Teaching Operating Systems Using
Virtual Appliances and Distributed Version Control

Oren Laadan
Dept of Computer Science
Columbia University
New York, NY 10027
orenl@cs.columbia.edu

ABSTRACT

Students learn more through hands-on project experience for
computer science courses such as operating systems, but pro-
viding the infrastructure support for a large class to learn by
doing can be hard. To address this issue, we introduce a new
approach to managing and grading operating system home-
work assignments based on virtual appliances, a distributed
version control system, and live demonstrations. Our solu-
tion is easy to deploy and use with students’ personal com-
puters, and obviates the need to provide a computer labora-
tory for teaching purposes. It supports the most demanding
course projects, such as those that involve operating system
kernel development, and can be used by both on-campus
and remote distance learning students even with intermit-
tent network connectivity. Our experiences deploying and
using this solution to teach operating systems at Columbia
University show that it is easier to use, more flexible, and
more pedagogically effective than other approaches.

Categories and Subject Descriptors

D.4.0 [Operating Systems|: General; K.3.1 [Computers
and Education]: Computer Uses in Education—distance
learning; K.3.2 [Computers and Education|: Computer
and Information Science Education—computer science edu-
cation

General Terms

Design, Experimentation, Human Factors

Keywords

Operating systems, computer science education, virtualiza-
tion, virtual machines, open-source software, version control

INTRODUCTION

Programming projects are an important aspect of learn-
ing about many computer science subjects, especially oper-
ating systems. Hands-on experience with operating system

1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCSE’10, March 10-13, 2010, Milwaukee, Wisconsin, USA.

Copyright 2010 ACM 978-1-60558-885-8/10/03 ...$10.00.

Jason Nieh
Dept of Computer Science
Columbia University
. New York, NY 10027
nieh@cs.columbia.edu

480

Nicolas Viennot
Dept of Computer Science
Columbia University
New York, NY 10027
nviennot@cs.columbia.edu

code development, debugging, and testing is crucial for help-
ing students to understand how operating system concepts
really work in practice. Many approaches have been de-
veloped for providing such programming experience, includ-
ing systems programming projects, operating system sim-
ulation environments, pedagogical operating systems, and
kernel development in commercial operating systems. All
of these approaches share a common need. Students need
to be provided with some common software code base to
start from to do their programming projects, and they need
to be provided with a consistent computing environment
with the right versions of development tools so that their
programming projects can be accomplished successfully and
evaluated correctly.

Many universities provide computer laboratory facilities
to support these computing needs. Instructors work with
computer support staff to ensure that the facilities provide
the necessary development tools, access to required software
code bases, and the correct versions of everything to make
all the software work together correctly. These facilities typ-
ically provide reliable storage space that is backed up, mini-
mizing the impact of hardware failures on students’ work in
these facilities. Virtualization software is increasingly being
made available on these shared computer facilities to sup-
port kernel-level programming projects for operating system
courses. A student can be given root and dedicated access
to a virtual machine so that the kernel development cycle
of plan-implement-reboot-test-debug can be done without
inconveniencing other users of the laboratory facilities.

Unfortunately, providing and maintaining these computer
laboratory facilities for teaching purposes is often difficult.
If facilities do not yet exist, just finding the space for such
a laboratory can be hard at many sites, especially those in
urban environments with more constrained space availabil-
ity. This can be ameliorated in part by using space-efficient
racks of remotely accessible servers in lieu of laboratories
where students can sit, but this requires machine room space
with suitable power and cooling which can also be quite lim-
ited in availability. Even if computer laboratory facilities
already exist, they require computer support staff to main-
tain the facilities, upgrade and repair machines, and install
and maintain software required by instructors for teaching
purposes. Because computer support staff can be expen-
sive, they are often in limited supply in a university setting,
making it more difficult to complete these tasks in a timely
fashion. Computer hardware becomes quickly out of date,
and finding funds to periodically upgrade computer labora-
tory facilities, especially those used primarily for teaching

purposes, can be problematic. As a result, such facilities
are often underprovisioned for the number of students that
need to use the hardware, resulting in overloaded machines
especially just before homework assignments are due.

These problems are only exacerbated when it comes to
computing support for teaching operating systems. Virtual
machines are often used in this context, along with large
software code bases such as that for an entire commodity
operating system such as Linux. Running virtual machines
and frequently building entire operating system kernel trees
can tax machine resources much more than running regu-
lar applications. They impose higher CPU and memory re-
quirements on already overloaded machines. Students may
frequently snapshot their virtual machines so that they can
easily revert to an uncorrupted system when a kernel crash
takes out the system. While virtual machines already incur
high disk space requirements, frequent snapshots by many
students can easily use up all available disk space, bringing
everything to a grinding halt at the most inopportune times
when homework assignments are due. Since students doing
operating system kernel projects need root privileges inside
the virtual machines and can install anything they want,
there are increased security risks associated with the virtual
machines. To minimize these risks, computer support staff
often limit network access to the virtual machines, which can
make it more difficult for students to use them to complete
their homework assignments.

A benefit of providing shared computer laboratory facili-
ties for running virtual machines is that both students and
instructional staff can access them. This can make grad-
ing programming projects easier as instructional staff can
just log on to the respective students’ virtual machines to
evaluate their projects. However, this has its own problems
as instructional staff need to schedule time with students
when their virtual machines are unavailable, and instruc-
tional staff must face the risks of using untrusted virtual
machines managed by students that may have keyboard log-
gers and other malicious software installed inside them.

To address these problems, we observe and leverage three
recent trends in computing. First, laptop computers have
become inexpensive enough and indispensable for education
that all computer science students own one. Second, lap-
top computers have become powerful enough that they can
run almost any software that is needed for gaining hands-
on experience in programming projects for courses. Third,
virtualization technology has become ubiquitously available
at little if any cost to students. For example, VMware has
products that are freely available to everyone to run virtual
machines, and has agreements with many universities that
make all products freely available for academic purposes.

Building on these trends, we introduce a new approach to
teaching operating systems based on virtual appliances, a
distributed version control system, and live demonstrations.
We create a virtual appliance for doing operating system
homework assignments which can be easily deployed and run
on students’ personal computers in virtual machines without
interfering with any existing software on the their comput-
ers. We combine virtual appliances with a distributed ver-
sion control system to provide reliable storage for students’
homework assignments, support students working together
on group homework assignments, and manage the submis-
sion and grading of homework assignments. We leverage
virtual appliances and the version control system to enable

481

students to do live demonstrations of their work as part
of grading their assignments to simplify grading, providing
better feedback to students and greater interaction between
instructional staff and students to facilitate learning.

Our solution is easy to deploy and use with students’ per-
sonal computers, and obviates the need to provide a com-
puter laboratory for teaching purposes. It supports the most
demanding course projects, such as those that involve oper-
ating system kernel development, and can be used by both
on-campus and remote distance learning students even with
intermittent network connectivity. Our experiences deploy-
ing and using this solution to teach operating systems at
Columbia University show that it is easier to use, more flexi-
ble, and more pedagogically effective than other approaches.

2. VIRTUAL APPLIANCES

Students already have their own computers, but they come
in diverse software and hardware configurations. Linux serves
as an excellent basis for teaching courses such as operat-
ing systems, but most students do not run Linux on their
computers. Students would be loathed to install Linux na-
tively on their computers just to take a course, given the
risks of adversely affecting their existing software configura-
tions and other already installed applications. Instructional
staff would face almost insurmountable hurdles to get Linux
installed on all students’ computers given the diversity of
software and hardware configurations in use.

Virtualization solves this problem by making it easy to
run Linux operating system instances in virtual machines
without affecting existing software already installed on a
student’s computer. VMware provides commercial virtu-
alization software products on all major operating systems,
and their products are as easy to install and use as other
regular applications. We use VMware Workstation 6.5 for
Windows, VMware Workstation 6.5 for Linux, and VMware
Fusion 2.0 for Mac since these products provide excellent
support for software development and are freely available to
our students through academic licensing agreements.

Using VMware allows us to introduce virtual appliances
to provide all the necessary software we need for teaching
operating systems. A virtual appliance is a pre-built soft-
ware bundle that can be downloaded and run locally inside
a virtual machine. Unlike generic virtual machines, a virtual
appliance need not be installed and configured. It is readily
deployable—students just download and use it, avoiding any
installation issues. Instructional staff create a Linux virtual
appliance for doing operating system programming projects,
with the operating system, development tools, version con-
trol software, and all other necessary software already con-
figured and bundled together. Once it is working, the files
representing the virtual appliance are turned into a com-
pressed archive and made available for download from the
class Web site.

To use the virtual appliance, students install VMware
Workstation for Windows or Linux, or VMware Fusion for
Mac. Students then download the virtual appliance, un-
compress the archive, and just launch it in VMware to start
running the appliance. VMware virtualization software en-
sures that the virtual appliance is completely isolated from
the rest of the student’s computer, and enables the appliance
to run a completely different operating system while coexist-
ing with the one already installed on the student’s computer.
Since students all use the same virtual appliance, everyone

is ensured of running the exact same environment, avoiding
discrepancies that can arise when a program is developed
and tested with different compilers and operating system
versions. Students are free to change the software and hard-
ware configuration of their virtual appliances. They can
always get a clean, unmodified version of the appliance by
just downloading it again.

Virtual appliances provide a number of important ben-
efits. First, since they run on students’ computers, they
obviate the need to provide computer laboratory facilities
for teaching purposes, and avoid all the related difficulties.
There is no need for the associated hardware costs and com-
puter support staff costs for running such a lab. There are
no more concerns about network security for a lab. Second,
they provide complete isolation from other software run-
ning on the students’ computers, ensuring that courseware
does not interfere with other software and allowing course-
ware developed for just one operating system to be used
portably across many different operating systems and soft-
ware configurations without additional development cost.
Third, since virtual appliances are pre-configured by the in-
structional staff, they avoid the installation problems and
complications that can be associated with directly installing
non-commercial grade courseware on students’ computers.
Fourth, since students control the hardware that runs the
virtual appliance, students have the power and flexibility to
allocate resources to the virtual appliance as they see fit.
They can allocate more CPU or memory, run more copies
of the virtual appliance, and enable full network access to
make it easier to access network resources. Finally, since vir-
tual appliances are run locally on students’ computers, they
make it easy to support remote distance learning students
as well as on-campus students. Distance learning students
do not need to access a campus computing facilities to work,
and can work in their virtual appliances even in the absence
of network connectivity.

To teach operating systems, we assigned various program-
ming homework assignments that involved modifications to
the Linux kernel. This approach provided the advantages of
gaining hands-on experience doing kernel-level software de-
velopment, learning from examples in a real commercial op-
erating system and how to manage the complexity of a large
system, and acquiring skill with a widely used commercial
operating system that can be used for future employment.
For students to do these homework assignments, we config-
ured a Linux virtual appliance with a small footprint on disk
and that boots quickly. The small footprint allows it to be
quickly downloaded and consume only a modest amount of
disk space. Quick downloads make it easier to retrieve clean
copies of the virtual appliance to start over if needed. The
fast boot allows faster kernel testing and debugging.

We used the Gentoo Linux distribution, which can be au-
tomatically optimized and customized to provide the desired
small footprint and fast boot times. We customized our in-
stallation for kernel testing and debugging. For this purpose,
we do not need all the services typically provided by a full
Linux distribution and installed a bare minimum base sys-
tem. For example, we did not install mail, the cron server,
syslog daemon, HAL, D-Bus and ALSA utilities, Bluetooth
or WiFi capabilities, or ACPI utilities. Since Gentoo is a
source-based distribution, it already contains the toolchain
for Linux kernel development. A DHCP client, text editors,
and Git, for version control, were installed on top of the

482

base system. We did not need a graphical interface for the
virtual appliance for our purposes, though we could install
one if desired. Once the system was installed and configured
in a virtual machine, we cleaned up the system by removing
downloaded sources and removing SSH server keys. To make
the appliance available for download, we shrank the disk file
by wiping the free space on the drive (dd if=/dev/zero
of=tmp; sync; rm tmp) and shrinking the disk with the
vmware-vdiskmanager command. The size of the bzip2 com-
pressed virtual appliance was only 240 MB, which downloads
in only a few minutes for most network connections.

3. DISTRIBUTED VERSION CONTROL

Two important issues in using virtual appliances on stu-
dents’ computers are that instructional staff no longer have
easy access to the students’ virtual machines and students’
computers are often not backed up. We need to provide a
way for instructional staff to help students, test and grade
homework assignments done in the virtual appliances, and
limit the damage caused by students’ computer failure.

We combine virtual appliances with a distributed ver-
sion control system to provide reliable storage for students’
homework assignments and manage the submission and grad-
ing of homework assignments. We use Git, the version con-
trol system used for many commercial open source software
projects, including the Linux kernel. Git provides several
advantages. First, it enables students to learn how to use a
production version control system. Second, unlike systems
such as CVS, it is designed from the ground up to support
distributed version control for facilitating collaborative work
among users that may be loosely connected in their work,
which is particularly helpful for supporting distance learning
students. There is no problem with offline work since each
repository is self-contained and independent.

We provide a Git server for check ins and submissions.
The system has modest computing and storage requirements,
and can be used with any backed up machine as a server,
including a virtual machine installed on an instructor’s desk-
top computer. Students simply check in code to reliable stor-
age, and do not need to back up their own computers for this
purpose. The version control repository also enables multi-
ple students to work together on group homework projects.
We ask students to check in early and often. This helps
the instructional staff to see who is doing the work in group
programming assignments, and identify problems that stu-
dents may be having well before the homework submission
deadline so that we can help. We use the same system for
submitting homework assignments, guaranteeing that stu-
dents cannot tamper with submission dates and times. We
also use the same system for returning graded homework
assignments, whereby instructional staff can check in com-
ments directly into students’ code to provide better feedback
to students. For our operating system assignments, students
write C code. Our convention is to have students comment
their code using /* */ syntax to easily distinguish from in-
structional staff comments using // syntax.

We set up the Git server by providing each student a
UNIX account on the machine using their university ID, but
with only access to a specialized Git shell for running Git
commands, namely /usr/bin/git-shell. Students connect
to the server using SSH keys, which is secure and convenient.
Each student repository is a clone from a template reposi-
tory, where we provide the base file structure like the kernel

sources, or empty files to fill up. We optimize how reposi-
tories are stored since almost all programming assignments
involve modifications to the Linux kernel tree, which can be
large. By leveraging Git clone hardlink capability, the actual
data is stored only once on the physical layer although each
repository contains the kernel tree. Each repository stores
only diffs from the template. Permission on repository is
made with standard UNIX permissions. Each repository is
chmod 740. Only the respective student and the instruc-
tional staff can access the repository. Repository corruption
cannot happen since students have no access on the file sys-
tem, and Git itself will not corrupt itself.

To guarantee that students cannot tamper with submis-
sion dates and times, we log all the pushes on the server,
which contains the date of the push, the username, and the
object hashes. This allows us to know who did what and
when. In addition to logging, when students push their
commits, they see in their console how much time is left
until the homework submission deadline. Pushes after the
deadline are rejected. We do not trust the timestamps in
their commits, which can be manipulated since they simply
reflect the timestamps of the students’ computers.

4. LIVE DEMONSTRATIONS

Since instructional staff did not have easy access to stu-
dents’ virtual appliances, we could not test students’ work
directly in their virtual appliances. Having students check
in their appliances instead of source code would incur too
much storage overhead. We could build their programs and
install, reboot, and test them in our own virtual appliances,
but that would be time consuming for a large class.

We instead decided to require students to do live demon-

strations of their kernel programming homework assignments.

Students were assigned different 20 minute time slots during
office hours to do their demonstrations. We automated the
build process for the submitted code to generate a bootable
kernel image for each homework submission. Students were
given a clean virtual appliance and asked to install, reboot,
and demonstrate the functionality of their kernel images.
By starting with the submitted code, we ensured that the
kernel images generated were based on the actual homework
submissions. By having students demonstrate their submis-
sions, we made grading those submissions easier since in-
structional staff did not have to manually perform the time
consuming install, reboot, and testing for each submission.

More importantly, the live demonstrations provided a good
opportunity for students to interact with the instructional
staff and gain a better understanding of what they did right
and what they did wrong in their programming assignments.
Instructional staff could identify which students knew the
material and which did not, and also which students really
did the work and understood the material.

S. EXPERIENCES

We have taught operating systems at Columbia University
for almost ten years using various forms of virtualization
to support students working in groups of two or three to
gain hands-on experience with Linux kernel development.
We have used three methods for teaching and discuss and
compare our experiences with each of them.

We started out using a shared computer laboratory with
Linux desktop machines running VMware Workstation to

483

support virtual machines. There was no shared storage in-
frastructure available to store the virtual machines, so they
were stored locally on each desktop and statically assigned
to students. Each time the course was taught, a computer
support staff had to install the right version of VMware,
create and distribute the virtual machines to each desktop,
and deal with hardware failures and other issues as the desk-
top machines became out of date. While students learned
a tremendous amount about operating systems, it was at
times hard for students to work with the laboratory infras-
tructure. Even though we provided students with backup
virtual machines allocated on other desktops, a desktop ma-
chine failure could cause a group of students to lose all their
work on the virtual machines assigned to that desktop. Stu-
dents lacked administrative privileges on the machines, and
so could not fix the problems even if they knew how, instead
having to wait until normal business hours before a support
staff addressed the issue. This problem also occurred at
times when students corrupted their virtual machine and
lacked the access rights to install a clean virtual machine
so they could start over. Finding funds to replace old or
dead machines was often an issue. We did not use a version
control mechanism at the time and relied on university sub-
mission tools, which were painful to use for both students
and instructional staff. In particular, there was no way for
students to verify the completeness of their submissions.

We have also used a server cluster consisting of a set of
powerful multi-core servers and a dedicated SAN infrastruc-
ture for running VMware ESX server to support virtual ma-
chines. This infrastructure made it much easier to manage
virtual machines, assign them to students, and dynamically
allocate resources among virtual machines, but had some
other problems. The more centralized infrastructure was
easier to manage, but a configuration mistake or a hardware
malfunction could bring down all of the virtual machines.
The shared infrastructure became noticeably slow right be-
fore homework assignments were due when it was being used
by everyone intensively at the same time. VMware snap-
shot functionality was very useful for reverting a corrupted
virtual machine to a good state, but some students took
so many snapshots that they filled up the entire multi-TB
SAN. Computer support staff limited network access to the
infrastructure for security reasons, making it more difficult
for students to use their virtual machines.

Most recently, we have been using our virtual appliance
and distributed version control solution to teach operating
systems for the last year. The experiences of both students
and instructors with this approach to teaching operating
systems have been very positive. Students like running vir-
tual appliances on their own computers, as they have full
control over how resources are used, eliminating previous
complaints about the hardware used to support the virtual
machine infrastructure. Students also like no longer hav-
ing to pay fees associated with using university computer
facilities. The Git version control system provides experi-
ence with real-world software development tools and makes
homework assignments much easier to manage. Students
can check out what they submitted to make sure the sub-
mission works properly. Instructional staff can view check
in logs and see how students are progressing, which students
are contributing to group homework assignments and which
ones are not, and can add comments to students’ code bases
directly to provide helpful feedback as part of the homework

grading process. Students like the increased interactions
with instructional staff provided by having live demonstra-
tions and code review of kernel programming assignments.
Instructional staff find it easier to grade the assignments
by relying on students to demonstrate their work instead
of having to install, reboot, and test students’ kernel pro-
gramming submissions themselves. Our experience has been
that the combination of virtual appliances, distributed ver-
sion control, and live demonstrations has been a powerful
pedagogical tool for teaching operating systems.

6. RELATED WORK

Many approaches have been explored for providing pro-
gramming experience in operating system courses. Courses
with user-level projects require only developing code de-
signed to run in unprivileged mode. Examples of such projects
include writing modules for a user-level simulator such as
Nachos [2], user-level threads programming, or systems pro-
gramming with a production operating system such as Linux,
Solaris or Windows XP. While user-level projects do pro-
vide students with some hands-on experience with operating
systems, they do not provide direct kernel-level development
experience. As a result, user-level projects do not effectively
address important issues such as bootstrapping, handling
interrupts, the kernel-level development and debugging pro-
cess, or understanding the kernel internals of a full-featured
operating system.

Courses with kernel-level projects require writing or mod-
ifying code designed to run in supervisor mode. Kernel-level
projects can provide a better pedagogical vehicle for learning
about real-world operating system design and implementa-
tion. Some are based on a small pedagogical operating sys-
tem like MINIX [8] or Pintos [6], or involve a pedagogical
operating system to be used only in a simulated environment
[3]. Pedagogical operating systems are smaller than produc-
tion operating systems and do not expose students to many
of the real-world issues that arise in practice. Because ped-
agogical operating systems are not used in practice, keeping
them from becoming dated can require substantial effort and
they may have more limited lifetimes due to changes in tech-
nology and operating system practice [3].

Other courses involve kernel-level projects with produc-
tion operating systems. One of the authors developed the
first course to leverage virtual machines for teaching oper-
ating systems with Linux kernel projects [4], an approach
which has since been widely adopted. This work was ini-
tially done using a shared computer laboratory [5]. Others
have built on this work by also using a server cluster [1]. We
build on our prior work to provide a solution that does not
require providing or maintaining significant computing in-
frastructure, and introduces course management techniques
based on distributed version control and live demonstrations
to improve the pedagogical value of the course.

Production version control systems such as CVS have been
used in operating system courses [3] for supporting source
code development, but not for managing homework sub-
missions and facilitating grading. CVS has also been used
for homework submissions in lieu of homebrew university
submission tools [7], but required use of university com-
puter laboratory facilities, did not provide effective safe-
guards against repository corruption, and did not support
the requirements of operating system courses with kernel-
level programming projects. Unlike these approaches, we

484

use Git to provide distributed version control management
and reliable storage without using and maintaining univer-
sity computer laboratory facilities. Git provides a better,
more scalable model than CVS for reliable and consistency
check ins for kernel development, resulting in its adoption
by the Linux kernel developer community. We also show
how Git and live demonstrations can be used to provide
better grading mechanisms for homework assignments and
improved feedback to students to enhance their learning.

7. CONCLUSIONS

We have developed a new approach for teaching operating
systems that provides hands-on kernel-level project experi-
ence without the need for computer laboratory facilities for
teaching purposes. Our solution creates a virtual appliance
for doing operating system homework assignments which can
be easily deployed and run on students’ personal computers
in virtual machines without interfering with any existing
software already on the students’ computers. We combine
virtual appliances with a distributed version control system
to provide reliable storage for students’ homework assign-
ments, support students working together on group home-
work assignments, and manage the submission and grading
of homework assignments. Live demonstrations are also used
to simplify grading and provide better feedback to students.
We have used this approach to teach operating systems to
both undergraduate and graduate students, and both on-
campus and remote distance learning students. Our expe-
riences demonstrate that this solution is cost-effective, easy
to deploy and use, and improves the educational experience
of students in learning about operating systems.

8. ACKNOWLEDGMENTS

This work was supported in part by VMware and NSF
grants CNS-0426623, CNS-0717544, and CNS-0914845.

9. REFERENCES

[1] J. C. Adams and W. D. Laverell. Configuring a
Multicourse Lab for System-Level Projects. In
Proceedings of SIGCSE 2005, St. Louis, MO, Feb. 2005.
W. Christopher, S. Proctor, and T. Anderson. The
Nachos Instructional Operating System.
http://cs.berkeley.edu/ tea/nachos/nachos.ps.

D. A. Holland, A. T. Lim, and M. I. Seltzer. A New
Instructional Operating System. In Proceedings of
SIGCSE 2002, pages 111-115, Feb. 2002.

J. Nieh and Ozgiir Can Leonard. Examining VMware.
Dr. Dobb’s Journal, pages 70-76, Aug. 2000.

J. Nieh and C. Vaill. Experiences Teaching Operating
Systems Using Virtual Platforms and Linux. In
Proceedings of SIGCSE 2005, St. Louis, MO, Feb. 2005.
B. Pfaff, A. Romano, and G. Back. The Pintos
Instructional Operating System Kernel. In Proceedings
of SIGCSE 2009, Chattanooga, TN, Mar. 2009.

K. L. Reid and G. V. Wilson. Learning by Doing:
Introducing Version Control as a Way to Manage
Student Assignments. In Proceedings of SIGCSE 2005,
St. Louis, MO, Feb. 2005.

A. Tanenbaum. A UNIX Clone with Source Code for
Operating Systems Courses. Operating Systems Review,
21(1):20-29, Jan. 1987.

2]

