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ABSTRACT

Abstraction is a critical concept that underlies many topics
in computing science. For example, in software engineer-
ing, the distinction between a component’s behavior and
its implementation is fundamental. Java provides two con-
structs that correspond to precisely this distinction: A Java
interface is a client’s abstract view of a component’s behav-
ior, while a class is a concrete implementation of that same
component. We have developed a course that introduces
Java while following a discipline of diligently decomposing
every component into these two separate linguistic elements.
In this course, interfaces are given the same prominence as
classes since both are needed for a complete component.
This approach is helpful to students by providing: (i) a clear
manifestation of the role of abstraction in software systems,
and (ii) a framework that naturally motivates many good
coding practices adopted by professional programmers.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—computer science education

General Terms

Design, Languages
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1. INTRODUCTION

Abstraction is a key concept in computing science and
software engineering [3,5-7]. Students encounter it, in some
form, in practically every major topic including architec-
ture, operating systems, complexity, data structures, and
programming languages. Indeed, the ACM 2001 Comput-
ing Curricula recognizes the importance of abstraction at
the pedagogical core of our discipline [22]. As one of its
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guiding principles, the Computer Science volume states (p.
12):

All computing science students must learn to in-
tegrate theory and practice, to recognize the im-
portance of abstraction, and to appreciate the
value of good engineering design.

Ironically, the ubiquity of abstraction may actually be a
barrier to its recognition and appreciation by students. It is
such a common theme that educators may use it casually,
without explicitly drawing attention to it.

We have developed an introduction to Java course based
on the principle of deliberate and explicit application of be-
havioral abstraction. Although it is a first course in Java, it
is not designed as a first course in programming. Students
have completed an introductory sequence (using C++) be-
fore taking this course. Beyond teaching students about
abstraction, this approach has the additional benefit of mo-
tivating and explaining several important (but subtle) con-
cepts and professional best practices in Java.

From the beginning, and throughout the course, students
think about components as having two distinct parts: an ab-
stract client-side view and one or more concrete implemen-
tations. The two views are segregated in distinct program
artifacts: the client-side view is given by a Java interface
while each concrete realization is given by a Java class that
implements the interface.

Of course, these are exactly the intended roles of these two
language constructs. What is unique about our approach is
our insistence that all components be decomposed into these
two parts. Interfaces are used early, they are used through-
out, and they are used prominently. This approach does
not require special frameworks or IDEs. It simply leverages
existing Java constructs.

This discipline of component decomposition enforces a
clear separation of concerns. It creates an explicit scaffold-
ing, supported by Java language constructs, for distinguish-
ing behavioral abstraction from concrete implementation.
This scaffolding can then buttress and augment students’
understanding of abstraction and modularity.

The rest of the paper is organized as follows. Section 2
compares our work with similar curricular structures. Sec-
tion 3 describes the separation discipline and its implications
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to this discipline, while Section 6 outlines some difficulties
in adopting the discipline in full. Finally, Sections 7 and 8
evaluate this curricular structure and conclude.



2. RELATED WORK

The order of topics in a first Java course has been a mat-
ter of considerable debate within the SIGCSE community.
One popular structure is to introduce objects early, even as
soon as day 1. This technique, known as “objects first”, is
exemplified by the BlueJ IDE which allows students to easily
interact with objects and observe object state with minimal
syntactic scaffolding [1,12]. Although such structures can
help build up student intuitions about object-oriented sys-
tems, they can mingle abstract and concrete state, blurring
for students the distinction between the two.

An alternative structure, termed “components-first”, em-
phasizes the separation of client-side view and implementer’s
view of components. Students begin by learning how to
be clients of components, or APIs, or libraries. They sub-
sequently learn how to implement these components. Ex-
amples of this approach include [11,16,18]. All of these
approaches are similar to ours in philosophy in that they
recognize the importance of distinguishing between the two
views of a component. The differences are that our design
leverages standard Java constructs and that the decomposi-
tion is applied consistently throughout the course.

The separation of abstract and concrete states for spec-
ification purposes is a well-known technique from abstract
data types. Serious Java-based specification notations all
support this separation. For example, Liskov & Guttag’s
book [14], JML [13], and the “Laboratory in Software En-
gineering” course at MIT, number 6.170 [17], all use speci-
fication fields in the documentation of a class to define ob-
ject state and method behavior. These strategies rely on
a documentation discipline of declaring specification vari-
ables, then writing pre and postconditions in terms of these
variables, rather than fields in the implementation. Such
disciplines, however, are difficult to strictly enforce and stu-
dents may see the declaration of specification variables that
closely match fields in the concrete implementation as an
unnecessary extra step.

Perhaps the closest work to our own is [20], where the case
is made for teaching interfaces before inheritance. This or-
dering is reflected in one popular introductory textbook [9]
where interfaces and polymorphism come before inheritance.
We agree with this ordering, but this is just one example of
placing interfaces earlier in the curriculum and giving them
greater prominence. Our approach advocates consistently
decomposing components into interfaces and classes. For
example, we present the Collections Framework entirely in
terms of interfaces (List, Queue, Deque, Set, SortedSet).
Iterators (and ListIterators) over these collections are inter-
faces as well, so the presentation can be quite sophisticated
before the implementing classes are even discussed.

3. SEPARATION OF CONCERNS

One way to motivate the interface construct is simply as a
mechanism for overcoming Java’s single-inheritance restric-
tion. Another option is to present the interface construct as
simply a variant of the class construct, much like an abstract
class, but with further restrictions (e.g., it can contain only
public members, no constructors, and no static methods).
Such characterizations, as exemplified in [19], are common
in introductory Java courses and serve to relegate the inter-
face construct to secondary standing. In [19], interfaces are
not even mentioned until p. 694, where they are covered

in half a chapter. This treatment is similar to other popu-
lar introductory Java textbooks. While this treatment may
reflect the use of Java interfaces in practice, it misses an op-
portunity to accomplish a larger pedagogical goal: teaching
students about abstraction.

Our curricular approach, on the other hand, sets interfaces
and classes on equal footing. Every software component is
decomposed into two distinct artifacts: (i) a Java interface
which is the (abstract) client-side view of the component,
and (ii) a Java class which is the (concrete) implementa-
tion. Thus, the interface construct is present early and of-
ten. Both an interface and a class, together, are required for
a complete component.

The notion of separating abstract and concrete state is a
classic idea of abstract data types. Specification notations
such as JML permit exactly this separation (through model
or specification fields). What characterizes our “interfaces
first and foremost” approach is the requirement of creating
a Java interface; separation of abstraction from realization
follows as a consequence. Since the interface is a distinct
lexical scope from any implementing classes, students see the
need for a clear and thorough description of the behavioral
cover story in an implementation-neutral manner.

3.1 Documentation with Javadoc

In addition to all the standard Javadoc tags, interfaces
and classes are documented in accordance with the distinct
roles they serve in defining a component. Custom tags are
used to further structure this information.

For interfaces, the documentation defines both the ab-
stract state of the component and the behavior of each (pub-
lic) method in terms of its effect on that abstract state. That
is, the interface documentation must present a cover story
that is understandable to a client with absolutely no knowl-
edge of the component implementation (i.e., class).

The cover story can be given with various degrees of for-
mal rigor. We use a collection of custom tags as hooks for
telling the client-side cover story:

@mathmodel: abstract fields whose types are mathematical
concepts such as integers, sets, and strings

@mathdef: derived abstract fields that serve as convenient
shorthands

@constraint: invariants on state

@initially: guarantees on the initial state

@requires, Qalters, Qensures: classic behavioral descrip-
tions of each method

The tag arguments can be written as formal mathematical
expressions or informal prose. Either way, the cover story is
isolated in a construct with no lexical connection to any un-
derlying implementation. Thus, invariants, preconditions,
and postconditions must perforce be written in terms of ab-
stract state. This explicit separation reinforces for students
the mental model of distinguishing the abstraction from the
realization.

Classes are also carefully documented with Javadoc. In
this case, however, the documentation is written in terms
of concrete state (i.e., private fields). Custom tags for class
documentation include:

@convention: invariants on (concrete) state
Qcorrespondence: the abstraction relation [21] for mapping
(concrete) state to abstract fields

Behavior descriptions (requires and ensures clauses) of

public methods are not written because this (client-side)



public abstract class BigNaturalTest {
private BigNatural b;
protected abstract
BigNatural create(int value);

@Test
public void smalllnitialization () {
b = create (34);
assertEquals (“Two—digit initialization”,
“34” , b.toString ());
}

//more test cases

Listing 1: Abstract test class with test cases

public class SlowBigNaturalTest
extends BigNaturalTest {

@Override
protected BigNatural create(int value) {
return new SlowBigNatural(value);

Listing 2: Derived test class provides factory

documentation is already in the interface. On the other
hand, private (helper) methods, which exist only in the class,
are documented with @requires, @alters, @ensures tags as
above. An important difference is that these descriptions
are written in terms of concrete state. Again, this practice
is easy for students to adopt because of the lexical scoping
provided by the Java interface and class constructs.

3.2 Testing with JUnit

The use of JUnit to test software components can further
leverage and reinforce the explicit separation of client-side
view and implementation.

Black-box test cases are written in a standard JUnit test
class using only the interface of the component under test.
The test class includes one or more abstract factory meth-
ods that serve to generate instances for test cases to exer-
cise. Each test case begins by calling these factory methods.
Thus, the test class is completely independent of any par-
ticular implementation. Listing 1 illustrates part of a test
class written in this manner, where BigNatural is an inter-
face type.

The test class is an abstract class since it includes an ab-
stract method. In order to execute tests, this class is ex-
tended and an implementation for the factory provided (see
Listing 2). The derived test class does not provide any new
test cases.! Of course, this style of test case coding is not
new. The point is for students to observe and carefully re-
spect the division achieved by separating abstraction from
realization.

In summary, each component consists of an interface/class
pair related by implementation. To test this component, a
pair of test classes related by inheritance is used.

Implementation-specific test cases could be provide in the
derived test class, but this is the exception rather than the
rule.

4. CANONICAL SAMPLE ASSIGNMENTS

A good early assignment is to develop an unbounded natu-
ral number component. The requirements are simple: A nat-
ural number can be initialized, incremented without bound,
decremented when it is positive, and its value displayed as
a string. The abstraction is clean. The implementation,
however, is more complicated since it must account for an
unbounded growth. Students quickly see that many design
choices for implementing the concrete state exist, including
an array of bytes and a string of characters. Furthermore,
these design choices involve trade-offs in performance and
complexity for implementing the small set of required be-
haviors.

A simple component such as this one is then refined over
the subsequent assignments to illustrate concepts as cov-
ered in lectures, including documentation, testing, excep-
tions, comparability, and immutability. Comparing the (ab-
stract) view of an unbounded natural number with Java’s
Biglnteger is also a nice hook for introducing the subtleties
of behavioral subtyping.

For an assignment related to subtyping, we have used a
set of three components: Person, Student, and Faculty. All
three can contribute to a university’s scholarship fund and
all three can enter a lottery for football tickets. Only the
Java interface is given for each of these components. The
components differ in how much prior contribution is required
for eligibility in the ticket lottery and in the quality of seats
the nondeterministic lottery might yield. Students are asked
to identify subtyping relationships and to modify interface
descriptions so new subtyping relationships exist. Again, the
discipline of decomposing components into both an interface
and a class clarifies for students the distinction between sub-
typing and inheritance [4].

5. GOOD CODING PRACTICES FOR JAVA

Beyond language syntax and structures, students should
also learn effective idioms and strategies that support writ-
ing good code. There are many such strategies [2], some of
which are quite subtle. Using an “interfaces first and fore-
most” approach clarifies the motivation and key concepts
behind many of these strategies, making them easier for stu-
dents to understand, remember, and appreciate.

Code to the interface.

Recommended practice is to prefer the use of interface
types (over class types) for all declared types (i.e., local vari-
ables, fields, parameters, and return types). The advantage
of this practice is the resulting generality and loose-coupling
of the code.

This good practice follows directly from our decomposi-
tion discipline. Clients, as far as possible, work only with
interfaces.

Document the contract.

Recommended practice is to document method behaviors
rather than implementations with Javadoc. This practice
is sensible given the role Javadoc plays as client-side docu-
mentation for a class. Unfortunately, an uncomfortable ten-
sion exists between this ideal and the pragmatic observation
that Javadoc, as a universally understood documentation
notation, can also effectively be used to describe matters of
interest to the implementer and future maintainers of an im-



plementation. Indeed, a single command-line flag instructs
Javadoc to produce documentation for all private members
of a class too.

By decomposing every component into an interface and
a class, students do not encounter this tension. They use
Javadoc to produce all possible documentation for the inter-
face and all possible documentation for the class, including
private members. The former is for the client’s consumption
and the latter is for the implementer and maintainer.

Design getters/setters properly.

Using public methods to read and write private fields is
certainly better than making the fields themselves public.
Tools such as Eclipse can even generate these methods au-
tomatically for a class with private fields. The problem,
however, with this style is that the concrete state drives the
abstract behavior instead of the other way around [8].

When students work with an interface and class-based de-
composition, however, they recognize the role of getters/set-
ters as readers and writers of abstract state. Facilitating the
implementation of these methods is just one factor in the de-
sign of a class’s concrete state.

Make defensive copies.

Given the ubiquity of references in Java, it is easy for dan-
gerous aliases to a class’s concrete state to exist. For exam-
ple, if a constructor assigns a private field x to an argument
y, both the caller of the constructor and the object itself
have references (through y and x respectively) to the same
thing. This is dangerous since the caller of the constructor
can make changes to the concrete state of the constructed
object directly without going through its public interface.

The separation of interface and implementation does not,
itself, mitigate the dangers of aliasing in Java. It does, how-
ever, simplify the presentation of these dangers. If students
are comfortable with simultaneously considering both the
abstract and concrete state, and with maintaining the cor-
respondence between the two, the dangers of aliasing are
easily illustrated and quickly appreciated.

Use exceptions properly.

The proper use of exceptions is a matter of much de-
bate, even amongst seasoned Java developers. The choice
of whether exceptions should be checked or unchecked, and
what kind of exception should be used is often a subtle de-
sign choice involving many trade-offs.

Some aspects of exception design, however, follow directly
from the disciplined decomposition of our approach. For ex-
ample, the need to catch an exception and then re-throw
it as a mew exception, possibly of a different type, is clear.
The method signatures, including checked exceptions, that
appear in the interface must make sense to the client in
terms of the abstract cover story. Students recognize when
an exception reveals aspects specific to a particular imple-
mentation.

As for when to use exceptions, advice is often generic and
even circular, for example: Use exceptions for exceptional
situations. A better guide is to clearly characterize situa-
tions where exceptions are useful. For example, if the client
can not unilaterally guarantee the precondition of a method,
exceptions are appropriate. A classic example is the exis-
tence of a file. Because the code runs concurrently with a
real file system in which files may be created and deleted, a

client can not know whether the file exists when the method
it calls actually starts to execute. Appreciating this lesson is
easier if the students are comfortable with behavioral spec-
ifications.

Respect behavioral subtyping.

Behavioral subtypes can be dynamically substituted for
their supertypes without affecting the correctness of client
code [15]. This substitution is sound only when the sub-
type’s invariant and ensures clauses are covariant, while its
requirements are contravariant. Since class inheritance in-
volves coupling of concrete implementations, subtyping is
best modeled in Java as a relationship between interfaces.
A discipline of always declaring Java interfaces is therefore
helpful in creating a context for presenting subtyping and
its implications.

6. CHALLENGES

In Java, the interface construct corresponds most closely
to a purely abstract, client-side view of a component. A Java
interface, however, can not include a constructor. That is,
an interface is actually the client-side view of an instance of a
component, and the creation of (other) instances is not gen-
erally part of that behavior. On the other hand, some clients
do need to create instances. Ideally, such clients would only
need the name of the implementing class, nothing else. Un-
fortunately, without a constructor in the interface, the im-
plementing class must be consulted to confirm the existence
of a constructor with the proper signature.

There are several ways to circumvent this difficulty. One
is to use a creation pattern in which a separate component
serves as a factory. The interface of that factory compo-
nent defines the valid signatures for instantiating the origi-
nal component. Apart from leaving a bootstrapping prob-
lem (how does the client know how to create a factory?), this
solution is somewhat cumbersome since it requires compo-
nents to consist of 4 artifacts: an interface/class pair for the
core component and an interface/class pair for the factory.

Another approach is to require all classes to have a zero-
argument constructor. This strategy, however, is limited
when it comes to immutable types (which typically do not
have zero-argument constructors). Our compromise is to
document in the interface the signatures of constructors that
implementing classes are expected to have.

7. EVALUATION

The “interfaces first and foremost” approach described
here has been the basis for a course that has been offered 5
times, with a total enrollment of 156 students. Survey re-
sults indicate the course was well-received by students. The
course has averaged 4.7 for “overall rating” (on a Likert-type
response scale with 5 being the highest) and 4.2 for “relative
ranking compared to other courses in computer science”.

Beyond student reaction, however, a better measure for
the success of such an approach is the degree to which it
transforms students’ thinking and instills sound principles
of the discipline. To this end, we have followed the cohort of
students from our early pilot offerings that subsequently en-
rolled in the “programming in the large” software engineering
course (an existing course that entails significant software
design, development, testing, and documentation all done
as part of a team). In that second course, students are free



to use whatever language they prefer and most choose C++
(the language used in the introductory sequence).

The followed cohort consisted of 85 CS majors. Their
work was qualitatively different than that of their peers, ac-
cording to the instructors for that subsequent course. The
recognition and clear application of separation between ab-
stract behavior and concrete representation was present in
all of their work (and not their peers). This separation was
manifested in their design, documentation, and testing. On
surveys, they reported feeling better prepared for a signifi-
cant software development project than their peers.

8. CONCLUSIONS

In the “real world”, Java programmers do not define an
interface for every class. While the benefit of encapsulation
and information hiding offered by OO are widely recognized,
the effort of defining two separate structures for each type is
usually too onerous in a deadline-driven environment. Thus,
professional programmers often work with just a class and
intermingle the realization with its abstraction. As a mental
model, the two are hopefully kept somewhat distinct, but
this distinction is usually not directly reflected in the code
(beyond visibility modifiers such as private and public).

For students of computing science, however, this intermin-
gling should be avoided. Not only does a clear separation
help to motivate a wide variety of good coding practices, it
also provides an exemplar for the general notion of abstrac-
tion, which plays such a fundamental and cross-cutting role
in our discipline.

We have used this strategy in the development of a new
class that follows an introductory course sequence. Students
come to the class knowing imperative programming but not
Java. We are optimistic that this strategy could also be
adopted for the intro level, especially given the success re-
ported from other efforts in that direction [10,11,18,20]. For
example, the materials for this course have been adopted at
Clemson and initial reaction there has been positive.
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