
188

THE INTERPRETATION OF STRUCTURED

DATA USING DELIMITERS

E. H. BEITZ

STORED

CONTROL DATA CORPORATION

JUNE 1970

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1734663.1734675&domain=pdf&date_stamp=1970-11-15

189

THE INTERPRETATION OF STRUCTURED STORED DATA USING DELIMITERS.

The paper presented below puts Forward a method of delimiting

strings of data with dedicated codes From a specific alphabet.

The purpose of the delimiters is to permit both variable length

data and variable occurrence of data-items in a particular context.

The advantages of using such a scheme are Felt to be numerous. The

most important of the advantages are the reduction in storage

requirements and the Flexibility in datamitem representation.

The terminology used in this paper is consistent with that of

the COBOL language. More precise definition of the terms used is

not necessary and makes it possible to avoid the ontological and

other philosophical problems of describing data. The representation

of the various data types is also of little consequence and will not

be discussed either. The technique requires that data descriptive

information be available at run-time, rather than at compile-time.

A data description such as the Data Division entries of COBOL

serves two primary purposes. The first is to assign a data-name

to an item and to list the attributes of its associated values.

The second is to prescribe an order for the values and to show their

hierarchical relationships.

Unfortunately the representations of the different values do

not always have the same storage requirements. Even a set of values

associated with a particular data-name will have large disparities

between the storage requirements of its members. Equally disarming

is the Fact that the number of occurrences of the same item varies

Fro,, record to record. COBOL makes provieions For solving both of

these problems, but the cost is storage. {Some data description

techniques eliminate the problem by not even trying to solve it.}

1 9 0

Let us consider that the values which all data-names may take

belong to one o f two types. The first is simply a string o f codes

from a specific alphabet. The second type is any specific repre-

sentation which uses a finite number of bits to represent each and

every possible value for a specific elementary item. The Former

type is characterized by the variable length alphanumeric string

and the latter by a floating point number.

For the purpose of discussion we will assume a particular

alphabet of codes for the first data type, say, the 8-bit ASCII

code-set. Four of the ASCII codes have been assigned as delimiters.

They bear a specific relationship to each other; namely, they have

a definite hierarchy. The names which they have been given may be

confusing in the context of this paper so we will give them some

simple symbolic representation. Only three will be used here and

will be :

GS {ASCII Group Separator} will be

RS {ASCII Record Separator} will be I

US {ASCII Unit Separator} will be s

This small table is ordered having the most exclusive delimiter

at the top and the least exclusive one at the bottom.

We will look at a technique which uses the delimiters and

the data types described above. This technique will allow variable

length strings and variable occurrence of both elementary items and

group items. Our data description must include the size of values

associated with the second data type. {The problem solution would

be simplified if this data type had a size which was some multiple

of the size of each of the symbols used for the first data type.}

Consider a simple record which consists only of elementary

items. A partial COBOL description of this record follows:

191

01

02

02

02

SAMPLE-RECORD1

A....o......o...

e°...o...o.....°

C..°o.......o..o

All three data-names are elementary items and let us assume

that all may take alphanumeric strings as values. Suppose that

each data-name may take no values, or one value, or many values.

To separate one alphanumeric string from the next, we will use our

delimiters.

Only three of the delimiters will be used. The delimiter

associated with a data-name will follow the value associated

with that same data-name. The delimiter itself will control the

context in which the string following it will be considered. The

meaning ascribed to the three delimiters will be:

• Terminates all but the last value for the current

data name.

i Torminates the last value For the current data-name.

Terminates ~he record.

Using the description For SAMPLE RECORD1 and the above deFi-

nitions, let us discuss some examples. For ti~e purpose oF illus-

tration we will show an alphanumeric string representing a value

For the data-name A as the small letter "a."

Example 1: a I b I c X

Here we see a single value For each oF the three

elementary items.

Example 2: I b • b X

Data name A has no value and data-name B has two values.

The record terminates before we consider data-name C

so it is assumed to have no value.

4

Example 3= a • a • a • a ~ I c X

Example 4: I b • b I c • c • c I

Some observations about the data description, as it relates

to the records and the data-names are in order. Examples 2 and 4

both show no value For data-name A. Example 2 shows premature

termination. A delimiter is required For all non-existent item

values preceding the last extant item value. Non-existent item

values are implied For all items Following premature termination.

This suggests that datamnames For mandatory items, those which must

take at least one value, should precede those For optional items in

the data description. The position oF a data-name in the data-

description should be a Function oF the probability oF that data-

name taking a value in any record. {The grouping oF elementary

items does not always make this possible.}

The hierarchy of data-items as represented by their level

numbers in the data description will now be discussed. The

relationship between the level number of an item and that of the

item following it serves to indicate whether the first item is an

elementary item or a group item. A quick look at a number of

examples will illustrate this.

193

Example 1:

05 CURRENT-ITEM

05 SUCCESSOR

The level number of SUCCESSOR is equal to the level

number of CURRENT-ITEM. CURRENT-ITEM is "elementary."

Example 2:

05 CURRENT-ITEM

06 SUCCESSOR

The level number of SUCCESSOR is greater than the level

number of CURRENT-ITEM. CURRENT-ITEM is "group."

Example 3:

05 CURRENT-ITEM

04 SUCCESSOR

The level number of SUCCESSOR is less than the level

number of CURRENT-ITEM. CURRENT-ITEM is "elementary."

ig

lit is possible to make a Further deduction From the relation-

ships illustrated in the above examples. That is, we can determine

which item will be c6nsidered when CURRENT-ITEM has been completely

dealt with. But this requires some elaboration. Using the same

record as the one used above to illustrate the use of delimiters,

we will show how the order in which the data-items are considered

may be prescribed.

The partial COBOL data description for this sample record is:

01 SAMPLE-RECORD1

02 A

02 B

02 C

This same record may be shown as a hierarchical tree.

- ORD1

A ~ C
l e v e l 01

l e v e l 02

Elementary items are the leaves of this inverted tree {and will be

represented by unfilled circles}. With the exception of the node

at level 01 which must be part of every record in a File, other

branching points must be group items.

Consider a slightly more complex example:

195

01 SAMPLEmRECORD2

02 A

02 B

03 C

03 D

02 E

and its tree representation:

" D2

A E

CO ~D

The node "B" is rlot a leeF and is therefore a group item.

The leaves C and D are the sole members oF the group oF B. We

will assume that all occurrences oF the group B must be dealt

with before the leaf E is considered.

ig

Let us consider a Flag which indicates the existence or absence

of the group B. There are only two specific instances in which the

flag would be needed in SAMPLE-RECORD2. The First is when all the

values for the elementary item A have been processed. The second

is after all the members of the group B have been dealt with and

we wish to determine whether or not there is another occurrence

of B prior to considering the elementary item E.

A group item does not really have its own value. Collectively

the values of all the elementary items contained in the group com-

prise its "value." This does not preclude having a dei~i~itc~r For

the group data-name: We have seen that it is possible to deduce

whether the data-name with which we are working is an elementary

item or a group item. We can use a delimiter associated with the

group data-name to tell us if the group is present. IF it is present

then we simply move to the next data-name in the data-description,

be it elementary or group. When the group is absent, th~n the First

item following the entire group will be considered.

We can use the same delimiters as before. This is only

possible because we know the context of their usage. Only two

delimiters are required for group data-names. Let us assign the

following meaning to the delimiters "$" and "I" when used to

indicate whether or not a group is present:

• The group, whose data-name is being considered, is

present.

I The group, whose data-name is being considered, is

absent.

The following examples illustrate the use of the group

delimiters. The record description is:

197

01 SAMPLE-RECORD2

02 A

02 B

03 C

03 D

02 E

Example 1: a • a J I e • e

Here the second "I" tells us that the group B is absent;

so what follows this delimiter must be a value for the

elementary item E.

Example 2: a I • c J d I I e

The "e" indicates that the group B is present, and the

Fourth "]" indicates that there is no second occurrence

of the group B.

Example 3: a • a J e c e c J I • c I d • d I I e ~

A COBOL-like data-description and the tree representation For

a much more complex record are shown below. A Fine line which

shows the processing Flow is included in the inverted tree repre-

sentation. When the delimiter being considered belongs to a group

item, it is enclosed in a square. In all other cases the delimiters

are associated with values andare in circles.

The data description:

19

01 SAMPLE-RECORD3

02 A

02 B

03 C

03 D

04 E

04 F

02 G

03 H

03 I

02 J

the tree repre~entatlon:

1 9 9
Premature termination indicated by encountering the delimiter

"J'" will simply jump to the end oF the Flow at *. All data-items

not dealt with are considered to have no values.

A Few examples using the data-descriptlon shown above Follow:

Example 1: a J J • h • h j i • i e i ~ J j • j a j ~

This example shows the group B absent and a single

occurrence o? the group G.

Example 2 :

a J o c J o c e c J o e J F ' o F J o e] J J I o h J i J J j l

Here we see two occurrences oF the group B and one o?

the group G. In the First instance oF group B the sub-

group D is absent. In the second occurrence o? B there

are two occurrences oF the sub-group D.

Example 3: J J • h • h • h • h J i I

Both A and B take no values, and this record terminates

prematurely.

The technique described above will result in a significant

saving oF storage resources. Just how much storage is very diFFicult

to say but is a Function oF the structural redundancy and complexity

oF the File being considered. The delimiters do have storage

requirements, but this is insignificant when compared with the

potential reductions in data-storage needs. The group item delimiters

reduce the delimiter storage needs considerably.

2O

The di:limit~:r structure d ~ s c r i b e d h (, r e c a n b~, u:~,!d i n c o n -

junction with many different structural Forms. The n1~rarchical

structure was chosen as the model in this paper sinc~ it is the

most commonly used. Explicit information about data-items should

be included in the data-description and should not be deduced

when and as needed. For example, group items should be labeled

as such in the data description; non-recurring data-it, ms should

have indicators to this effect; mandatory data-items should be

marked "mandatory." This will not only speed up processing but

will aid in detecting errors on input and during processing.

The delimited string used together with the run-time data-

description is felt to be a realistic and flexible apprbach to the

problem of storing large volumes of data. There is a move to on-

line inquiry systems in data-processing. Run-tim," data descrip-

tions and the scheme described here meet the needs of the data-

bases maintained for such systems. This technique is proffered

in the belief that we must make our data-description Fit the data

and not try to make that data fit the data-description.

