
i;

Problems of Building a Hybrid Data

Definition Facility

J. W. Dempsey
J. K. Mullin

RCA Corporation
Cinnaminson, New Jersey

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1734663.1734674&domain=pdf&date_stamp=1970-11-15

175

Problems of Building a Hybrid Data Definition Facility

Abstract

The capability to interrogate COBOL describable files

was added to an existing data base management system,

RCA's UL/i. This paper discusses features of the

implementation of UL/i which tended to facilitate the

COBOL additions and which features would have been

desirable in order to simplify the extension. The

authors believe that as the data base management field

evolves, more extensions to the set of files handled

by data management systems can be expected. The lessons

learned in this implementation could well have broad

~pplicability.

Introduction

As a result of the growing need for a flexible, easy-to-use

tool for coping with the problem of storing, manipulating,

and retrieving data, a large number of data management soft-

ware packages have been developed. Such a system is UL/I, which

has been developed by the RCA Corporation.

UL/I is a non-procedural language for interacting with a data

base. The language consists of four divisions, each of which

has several sections. The divisions are Establishment, Interrogat

Update, and ~evision.

Establishment is a process by which a file is added to a data

base in a form standard to the system. The Establishment

division processes a description of the file and reads the

data to form a system standard file.

The Interrogation division is used to place criteria on items

within a record and extract a set of data items from the records

which satisfy the criteria. For example, to find and print the

names of all employees who earn more than $i0000 in a branch

store in Boston:

177

INTERROGATE SALARIES *

RETRIEVAL CRITERION

CITY EQ BOSTON AND SALARY GT i0000 *

PUBLISH REPORT HIGHSAL

CITY ROW 1 COLUMN 3

NAME ROW 1 COLUMN 12 *

The Update division is used to modify or delete existing records.

The Revision division is used to change the record structure

of the file.

COBOL is also a language which is used to define operations on

a file of data and it too has several divisions. The DATA

DIVISION is used to describe the characteristics of the file

and the PROCEDURE division is used to specify operations on

the file. Unlike UL/I, however, COBOL is a procedural language.

A large number of users of existing COBOL files could benefit

from the use of the non-procedural inquiry facilities of UL/I

but were unwilling to convert their files to the UL/I format

since this would require either scrapping existing COBOL

programs which operated on the files or maintaining two versions

of the files. It was d~cided, therefore, to add to UL/I the

ability to accept a COBOL DATA DIVISION description of a file

in lieu of the UL/I description - and to query the file directly

without requiring conversion to the UL/I standard format. This

paper describes some of the problems involved in forming such

a hybrid data description facility and concludes with some

suggestions for development of future data description facilities.

12

The Original Data Definition Facility

The data definition facility of UL/i is contained in the

Establishment division. This division may be viewed as a

transducer which accepts as input a file and a description

of the file and produces as output another file, in systei~

standard format, and its description. It is thus a mapping

of the data structure associated with the file into the

storage structure of the UL/i system.

HL/i views a file as consisting of one or more similarly

structured entries (called records) where a record may contain

a hierarchy of groups and data items. The data definition

facility is divided into several sections, each of which

describes a particular characteristic of a record.

The relevant sections are

A) Data Identification

This section is used to assign to each item an

identifier and a data type (numeric, alpha-numeric,

coded or date)

B) Structure

This optional section is used to specify the grouping

of the data items identified in the identification

section and whether an item is single or multi-valued.

179

C) LAYOUT - Description of the Input Stream

This section is used to describe the format of the

records being input to the file. Two methods of

description are available. The positional form is

a series of field length specifications describing

where the data items are to be found in the input

stream. A field length specification is in the

general form:

item identifier [integer-l] X integer-2

where integer-2 specifies the length of the field

containing the item and integer-i specifies the

number of repetitions of the field. The labeled

form of input data requires that each input item

be preceded by its item name. This label must

be separated from the item value by at least one

space.

An example of a data descriptien in UL/i is found

below.

11

ESTABLISH SAMPLE

IDENTIFICATION

#i A NAME

#2 A SEX

#3 N AGE

#4 N SALARY

#5 A JOB

#6 A SKILS

STRUCTURE I

#6 REPEATS

the file name

here types are associated
with data names. #i and
NAME are synonyms for an
alphabetic (A) data field.

the field #6 (SKILS) is
multivalued.

LAYOUT
(i)

#i X3 #2 Xl #3 X2 #4 X5 #5 X23 #6 3 X1

INPUT

JOEM3050000MANAGER OF OPERATIONS ED

JIMM3050000 PROGRAMMER EB * *

(i) Specifies that item 11 is in the first 3 characters,

#2 is in the next etc.

181

The file "SAMPLE" will be established with two records.

The type of storage, fixed size or variable size selected

for the data items and the lengths of fields will depend on

the input data.

The UL/I system accepts the data description and the input

and produces the system standard file and its description.

The data definition produced by the Establishment division

consists of a set of tables.

A) General File Information

This table contains information about the file.

Included are maximum record size, blocking, record

count, etc.

B) The Tree Directory

This table contains information about the data

structure within the records.

C) A Name Directory

This table maps names associated with items into the

table describing the attributes of the items.

D) The Item Information Table

Here is kept information about each data item includin%:

i) type (alpha, numeric, etc.)

2) addressing information

3) length

4) multiplicity (single or multivalued

5) group membership

6) maximum number of subitems

7) external numeric form

8) a security level number

The COBOL Data Description Facility

~he COBOL data file is described through the FILE SECTION of

the DATA DIVISION. This section is used to describe the structure

of the record and the type, size and names of the individual

items.

This section has the following features:

A) A level numbering scheme to assign a hierarchical structure

to the data.

B) A USAGE clause to assign each item a data type.

C) A PICTURE clause to give information about the length

and editing features of the data. The PICTURE clause

also gives additional information about the data

characteristics such as scaling factor for numeric data.

183

D) The OCCURS clause which specifies the number of repetitions

of a multi-valued item.

The file described on page 5 would be described by COBOL

as follows:

DATA DIVISION

FILE SECTION

FD SAMPLE; BLOCK CONTAINS 2 RECORDS;

RECORDING MODE IS F; LABEL RECORDS ARE

STANDARD; DATA RECORD IS MASTER RECORD.

01 MASTER-RECORD.

02 NAME-PICTURE IS X(3).

02 SEX PICTURE IS X.

02 AGE PICTURE IS 99.

02 SALARY PICTURE IS 9(5).

02 JOB PICTURE IS X(23).

02 SKILS OCCURS 3 TIMES PICTURE

IS X.

The Hybrid Data Definition Facility

Two factors made it impossible to map the COBOL DATA

DIVISION definition of a file directly into the data

definition produced by the ESTABLISHMENT DIVISION of UL/i:

i. Whereas UL/i assumes that numeric data was either

integer or floating point, COBOL allows five different

types of numeric data and allows specification of a

scaling factor as well.

2. UL/i uses a combination of information in the structure

information table and pointers stored with the data

records to access data for an item which is a member of

a group. To access data from the COBOL files we had to

rely solely on the structure information derived from

the DATA DIVISION.

It was necessary, therefore, to modify the form of the data

definition produced for the COBOL files.

We were constrained in our choice of implementation strategy

by the requirement that the changes in the existing system's

subroutines be kept to a minimum. Since there are over

three hundred modules in the system and most of these referen

the data definition tables either directly or indirectly

this would have been an extremely difficult task.

Fortunately, however, the system was designed so theft all

access to the data records was channeled through a single

routine. This meant that by modifying this routine we could

reinterpret those fields in the item information table

which were used to locate data. These fields we used to

point to auxiliary tables which contained the additional typi

185

and structure information which was required as well as

the information needed to locate the data. We also

modified this routine so that in the case of those types of

numeric data in COBOL which do not exist in UL/i it converted

the data to a standard UL/i type before passing the value

to the calling routine.

We were forced to use auxiliary tables rather than revise

the format of the item information table because there were

many modules which accessed information in that table directly.

The publication translator, for example, used information

in the table to format the output of an interrogation. As

a result we could not change the format of this table without

making corresponding changes in the system.

Thus it was the existence of a common data access routine

which made our task less difficult and the lack of a common

definition table access routine which made it more complicated.

The conclusion is obvious: a more flexible system requires

that the data definition tables be built and accessed

through a small set of functional subroutines. In this way

the semantics of the definition can be freed from a rigid

syntax. (A beneficial side-effect is that more readable and

more easily debugged code should result.

186

Conclusions

The approach we took in adding the COBOL data definition

facility to UL/i was feasible because:

i. The COBOL data types could be converted into UL/i

data types.

2. The logical data structures were much the same in COBOL

and UL/i (although the physical storage structures were

different).

This is not the general case, however, and we would not want

to follow this approach to add other data definition

facilities to the UL/i system. Even with the existence of

central data access and data attribute access routines, the

labor involved in building the translators and interfacing

with these routines is extensive and must be done for each

new language. We feel that a generalized data definition

facility must be developed to eliminate this problem.

Such a data definition facility must provide a flexible

means of specifying the location within a record of data

values associated with items. It should not provide a

standard record format but a standard way of describing

record formats. Both COBOL and UL/i specify record formats

in terms of length of data items. UL/I also takes a step

away from fixed format by allowing each data item to be

preceded by a delimiter of the form "#n," where n is an

integer. We believe that a generalized daha definition

facility must allow the use of a much broader class of

187

delimiters to free us from fixed record formats.

It must also provide a flexible means of specifying the

semantics of the data. One of the components of semantics

is the structure of the data, i.e., the specification of

relations among data items. Hence a powerful means of

specifying the mapping from data ~tructure to storage structure

must be provided. The semantics is also controlled by the

operators on the data. These operators are independent of the

definition facility. The specification of data types,

however, provides a selector function which controls the

semantics of the operators within a system. For example,

"+" operating on an item of data of type "numeric" would

specify addition; operating on an item of type "string" it

could mean concaterlation. We do not believe it wise to limit

the number of data types. Hence we believe that a means must

be provided to define new data types by specifying the

effect of these data types on existing operators.

In summary, we think that we need a language which is capable

of:

i) defining record formats in a flexible way

2) specifying relations among data items

3) defining new data types

The creation of such a facility would go a long way toward

making data management facilities more broadly applicable

and it would also facilitate the transfer of data between

systems.

