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Abstract—This research aims to enable robots to learn from
human teachers. Motivated by human social learning, we believe
that a transparent learning process can help guide the human
teacher to provide the most informative instruction. We believe
active learning is an inherently transparent machine learning ap-
proach because the learner formulates queries to the oracle that
reveal information about areas of uncertainty in the underlying
model. In this work, we implement active learning on the Simon
robot in the form of nonverbal gestures that query a human
teacher about a demonstration within the context of a social
dialogue. Our preliminary pilot study data show potential for
transparency through active learning to improve the accuracy
and efficiency of the teaching process. However, our data also
seem to indicate possible undesirable effects from the human
teacher’s perspective regarding balance of the interaction. These
preliminary results argue for control strategies that balance
leading and following during a social learning interaction.

Index Terms—active learning, socially guided machine learn-
ing, social robots, interactive learning, human-robot interaction

I. INTRODUCTION

In many of the scenarios that people envision for per-
sonal robots (e.g., general assistants in homes, schools, and
hospitals), it is hard to imagine how a robot designer can
possibly pre-program a robot with all of the skills necessary
for that domain. Our research is about developing ways for
these robots to learn the necessary tasks and skills from end
users—Socially Guided Machine Learning (SG-ML). Because
we cannot expect these users to have extensive experience with
machine learning or robotics, we need to design algorithms
and systems that take advantage of the ways that they naturally
approach the task of teaching.

In the work presented here, we focus on a particular
aspect of SG-ML: how a robot learner can improve its own
learning environment through transparency. When situated in
an interaction, a “black box” learning process does nothing
to improve the quality and relevance of the instruction it
receives. Transparency of the internal state of the machine
could improve the learning experience by revealing to the
teacher what is known and what is unclear. By guiding the
teaching process, the machine can learn more quickly as well
as reduce the workload for the teacher.

In this paper, we look to active learning as a method
of achieving transparency. Active learning refers to machine
learners that can select the examples to be labeled by an oracle,
potentially reducing the number of examples required. In SG-
ML, the human teacher serves as the oracle. We analyze how
active learning can be integrated with nonverbal social cues

Fig. 1. The Simon robot’s workspace from the human teacher’s perspective.

to make ambiguity in the underlying model transparent by
having the robot solicit appropriate examples from a human
partner in an intuitive way. We present our active learning
implementation, a design for an experiment with human teach-
ers, and initial observations from a pilot study of that design.
Preliminary results highlight the method’s potential to improve
performance but also argue for a more balanced control of the
interaction than traditional active learning.

II. APPROACH

In aiming to build more teachable robots, child development
and the human learning process serve as inspiration and mo-
tivation. In particular, situated learning is a field of study that
looks at the social world of a child and how it contributes to
the child’s development [1]. In a situated learning interaction,
a good instructor maintains a mental model of the learner’s
understanding and structures the learning task appropriately
with timely feedback and guidance. The learner contributes
to the process by expressing internal state via communicative
acts (e.g. expressing understanding, confusion, attention, etc.)
[2], [3]. This reciprocal and tightly coupled interaction enables
the learner to leverage the teacher’s instructions to build the
appropriate representations and associations.

This human-style tutelage is a cooperative and social activ-
ity. Theories of human collaboration argue for an open line of
communication between teacher and learner in order to best
maintain a mutual belief about the learner’s knowledge state
[4], [5]. These theories inform the design of SG-ML systems.

The scenario of human input has received some attention
in the machine learning and robotics community. Much prior



work deals with the scenario where a machine learns by ob-
serving human behavior [6], [7], [8]. Other work has focused
on how a machine can learn tasks from human instruction [9],
[10], with human advice [11], [12], or through intervention
in the learner’s actions during the learning process [13]. Our
work in transparency and active learning is complementary to
many of these task learning approaches. Specifically, our goal
is to have more interactive systems that can learn in real-time
from everyday people.

Related to active learning in particular, there has been
work on computational benefits of teacher/learner pairs [14].
Active learning is a field that addresses efficient use of an
external oracle [15], [16], [17]. One system shows confidence-
based active learning with (non-social) human labelers [18].
Queries can be viewed as a type of transparency into the
learning process, which is why we are interested in applying
active learning to the context of robot learning in human-robot
interaction. The challenge is in designing ways that the robot
can use natural social cues to solicit appropriate examples from
a human partner in the learning task.

Active learning research focuses on how to select queries
that maximize information gain or otherwise make efficient use
of the oracle. In contrast, this work is concerned with using
active learning for robot task learning, as well as the challenges
of allowing the oracle to be a non-expert in machine learning.
In our experiments, we evaluate performance of the machine
learner when taught by human teachers and ask the question:
can the robot influence the teacher to provide the examples
that it wants? And how does this affect the ease and speed of
teaching from the human partner’s perspective?

In this paper we present a learning system, an experiment
with human teachers, and observations drawn from this data.

III. PLATFORM

The robotic platform for this research is “Simon,” an upper-
torso humanoid social robot with 7-DOF arms, 4-DOF hands,
and a socially expressive head and neck (Fig. 1). We are
developing the Simon platform specifically for face-to-face
human-robot interaction. In our task scenarios, the robot
works alongside or across from a human partner at a tabletop
workspace. The robot has the ability to perform simple ges-
tures (e.g., pointing, head nods and shakes) to communicate
about objects that the human can use for teaching.

Our learning system is implemented within the C6 software
system (see [19]), which has a specific pipeline for triggering
robot actuations from sensory inputs. A robot is equipped with
various sensors such as cameras for vision and microphones
for speech recognition. At every time step, the robot receives
observations O = {o1, .., ok} from these sensory processes.
The perception system is a set of percepts P = {p1, ..., pn}.
Each p ∈ P is an atomic classification and data-extraction unit
that models an aspect of each observation from the sensory
system by returning a match probability such that p(o) = m,
where m ∈ [0, 1] is a match value. The percept provides a
useful level of abstraction for reducing the dimensionality of
incoming sensory information.
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Fig. 2. System diagram of the learning and interaction.

The belief system maintains the belief set B by integrating
these percepts into discrete object representations (based on
spatial relationships and various other similarity metrics or
tracking mechanisms). Belief objects that detail the perceived
state of the world are sent to the action system for decision-
making. The action system is structured as action groups of
hierarchical action tuples requiring preconditions, executables,
and postconditions. After a high-level action is selected, the
lower-level joint trajectories are rendered in the motor system
to the virtual character in simulation as well as transmitted to
the motor module controlling the physical robot.

In this paper we describe extensions to the C6 system that
enable transparent active learning.

IV. LEARNING ENVIRONMENT

A. Domain Description

In this work, the task domain involves colorful paper
cutouts, which we somewhat imprecisely call tangrams. Si-
mon’s learning task involves recognition of paired configura-
tions of these tangrams. We believe this domain is interesting
because it is related to the general class of assembly tasks.

Each tangram has a color attribute with four possible values
(red, green, yellow, or blue), a shape attribute with three
possible values (square, triangle, or circle), and a size attribute
with two possible values (small or large), for a total of 24
possible unique tangrams. Each configuration consists of a
top and a bottom tangram and has additional meta-attributes
of whether the attributes for the top and bottom tangrams
have the same or different values. We call these configurations
compound tangrams. Thus, each compound tangram has a total
of 9 attributes: the 3 attributes for the top, the 3 attributes



for the bottom, and the 3 meta-attributes for whether the top
and bottom match. Simon’s workspace contains exactly one of
each tangram, so there are 552 possible compound tangrams
in his workspace.

B. Perception for Domain

Tangrams lying on a table in front of Simon are detected
through a fixed overhead camera and segmented using back-
ground subtraction. The shape of the tangram is recognized
by the number of corners of the simplified polygon contour of
the segmented object (square: 4, circle: 8, triangle: 3). Size is
recognized based on the area within the contour and color is
recognized using the color histogram of the segmented object.
The tangrams are localized in robot world coordinates using
a fixed homography from the image plane to the table plane.

C. Simon’s Workspace

Simon’s workspace is a table covered by a black tablecloth.
The 24 possible tangrams are arranged in 6 separate groups
on the perimeter of this table. Each group contains tangrams
of the same size and shape, but of varying color. The space
immediately in front of Simon is the demonstration area for
positive and negative examples; its position is demarcated to
the human with a black sheet of paper (Figure 1).

The human teacher stands on the opposite side of the
table from Simon for face-to-face interaction and provides
examples in the demonstration area from Simon’s perspective.
A whiteboard next to Simon provides reminders to the human
about the experiment instructions.

V. LEARNING SYSTEM

This section describes our implementation of supervised
learning for symbol generalization and active learning for
example selection.

A. Symbol Representation

A symbol definition is a conjunctive subset of the possible
compound tangram attribute values. This subset describes the
attribute values that must hold true in order for a compound
tangram to be a member of that symbol class. For example,
one of the symbols we use is a small circle on top and a large
circle on bottom, which we call “snowman.” In this paper,
Simon is tasked with learning four different symbols from
demonstrations provided by human teachers.

Any given example of a compound tangram can be de-
scribed using a version space, which is the set of all symbol
hypotheses consistent with that example [20]. A hypothesis
that is consistent with an example is one that correctly
classifies that example.

B. Generalization Through Supervised Learning

1) Symbol Version Space: Simon can generalize the cor-
rect symbol definition by seeing demonstrated examples with
positive and negative labels. The generalization is performed
using the following supervised learning mechanism.

For each positive demonstration of a compound tangram, all
of the hypotheses in the version space for that demonstration

TABLE I
SIMPLIFIED EXAMPLE: SYMBOL GENERALIZATION OF “RED”

Step Example Label Version Space
1 Small red circle + Red, Small, Circle

Red, Small
Red, Circle
Small, Circle
Red
Small
Circle

2 Small green circle – Red, Small, Circle
Red, Small
Red, Circle
Red

3 Large red circle + Red, Circle
Red

4 Small red square + Red

are expanded. Redundant hypotheses due to meta-attributes
are filtered out. The remaining hypotheses are tracked for
consistency throughout the teaching process for that symbol.

Tracked hypotheses are also ranked. We quantify a hy-
pothesis’s consistency as the number of examples from the
demonstration data that are consistent with that hypothesis, and
then rank the tracked hypotheses using this metric. The version
space for the symbol thus becomes the set of hypotheses that
are of the highest consistency value among all of the tracked
hypotheses.

For each provided negative example, we do not add any new
hypotheses to track, but we adjust the consistency ranking of
the existing hypotheses to accommodate the new label.

2) Example Generalization: To illustrate the generalization,
we provide an example in Table I using the simplified domain
of single tangrams to learn the concept of “red.” This domain
contains only the three attributes of color, shape, and size. Over
four example demonstrations, the learner generalizes such that
the best hypothesis is the one in which only color matters, and
the color attribute has a value of “red.”

C. Example Selection Through Active Learning

Active learners have a mechanism for selecting examples
to be labeled by an oracle [17]. Ideally, these examples are
maximally informative to the learner and thus significantly
reduce the number of required labels to create a good model.

For Simon’s active learning mechanism, we implement
query-by-committee for example selection [21]. This method
uses a committee of competing hypotheses and selects the
example that results in maximal disagreement between the
hypotheses in terms of predicted labels. The committee in our
implementation is the symbol version space — that is, the
set of all maximally ranked hypotheses being tracked while
learning the symbol. We assign the value of +1 for a positive
label and −1 for a negative label. This means that the example
with the smallest absolute-valued average predicted label value
over the entire symbol version space will result in the highest
information gain. The effect of iteratively labeling examples
selected by the committee is to prune away as much of the



committee as possible until only one correct hypothesis is left,
reducing the entropy of the committee.

Note that there are often many examples with the same
best value; in the example in Table I, there are actually 6 best
examples after step 1, 12 best examples after step 2, and 16
best examples for step 3. In these cases, the active learner
can impose some additional ordering or select randomly. We
discuss additional constraints used by the active learner in the
next section on transparency mechanisms.

With a committee of hypotheses, label prediction occurs by
using the majority label from the committee, which is also the
sign of the average label. Our measure of confidence in the
label is the distance of the majority label to the average label.
Thus for the degenerate case of having no majority label, the
confidence is 0.

VI. TRANSPARENCY MECHANISMS

We implemented two types of transparency mechanisms
for this experiment. One focused on communicating points of
confusion for the robot as determined by the active learning
component. The other focused on communicating the robot’s
confidence or uncertainty to the human.

A. Attention Direction

When performing active learning queries of the hypothesis
space, we would ideally like Simon to pick up relevant
objects and replace them in the demonstration to solicit a
label from the teacher. Alternatively, Simon could simply
talk about the objects. While developing the speech synthesis
and manipulation capabilities for such an experiment, we
are doing preliminary studies with a more indirect route for
communicating a query.

We limit example selection to compound tangrams that
share either the top or the bottom tangram with the current
demonstrated compound tangram. This allows for a reduction
in the complexity of communicating the example, since the
robot only needs to select a single tangram to replace in the
current demonstration. In order to draw the human teacher’s
attention to this desired replacement, the robot first points at
either the top or the bottom tangram to replace. It then gazes
at one of the six groups of tangrams in the workspace, to the
group with the appropriate size and shape. Finally it lights
up its ears in the color of the desired example. For example,
pointing at the bottom half of the demonstration area while
gazing with red ears at the small circles is meant to ask, “Can
we put the small red circle here?”

B. Test Responses

When the human teacher tests the robot on an example,
Simon has a total of five possible responses: yes, uncertain-yes,
uncertain, uncertain-no, and no. These are communicated us-
ing three animations, one each for “yes,” “no,” and “uncertain.”
The “yes” animation is the head nodding, and the “no” ani-
mation is the head shaking from side to side. The “uncertain”
animation is designed to communicate lack of confidence.
It tilts the head sideways and lifts the arms upwards in a

Fig. 3. The “uncertain” shrugging animation in simulation.

TABLE II
SYMBOL LEARNING TASKS

Name Attributes Values Generality
House Top shape Triangle 1.45%

Top color Red
Bottom shape Square
Match size Same

Snowman Top shape Circle 2.89%
Top size Small
Bottom shape Circle
Bottom size Large

Person Top shape Circle 10.87%
Bottom shape Square

Rainbow Match color Different 75.00%

bent-elbow configuration to create a shrugging gesture (Figure
3). By playing the “uncertain” animation simultaneously with
either “yes” or “no,” Simon’s response can communicate that
he is leaning towards one answer without being fully confident
in that answer.

VII. EXPERIMENT DESIGN

A. Teaching Task

Subjects were tasked with teaching Simon four different
symbols. We named these symbols “house,” “person,” “snow-
man,” and “rainbow.” The ground truth representation for each
symbol is shown in Table II, and examples can be seen in
Fig. 4. We tried to select these symbols based on varying
specificity/generality — that is, these symbols have varying
coverage of the space of possible compound tangrams.

We described the feature space to the subjects and told them
to teach the symbols one at a time. Subjects were allowed
to teach “house,” “person,” and “snowman” in any order, but
“rainbow” was always last. We wanted subjects to become
familiar with the objects before trying to teach a more general
concept.

In order to teach Simon, subjects were told to arrange a
compound tangram in the demonstration area from Simon’s
perspective and say one of three possible sentence types into
a microphone:

• [Simon], this is a <symbol-name>.
• [Simon], this is not a <symbol-name>.
• [Simon], is this a <symbol-name>?



Fig. 4. Examples of the four symbols that people taught Simon: House (top-
left), Person (top-right), Snowman (bottom-left), Rainbow (bottom-right).

These sentences were originally to be identified using a
Sphinx speech recognition module, but were ultimately logged
by the experimenter using a Wizard of Oz interface for
higher accuracy. The subjects still spoke into a microphone
to preserve the belief of communicating with the robot.

Taken in conjunction with an example compound tangram,
these three sentences represented a positive label, a negative
label, and a test question. Simon would then process this state-
ment and respond to it. Subjects were instructed to watch for
Simon’s reaction, since he could not speak. Simon blinked the
lights on his ears when he was finished responding to indicate
to the teacher that he was ready for another demonstration.
Subjects were told to put any pieces used for demonstrations
back in their original locations in the workspace when not
currently in use.

A whiteboard near Simon provided reminders about the
symbol attributes and the types of sentences that the teacher
could say. This was preferred over giving the human a piece of
paper with instructions so that people would look up towards
the robot rather than fixate on the piece of paper.

Subjects were instructed to continue teaching each symbol
until they were satisfied that Simon had learned the symbol
well or thought that Simon had stopped making progress.

B. Experimental Conditions

In this experiment we wanted to compare transparent active
learning to a more typical supervised learning interaction. We
used a between-subjects design comparing two groups:

1) Transparent Group (T): All of the transparency mech-
anisms we implemented were included in interactions for the
transparent group. An example interaction sequence is shown
in Table III. After each positive or negative label provided,
the robot looked at the demonstration, processed it using
supervised learning, and then attempted to direct the human’s
attention towards an example selected by active learning using
the multimodal gesture of pointing, gazing, and ear color.

After each test question, the robot responded in one of five

TABLE III
TRANSPARENT GROUP EXAMPLE INTERACTION

Step Demo Area Teacher’s Sentence Robot’s Response

1 ‘This is a house.”

2 “This is NOT a house.”

3 “Is this a house?” (Shrug gesture)

possible ways: certain-yes, uncertain-yes, uncertain, uncertain-
no, or certain-no. Certain responses were predictions of confi-
dence value 1; confidences lower than this resulted in playing
back the shrugging animation. Yes or no responses were the
nodding and head-shaking animations respectively. Uncertain-
yes and uncertain-no were thus combinations of simultaneous
head and body animations.

When instructing the transparency group subjects, we said
that the robot knew about the top and bottom of the demon-
stration area as well as the groups of shapes in his workspace.
We emphasized that the robot may try to communicate with
them about the example provided, but did not describe any
gestures to expect.

2) Non-Transparent Group (NT): In the non-transparent
group, Simon did not perform active learning. He also never
played back the shrugging animation to indicate uncertainty.
Thus, the only possible responses were the nodding and head-
shaking animations. Like the transparent group, we did not tell
these subjects what gestures to expect.

C. Data Logged

We considered an important event to be either a teacher’s
sentence or the robot’s response. The following were the data
about each event that we logged for every symbol teaching
session in order to characterize the differences between the
transparent and non-transparent groups:

• Transparent – whether this was the T or NT group.
• System Time – wall clock time.
• Interaction Step – number of events so far for this symbol.
• Current Example – the compound tangram currently

configured in the demonstration area.
• Current Label – the label provided for the compound

tangram, if any.
• Sentence Type – one of the three valid sentences types

from the human teacher, if any.
• Answer Type – one of the five responses the robot could

provide, if any.
• Query – the compound tangram selected for attention

direction using active learning, if any.



D. Interview Questions

After each subject finished teaching all of the symbols, the
experimenter asked the subject a series of questions to evaluate
the teaching experience.

• What was Simon communicating with his ear color, gaze,
and pointing? His head and body gestures?

• What was the difficulty of teaching each concept?
• How well do you think Simon learned each concept?
• What was your general teaching strategy?
• When did you decide to stop each teaching session?
• What else would you have liked to communicate?

VIII. PILOT RESULTS

We ran a pilot study on nine subjects in order to identify
issues in the experiment design and witnessed a surprisingly
diverse range of interactions. Because of the small sample size,
none of the results here are statistically significant. However,
we thought it would be interesting to present some salient
characteristics of these interactions in a descriptive manner.
These observations raise important issues to consider when
designing a transparent robot learner.

A. Ambiguity in Transparency Mechanisms

One of the main conclusions we are able to draw from our
pilot study is that it is important for the transparency devices
to be clearly understandable. In these initial experiments,
we found that 5 of the 7 people in the transparent group
did not “correctly” interpret Simon’s nonverbal gestures as
queries about the learning space. People had a variety of
interpretations as to what the gestures specifically meant (such
as pointing at a shape that was relevant or flashing red
ear color when angry), but essentially the only information
they understood from the robot’s communication was the fact
that it needed more examples, not specifically what kind of
examples were needed. This seems to have led to worse
performance than the non-transparent group. Our hypothesis
is that the robot’s gestures caused people to form a variety of
different inaccurate mental models about the learning process
that in turn led to inefficient teaching, whereas in the non-
transparent case, people devised a teaching strategy to take
the lead and systematically explore the feature space. In this
semi-transparent group, ambiguous gestures seemed to prevent
subjects from attempting this efficient systematic exploration.

This leads us to believe that we should wait to run the full
version of this experiment until we have implemented either
manipulation capabilities or speech synthesis. This way, the
robot can use actions or speech as queries rather than relying
on nonverbal gestures that were ambiguous to a majority of
the subjects in the pilot study.

For the remainder of this discussion we will refer to three
groups of people instead of two: the fully transparent group
(FT) of two that understood the transparency mechanisms,
the semi-transparent group (ST) of five that saw Simon’s
transparency gestures but did not interpret them as intended,
and the non-transparent (NT) of two that were never presented
the transparency mechanisms.

TABLE IV
EFFICIENCY: ACCURACY DIVIDED BY THE TIME TAKEN TO TEACH

Group Control Accuracy Time Efficiency
(FT) Single Initiative 93.75% 20.33 mins 18.79%/min
(NT) Single Initiative 79.52% 24.56 mins 13.45%min
(ST) Mixed Initiative 70.76% 31.94 mins 10.74%/min

B. Performance Comparison

In order to compare the relative performance between the
groups, we look at the accuracy of learned symbols, compar-
ing the trained model’s predictions against the ground truth
representation for the 552 possible compound tangrams. We
used the F1 score in our evaluations.

Of the two subjects in the FT group, one attempted to
execute every example suggested by the robot and did not
begin testing the robot at all until the robot stopped example
selection. This subject taught models of 100% accuracy for all
four symbols. The other subject did not recognize the active
learning component until the third symbol learned, but his
third and fourth symbols were 100% accurate. The ST and
NT groups had an average accuracy of 70.76%.

Additionally, we can characterize the efficiency of teaching
between the three groups. Efficiency is defined as the accuracy
divided by the wall clock time taken to teach. As shown in
Table IV, the FT group had the best efficiency, followed by
NT, and then ST.

These performance outcomes suggest that it is possible for
active learning to be extremely beneficial to the robot’s learn-
ing when being taught by a human. By trying to influence the
human’s attention towards the areas of maximal confusion for
the robot, the feature space for the hypotheses can be covered
as completely and efficiently as possible and converge on
perfect models rather quickly. In addition, subjects who did not
participate in active learning remarked on how much mental
work was required to keep track of different combinations
in order to teach systematically. During active learning, the
robot’s resources of memory and processing power can be
leveraged instead of taxing the human teacher.

C. Perceived Performance

To analyze people’s mental model of the learning process,
we compare actual accuracy to perceived accuracy. We asked
people to estimate the percentage of each symbol that they
thought Simon would be able to recognize in the future. The
disparity between the subjects’ perception of accuracy and the
accuracy of the actual models learned provides further support
for an active learning approach.

The one subject who fully cooperated in active learning was
confident that Simon had learned all of the symbols perfectly.
For all other subjects there was no correlation between how
well people believed Simon learned the concepts and how
well Simon’s learned models actually performed. For example,
some subjects estimated Simon’s learning a symbol as “50%
complete” when the learned model was actually perfect. Other



subjects thought that certain symbols were learned signifi-
cantly better than others when in fact the reverse was true.

Ideally, perception of accuracy should be matched to actual
accuracy so that the teacher does not waste work or stop teach-
ing prematurely. Because it can be challenging for humans to
maintain a mental model of the learning space, active learning
with unambiguous transparency mechanisms can potentially
serve to shift work in the interaction from the human teacher
to the robot learner.

Perceived accuracy is a metric that we would like to
develop further in future experiments. In general, an important
direction for our future work is recreating that quality of a suf-
ficiently transparent process that leads to matched confidence
between the teacher and the learner. In particular, we continue
to look for appropriate metrics and methods for evaluating a
person’s mental model of the teaching process.

D. Single-Initiative Speed

Even disregarding accuracy, we observed an interesting
outcome in time taken to complete the teaching tasks. The
FT and NT subjects took less time to reach a point when they
were satisfied with the robot’s learned symbol. These subjects
completed the study in an average of 22.44 mins (57.75
interaction steps, where a step is either a human sentence or
a robot response), compared to the 31.94 mins (65.67 steps)
of the ST group.

Our hypothesis is that “single-initiative” control (FT and NT
groups) of the interaction resulted in faster learning compared
to “mixed-initiative” control (ST group). In the FT group, the
robot was in control of the learning process, with compara-
tively little input from the human teacher in terms of example
selection. The robot completed learning quickly due to the
active learning component. In the NT group, the human was
in control of the robot’s learning process because the human
had the sole responsibility of example selection. Although the
non-transparent teachers were provided less information, the
result was that they concentrated on forming mental models
of the symbol so that they could traverse the feature space
systematically and teach the robot efficiently.

The accuracy of the ST group that understood the “un-
certain” gestures but not the active learning gestures was
similar to the NT group, but they took a longer time to
achieve this. To analyze this difference, we looked at the
percentage of demonstrations that were uninformative. We
defined uninformative examples to be ones that did not change
the size of the maximally consistent symbol version space at
the time of presentation; these were examples that the robot
already understood how to classify perfectly. The ST group
provided an average of 29.67% uninformative demonstrations,
whereas the NT provided an average of 15.63% uninformative
examples. This could be explained by their impression that it
wasn’t necessary to keep track of examples provided because
the robot seemed to be doing it, and then their attempts to
reconcile conflicts between this impression and the reality
of the robot’s learned model. ST subjects kept providing
examples when the robot demonstrated uncertainty after a test

question, but without having kept track of previous demon-
strations, they provided these examples seemingly randomly
and often redundantly. Additionally, when accuracy is taken
into account, we also see that both FT and NT groups were
more efficient than the ST group (see Table IV).

This highlights the importance of designing transparency
mechanisms that convey accurate information at the appropri-
ate level of abstraction. The semi-transparent group subjects
reported feeling confusion at the active learning gestures.
Although they saw more transparency mechanisms than the
non-transparent group, this did not increase overall efficiency
in teaching the task.

E. Balance of Control

Transparency through active learning has the potential to
improve performance, but our preliminary data indicates that
an interaction dictated entirely by active learning may be
undesirable from the human teacher’s perspective. Both of the
subjects we saw in this condition expressed a desire to take a
more active role in structuring the learning process rather than
blindly answering all of the robot’s questions.

The subject who cooperated fully with the robot’s active
learning was mostly reliant on the robot to guide the inter-
action. He stated that he was glad that the robot was able to
figure out for itself what it needed to know, and that he stopped
bothering to keep track of what the robot could be “caught on.”
Although he said he trusted the robot more as time went on, he
also said that he was “skeptical” when the robot stopped asking
questions and thus asked many test questions to the robot. On
multiple occasions he also inserted an example that the robot
did not request because he wanted to give demonstrations that
he believed to be representative, just in case. The result was
that he actually gave 12.19% uninformative examples; these
instances were ultimately unnecessary. So although he felt
compelled to take control of the interaction occasionally, these
actually decreased the efficiency of the learning process.

The subject who participated in active learning for his last
two symbols had a different situation. When he recognized
the robot’s active learning strategy, he considered it inefficient
due to the constraint of varying only a single tangram; he
thought that varying both the top and the bottom would be
more efficient. Knowing the limitation of his own memory, he
said he wished he could trust the robot’s selected example but
didn’t trust it because of this perceived deficiency. He also said
he felt like he wanted to “disobey” what the robot wanted to
be taught, and that he sometimes “gave in” to the robot out of
“pity.” One ST subject, upon learning the purpose of the active
learning gestures, exclaimed that she felt bad for Simon that
she didn’t answer any of his questions. These remarks suggest
that active learning exerts a strong influence on the interaction
in swaying the balance of control towards the robot, which
could actually be an undesirable effect in an interaction.

On the opposite extreme were the NT subjects, during
whose interactions the human had full control of the learn-
ing. In their exit interviews, these subjects explicitly stated
either that they wished the robot could ask questions, or that



they wished they could ask the robot what exactly it didn’t
understand. In essence, these subjects felt that the robot did
not participate enough in its own learning process and needed
to maintain a higher amount of control in the interaction.

Thus, our hypothesis for the full version of this experiment
is that people in both the transparent and non-transparent
conditions will be dissatisfied with the balance of control in
the interaction, but for different reasons. Moreover, we expect
several people in the transparent condition to ignore the robot’s
queries from time to time in order to exert their own structure
and control on the process.

We expect that this particular aspect can vary significantly
due to differences in human teachers’ personalities, so it will
be necessary to have an adequate sample size to cover this
variance in the final experiment. But we think it is important to
state that balance of control between the robot and the human
is a parameter to tune carefully when designing an interaction,
as either extreme can have undesirable ramifications. Robots
need a more fluid balance of control between leading and
following. The open research question is how to design
appropriate mechanisms for deciding how to switch between
the two behaviors in a social learning interaction.

IX. CONCLUSION

In this work, we strove to build a robot learner that could
leverage transparency in order to help a human teacher provide
better instruction. We implemented active learning on the
Simon robot so that it could query an external entity about
areas of uncertainty in its hypothesis space. We then developed
a set of nonverbal gestures for providing feedback about
uncertainty, as well as nonverbal gestures that the robot could
use to ask a human teacher about the feature space in a tangram
symbol learning task.

In a pilot study, we saw that transparency through active
learning has the potential to improve both the accuracy and
the efficiency of a teaching process. We saw that people
who understood the robot’s queries were able to train a
model with perfect accuracy relatively quickly. They also
had high confidence that the trained model was complete.
However, we decided that an interaction guided completely by
active learning could be undesirable from the human teacher’s
perspective, since both of the subjects we saw in this condition
indicated that they wanted to take more control of the process.
Conversely, the subjects in the non-transparent condition who
did not see the active learning version of the robot indicated
that they wished that the robot would take some initiative or
be able to communicate about what it did or did not know.

More broadly, this relates to the issue of guidance versus
exploration in SG-ML, which we have discussed in prior work
[22], [23]. In interactive machine learning systems, it is com-
mon to require a constant amount of input or interaction from
the human partner. A confirmation of our observations in more
thorough future studies would indicate that this method is not
appropriate for robots learning from everyday human partners.
Such robots need a more fluid balance of control of when
to lead and when to follow. Thus, an important problem for

future work is designing regulatory mechanisms for switching
between leading and following in a social learning interaction.
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