agents that are currently
present. An agent notifies a site on leaving and a forwarding pointer is left over
until agent migration is finished. If agent B wants to send a message to A, B
sends the message to all sites in a network. A site s discards or forwards the
message if A is not at s (we omit details).

Query broadcast algorithm. As before but if agent B wants to send a mes-
sage to A, B sends a query to all sites in a network asking for the current
location of A. If site s receives the query and A is present at site s, then s sus-
pends any migration of A until A receives the message from B. A site s discards
or forwards the query if A is not at s.

Notification broadcast algorithm. Every site in a network maintains a cur-
rent guess about agent locations. After migration an agent distributes in the
network information about its new location. Location information is time-
stamped. Messages with stale location information are discarded. If site s re-
ceives a message whose recipient is not at s (because it has already migrated
or the initial guess was wrong), it waits for information about the agent’s new
location. Then s forwards the message.

Discussion. The cost of communication in Query and Data Broadcasts is
high (packets are broadcast in the network) but the cost of migration is low.
Query Broadcast saves bandwidth if messages are large or in the case of stream
communication. Notification Broadcast has a high cost of migration (the loca-
tion message is broadcast to all sites) but the communication cost is low and
similar to forwarding pointers with pointer chain compaction. In Data and No-
tification Broadcasts, migration can be fast because there is no synchronization
involved (in Query Broadcast migration is synchronized with communication);
the drawback is a potential for race conditions if migrations are frequent. Site
failures do not disturb the algorithms. The simplest (partially) fault-tolerant

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

12:24 • P. Sewell et al.

algorithm could involve Data Broadcast with buffering of broadcast messages
at target sites; however, two conditions should hold: buffers need to be infi-
nite, and the broadcasting server needs to use reliable broadcast [Chandra and
Toueg 1996].

Although we usually assume that the number of sites is too large to broad-
cast anything, we may allow occasional broadcasts within, for example, a local
Internet domain, or local Ethernet. Broadcasts can be accomplished efficiently
in bus-based multiprocessor systems. They are also used in radio networks.
A realistic variant is to broadcast within a group of sites which belong to the
itinerary of mobile agents that is known in advance. Broadcast has also been
used in Emerald to find an object, if a node specified by a forwarding pointer
is unreachable or has stale data. To reduce message traffic, only a site which
has the specified object responds to the broadcast. If the searching daemon re-
ceives no response within a time limit, it sends a second broadcast requesting
a positive or negative reply from all other sites. All sites not responding within
a short time are sent a reliable, point-to-point message with the request. The
Jini lookup and connection infrastructure [Arnold et al. 1999] uses multicast
in the discovery protocol. A client wishing to find a Lookup Service sends out
a known packet via multicast. Any Lookup Service receiving this packet will
reply (to an address contained in the packet) with an implementation of the
interface to the Lookup Service itself.

4.5 Agent-Based Broadcast

Algorithm. Agents are grouped, with the agents forming a group maintaining
a current record about the site of every agent in the group. Agent names form
a totally ordered set. We assume communication which takes place within a
group only.

Before migration an agent A informs the other agents in the group about its
intention and waits for ACKs (containing the number of messages sent to A).
It then waits for all the messages due to arrive and migrates. After migration
it tells the agents it has finished moving. Multicast messages to each agent
within a group are reliably delivered in the order sent (using first-in-first-out
broadcast). If B wants to send a message to A, B sends the message to site
s which is A’s current location. During A’s migrations (i.e., after sending the
ACK to A) B suspends sending any messages to A (in particular any migration
requests). If two (or more) agents want to migrate at the same time there is a
conflict which can be resolved as follows. Suppose A and C want to migrate. If
B receives migration requests from A and C, it sends ACKs to both of them and
suspends sending any messages to agents A and C (in particular any migration
requests). If A receives a migration request from C after it has sent its own
migration request it can either grant ACK to C (and C can migrate) or postpone
the ACK until it has finished moving to a new site. The choice is made possible
by ordering agent names. Thus, there is an invariant that at any time at most
one agent can migrate in a given group.

Discussion. The advantage of this algorithm is that sites can be state-
less (the location data are part of agent’s state). The algorithm is suitable for

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:25

frequent messages (or stream communication) between mobile agents and when
migrations are rare.

Agents can be organized into dynamic groups, using the primitives of group
communication systems (designed for nonmovable groups of distributed pro-
cesses). The membership of a group can change over time, as agents join or
leave the group, or as crashed (or suspected as crashed) agents are collectively
removed from the group. The current set of agents that are members of a group
is called the group view. Agents are added to and deleted from the group view
via view changes, handled by a membership service.

Mobile agents forming a group can dynamically change sites. This creates
a problem how to implement the join operation so that the agents joining a
group will be able to localize the group. One solution is that migrating group
agents could leave forwarding pointers that would be followed by agents joining
the group to “catch up” with at least one group member. Another solution is to
have one agent within a group: a group coordinator, which never migrates and
can be used to contact the group. The intergroup communication algorithm
could use either the pointers or coordination agents for delivering messages
that cross group boundaries.

Other variants are also possible. For example, if agent migration would be
limited to a fixed set of target sites that are known in advance, then the al-
gorithms could broadcast only to such sites; the names of these sites could be
encoded as part of agent’s name.

4.6 Hierarchical Location Directory

Algorithm. A tree-like hierarchy of servers forms a location directory (similar
to DNS). Each server in the directory maintains a current guess about the site
of some agents. Sites belong to regions, each region corresponds to a subtree
in the directory (in the extreme cases the subtree is simply a leaf-server for
the smallest region, or the whole tree for the entire network). The algorithm
maintains an invariant that for each agent there is a unique path of forwarding
pointers which forms a single branch in the directory; the branch starts from
the root and finishes at the server which knows the actual site of the agent
(we call this server the “nearest”). Before migration an agent A informs the
“nearest” server X1 and waits for ACK. After migration it registers at a new
“nearest” server X2, tells X1 it has finished moving, and waits for ACK. When
it gets the ACK there is already a new path installed in the tree (this may
require installing new and purging old pointers within the smallest subtree
which contains X1 and X2). Messages to agents are forwarded along the tree
branches. If B wants to send a message to A, B sends the message to the B’s
“nearest” server, which forwards it in the directory. If there is no pointer the
server will send the message to its parent.

Discussion. Certain optimizations are plausible, for instance, if an agent
migrates very often within some subtree, only the root of the subtree would con-
tain the current location of the agent (the “move” operation would be cheaper).
Moreau [2002] describes an algorithm for routing messages to migrating agents
which is also based on distributed directory service. A proposal of Globe uses

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

12:26 • P. Sewell et al.

a hierarchical location service for worldwide distributed objects [van Steen
et al. 1998]. The Hierarchical Location Directory scales better than Forwarding
Pointers and Central Servers. Also, some kinds of fault can be handled more
easily (see Awerbuch and Peleg [1995], and there is also a lightweight crash
recovery in the Globe system [Ballintijn et al. 1999]).

4.7 Arrow Directory

Some algorithms can be devised for a particular communication pattern. For
example, if agents do not require instant messaging, a simple mailbox infras-
tructure can be used, where senders send messages to static mailboxes and all
agents periodically check mailboxes for incoming messages.

Demmer and Herlihy [1998] describe the Arrow Distributed Directory proto-
col for distributed shared object systems. The algorithm is devised for a partic-
ular object migration pattern; it assumes that the whole object is always sent to
the object requester. The arrow directory imposes an optimal distributed queue
of object requests, with no point of bottleneck.

The protocol was motivated by emerging active network technology, in which
programmable network switches are used to implement customized protocols,
such as application-specific packet routing.

Algorithm. The arrow directory is given by a minimum spanning tree for
a network, where the network is modeled as a connected graph. Each vertex
models a node (site), and each edge a reliable communication link. A node can
send messages directly to its neighbors, and indirectly to non-neighbors along
a path. The directory tree is initialized so that following arrows (pointers) from
any node leads to the node where the object resides.

When a node wants to acquire exclusive access to the object, it sends a mes-
sage find which is forwarded via arrows and sets its own arrow to itself. When
the other node receives the message, it immediately “flips” the arrow to point
back to the immediate neighbor who forwarded the message. If the node does not
hold the object, it forwards the message. Otherwise, it buffers the message find
until it is ready to release the object to the object requester. The node releases
the object by sending it directly to the requester, without further interaction
with the directory.

If two find messages are issued at about the same time, one will eventually
cross the other’s path and be “diverted” away from the object, following arrows
towards the node (say v) where the other find message was issued. Then, the
message will be blocked at v until the object reaches v, is accessed and eventu-
ally released.

5. EXAMPLE INFRASTRUCTURE: FORWARDING-POINTERS ALGORITHM

In this section we give a forwarding-pointers algorithm, in which daemons on
each site maintain chains of forwarding pointers for agents that have migrated
from their site. It removes the single bottleneck of the centralized-server so-
lution in Section 3; it is thus a step closer to algorithms that may be of wide

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:27

practical use. The algorithm is more delicate, so expressing it as a translation
provides a more rigorous test of the framework.

The daemons are implemented as static agents; the translation FP�[[LP]] of
a located process LP = new � in @a1 P1 | . . . | @an Pn, (well-typed with respect to
�) then consists roughly of the daemon agent (one on each site sj , named DS j)
in parallel with a compositional translation [[Pi]]ai of each source agent:

FP�[[LP]] def= new �, �aux in
@DS1 (Daemons1 | lock!m) | . . . | @DSm(Daemonsm | lock!m)
| @a1 [[P1]]a1 | . . . | @an[[Pn]]an

where m is a map such that m(a) = [sj DS j] if �, �
 a@sj . For each term
Pi of the source language nπLD,LI, considered as the body of an agent named
ai, the result [[Pi]]ai of the translation is a term of the target language nπLD.
As before, the translation consists of a compositional encoding of the bodies
of agents, given in Figure 5, and daemons, defined in Figure 4. Note that in
terms of the target language, each site name si is rebound to the pair [si DSi]
of the site name together with the respective daemon name; the agent name
ai is rebound to the triple [Ai si DSi] of the low-level agent name Ai together
with the initial site and daemon names. The low-level agent Ai is defined by
the agent encoding; it contains the body Pi of agent ai. Agents and daemons
interact using channels of an interface context �aux , also defined in Figure 4,
which in addition declares lock channels and the daemon names DS1 . . . DSm.
It uses a map type constructor, which (together with the map operations) can
be translated into the core language.

Daemons are created, one on each site. These will each maintain a collection
of forwarding pointers for all agents that have migrated away from their site. To
keep the pointers current, agents synchronize with their local daemons on cre-
ation and migration. Location-independent communications are implemented
via the daemons, using the forwarding pointers where possible. If a daemon
has no pointer for the destination agent of a message then it will forward the
message to the daemon on the site where the destination agent was created;
to make this possible an agent name is encoded by a triple of an agent name
and the site and daemon of its creation. Similarly, a site name is encoded by a
pair of a site name and the daemon name for that site. There is a translation
of types with clauses [[

AgentZ]] def= [AgentZ Site AgentZ][[
Site

]] def= [Site AgentZ]

We generally use lower case letters for site and agent names occurring in the
source program and upper case letters for sites and agents introduced by its
encoding.

Looking first at the compositional encoding, in Figure 5, each agent uses a
currentloc channel as a lock, as before. It is now also used to store both the site
where the agent is and the name of the daemon on that site. The three inter-
esting clauses of the encoding, for location-independent output, creation, and

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

12:28 • P. Sewell et al.

Fig. 4. A forwarding-pointers translation: the daemon.

migration, each begin with an input on currentloc. They are broadly similar
to those of the simple Central-Forwarding-Server translation in Section 3.

Turning to the body of a daemon, defined in Figure 4, it is parametric in a
pair s of the name of the site S where it is and the daemon’s own name DS. It
has four replicated inputs, on its register, migrating, migrated, and message
channels. Some partial mutual exclusion between the bodies of these inputs
is enforced by using the lock channel. The data stored on the lock channel
now maps the name of each agent that has ever been on this site to a lock
channel (e.g., Bstate) for that agent. These agent locks prevent the daemon

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:29

Fig. 5. A forwarding-pointers translation: the compositional encoding (selected clauses).

from attempting to forward messages to agents that may be migrating. Each
stores the site and daemon (of that site) where the agent was last seen by this
daemon; that is, either this site/daemon, or the site/daemon to which it migrated
from here. The use of agent locks makes this algorithm rather more concurrent
than the previous one; rather than simply sequentializing the entire daemon, it
allows daemons to process inputs while agents are migrating, so many agents
can be migrating away from the same site, concurrently with each other and
with delivery of messages to other agents at the site.

Location-independent output. A location-independent output 〈b@?〉c!v in
agent A is implemented by requesting the local daemon to deliver it. (Note that
A cannot migrate away before the request is sent to the daemon and a lock on
currentloc is released.)

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

12:30 • P. Sewell et al.

The message replicated input of the daemon gets the map m, from agent
names to agent lock channels. If the destination agent B is not found, the mes-
sage is forwarded to the daemon DU on the site U where B was created. Other-
wise, if B is found, the agent lock Bstate is grabbed, obtaining the forwarding
pointer [R DR] for B. Using iflocal, the message is then either delivered to
B, if it is here, or to the daemon DR, otherwise. Note that the lock is released
before the agent lock is requested, so the daemon can process other inputs even
if B is currently migrating; it also prevents deadlock. In particular, in order
to complete any migration of B the daemon should be able to process message
migrated that requires to acquire lock.

A single location-independent output, forwarded once between daemons (if
the target agent is not at the local site), involves inter-agent messages as shown
next. (Communications that are guaranteed to be between agents on the same
site are drawn with thin arrows.)

Creation. The compositional encoding for createZ is similar to that of the
encoding in Section 3. It differs in two main ways. Firstly the source language
name b of the new agent must be replaced by the actual agent name B tupled
with the names S of this site and DS of the daemon on this site. Secondly,
the internal forwarder, receiving on deliver, is no longer required; the final
delivery of messages from daemons to agents is now always local to a site,
and so can be done using iflocal. An explicit acknowledgment (on dack in the
simple translation) is likewise unnecessary.

A single creation involves inter-agent messages as on the left in the following
diagram.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:31

Migration. Degenerate migrations, of an agent to the site it is currently
on, must now be identified and treated specially; otherwise, the daemon can
deadlock. An agent A executing a nondegenerate migration now synchronizes
with the daemon DS on its starting site S, then migrates, registers with the
daemon DU on its destination site U , then synchronizes again with DS. In
between the first and last synchronizations the agent lock for A in daemon DS
is held, preventing DS from attempting to deliver messages to A.

A single migration involves inter-agent messages as on the right in the pre-
ceding diagram.

Local communication. The translation of iflocalmust now extract the real
agent name B from the triple b, but is otherwise trivial.

6. EXAMPLE INFRASTRUCTURE: QUERY SERVER
WITH CACHING ALGORITHM

In this final example we take a further step towards a realistic algorithm,
demonstrating that nontrivial optimizations can be cleanly expressed within
the Nomadic Pict framework.

The central forwarding server described in Section 3 is a bottleneck for all
agent communication; further, all application messages must make two hops
(and these messages are presumably the main source of network load). The
forwarding-pointers algorithm described in Section 5 removes the bottleneck,
but there application messages may have to make many hops, even in the com-
mon case. Adapting the central forwarding server so as to reduce the number of
application-message hops required, we have the central query server algorithm
first described in Section 4. It has a server that records the current site of every
agent; agents synchronize with it on migrations. In addition, each site has a
daemon. An application message is sent to the local daemon, which then queries
the server to discover the site of the target agent; the message is then sent to
the daemon on the target site. If the agent has migrated away, a notification is
returned to the original daemon to try again. In the common case application
messages will here take only one hop. The obvious defect is the large number of
control messages between daemons and the server; to reduce these each site’s
daemon can maintain a cache of location data. The Query Server with Caching
(QSC) [Wojciechowski and Sewell 2000] does this. When a daemon receives a
misdelivered message, for an agent that has left its site, the message is for-
warded to the server. The server both forwards the message on to the agent’s
current site and sends a cache-update message to the originating daemon.
In the common case application messages are therefore delivered in only one
hop.

The QSC encoding in Appendix C makes the algorithm precise, reusing the
main design patterns from the encodings of Sections 4 and 3. Each class of
agents maintains some explicit state as an output on a lock channel. The query
server maintains a map from each agent name to the site (and daemon) where
the agent is currently located. This is kept accurate when agents are created or
migrate. Each daemon maintains a map from some agent names to the site (and
daemon) that they guess the agent is located at. This is updated only when a

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

12:32 • P. Sewell et al.

message delivery fails. The encoding of each high-level agent records its current
site (and daemon).

The algorithm is very asynchronous and should have good performance, with
most application-level messages delivered in a single hop and none taking more
than three hops (though 5 messages). The query server is involved only between
a migration and the time at which all relevant daemons receive a cache update;
this should be a short interval. Some additional optimizations are feasible, such
as updating the daemon’s cache more frequently.

The algorithm does, however, depend on reliable machines. The query server
has critical state; the daemons do not, and so in principle could be reinstalled
after a site crash, but it is only possible to reboot a machine when no other
daemons have pointers (that they will use) to it. In a refined version of the
protocol the daemons and the query server would use a store-and-forward pro-
tocol to deliver all messages reliably in spite of failures, and the query server
would be replicated. In order to extend collaboration between clusters of do-
mains (e.g., over a wide-area network), a federated architecture of intercon-
nected servers must be adopted. In order to avoid long hops, the agents should
register and unregister with the local query server on changing domains (see
Wojciechowski [2006] for an example algorithm: the Federated Query Server
with Caching).

7. NOMADIC PICT: THE PROGRAMMING LANGUAGE
AND ITS IMPLEMENTATION

Nomadic Pict is a prototype distributed programming language, based on the
Nomadic π calculus of Section 2 and on the Pict language of Pierce and Turner
[2000]. Pict is a concurrent, though not distributed, language based on the asyn-
chronous π calculus [Milner et al. 1992]. It supports fine-grain concurrency and
the communication of asynchronous messages, extending the π calculus with a
rich type system, a range of convenient forms for programming (such as function
declarations) that can be compiled down to π calculus, and various libraries.

Low-level Nomadic Pict adds the Nomadic π calculus primitives for pro-
gramming mobile computations from Section 2: agent creation, migration of
agents between sites, and communication of location-dependent asynchronous
messages between agents. In addition to these, Nomadic Pict adds timeouts, a
facility for initiating communication between separate programs with a trader
for type dynamic values, and labeled variant types. High-level Nomadic Pict
adds location-independent communication; we can express an arbitrary infras-
tructure for implementing this as a user-defined translation into the low-level
language. The rest of the language is taken directly from Pict, with the front-end
of the Nomadic Pict compiler based on the Pict compiler.

The language inherits a rich type system from Pict, including simple record
types, higher-order polymorphism, simple recursive types, and subtyping. It has
a partial type inference algorithm, and many type annotations can in practice
be inferred by the compiler.

Names play a key rôle in the Nomadic Pict language, as in Nomadic π . New
names of agents and channels can be created dynamically. These names are

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:33

pure, in the sense of Needham [1989]; no information about their creation is
visible within the language (in our current implementation they do contain site
IDs, but could equally well be implemented by choosing large random numbers).
Site names contain an IP address and TCP port number of the runtime system
which they represent. Channel, agent, and site names are first-class values and
they can be freely sent to processes which are located at other agents. As in the
π calculus, names can be scope-extruded.

Programs in high-level Nomadic Pict are compiled in the same way as they
are formally specified, by translating the high-level program into the low-level
language. That in turn is compiled to a core language executed by the runtime.
The core language is architecture-independent; its constructs correspond ap-
proximately to those of the low-level Nomadic π calculus, extended with value
types and system function calls. The runtime system executes in steps, in each
of which the closure of the agent at the front of the agent queue is executed
for a fixed number of interactions. An agent closure consists of a run queue, of
Nomadic π process/environment pairs waiting to be scheduled (round-robin),
channel queues of terms that are blocked on internal or inter-agent communi-
cation, and an environment that records bindings of variables to channels and
basic values. The process at the front of the run queue is evaluated according to
the abstract machine designed for Pict [Turner 1996]. It ensures fair execution
of the fine-grain parallelism in the language. The compiler and runtime are
written in OCaml [Leroy 1995].

In Appendix D we give a more detailed overview of the language. To make
the article self-contained, we include both the Nomadic-Pict-specific features
and some aspects of Pict. We also describe some useful syntactic sugar and dis-
tributed programming programming idioms, such as Remote Procedure Calls
(RPC) and distributed objects. The language implementation is described in
Appendix E. For concreteness, the full syntax of the language is included as
Appendix F. The implementation is available online, together with a tutorial,
library documentation, and examples [Wojciechowski 2000a].

8. CORRECTNESS: NOMADIC π CALCULUS SEMANTIC DEFINITION

We now return to the calculus of Section 2. This section defines its semantics—
the type system and operational semantics—and gives the basic metatheoretic
results. Section 9 develops proof techniques over the semantics, which are then
used in Section 10 to prove correctness of the Central Forwarding Server al-
gorithm we gave in Section 3. Throughout we give outline proofs, highlighting
the main points, and refer the reader to the Ph.D. thesis of Unyapoth [2001] for
full details.

8.1 Type System

The type system is based on a standard simply typed π calculus, with channels
carrying (possibly tuple-structured) first-order values. This is extended with
input/output subtyping, as in Pierce and Sangiorgi [1996]: channel types have
capabilities r (only input is allowed), w (output only), or rw (both), with r covari-
ant and w contravariant. Additionally, the type of agent names has a capability

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

12:34 • P. Sewell et al.

m or s, with Agents ≤ Agentm; only the latter supports migration. There is a
standard subsumption rule

�
 e ∈ S �
 S≤T
�
 e ∈ T

The main judgements are �
a P , for well-formedness of a basic process as
part of agent a, and �
 LP, for well-formedness of located processes. There
is also a judgement �
 x@z, taking the location z of x from a located type
context �. Sometimes we use unlocated type contexts, also written �, and there
are standard rules for pattern and expression formation. The typing rules are
given in full in Appendix A; a few of the most interesting rules are as follows.

�
 a ∈ Agentm

�
 s ∈ Site
�
a P

�
a migrate to s → P

a �= b
�, b : AgentZ
b P
�, b : AgentZ
a Q

�
a createZ b = P in Q

�
 a, b ∈ Agents

�
 s ∈ Site
�
 c ∈ ˆwT
�
 v ∈ T

�
a 〈b@s〉c!v
�
a P

�
 @a P

The system also includes type variables and existential packages, deconstructed
by pattern matching.

A type context is extensible if all term variables are of agent or channel types,
and therefore may be new-bound.

8.2 Reduction Semantics

The reduction semantics was introduced informally in Section 2.5. Its formal
definition involves structural congruence relations P ≡ Q and LP ≡ LQ , de-
fined in Appendix B.1, and a reduction relation � � LP → �′ � LP′ over pairs
of located type contexts and located processes, defined in Appendix B.2.

8.3 Labeled Transition Semantics

The reduction semantics describes only the internal behavior of complete sys-
tems of located processes; for compositional reasoning we need also a typed
labeled transition semantics, expressing how processes can interact with their
environment. This lifts the development of corresponding reduction and labeled
transition semantics in the π calculus [Milner 1992] to Nomadic π . Transitions
are defined inductively on process structure, without the structural congruence.
The transition relations have the following forms, for basic and located process:

� �a P
α−→
�

LP � � LP
β−→
�

LQ

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:35

Fig. 6. Selected LTS rules.

Here the unlocated labels α are of the following forms:

τ internal computation
migrate to s migrate to the site s
c!v send value v along channel c
c?v receive value v from channel c

The located labels β are of the form τ or @aα for α �= τ . Private names (together
with their types, which may be annotated with an agent’s current site) may be
exchanged in communication and are made explicit in the transition relation
by the extruded context �. Selected rules are given in Figure 6, and the full
definition in Appendix B.3.

Adding migrate to s to the standard input/output and τ labels is an important
design choice, made for the following reasons.

—Consider a located process LP in some program context. If an agent a in LP
migrates, the location context is consequently updated with a associated to
its new site. This change of location context has an effect on both LP and
its environment, since it can alter their execution paths (especially those
involving location-dependent communication with a). Migration of an agent
must therefore be thought of as a form of interaction with the environment.

—We observe, in the reduction rules, that the location context in the config-
uration after the transition can only be modified by migration of an agent.
Including this migrating action allows the location context on the right-hand
side to be omitted.

Execution of other agent primitives (i.e., create and iflocal) is regarded as
internal computation, since it does not have an immediate effect on program
contexts. In the case of create, the newly created agent remains unknown to
the environment unless its name is extruded by an output action.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

12:36 • P. Sewell et al.

8.4 Basic Metatheory

In a typed semantics, the type system should prevent a mismatch between the
value received and the shape expected in communication. However, matching
a value and a pattern of the same type does not always yield a substitution.
For example, taking � to be x : [[] []], a pattern [y z] may have type [[] []] with
respect to �, but match([y z], x) is undefined. A similar situation occurs when
matching a name x of an existential type to an existential pattern {|X |} p. To
prevent this, we define ground and closed type contexts as follows.

Definition 8.1 (Ground Type Context). A type context � is ground if, for
all x ∈ dom(�), �
 x ∈ T implies T �= [T1. . .Tn] and T �= {|X |} S, for any
T1, . . ., Tn, X , S.

Definition 8.2 (Closed Type Context). A type context � is closed if it is
ground and fv (�) ∩ T V = ∅ and, for all x ∈ dom(�), �
 x ∈ T implies T �∈ T .

It is easy to show that each name declared in a closed type context is either
a site, an agent, or a channel.

We may now state the type preservation result.

THEOREM 8.1 (TYPE PRESERVATION). For any well-formed closed located type

context �, if � � LP
β−→
�

LQ then �, �
 LQ.

PROOF (SKETCH). An induction on the derivations of � �a P
α−→
�

LP and
� � LP

β−→
�

LQ. � needs to be closed so that matching a pattern with a value
of the same type always yields a type-preserving substitution, whenever the
transition involving matching occurs.

THEOREM 8.2 (REDUCTION/LTS CORRESPONDENCE). For any well-formed lo-
cated type context � and located process LP such that �
 LP, we have:
� � LP → �′ � LQ if and only if either

—� � LP
τ−→ LQ with �′ = �, or

—� � LP
@amigrate to s−−−−−−−→ LQ with �′ = � ⊕ a �→ s.

PROOF (SKETCH). We need to show this in two parts: that a reduction implies
a silent transition or a migrate action, and vice versa. Each of the two parts is
shown by an induction on reduction/transition derivations. The case where the
silent transition of LP is derived by the communication rule needs the following
lemma, which can easily be proved by an induction on transition derivations.

LEMMA 8.3.

—If � � LP
@ac!v−−−→

	
LQ then LP ≡ new �, 	 in (@ac!v | LP ′) for some � and

LP ′. Moreover, LQ ≡ new � in LP ′.

—If � � LP
@ac?v−−−→

	
LQ then, for some �, p and LP ′, Q, with dom(�)∩dom() =

∅, either:

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:37

—LP ≡ new � in (@ac?p → Q | LP ′) and
LQ ≡ new � in (@a(match(p, v)Q) | LP ′); or

—LP ≡ new � in (@a*c?p → Q | LP ′) and
LQ ≡ new � in (@a(match(p, v)Q) | @a*c?p → Q | LP ′).

—If � � LP
@amigrate to s−−−−−−−→ LQ then

LP ≡ new � in (@amigrate to s → P | LP ′)

for some � and LP ′, P. Moreover, LQ ≡ new � in (@a P | LP ′).

As in Theorem 8.1, � needs to be closed so that matching a pattern with a
value of the same type always yields a type-preserving substitution, whenever
the transition involving matching occurs.

The next two lemmas ensure the absence of two kinds of runtime errors:
mismatching of values exchanged in channel communication, and nonevaluable
expressions.

LEMMA 8.4 (RUNTIME SAFETY: CHANNELS). Given that � is a closed type con-
text, and (�, �)(c) = ˆI T, we have:

(1) if �
 new � in (@ac!v | LP) then I≤w;
(2) if �
 new � in (@ac?p → P | LP) then I≤r;
(3) if �
 new � in (@a*c?p → P | LP) then I≤r;
(4) if �
 new � in (@a(c!v | c?p → P) | LP) then match(p, v) is defined; and
(5) if �
 new � in (@a(c!v | *c?p → P) | LP) then match(p, v) is defined.

LEMMA 8.5 (RUNTIME SAFETY: EXPRESSIONS). Given that � is a closed type con-
text, we have:

(1) if �
 new � in (@a(if v then P else Q) | LP) then v ∈ {true, false};
(2) if �
 new � in (@a(let p = ev then P) | LP) then eval(ev) and

match(p, eval(ev)) are defined.

9. CORRECTNESS: NOMADIC π CALCULUS SEMANTIC TECHNIQUES

In this section we describe the Nomadic π techniques used for stating and prov-
ing correctness. This is not specific to the particular CFS algorithm, although
examples are taken from it. The next section describes the large-scale structure
of the correctness proof, using these techniques.

Correctness statement. We are expressing distributed infrastructure algo-
rithms as encodings from a high-level language to its low-level fragment, so the
behavior of a source program and its encoding can be compared directly with
some notion of operational equivalence; our main theorem will be roughly of the
form

∀P . P � C[[P]] (†)
where P ranges over well-typed programs of the high-level language (P may
use location-independent communication whereas C[[P]] will not). Now, what

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

12:38 • P. Sewell et al.

equivalence � should we take? The stronger it is, the more confidence we gain
that the encoding is correct. At first glance, one might take some form of weak
bisimulation since (modulo divergence) it is finer than most notions of test-
ing [de Nicola and Hennessy 1984] and is easier to work with; see also the
discussion of Sewell [1997] on the choice of an appropriate equivalence for a
Pict-like language. However, as in Nestmann and Pierce’s work on choice en-
codings [1996], (†) would not hold, as the encodings C[[P]] tend to involve partial
commitment of some nondeterministic choices. In particular, migration steps
and acquisitions of the daemon or agent locks involve nondeterministic inter-
nal choices, and lead to partially committed states: target-level terms which
are not bisimilar to any source-level term. We therefore take � to be an adap-
tation of coupled simulation [Parrow and Sjödin 1992] to our language. This is
a slightly coarser relation, but it is expected to be finer than any reasonable
notion of observational equivalence for Nomadic π (again modulo questions of
divergence and fairness). This is discussed further in Section 9.1.

Dealing with house-keeping steps. Our example infrastructure introduces
many τ steps, each of which induces an intermediate state: a target-level term
which is not a literal translation of any source-level term. Some of these steps
are the partial commitment steps just mentioned. Many, however, are deter-
ministic house-keeping steps; they can be reduced to certain normal forms, and
related to them by expansions (defined in Section 9.3). For example, consider
the following fragment of code from the C-encoding (after some reduction steps).

new �aux , m : Map[Agents Site], � in

@D(Daemon
| lookup[Agents Site] a in m with
found(s) →new dack : ^rw[] in

〈a@s〉deliver!{|X |} [c v dack] | dack?[] → lock!m
notfound→000)

| @a([[P]]a | Deliverer | . . .)

| @b1 ([[Q1]]b1 | . . .) | . . . | @bn([[Qn]]bn | . . .)

where Deliverer
def= *deliver?{|X |} [c v dack] → (〈D@SD〉dack![] | c!v

)
This is a state of the encoded whole system in which an agent has sent a message
forwarding request (to agent a) to the daemon, and the daemon’s request code
has acquired the daemon lock, which contains the site map m. The subsequent
steps performed by the daemon D, and by the Deliverer process in the agent a,
are house-keeping steps. They include the map lookup operation, sending the
message to the Deliverer process in a (with a location-dependent message to
channel deliver there), and communication along the dack channel.

To prove these give rise to expansions requires a variety of techniques, some
novel and some straightforward adaptations of earlier work.

—Maps. We use a π calculus encoding of finite maps, similar to the encoding
of lists with persistent values [Milner 1993]. We prove that the encoding is
correct, and that map lookup and update operations yield expansions.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:39

—The location-dependent deliver message, sent to agent a, is guaranteed to
arrive because a cannot migrate until the daemon lock is released by lock!m,
which does not occur until agent a returns a dack to the daemon. To capture
this, we introduce a notion of temporarily immobile located process: one in
which no migration can take place until an input on a lock channel. This is
discussed in Section 9.5.
Certain reductions, such as the location-dependent message delivery step,
are deterministic, as defined in Section 9.4. The key property of a temporar-
ily immobile process is that such deterministic reductions still give rise to
expansions when in parallel with temporarily immobile processes.
Proving that processes are temporarily immobile involves a coinductive char-
acterization and preservation results (under parallel and new-binders).

—The reaction of the deliver message and the Deliverer process, in agent a,
is essentially functional. We adapt the notion of uniform receptiveness [San-
giorgi 1999], showing that the reaction induces an expansion by showing
that the deliver channel is uniformly receptive: it always has a single
replicated input in each agent, and no other input. The details are omitted
here.

—The location-dependent dack message, from agent a to the daemon, is guar-
anteed to arrive for the simple reason that the daemon cannot migrate; it
has the static type Agents. The reduction step is therefore deterministic, and
hence induces an expansion.

—The dack acknowledgement channel is fresh for each request, so the daemon
contains exactly one input and at most one output. It is straightforward to
show that the communication is deterministic and hence gives an expansion.

—In all of the preceding techniques, we make essential use of congruence re-
sults for expansion to pull out the interesting part of the process, allowing
the bi agents and parts of the daemon to be neglected. The presence of agent
mobility and location-dependent communication means these results must
take account of the possible migrations of agents; in Section 9.2 we define
translocating bisimulations that do so; translocating expansions are similar.

9.1 Partial Commitment and Coupled Simulation

As an example, consider the encoding C[[LP]] of an agent a which sends message
c!v to agent b at the current site of a, and in parallel visits the sites s1 and s2
(in any order).

LP def= @a
(〈b〉c!v | migrate to s1 | migrate to s2

)
Assuming a and b are initially at the same site, parts of the reduction graphs of
LP and C[[LP]] can be represented as in Figure 7. If the migrate to s1 process
in C[[LP]] successfully acquires the local lock (a partial commitment step) the
resulting process (LQ1p in Figure 7) does not correspond exactly to any state of
LP. LQ1p cannot correspond to LP1 since executing 〈b〉c!v at this point means
that c!v will reach b (which is not the case for node LP1); it cannot correspond
to LP either, since we know that a will eventually end up in s2.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

12:40 • P. Sewell et al.

Fig. 7. An example of partial committed state.

To address this phenomenon, coupled simulation [Parrow and Sjödin 1992]
relaxes the bisimulation clauses somewhat. A pair (S1, S2) of type-context-
indexed relations is a coupled simulation if:

—S1 and (S2)−1 are weak simulations (the standard coinductive notion of sim-
ulation, indexed by located type contexts).

—if (LP, LQ) ∈ (S1)� then there exists LQ′ such that � � LQ τ=⇒ LQ′ and

(LP, LQ′) ∈ (S2)�.
—if (LP, LQ) ∈ (S2)� then there exists LP ′ such that � � LP τ=⇒ LP ′ and

(LP ′, LQ) ∈ (S1)�.

Two processes LP, LQ are coupled similar with respect to �, written LP �� LQ,
if they are related by both components of some coupled simulation.

Intuitively “LQ coupled simulates LP” means that “LQ is at most as commit-
ted as LP” with respect to internal choices and that LQ may internally evolve
to a state LQ′ where it is at least as committed as LP, that is, where LP coupled
simulates LQ′.

In this article, coupled simulation will be used for relating whole systems,
which cannot be placed in any program context. For this reason, we do not need
to incorporate translocation into the previous definition.

9.2 Translocating Equivalences and Congruence Result

To prove our main result (†) we need compositional techniques, allowing sep-
arate parts of the protocols to be treated separately. In particular, we need
operational congruences (both equivalences and preorders) that are preserved
by program contexts involving parallel composition and new-binding. In No-
madic π the behavior of location-dependent communications depends on the
relative location of agents: if a and b are at the same site then the location-
dependent message @b〈a@s〉c!v reduces to (and in fact is weakly equivalent to)
the local output @ac!v, whereas if they are at different sites then the location-
dependent message is weakly equivalent to 000. A parallel context, for example

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:41

[.]|@amigrate to s, can migrate the agent a, so to obtain a congruence we need
refined equivalences, taking into account the possibility of such changes of agent
location caused by the environment.

Relocators, ranged over by δ, can be applied to located type contexts in order to
relocate agents in such contexts. A valid relocator for (�, M) is a type-respecting
partial function from M to site names of �, formally defined next.

Definition 9.1 (Valid Relocators). A relocator δ is said to be valid for (�, M)
if dom(δ) ⊆ M and, for all x ∈ M , �
 x ∈ Agentm and �
 δ(x) ∈ Site.

We write �δ for the result of applying δ to � and �δβ for (�δ)β.
Allowing arbitrary relocations would give too strong a notion, though. We

introduce translocating relations that are parameterized by a set of agents
that the environment may move.

Definition 9.2 (Translocating Indexed Relation). A translocating indexed
relation is a binary relation between nπLD,LI processes, indexed by closed well-
formed located type contexts � and sets M ⊆ mov(�), where mov(�) is the set
of names of type Agentm in �:

mov(•) def= ∅
mov(�, X) def= mov(�)

mov(�, x : T@z) def=
{

mov(�) ∪ {x} T = Agentm

mov(�) otherwise

Channel communication introduces further problems since it allows extru-
sion of new agent names to and from the environment. Consider an output of
a new-bound agent name a to the environment. Other components in the envi-
ronment may then send messages to a, but cannot migrate it, so when checking
a translocating equivalence we do not need to consider relocation of a. On the
other hand, a new agent name received from the environment by an input pro-
cess is the name of an agent created in the environment, so (if created with the
mobile capability) it may be migrated at any time.

Therefore the translocating index of the bisimulation only needs to be up-
dated when an input action occurs. For this we define the set M1 �β M2 to be
M1 ∪ M2 whenever β is an input, and to be M1 otherwise.

M1 �β M2
def=

{
M1 ∪ M2 ∃a, c, v, β = @ac?v
M1 otherwise

The notion of translocating bisimulation can therefore be formalized as follows.

Definition 9.3 (Translocating Simulations).

(1) A translocating indexed relation S on nπLD,LI is a translocating strong sim-
ulation if (LP, LQ) ∈ SM

� implies the following:
—�
 LP and �
 LQ;
— M ⊆ mov(�); and

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

12:42 • P. Sewell et al.

—For any relocator δ valid for (�, M), if �δ � LP
β−→
�

LP ′ then there exists
LQ′ such that �δ � LQ

β−→
�

LQ′ and (LP ′, LQ′) ∈ SM�βmov(�)
�δβ,� .

S is called a translocating strong bisimulation if all of its indexed relations
are symmetric. Two located processes LP and LQ are translocating strongly
bisimilar with respect to �, M , written LP ∼̇M

� LQ, if there exists a translo-
cating strong bisimulation which when indexed by � and M , contains the
pair (LP, LQ).

(2) Replacing �δ � LQ
β−→
�

LQ′ in the final item of this definition with
�δ � LQ

β̂=⇒
�

LQ′ yields the weak version of translocating simulation. A
located process LQ weak translocating bisimulates LP with respect to �, M ,
denoted LP ≈̇M

� LQ, if there exists a weak translocating bisimulation which
when indexed by �, M , contains the pair (LP, LQ).

Some simple examples of translocating bisimulations are the following.

@aiflocal 〈b〉c!v then P else Q ∼̇M1
� @aiflocal 〈b〉c!v then P else Q ′

@a〈b@s〉c!v ≈̇M2
� @bc!v

where M1 ⊆ mov(�)/{a, b} and M2 ⊆ mov(�)/{b}; we assume that the preceding
processes are well-typed with respect to �, and that �
 a@s and �
 b@s.

We prove congruence results for both strong and weak translocating bisim-
ulation, stating the result here only for the strong version. It uses a further
auxiliary definition: the set mayMove(LP) is the set of agents in LP syntacti-
cally containing migrate to.

THEOREM 9.1 (TRANSLOCATING CONGRUENCE). Given a closed located type con-
text �, � with � extensible, if

—LP ∼̇MP
�,� LP ′ and LQ ∼̇MQ

�,� LQ′,
—mayMove(LQ, LQ′) ⊆ MP ,
—mayMove(LP, LP ′) ⊆ MQ , and

— M
def= MP ∩ MQ ∩ agents(�)

then

new � in (LP | LQ) ∼̇M
� new � in (LP ′ | LQ′).

PROOF (SKETCH). The proof deals with derivatives of new � in LP | LQ with
respect to �, which have the general form of

LRk = new �, �comm in (LPk | LQk)

well-typed with respect to �, �in, �out . Here we classify new names bound in
the derivative, and those extruded to or from the environment as follows.

—�comm consists of names exchanged by communication between LP and LQ.
This can be classified further as �LP

comm, the private names of LP extruded by
output actions to LQ, and vice versa for �

LQ
comm.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:43

—�out consists of names extruded by output actions to the environment. Again,
this can be classified further as �LP

out , for the names extruded by LP, and vice
versa for �

LQ
out .

—�in consists of names received from the environment.

Using this classification of names, the set mov(�in) anticipates the movements
of agents received from the environment (i.e., the context of LRk), and the set
MP ∪ mov(�LQ

comm, �
LQ
out) anticipates the movements of free agents in LQk . Since

the environment of LPk comprises LQk and the context of LRk as a whole, the
translocating index of the bisimulation relations between LPk and LP ′

k must
include the following set.

MPk = MP ∪ mov
(
�LQ

comm, �
LQ
out, �in

)
The premises of Theorem 9.1 can therefore be generalized in the coinduction
as follows.

—LPk∼̇MPk
�,�in,�out ,�comm,�LP ′

k , and LQk∼̇MQk
�,�in,�out ,�comm,�LQ′

k , where MQk is defined
in the similar way as MPk ;

—mayMove(LPk , LP ′
k) ⊆ MQ ∪ mov(�LP

comm, �LP
out); and

—mayMove(LQk , LQ′
k) ⊆ MP ∪ mov(�LQ

comm, �
LQ
out).

The proof of this theorem relies on the invariance under labeled transitions of
the previous premises.

By using the techniques outlined in the beginning of Section 9, we may prove
that

new �aux , m : Map[Agents Site] in
@D(Daemon

| lookup[Agents Site] a in m with
found(s) →new dack : ^rw[] in

〈a@s〉deliver!{|X |} [c v dack] | dack?[] → lock!m
notfound→000)

| @a([[P]]a | Deliverer | . . .)

≈̇{b1,. . .,bn}
�,�

new �aux , m : Map[Agents Site] in
@D(Daemon | lock!m)
| @a([[P]]a | Deliverer | . . .)

where the processes above are well-typed with respect to �, �. Applying the
congruence result, the fragment of code from the C-encoding given in the begin-
ning of this section can be proved to translocating weak bisimulate the following
process.

new �aux , m : Map[Agents Site], � in
@D(Daemon | lock!m)
| @a([[P]]a | Deliverer | . . .)
| @b1 ([[Q1]]b1 | . . .) | . . . | @bn([[Qn]]bn | . . .)

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

12:44 • P. Sewell et al.

9.3 Expansion

To construct the coupled simulation, we use an expansion relation �̇ [Nestmann
and Pierce 1996] and the “up to” technique of Sangiorgi and Milner [1992],
adapted with translocation, to allow elimination of target processes that are in
intermediate/house-keeping stages.

A definition of expansion uses two refinements of weak simulation: progress-
ing and strict simulation. We adapt the definitions from Nestmann [1996],
adding type contexts and translocation.

Definition 9.4 (Progressing and Strict Simulation). A weak translocating
simulation S is called

—strict if, for all (LP, LQ) ∈ SM
� and valid δ for (�, M), �δ � LP

β−→
�

LP ′ implies

there exists LQ′ such that �δ � LQ
β̂−→
�

LQ′ with (LP ′, LQ′) ∈ SM�βmov(�)
�δβ,� ;

—progressing if, for all (LP, LQ) ∈ SM
� and valid δ for (�, M), �δ � LP

β−→
�

LP ′ implies there exists LQ′ such that �δ � LQ
β̂=⇒
�

LQ′ with (LP ′, LQ′) ∈
SM�βmov(�)

�δβ,� .

LQ is said to progressing simulate (or strictly simulate) LP with respect to �, M
if there exists a progressing simulation S (or a strict simulation) such that
(LP, LQ) ∈ SM

� .

The preceding diagrams show progressing and strict simulations. Informally,
LQ strictly simulates LP means that LQ weakly simulates LP, but LQ never
introduces more internal steps and may ignore the silent transitions of LP.
On the other hand, LQ progressing simulates LP means that LQ weakly sim-
ulates LP, but LQ introduces more internal steps and never ignores a silent
action, hence the absence of ˆ in the weak transition of LQ in the definition. The
definition of expansion simply makes use of these two refinements.

Definition 9.5 (Expansion). An indexed binary relation S is a translocating
expansion if S is a strict simulation and S−1 is a progressing simulation.

LP translocating expands LQ with respect to � under M , written LP �̇M
� LQ,

if there exists an expansion S with (LP, LQ) ∈ SM
� . Moreover, if LP �̇mov(�)

� LQ
then LP and LQ are said to be related by expansion congruence, written
LP �� LQ.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:45

We depend on a congruence result, analogous to that earlier, for expansion.
The proof of this result is similar to that for translocating bisimulations.

9.4 Deterministic Reduction

A component in a system of concurrent processes may be deterministic, in the
sense that its next computational step can be determined. An example of this is
a location-dependent message 〈b@s〉c!v, executed in an agent a; if the agent b is
static, and is located at s, then all the subsequent transitions are determined,
eventually moving the output c!v to b. We define deterministic reduction as
follows.

Definition 9.6 (Deterministic Reduction). Given a closed located type con-
text � and M ⊆ mov(�), a located processes LP is said to deterministically
reduce to LQ with respect to (�, M), written � � LP

det−→
M

LQ, if, for any valid δ

for (�, M), the following hold:

—�δ � LP
τ−→ LQ; and

—�δ � LP
β−→
�

LQ′ implies β = τ , � = • and LQ′∼̇M
�δLQ.

We also define the relation det=⇒
M

to be the transitive closure of
det−→
M

; that is � �
LP det=⇒

M
LQ implies there exists LP1, . . ., LPn such that, letting LP = LP0 and

LQ = LPn+1, we have

� � LPi
det−→
M

LPi+1 0 ≤ i ≤ n

A process LP is said to be τ -deterministic with respect to �, M if there exists
LQ such that � � LP det=⇒

M
LQ.

The next lemma states the key property of τ -determinacy: that a determin-
istic reduction induces an expansion.

LEMMA 9.2 (DETERMINISTIC REDUCTION INDUCES EXPANSION). If � � LP
det−→
M

LQ

then LP �̇M
� LQ.

From the example fragment of code from C-encoding, when the agent a re-
ceived the message forwarded from the daemon, it sends an acknowledgment
back to the daemon using 〈D@SD〉dack![]. Since the location-dependent sugar
output is τ -deterministic, we have:

@a〈D@SD〉dack![] �̇M
� @Ddack![]

for any M ⊆ mov(�) such that D �∈ M . However, since the daemon D is
static, @a〈D@SD〉dack![] is related by expansion congruence to @Ddack![]; and
hence placing the location-dependent output in any program context yields an
expansion.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

12:46 • P. Sewell et al.

9.5 Temporary Immobility

At many points in the execution of an encoded program, it is intuitively clear
that an agent cannot migrate: while waiting for an acknowledgment from the
daemon, or for either currentloc or lock to be released in the agent or daemon.
To capture such an intuition, we consider derivatives of a process LP: if an input
action on a lock channel l always precedes any (observable) migration action
then LP can be said to be temporarily immobile, blocked by l . Care must be
taken, however, to ensure that the lock l is not released by the environment.
This can be made precise by the following definitions.

As in the case of translocating equivalences, we need to consider the possi-
bility of agents being moved by the environment.

Definition 9.7 (Translocating Path). A translocating path of LP0 with re-
spect to (�, M) is a sequence

β1−→
�1

. . .
βn−→
�n

for which there exist LP1, . . . , LPn and δ0, . . . , δn−1 such that for each i ∈ 0 . . .

n − 1:

—δi is a valid relocator for (�̂, M̂), where

�̂
def= �, �1, . . . , �i

M̂ def= M �β1 mov(�1). . . �βi mov(�i), and

—((�δ0, �1)δ1β1, �2. . .βi, �i)δi � LPi
βi+1−−→
�i+1

LPi+1.

Definition 9.8 (Temporary Immobility). Given a closed located type context
�, a located process LP with �
 LP, and a translocating index M ⊆ agents(�),
LP is temporarily immobile under lock l with respect to (�, M) if, for all translo-
cating paths

β1−→
�1

. . .
βn−→
�n

of LP with respect to (�, M) which do not contain an input action βi = @ac?v
with l ∈ fv (c, v), the following hold for all i ≤ n, b, c, v and s:

—βi = @bc!v implies l �∈ fv (βi); and
—βi �= @b migrate to s.

Consider, for example, the next process.

LQ def= new �aux in
@D Daemon

| @a([[P]]a|currentloc!s|Deliverer)

Here agent a cannot migrate until the daemon lock lock is successfully ac-
quired, so LQ is temporarily immobile under lock with respect to any type-
correct (�, M) that does not admit environmental relocation of a, that is, with
a �∈ M . Assume further that a is at s and that the daemon is forwarding an LI

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:47

message to a, that is, the preceding process is in parallel with

LP def= @D〈a@s〉deliver![c v ack]

This parallel composition, with a surrounding new-binder for lock, expands to

new lock : ^rwMap[Agents Site] in
LQ | @adeliver![c v ack]

The proof of this expansion relies on the fact that the reductions of LP cannot
release lock, so a cannot migrate, and hence the reductions of LP are deter-
ministic, successfully delivering the message to a at s. It uses the following
lemma.

LEMMA 9.3. Given that LQ is temporarily immobile under l with respect to

�, � and M, with � extensible and l ∈ dom(�), if �, � � LP1
det−→
M

LP2 then

new � in LP1 | LQ �̇M∩dom(�)
� new � in LP2 | LQ

Proofs of temporary immobility can be hard, since they involve quantification
over derivatives. We formulate a coinductive definition of temporary immobility
(which is equivalent to the one given here). A process is temporarily immobile
if it belongs to a blocking set: a set which is closed under transitions that are
not inputs on the lock channel, and in which no migration can occur. This alter-
native definition allows temporary immobility to be proved by analyzing single
step transitions. Moreover, since temporary immobility is preserved by weak
bisimulation, we may apply “up to” techniques [Sangiorgi and Milner 1992],
so that we may work with sets which are a blocking set when closed up under
weak bisimulation. Proving that the process LQ given before is temporarily im-
mobile, for example, involves analyzing its transitions, which can be classified
into two groups.

—Local computation, execution of the process P in a, which does not involve
the daemon. The result of this type of transition is in the same form as LQ.

—Daemon computation, execution of the process P in a, which involves the
daemon. The result of this type of transition expands a process which is
of the same form as LQ. (Sending location-dependent message to the static
daemon, for example, induces expansion.)

Temporary immobility is preserved by parallel composition and new bind-
ing. This can be used for proving that the following process is temporarily
immobile.

LR = new �aux in
@D Daemon

| @b1 ([[P1]]b1 |currentloc!s1|Deliverer) | . . .

| @bn([[Pn]]bn |currentloc!sn|Deliverer)

Since LR is strongly bisimilar to LQ1 | . . . | LQn, where LQi is obtained from
LQ by replacing the name of the agent a by bi and the process P by Pi. The

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

12:48 • P. Sewell et al.

proof of the strong bisimulation uses a result similar to a proposal of Milner
[1993, p. 29].

10. CORRECTNESS: PROOF FOR THE CENTRAL FORWARDING SERVER

This section outlines the strategies taken in order to prove the correctness of
the example CFS encoding C[[·]], defined in Section 3, using the techniques from
Section 9.

10.1 Factoring the Proof

We simplify the construction of the main coupled simulation (between an ar-
bitrary source program, in nπLD,LI, and its encoding, in nπLD) by factoring the
encoding through an intermediate language IL, with states ranged over by Sys,
that is specific to this encoding. The infrastructure encoding C[[·]] is factored into
the composition of a loading encodingL, mapping source terms to corresponding
systems in the intermediate language, and an unloading encoding F , mapping
systems in the intermediate language to their corresponding target terms.

In proving correctness of the loading encoding, we essentially deal with all the
house-keeping steps, relating terms introduced by such steps to some normal
forms. Such normal forms allow house-keeping steps to be abstracted away, so
that in proving correctness of the unloading encoding, we can concentrate on
relating partially committed terms to target-level terms. This helps us manage
the complexity of the state-space of the encoding, by

(1) reducing the size of the coupled simulation relations, omitting states which
reduce by house-keeping steps to certain normal forms (which have no
house-keeping steps);

(2) dealing with states in which many agents may be partially committed si-
multaneously; and

(3) capturing some invariants, for example, that the daemon’s site-map is cor-
rect, in a type system for IL.

The cost is that the typing and labeled transition rules for IL must be defined.
For lack of space we only outline the essential points here, referring the reader
again to Unyapoth [2001] for the full development.

We use two functions mapping intermediate language states back into the
source language. The undo and commit decoding functions, D and D� respec-
tively, undo and complete partially committed migrations.

nπLD,LI
D[[·]]←−
D�[[·]]

IL

It suffices to have both functions commit creations and LI messages, as these
are somewhat confluent.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:49

We shall not define the loading, unloading, and decoding functions here.
Instead we illustrate the correspondence between steps in the source, inter-
mediate, and the target languages in the creation, migration, and location-
independent messaging cases in Figure 8. In the figure, some τ communication
steps are annotated with the command or the name of the channel involved.
The figure also shows how partially committed states are mapped to terms in
the source language by the decoding functions.

10.2 Intermediate Language

Each term of the intermediate language represents a normal form of target-
level derivatives, possibly in a partially committed state. It describes the state
of the daemon as well as that of the encoded agent. The syntax is:

Sys ::= eProg(�; D ; A)

Each term eProg(�; D ; A) is parameterized by �, a located type context cor-
responding to all names dynamically created during the execution of the pro-
gram, and D and A, the state of the daemon and of the agents. � is binding
in eProg(�; D ; A) and is therefore subject to alpha-conversion. The latter two
parameters are described in more detail as follows.

—The state D of the daemon is described by the following syntax:
D ::= [map mesgQ]
mesgQ ::= ∏

i∈I mesgReq({|Ti|} [ai ci vi])

Each daemon state [map mesgQ] consists of a site map map, expressed as a
list of pairs, and an unordered queue of message forwarding requests mesgQ.
A message forwarding request mesgReq({|T |} [a c v]) requires the daemon to
forward c!v to the agent a, where T is the type of v.

—The state Aof the agents is a partial function mapping agent names to agent
states. Each agent state, represented as [P E], consists of a main body P and
a pending state E. The syntax of E is given next.

E ::= FreeA(s) | RegA(b Z s P Q)
| MtingA(s P) | MrdyA(s P)

If an agent a has pending state FreeA(s), the local lock of a is free and is ready
to initiate a create or migrate to process from its main body. Otherwise,
a is in a partially committed state, with a pending execution of createZ b =
P in Q (when its state is RegA(b Z s P Q)) or migrate to s → P (when
its state is MtingA(s P) or MrdyA(s P)). In FreeA(s) and RegA(b Z s P Q),
s denotes the current site of a, internally recorded and maintained by the
agent itself.
In RegA(b Z s P Q), the name b is bound in P and Q and is subject to alpha-
conversion.

Informally, each transition of a system originates either from an agent or the
daemon. A process from the main body of an agent may be executed immediately
if it is either an iflocal, if, let, or a pair of an output and a (replicated)
input on the same channel. The result of such an execution (governed by nπLD,LI

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

12:50 • P. Sewell et al.

Fig. 8. Relationships between source, intermediate, and target.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:51

LTS rules) is placed in parallel with other processes in the main body, except
for execution of an LI output 〈b〉c!v, which results in the message forwarding
request mesgReq({|T |} [b c v]) being added to the message queue of the daemon
(T is the type of v). These steps correspond exactly to those taken by source-
and target-level terms. A process createZ b = P in Q or migrate to s → P
from the main body of a may proceed (in fact initiate) if the local lock is free,
that is, the pending state is FreeA(s′). The result of such initiation turns the
pending state to RegA(b Z s′ P Q) or MtingA(s P) respectively. Translating into
target-level terms, an agent in such a state has successfully acquired its local
lock and sent a registration or migrating request to the daemon.

A system with registration request RegA(b Z s P Q) is executed in a single
reduction step, corresponding in the target-level to acquiring the daemon lock,
updating the site map, and sending the acknowledgment to b. After completion,
the declaration b : AgentZ @s is placed at the top level and, at the same time,
the site map is extended with the new entry (b, s). The new agent b with state
[P FreeA(s)] now commences its execution, and so does its parent. The top third
of Figure 8 gives the correspondences between steps in the source, intermediate,
and target languages in the creation case. In the figure, some τ communication
steps are annotated with the command or the name of the channel involved.

Likewise, a system with a message forwarding request mesgReq({|T |} [b c v])
is executed in a single reduction step, corresponding in the target-level to ac-
quiring the daemon lock, looking up the site of b, delivering the message, and
receiving an acknowledgment from b. After completion, the message c!v is
added to the main body of b.

Serving a migrating request MtingA(s P) from an agent a, however, involves
two steps. The first step acquires the daemon lock, initializing the request and
turning the pending state of a to MrdyA(s P). In the second step, the agent
a migrates to s (hence changes the top-level declaration) and the site map
updates a with the entry (a, s). The first step corresponds in the target-level to
acquiring the daemon lock, looking up the site of a in the site map, and sending
an acknowledgment, permitting a to migrate. The second step corresponds to
a migrating to s and sending an acknowledgment back to the daemon, which
updates its site map and then sends the final acknowledgment to a, allowing it
to proceed.

10.3 Proof Outline

Note that our encoding is not uniform [Palamidessi 1997], as it introduces a
centralized daemon at top level. This means that our reasoning must largely
be about the whole system, dealing with interactions between encoded agents
and the daemon. We cannot use simple induction on source program syntax.

We prove the coupled simulation over programs which are well-typed with
respect to a valid system context: a type context in which all agents are declared
as static (in order to use the standard definition of coupled simulation) and
channels are not used for sending or receiving agent names (in order to make
sure the daemon has a record of all agents in the system). Dynamically created
new-bound agents may be mobile, of course.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

12:52 • P. Sewell et al.

The main lemmas can now be stated.

LEMMA 10.1 (SYNTACTIC FACTORIZATION). For any LP well-typed with respect
to a valid system context �

—C�[[LP]] ≡ F[[L�[[LP]]]], and
—LP ≡ D[[L�[[LP]]]] ≡ D�[[L�[[LP]]]].

This follows from the definitions of the encoding and decoding functions.

LEMMA 10.2 (SEMANTIC CORRECTNESS OF IL). For any Sys well-formed with
respect to �, F[[Sys]]�̇∅

�Sys.

This lemma is the heart of the correctness argument. The proof uses ex-
pansion up to expansion to relate each well-formed term in the intermediate
language with its corresponding target term. We use the techniques of Section 9;
part of the reasoning for the LI message-delivery case was outlined there. In
broad, we heavily employ the congruence properties of translocating expansion
for factoring out program contexts which are not involved in house-keeping re-
ductions of the target terms. Temporary immobility is used whenever we need
to guarantee that location-dependent messages to partially committed agents
are safely delivered.

The following two lemmas relate intermediate language states to source
terms, by weak simulation relations using either the undo or commit decod-
ings. Their proofs are relatively straightforward.

LEMMA 10.3 (D IS A STRICT SIMULATION). For any Sys well-formed for �, if

� � Sys
β−→
	

Sys′ then � � D[[Sys]]
β̂−→
	

D[[Sys′]].

LEMMA 10.4 (D�−1
IS A PROGRESSING SIMULATION). For any Sys well-formed

with respect to �, if � � D�[[Sys]]
β−→
	

LP then there exists a well-formed state
Sys′ such that LP ≡ D�[[Sys′]] and � � Sys

β=⇒
	

Sys′.

These two lemmas are proved by direct constructions of simulation relations.
The analysis of possible transitions is made feasible by the factoring out of
housekeeping steps.

These results are combined to give a direct relation between the source and
the target terms, proving that a source term LP and its translation C[[LP]] are
related by a coupled simulation.

THEOREM 10.5 (ENCODING CORRECTNESS). For any LP well-formed with re-
spect to a valid system context �, LP � �C�[[LP]].

PROOF. The proof puts together the operational correspondence results de-
veloped earlier, as can be summarized in the next diagram.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:53

11. RELATED WORK

A range of work on mobility from different perspectives (process migration
within a cluster, mobile computing, and wide-area migration in mobile agent
languages) is surveyed in the collection edited by Milojičić et al. [1999].

The direct precursors of our work on Nomadic Pict were programming lan-
guages closely based on process calculi. The collection of Nielson [1997] de-
scribes CML, FACILE, LCS, and the Poly/ML concurrency primitives, all of
which draw on channel-based communication as in Milner’s CCS [1989]. With
the exception of FACILE, these are focused on local concurrency, without sup-
port for distributed programming. Milner [1992] and Milner et al. [1992], gen-
eralized CCS to the π calculus, allowing channel names to be themselves sent
over channels, and with an elegant operational semantics for fresh generation of
new channel names. The π calculus is small but very expressive, allowing data
structures, functions, objects, locks, and other constructs of sequential and con-
current programming to be encoded with asynchronous message-passing. This
was demonstrated in the Pict language of [Pierce and Turner 2000; Turner
1996], which was an experiment in building a concurrent (but again not dis-
tributed) programming language based closely on the π calculus, by analogy to
the development of functional programming languages such as ML and Haskell
above the λ-calculus.

The distributed join-calculus of Fournet et al. [1996] aimed to redesign the
π calculus to make a better foundation for distributed programming, as de-
veloped in the subsequent JoCaml programming language [Conchon and Le
Fessant 1999]. The distributed join-calculus ensures syntactically that there is
a unique receiver for each channel, and then regains expressivity by allowing
receivers to synchronize on multiple messages. It also distributes processes over
a hierarchical structure of abstract locations, which may be freshly generated
and which may migrate to different points in the hierarchy. In implementations
one can think of the first level of this hierarchy as physical machines, with lower
levels as migratable running computations. Implementations had an elaborate
overlay network built-in, with forwarding pointer chains (as in our algorithm
of Section 5) and mechanisms to collapse those chains. The hidden complexity
of this algorithm, and the fact that its behavior under failure had either to be
exposed to the programmer or concealed by a high-level semantics in which
reconnection was prohibited, was the immediate spur for our development of
the lower level of abstraction of low-level Nomadic Pict, in which the semantics

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

12:54 • P. Sewell et al.

under failure is clear and in which one can see and analyze the design of such
higher-level algorithms.

The π calculus is an attractive starting point for calculi for distributed com-
putation, from its clear treatment of concurrency, the elegant treatment of
names, and the similarity between π asynchronous message passing and asyn-
chronous network communication.1 This led to a wide variety of distributed
process calculi, adding notions of distribution, locality, mobility, and security.
Some parts of the rather large design space are surveyed in Sewell [2000] and
Cardelli [1999], and we mention a few prominent examples.

—The early πl calculus of Amadio and Prasad [1994], used for modeling the no-
tions of locality and failure presented in the programming language FACILE
[Thomsen et al. 1996].

—The dpi of Sewell [1998], used for studying a type system in which the input
and output capabilities of channels may be either global or local.

—The Seal calculus of Vitek and Castagna [1998] and Castagna, Vitek, and
Zappa Nardelli [2005] intended as a framework for writing secure dis-
tributed applications over large-scale open networks such as the Internet,
and the Box-π calculus of Sewell and Vitek [2003], used for studying wrap-
pers: secure environments that provide fine-grain control of the allowable
interaction between them, and between components and other system
resources.

—The various Dπ calculi of Riely and Hennessy [1998] and Hennessy [2007]
used for studying partially typed semantics, designed for mobile agents
in open distributed systems in which some sites may harbor malicious
intentions. These typically address code mobility but not computation
mobility, with a focus on type-based enforcement of desirable properties.

—The Ambient calculus of Cardelli and Gordon [1998], a calculus for describ-
ing the movement of processes and devices, including movement through
administrative domains. This prompted further work on semantics, such
as Merro and Zappa Nardelli [2005], and several variant calculi.

—The extension of TyCO with distribution and code mobility [Vasconcelos et al.
1998], a name-passing process calculus which allows asynchronous commu-
nication between concurrent objects via labeled messages carrying names.

These systems address a variety of distributed-systems problems with seman-
tically well-founded approaches, generally focusing on the dynamics of interac-
tion (as one would expect from their process-calculus origins) and in some cases
on type systems. One can also take a more logical view, as in the P2 system [Loo
et al. 2005] and SD3 [Jim 2001], both of which describe distributed algorithms
declaratively. Murphy [2008] develops a language based on a Curry-Howard

1In practice, one would typically implement π -style asynchronous messaging above TCP connec-
tions, not UDP, as UDP does not provide retransmission and has a fixed upper-bound datagram
size. In the absence of migration, such an implementation would provide a FIFO property that is
not reflected in the π calculus semantics.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:55

correspondence for a modal logic, focussing on type-theoretic guarantees that
mobile code will never access resources that are not present at the current site.

There are many related programming languages, not based on a π calculus
semantics but supporting some form of mobility, including Kali Scheme [Cejtin
et al. 1995], Obliq [Cardelli 1995], and Mozart [Van Roy and Haridi 2004].

As for mobility at the virtual machine level, Xen live migration [Clark et al.
2005] deals with the special case of migration over a single switched LAN. In
that setting, one can arrange for the migrating VM to carry its IP address with
it, with an unsolicited ARP reply. This results in the loss of some in-flight IP
packets, but (as higher-level protocols such as TCP must be resilient to such loss
in any case) the migration is essentially transparent. Migration in the wide-area
setting, without additional support from the IP layer, would presumably need
overlay networks of the kind we describe, though perhaps a TCP-connection-
based approach would be a better fit to applications than the asynchronous
messages that we consider here.

Turning now to verification, Moreau [2002, 2001] develops a fault-tolerant
directory service and message routing algorithm, based on forwarding pointers,
and verifies the correctness of the abstract algorithm (mechanised in Coq). Ver-
ification of mobile communication infrastructures has also been considered in
the Mobile UNITY setting, by McCann and Roman [1997]. There is, of course,
a great deal of other work on verification of distributed algorithms in general,
and on proof techniques for π calculi. Roughly speaking, the verification and
proof techniques of process calculi can be classified as those based on types
and those based on the dynamic behavior of processes. A type system for the π

calculus was first proposed by Milner [1993], giving the notions of sort and sort-
ings, which ensure uniformity of the kind of names that can be sent or received
by channels. Many refinements on the type system have subsequently been
proposed, including polymorphism [Turner 1996; Pierce and Sangiorgi 1997],
subtyping [Pierce and Sangiorgi 1996], linear types [Kobayashi et al. 1996], ob-
jects [Walker 1995], and a generic type system [Igarashi and Kobayashi 2001].
Adding the notions of locality and distribution to the π calculus admits further
refinements to be made. Sewell [1998] formulated dpi for studying a type system
where each channel is located at an agent and can be given global/local usage
capability as well as that for input/output. An approximation to the join-style
of interaction, for example, can be obtained by giving them global-output and
local-input capabilities. This type system retains the expressiveness of channel
communication, yet admits optimization at compile time. Yoshida and Hen-
nessy [1999] formulated a type system for Dπλ which emulates the join-style
of interaction using input/output subtyping. The presence of higher-order pro-
cesses makes this formulation challenging. The type system of Dπ r

1 extends the
concept of uniform receptiveness [Sangiorgi 1999] to ensure that each output
(perhaps an inter-agent message) is guaranteed to react with a (unique) input
process at its destination. The techniques of refining channel types are also
used in ensuring security-related properties. For example, the partial typing
of Riely and Hennessy [1999] ensures that resources of trusted sites are not
abused by untrusted sites; Sewell and Vitek [2003] introduced causality types

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

12:56 • P. Sewell et al.

for reasoning about information flow between security domains; and Cardelli
et al. [2000] introduced a notion of groups which can be used for ensuring
that the boundary of an ambient may only be dissolved by trusted groups of
ambients.

The behavioral theories of these distributed variants of process calculi are
generally adapted from those of the π calculus, which are based around opera-
tional semantics and operational equivalences. A reduction semantics is given
for all of the cited calculi. This, together with some notions of barbs, allows a
definition of barbed bisimulation to be given, as is the case for the Distributed
Join-calculus [Fournet and Gonthier 1996], the Seal calculus [Castagna and
Vitek 1999], and the Ambient calculus [Gordon and Cardelli 1999]. A labeled
transition semantics is also given for the π1l , Dπ , Dπ r

1, Ambient, Seal, and Box
π calculi, allowing some notions of bisimilarity to be given. These definitions
of labeled transition semantics often involve refining that of the standard π

with location annotation (@l for Dπ1
r and “relative location” tags for Seal and

Box-π). The labelled transition semantics of Dπ [Riely and Hennessy 1998] ex-
tends the standard π input and output actions with labels that indicate move-
ments and failures of locations. The style of transition systems for the Ambient
calculus [Gordon and Cardelli 1999; Merro and Nardelli 2005] is quite differ-
ent from those for π calculus, as they involve relative locations of ambients.
The definitions of labeled transition semantics and operational equivalences of
distributed CCS [Riely and Hennessy 1997] and π1l [Amadio 1997] also take
location failures into account.

Several authors have used process-calculus proof techniques to verify the
correctness of implementations or abstract machines for various ambient cal-
culi. Fournet et al. [2000] give a translation of Ambients into the Join calculus.
As in our central forwarding server proof, they build an intermediate language
to capture intermediate states of the translation and use coupled simulations,
though they work in a barbed reduction-semantics setting rather than the la-
beled transition setting we adopt. They also describe an implementation in
JoCaml based on this translation, though with some significant differences.
Giannini et al. [2006] give an abstract machine (PAN) for Safe Ambients [Levi
and Sangiorgi 2000], a restricted calculus in which ambient movement depends
on agreement between both parties, and ambients are either single-threaded
or immobile. This is rather different from Nomadic π , in which an agent can
migrate to another site at any time. They prove the abstract machine has the
same barbs as the source. Hirschkoff et al. [2007] refine this abstract machine,
optimizing the treatment of forwarders, and prove it weakly bisimilar to PAN.
They also describe an OCaml implementation loosely based on their abstract
machine.

The work on Nomadic Pict described in the current article led to two substan-
tial subsequent lines of research. Firstly, in a production language, one would
like to express high-level abstractions such as that of high-level Nomadic Pict
using a general-purpose module system rather than the special-purpose encod-
ings of the Nomadic Pict implementation. An ML-style module system [Milner
et al. 1997] is a good fit for this: one can express the high- and low-level ab-
stractions as signatures, with abstract types of site name, agent name, etc., and

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:57

operations to send messages, migrate, etc., and express a particular overlay
network implementation as a functor from one to the other. However, when one
imagines this in a wide-area setting, it quickly becomes obvious that one will
need multiple different overlay network implementations, and that they will
inevitably exist in multiple simultaneous versions. This observation prompted
work on type equality for abstract types in the distributed setting [Sewell 2001;
Leifer et al. 2003; Sewell et al. 2005, 2007; Billings et al. 2006; Deniélou and
Leifer 2006], and the Acute and HashCaml prototype languages. The former
provides a slightly lower level of abstraction than low-level Nomadic Pict: in-
stead of migration, it has a primitive for freezing a group of threads into a
thunk (together with support for modules, versions, etc.). This makes it possi-
ble to implement low-level Nomadic Pict itself as an Acute module [Sewell et al.
2007, Section 11], and high-level Nomadic Pict overlays could be implemented
as further modules above that.

Secondly, recall that the low-level Nomadic Pict abstraction was designed
to be implementable with a clear semantics in the presence of failure (site
failure, message loss, or disconnection): each low-level reduction step is imple-
mentable with at most one asynchronous inter-site message. Later work took
this further, characterizing the exact semantics (including failure cases) not
for simple asynchronous messages, but instead for the communication prim-
itives provided by the Sockets API to the UDP and TCP protocols [Serjantov
et al. 2001; Wansbrough et al. 2002; Bishop et al. 2005, 2006; Ridge et al. 2008.
Work by Compton [2005] (above that UDP model) and Ridge [2009] (above a
simplified TCP model) demonstrates that it is feasible to verify, fully formally,
executable distributed code above such models.

12. CONCLUSION

We have studied the overlay networks required for communication between mo-
bile computations. By expressing such distributed algorithms as Nomadic Pict
encodings, between carefully chosen (and well-defined) levels of abstraction, we
have descriptions of them that are

—executable: one can rapidly prototype the algorithms, and applications writ-
ten above them in the high-level language;

—concise: with the details of concurrency, locking, name-generation, etc., made
clear; and

—precise: with a semantics that we can use for formal reasoning and that gives
a solid understanding of the primitives for informal reasoning.

We discussed the design space of possible algorithms, and implemented a pro-
gramming language that lets the algorithms (and applications above them) be
executed. We developed semantics and proof techniques for proving correctness
of such algorithms. The techniques were illustrated by a proof that an exam-
ple algorithm is correct with respect to coupled simulation. This algorithm,
though nontrivial, is relatively simple, but we believe that more sophisticated
algorithms could be dealt with using the same techniques (albeit with new
intermediate languages, tailored to particular algorithms).

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

12:58 • P. Sewell et al.

More generally, the work is a step towards semantically-founded engineer-
ing of wide-area distributed systems. Here we dealt with the combination of
migration and communication, and for a complete treatment one must also
simultaneously address failure and malicious attack.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital
Library.

ACKNOWLEDGMENTS

The initial work on the Nomadic Pict project was in collaboration with Benjamin
C. Pierce [Sewell et al. 1998, 1999]. We also owe special thanks to Benjamin
and to David N. Turner for allowing us to use the source-code of Pict, and thank
Robin Milner and Ken Moody for their support.

REFERENCES

AMADIO, R. M. 1997. An asynchronous model of locality, failure, and process mobility. In Proceed-
ings of the 2nd International Conference on Coordination Languages and Models (COORDINA-
TION’97). Lecture Notes in Computer Science, vol. 1282. Springer, 374–391.

AMADIO, R. M. AND PRASAD, S. 1994. Localities and failures (extended abstract). In Proceedings of
the 14th Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’94). Lecture Notes in Computer Science, vol. 880. Springer, 205–216.

APPEL, A. W. 1992. Compiling with Continuations. Cambridge University Press.
ARNOLD, K., WOLLRATH, A., O’SULLIVAN, B., SCHEIFLER, R., AND WALDO, J. 1999. The Jini Specifica-

tion. Addison-Wesley, Reading, MA.
AWERBUCH, B. AND PELEG, D. 1995. Online tracking of mobile users. J. ACM 42, 5, 1021–1058.
BALLINTIJN, G., VAN STEEN, M., AND TANENBAUM, A. 1999. Simple crash recovery in a wide-area

location service. In Proceedings of the 11th IASTED International Conference on Parallel and
Distributed Computing Systems (PDCS’99). IASTED, 87–93.

BILLINGS, J., SEWELL, P., SHINWELL, M., AND STRNIS̆A, R. 2006. Type-Safe distributed programming
for OCaml. In Proceedings of the ACM SIGPLAN Workshop on ML (ML’06). ACM, New York,
20–31.

BISHOP, S., FAIRBAIRN, M., NORRISH, M., SEWELL, P., SMITH, M., AND WANSBROUGH, K. 2005. Rigorous
specification and conformance testing techniques for network protocols, as applied to TCP, UDP,
and sockets. In Proceedings of the ACM SIGCOMM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications (SIGCOMM’05). ACM, New York,
265–276.

BISHOP, S., FAIRBAIRN, M., NORRISH, M., SEWELL, P., SMITH, M., AND WANSBROUGH, K. 2006. Engi-
neering with logic: HOL specification and symbolic-evaluation testing for TCP implementations.
In Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’06). ACM, New York, 55–66.

CARDELLI, L. 1995. A language with distributed scope. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’95). ACM, New York, 286–
297.

CARDELLI, L. 1999. Abstractions for mobile computation. In Secure Internet Programming: Secu-
rity Issues for Mobile and Distributed Objects. Lecture Notes in Computer Science, vol. 1603, J.
Vitek and C. D. Jensen, Eds. State-of-the-Art Survey. Springer, 51–94.

CARDELLI, L., GHELLI, G., AND GORDON, A. D. 2000. Ambient groups and mobility types. In Pro-
ceedings of the 16th IFIP International Conference on Theoretical Computer Science, Exploring
New Frontiers of Theoretical Informatics (TCS’00). Lecture Notes in Computer Science, vol. 1872.
Springer, 333–347.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:59

CARDELLI, L. AND GORDON, A. D. 1998. Mobile ambients. In Proceedings of the 1st International
Conference on Foundations of Software Science and Computation Structure (FoSSaCS’98). Lec-
ture Notes in Computer Science, vol. 1378. Springer, 140–155.

CARDELLI, L., GORDON, A. D., AND GHELLI, G. 1999. Mobility types for mobile ambients. In Pro-
ceedings of the 26th International Colloquium on Automata, Languages and Programming
(ICALP’99). Lecture Notes in Computer Science, vol. 1644. Springer, 230–239.

CASTAGNA, G. AND VITEK, J. 1999. Commitment and confinement for the Seal calculus. Trusted
objects, Centre Universitaire d’Informatique, University of Geneva.

CASTAGNA, G., VITEK, J., AND ZAPPA NARDELLI, F. 2005. The Seal calculus. Inform. Comput. 201, 1,
1–54.

CEJTIN, H., JAGANNATHAN, S., AND KELSEY, R. 1995. Higher-Order distributed objects. ACM Trans.
Program. Lang. Syst. 17, 5, 704–739.

CHANDRA, T. D. AND TOUEG, S. 1996. Unreliable failure detectors for reliable distributed systems.
J. ACM 43, 2, 225–267.

CHERITON, D. 1988. The V distributed system. Comm. ACM 31, 3, 314–333.
CLARK, C., FRASER, K., HAND, S., HANSEN, J. G., JUL, E., LIMPACH, C., PRATT, I., AND WARFIELD, A. 2005.

Live migration of virtual machines. In Proceedings of the 2nd USENIX/ACM Symposium on
Networked Systems Design and Implementation (NSDI’05). 273–286.

COMPTON, M. 2005. Stenning’s protocol implemented in UDP and verified in Isabelle. In Proceed-
ings of the Australasian Symposium on Theory of Computing (CATS’05). Australian Computer
Society, Darlinghurst, Australia, 21–30.

CONCHON, S. AND LE FESSANT, F. 1999. Jocaml: Mobile agents for Objective-Caml. In Proceedings
of the 1st International Symposium on Agent Systems and Applications/3rd International Sym-
posium on Mobile Agents (ASA/MA’99). IEEE Computer Society, 22–29.

DE NICOLA, R. AND HENNESSY, M. C. B. 1984. Testing equivalences for processes. Theor. Comput.
Sci. 34, 1-2, 83–133.

DEMMER, M. J. AND HERLIHY, M. P. 1998. The arrow distributed directory protocol. In Proceedings
of the 12th International Symposium on Distributed Computing (DISC’98). Lecture Notes in
Computer Science, vol. 1499. Springer, 119–133.

DENIÉLOU, P.-M. AND LEIFER, J. J. 2006. Abstraction preservation and subtyping in distributed
languages. In Proceedings of the 11th ACM SIGPLAN International Conference on Functional
Programming (ICFP’06). ACM, New York, 286–297.

DOUGLIS, F. AND OUSTERHOUT, J. 1991. Transparent process migration: Design alternatives and
the Sprite implementation. Softw. Pract. Exper. 21, 8, 757–785.

FISCHER, M. J., LYNCH, N. A., AND PATERSON, M. S. 1985. Impossibility of distributed consensus
with one faulty processor. J. ACM 32, 2, 374–382.

FOURNET, C. AND GONTHIER, G. 1996. The reflexive CHAM and the join-calculus. In Proceed-
ings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’96). ACM Press, New York, 372–385.

FOURNET, C., GONTHIER, G., LÉVY, J.-J., MARANGET, L., AND RÉMY, D. 1996. A calculus of mobile agents.
In Proceedings of the 7th International Conference on Concurrency Theory (CONCUR’96). Lecture
Notes in Computer Science, vol. 1119. Springer, 406–421.

FOURNET, C., LÉVY, J.-J., AND SCHMITT, A. 2000. An asynchronous, distributed implementation
of mobile ambients. In Proceedings of the 16th IFIP International Conference on Theoretical
Computer Science, Exploring New Frontiers of Theoretical Informatics (TCS’00). Lecture Notes
in Computer Science, vol. 1872. Springer, 348–364.

GIANNINI, P., SANGIORGI, D., AND VALENTE, A. 2006. Safe Ambients: Abstract machine and dis-
tributed implementation. Sci. Comput. Program. 59, 3, 209–249.

GORDON, A. D. AND CARDELLI, L. 1999. Equational properties of mobile ambients. In Proceed-
ings of the 2nd International Conference on Foundations of Software Science and Computa-
tion Structure (FoSSaCS’99). Lecture Notes in Computer Science, vol. 1578. Springer, 212–
226.

GUERRAOUI, R. AND SCHIPER, A. 1996. Fault-Tolerance by replication in distributed systems. In
Proceedings of the Ada-Europe International Conference on Reliable Software Technologies (Ada-
Europe’96). Lecture Notes in Computer Science, vol. 1088. Springer, 38–57.

HENNESSY, M. 2007. A Distributed Pi-Calculus. Cambridge University Press.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

12:60 • P. Sewell et al.

HIRSCHKOFF, D., POUS, D., AND SANGIORGI, D. 2007. An efficient abstract machine for Safe Ambients.
J. Logic Algebr. Program. 71, 2, 114–149.

IGARASHI, A. AND KOBAYASHI, N. 2001. A generic type system for the pi-calculus. In Proceed-
ings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’01). ACM, New York, 128–141.

JIM, T. 2001. SD3: A trust management system with certified evaluation. In Proceedings of the
IEEE Symposium on Security and Privacy (SP’01). IEEE Computer Society, 106–115.

JUL, E., LEVY, H., HUTCHINSON, N., AND BLACK, A. 1988. Fine-Grained mobility in the Emerald
system. ACM Trans. Comput. Syst. 6, 1, 109–133.

KOBAYASHI, N., PIERCE, B. C., AND TURNER, D. N. 1996. Linearity and the pi-calculus. In Proceed-
ings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’96). ACM, New York, 358–371.

LANGE, D. B. AND ARIDOR, Y. 1997. Agent Transfer Protocol—ATP/0.1. IBM Tokyo Research Lab-
oratory.

LEIFER, J. J., PESKINE, G., SEWELL, P., AND WANSBROUGH, K. 2003. Global abstraction-safe mar-
shalling with hash types. In Proceedings of the 8th ACM SIGPLAN International Conference on
Functional Programming (ICFP’03). ACM, New York, 87–98.

LEROY, X. 1995. Le système Caml Special Light: Modules et compilation efficace en Caml. Tech.
rep. RR-2721, INRIA, Institut National de Recherche en Informatique et en Automatique.

LEVI, F. AND SANGIORGI, D. 2000. Controlling interference in Ambients. In Proceedings of the 27th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’00). ACM,
New York, 352–364.

LOO, B. T., CONDIE, T., HELLERSTEIN, J. M., MANIATIS, P., ROSCOE, T., AND STOICA, I. 2005. Implement-
ing declarative overlays. ACM SIGOPS Oper. Syst. Rev. 39 5, 75–90.

MCCANN, P. J. AND ROMAN, G.-C. 1997. Mobile UNITY coordination constructs applied to packet
forwarding for mobile hosts. In Proceedings of the 2nd International Conference on Coordination
Languages and Models (COORDINATION’97). Lecture Notes in Computer Science, vol. 1282.
Springer, 338–354.

MERRO, M. AND ZAPPA NARDELLI, F. 2005. Behavioral theory for mobile ambients. J. ACM 52, 6,
961–1023.

MILNER, R. 1989. Communication and Concurrency. International Series in Computer Science.
Prentice Hall.

MILNER, R. 1992. Functions as processes. J. Math. Struct. Comput. Sci. 2, 2, 119–141.
MILNER, R. 1993. The polyadic π -calculus: A tutorial. In Logic and Algebra of Specification, F. L.

Bauer, W. Brauer, and H. Schwichtenberg, Eds. Series F: Computer and System Sciences, vol. 94.
NATO Advanced Study Institute, Springer.

MILNER, R., PARROW, J., AND WALKER, D. 1992. A calculus of mobile processes, Parts I and II. Inform.
Comput. 100, 1, 1–77.

MILNER, R., TOFTE, M., HARPER, R., AND MACQUEEN, D. 1997. The Definition of Standard ML (re-
vised). The MIT Press.

MILOJIC̆IĆ, D., DOUGLIS, F., AND WHEELER, R., EDS. 1999. Mobility: Processes, Computers, and Agents.
Addison-Wesley, Reading, MA.

MOREAU, L. 2001. Distributed directory service and message router for mobile agents. Sci. Com-
put. Program. 39, 2-3, 249–272.

MOREAU, L. 2002. A fault-tolerant directory service for mobile agents based on forwarding
pointers. In Proceedings of the 17th ACM Symposium on Applied Computing (SAC’02). ACM,
New York, 93–100.

MULLENDER, S. J. AND VITÁNYI, P. M. B. 1988. Distributed match-making. Algorithmica 3, 367–
391.

MURPHY, VII, T. 2008. Modal types for mobile code. Ph.D. thesis, Tech. rep. CMU-CS-08-126,
Carnegie Mellon University.

NEEDHAM, R. M. 1989. Names. In Distributed Systems, S. Mullender, Ed. Addison-Wesley, 89–
101.

NESTMANN, U. 1996. On determinacy and nondeterminacy in concurrent programming. Ph.D.
thesis, Technische Fakultät, Universität Erlangen.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:61

NESTMANN, U. AND PIERCE, B. C. 1996. Decoding choice encodings. In Proceedings of the 7th Inter-
national Conference on Concurrency Theory (CONCUR’96). Lecture Notes in Computer Science,
vol. 1119. Springer, 179–194.

NIELSON, F., ED. 1997. ML with Concurrency: Design, Analysis, Implementation, and Application.
Monographs in Computer Science. Springer.

PALAMIDESSI, C. 1997. Comparing the expressive power of the synchronous and the asynchronous
π -calculus. In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’97). ACM, New York, 256–265.

PARROW, J. AND SJÖDIN, P. 1992. Multiway synchronization verified with coupled simulation. In
Proceedings of the 3rd International Conference on Concurrency Theory (CONCUR’92). Lecture
Notes in Computer Science, vol. 630. Springer, 518–533.

PIERCE, B. C. AND SANGIORGI, D. 1996. Typing and subtyping for mobile processes. Math. Struct.
Comput. Sci. 6, 5, 409–454.

PIERCE, B. C. AND SANGIORGI, D. 1997. Behavioral equivalence in the polymorphic pi-calculus.
In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’97). ACM, New York, 242–255.

PIERCE, B. C. AND TURNER, D. N. 1995. Concurrent objects in a process calculus. In Theory
and Practice of Parallel Programming: Proceedings of the International Workshop (TPPP’94),
T. Ito and A. Yonezawa, Eds. Lecture Notes in Computer Science, vol. 907. Springer, 187–
215.

PIERCE, B. C. AND TURNER, D. N. 1997. Pict Language Definition. Available electronically as part
of the Pict distribution. www.cis.upenn.edu/∼bcpirce/papers/pict/Html/Pict.html. (3/28/10).

PIERCE, B. C. AND TURNER, D. N. 2000. Pict: A programming language based on the pi-calculus. In
Proof, Language and Interaction: Essays in Honour of Robin Milner, G. Plotkin, C. Stirling, and
M. Tofte, Eds. Foundations of Computing. MIT Press, 455–494.

POPEK, G. J. AND WALKER, B. J. 1986. The LOCUS Distributed System Architecture. Computer
Systems Series. MIT Press, Cambridge, MA.

RIDGE, T. 2009. Verifying distributed systems: The operational approach. In Proceedings of the
36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Langauges (POPL’09).
ACM, New York, 429–440.

RIDGE, T., NORRISH, M., AND SEWELL, P. 2008. A rigorous approach to networking: TCP, from
implementation to protocol to service. In Proceedings of the 15th International Symposium
on Formal Methods (FM’08). Lecture Notes in Computer Science, vol. 5014. Springer, 294–
309.

RIELY, J. AND HENNESSY, M. 1997. Distributed processes and location failures (extended abstract).
In Proceedings of the 24th International Colloquium on Automata, Languages and Programming
(ICALP’97). Lecture Notes in Computer Science, vol. 1256. Springer, 471–481.

RIELY, J. AND HENNESSY, M. 1998. A typed language for distributed mobile processes (extended
abstract). In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL’98). ACM, New York, 378–390.

RIELY, J. AND HENNESSY, M. 1999. Trust and partial typing in open systems of mobile agents.
In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’99). ACM, New York, 93–104.

SANGIORGI, D. 1999. The name discipline of uniform receptiveness. Theor. Comput. Sci. 221, 1-2,
457–493.

SANGIORGI, D. AND MILNER, R. 1992. The problem of “weak bisimulation up to”. In Proceedings of the
3rd International Conference on Concurrency Theory (CONCUR’92). Lecture Notes in Computer
Science, vol. 630. Springer, 32–46.

SERJANTOV, A., SEWELL, P., AND WANSBROUGH, K. 2001. The UDP calculus: Rigorous semantics for
real networking. In Proceedings of the 4th International Symposium on Theoretical Aspects of
Computer Software (TACS’01). Lecture Notes in Computer Science, vol. 2215. Springer, 535–
559.

SEWELL, P. 1997. On implementations and semantics of a concurrent programming language. In
Proceedings of the 8th International Conference on Concurrency Theory (CONCUR’97). Lecture
Notes in Computer Science, vol. 1243. Springer, 391–405.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

12:62 • P. Sewell et al.

SEWELL, P. 1998. Global/Local subtyping and capability inference for a distributed pi-
calculus. In Proceedings of the 25th International Colloquium on Automata, Languages and
Programming (ICALP’98). Lecture Notes in Computer Science, vol. 1443. Springer, 695–
706.

SEWELL, P. 2000. A brief introduction to applied π . Tech. rep. 498, Computer Laboratory, Univer-
sity of Cambridge, Cambridge, UK.

SEWELL, P. 2001. Modules, abstract types, and distributed versioning. In Proceedings of the 28th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’01). ACM,
New York, 236–247.

SEWELL, P., LEIFER, J. J., WANSBROUGH, K., ZAPPA NARDELLI, F., ALLEN-WILLIAMS, M., HABOUZIT, P.,
AND VAFEIADIS, V. 2005. Acute: High-Level programming language design for distributed
computation. In Proceedings of the 10th ACM SIGPLAN International Conference on Functional
Programming (ICFP’05). ACM, New York, 15–26.

SEWELL, P., LEIFER, J. J., WANSBROUGH, K., ZAPPA NARDELLI, F., ALLEN-WILLIAMS, M., HABOUZIT, P., AND

VAFEIADIS, V. 2007. Acute: High-level programming language design for distributed computa-
tion. J. Funct. Program. 17, 4-5, 547–612.

SEWELL, P. AND VITEK, J. 2003. Secure composition of untrusted code: Box-π , wrappers and causal-
ity types. J. Comput. Secur. 11, 2, 135–188.

SEWELL, P. AND WOJCIECHOWSKI, P. T. 2008. Verifying overlay networks for relocatable computa-
tions (or: Nomadic Pict, relocated). In Proceedings of the Joint HP-MSR Research Workshop on
The Rise and Rise of the Declarative Datacentre.
http: //research.microsoft.com/riseandrise (2/13/10).

SEWELL, P., WOJCIECHOWSKI, P. T., AND PIERCE, B. C. 1998. Location independence for mobile agents.
In Proceedings of the Workshop on Internet Programming Languages (IFL’98), in conjunction with
IEEE ICCL’98. 1–6.

SEWELL, P., WOJCIECHOWSKI, P. T., AND PIERCE, B. C. 1999. Location-Independent communication
for mobile agents: A two-level architecture. Internet Programming Languages. Lecture Notes in
Computer Science, vol. 1686. Springer, 1–31.

THOMSEN, B., LETH, L., AND KUO, T.-M. 1996. A Facile tutorial. In Proceedings of the 7th Inter-
national Conference on Concurrency Theory (CONCUR’96). Lecture Notes in Computer Science,
vol. 1119. Springer, 278–298.

TURNER, D. N. 1996. The polymorphic pi-calculus: Theory and implementation. Ph.D. thesis,
University of Edinburgh.

UNYAPOTH, A. 2001. Nomadic π -calculi: Expressing and verifying communication infrastructure
for mobile computation. Ph.D. thesis, University of Cambridge. Also Tech. rep. UCAM-CL-TR-
514, Computer Laboratory, University of Cambridge.

UNYAPOTH, A. AND SEWELL, P. 2001. Nomadic Pict: Correct communication infrastructure for mo-
bile computation. In Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’01). ACM, New York, 116–127.

VAN ROY, P. AND HARIDI, S. 2004. Concepts, Techniques, and Models of Computer Programming.
MIT Press.

VAN STEEN, M., HAUCK, F. J., BALLINTIJN, G., AND TANENBAUM, A. S. 1998. Algorithmic design of the
Globe wide-area location service. Comput. J. 41, 5, 297–310.

VASCONCELOS, V. T., LOPES, L., AND SILVA, F. 1998. Distribution and mobility with lexical scoping in
process calculi. In Proceedings of the 3rd International Workshop on High-Level Concurrent Lan-
guages (HLCL’98). Electronic Notes in Theoretical Computer Science, vol. 16.3. Elsevier Science
Publishers.

VITEK, J. AND CASTAGNA, G. 1998. Towards a calculus of secure mobile computations. In Proceed-
ings of the Workshop on Internet Programming Languages, in Conjunction with IEEE ICCL’98.

WALKER, D. 1995. Objects in the π -calculus. Inform. Comput. 116, 2, 253–271.
WANSBROUGH, K., NORRISH, M., SEWELL, P., AND SERJANTOV, A. 2002. Timing UDP: Mechanized

semantics for sockets, threads, and failures. In Proceedings of the 11th European Symposium on
Programming Languages and Systems (ESOP’02). Lecture Notes in Computer Science, vol. 2305.
Springer, 278–294.

WOJCIECHOWSKI, P. T. 2000a. Nomadic Pict. Documentation and User’s Manual. (2/13/10)

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

Nomadic Pict • 12:63

WOJCIECHOWSKI, P. T. 2000b. Nomadic Pict: Language and infrastructure design for mobile com-
putation. Ph.D. thesis, University of Cambridge. Also Tech. rep. UCAM-CL-TR-492, Computer
Laboratory, University of Cambridge.

WOJCIECHOWSKI, P. T. 2010. The Nomadic Pict System.
http://www.cs.put.poznan.pl/pawelw/npict (2/13/10).

WOJCIECHOWSKI, P. T. 2001. Algorithms for location-independent communication between mo-
bile agents. In Proceedings of the AISB Symposium on Software Mobility and Adaptive
Behaviour.

WOJCIECHOWSKI, P. T. 2006. Scalable message routing for mobile software assistants. In Proceed-
ings of the 4th IFIP International Conference on Embedded and Ubiquitous Computing (EUC’06).
Lecture Notes in Computer Science, vol. 4096. Springer, 355–364.

WOJCIECHOWSKI, P. T. AND SEWELL, P. 1999. Nomadic Pict: Language and infrastructure design
for mobile agents. In Proceedings of the 1st International Symposium on Agent Systems and
Applications/3rd International Symposium on Mobile Agents (ASA/MA’99). IEEE Computer
Society.

WOJCIECHOWSKI, P. T. AND SEWELL, P. 2000. Nomadic Pict: Language and infrastructure design for
mobile agents. IEEE Concurr. 8, 2, 42–52. The 1st International Symposium on Agent Systems
and Applications/3rd International Symposium on Mobile Agents (ASA/MA’99).

YOSHIDA, N. AND HENNESSY, M. 1999. Subtyping and locality in distributed higher order processes
(extended abstract). In Proceedings of the 10th International Conference on Concurrency Theory
(CONCUR’99). Lecture Notes in Computer Science, vol. 1664. Springer, 557–572.

Received December 2008; revised June 2009; accepted September 2009

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 12, Publication date: April 2010.

