
A Matching Based Decomposer for
Double Patterning Lithography ∗

Yue Xu and Chris Chu
Department of Electrical and Computer Engineering
Iowa State University, Ames, Iowa 50011-3060, USA

{yuexu,cnchu}@iastate.edu

ABSTRACT
Double Patterning Lithography (DPL) is one of the few
hopeful candidate solutions for the lithography for CMOS
process beyond 45nm. DPL assigns the patterns less than
a certain distance from each other on each layer onto two
masks instead of one mask in traditional lithography. In
this paper, we prove that the conflict graph used to model
DPL conflicts in layout is a planar graph. Based on the pla-
narity of the conflict graph, we propose a new face merging
based framework which formulates DPL decomposition as a
problem of pairing odd faces to simultaneously minimize the
number of stitches generated and conflicts to eliminate. We
employ partitioning and simplification techniques to reduce
the problem size and use an O(n3) time maximum weighted
matching algorithm to generate an optimal DPL decompo-
sition.

Categories and Subject Descriptors: B.7.2 [Integrated
Circuits]: Design Aids — layout ; J.6 [Computer-Aided En-
gineerin] : Computer-Aided Design

General Terms: Algorithms, Design

Keywords: Double Patterning Lithography, Planar Graph,
Matching Algorithm

1. INTRODUCTION
As one of the most promising candidate technology for

lithography beyond 45nm, Double Patterning Lithography
(DPL) assigns patterns on each layer onto two masks and
carries out two rounds of independent pattern transfer to
form patterns on wafers. In order to increase the minimum
pitch for each lithography exposure, DPL requires a pair of
patterns assigned onto different masks if the minimum dis-
tance between the pair is less than a DPL threshold [1] [2] [3]
[4]. Commonly, the threshold is set to be twice the minimum
feature size of the desired process. We use Manhattan dis-
tance as the measuring metric just like some previous works,

∗This work was partially supported by IBM Faculty Award
and NSF under grant CCF-0540998.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’10, March 14–17, 2010, San Francisco, California, USA.
Copyright 2010 ACM 978-1-60558-920-6/10/03 ...$10.00.

such as [4] and [5].
We call a pair of patterns conflicting or has conflict if the

minimum distance between the two patterns is less than the
DPL threshold. A DPL decomposer needs to assign con-
flicting patterns onto different masks. Sometimes, layout
cannot be decomposed unless patterns are sliced up and has
the sliced parts assigned onto different masks. When the
sliced parts in a single pattern are formed by different rounds
of pattern transfer, their touching boundary forms stitch.
With stitch generation, DPL decomposers can increase the
flexibility of DPL decomposition. This improvement of flex-
ibility comes at the price of lower yield. When patterns from
two rounds of pattern transfer process merge and form one
connecting pattern, pinching or bridging effects stem up and
tend to reduce yield. So DPL decomposers generally try to
minimize the number of stitches [5] [6].

Even with the flexibility introduced by creating stitches,
layouts generated by traditional back end tools are usually
DPL incompatible because the tools simply ignore the DPL
issues. We define DPL incompatibility (incompatibility for
short) for a layout as its lack of a valid DPL decomposition
even if all possible stitches are considered. DPL decomposer
needs to send DPL conflicts involved in incompatibility back
to designers for layout modification. Fewer DPL conflicts in-
volved in incompatibility indicates less effort and time spent
on the modification. So in this paper, we extend the scope
of DPL decomposition problem by suggesting a minimum
number of DPL conflicts to eliminate. If the layout modifi-
cation eliminates the suggested conflicts, the resulting layout
will be DPL compatible. We notice that the set of stitches
that decomposers choose may affect the number of conflicts
to eliminate, so we simultaneously reduce the number of
stitches generated and conflicts to eliminate.

A lot of previous DPL decomposers simply ignore DPL
incompatibility [7] [8] [9] [14]. Kahng et al. [9] use itera-
tive searching of odd cycles and generate candidate stitches
heuristically. They neglect incompatibility issues in their
ILP based stitch selection. The work is later extended to
[10], which considers layout modification by incorporating
PSM layout modification works [11] [12] into DPL decom-
poser. However, PSM problem does not have the flexibility
to slice patterns and generate stitches. The application of
those techniques only leads to sub-optimal results. Yuan et
al. [13] slice patterns into numerous cells with the feature
size as side length. They formulate an ILP to assign the
cells onto masks to reduce a weighted sum of the number of
stitches generated and conflicts to eliminate. Although the
work considers the minimization of the number of conflicts



to eliminate, its ILP formulation is too slow for practical
designs. It uses some partitioning heuristic to speed up the
decomposition but such heuristic destroys the optimality of
the decomposer. To speed up the pre-slice and ILP based
stitching framework, [14] proposes conflicting pattern clus-
tering and several simplification techniques to carry out par-
tial mask assignment decisions and reduce the problem size
of the final ILP.

In this paper, we propose a new matching based DPL de-
composer. Our decomposer optimally solves the minimiza-
tion of a weighted sum of the number of stitches generated
and conflicts to eliminate (i.e., the same objective as [13]).
Our key contributions include:

1. We prove that the Conflict Graph (CG) used to model
DPL conflicts is planar. The planarity of CG is crucial
in enabling us to use a matching based approach.

2. We find that both stitching and conflict elimination
merge neighboring faces in CG. We create a structure
called Face Graph (FG) to model face merging.

3. We propose a new framework for DPL decomposition
that optimally pairs up all odd nodes in FG to elimi-
nate all odd cycles in CG.

4. We prove that the odd-node pairing problem in FG can
be reduced to a set of smaller pairing problems by par-
titioning FG into subgraphs. This reduction greatly
speeds up our decomposer.

5. We transform each subgraph of FG into a complete
graph that stores the costs of pairing odd nodes. We
formulate the odd-node pairing problem for each sub-
graph as a minimum weighted perfect matching prob-
lem.

6. We use an optimal and polynomial time algorithm for
minimum weighted perfect matching problem in com-
plete graph. The matching solution corresponds to an
optimal pairing of odd nodes in FG.

Comparing to odd-cycle-searching based decomposers [9]
[10], our decomposer can achieve the minimum number of
stitches generated and conflicts to eliminate. Comparing to
[13], it does not slice up patterns to minuscule cells and
avoids formulating an ILP. It does not need partitioning
heuristic that affects the optimality of solutions to speed
up the decomposer.

Conflict Graph Construction 

Face Identification, Merging Evaluation 
and Face Graph Construction

Layout Modification Recommendation
and Decomposition Output 

FG Subgraph Transformation and 
Minimum Weighed Perfect Matching

Formulation

Polynomial Time Solution for Minimum 
Weighed Perfect Matching Problem

Odd Node Pairing Formulation and
Face Graph Partition

Figure 1: DPL Decomposer Flow

The flow of our decomposer is shown in Fig. 1. It first con-
structs the CG from layout, identifies faces and evaluates the
feasibility of merging neighboring faces. From the merging
feasibility, it builds up the FG and carries out partitioning
and simplification. Finally it formulates matching problems
and solves them to find the optimal stitch generation and
conflict elimination solution.

The rest of this paper is organized as follows. Sec. 2
presents the proof that Conflict Graph is planar. Sec. 3
introduces the general concepts and formulation of our face-
merging based decomposer. Sec. 4 shows the partitioning
and simplification techniques along with the solution for the
DPL decomposition problem. The experimental results are
provided in Sec. 5 and we conclude in Sec. 6.

2. PLANARITY OF CONFLICT GRAPH

A Min Spacing
C A Min Spacing

Prohibited Region
For Point A

Min Spacing
Prohibited Region

DB
Prohibited Region

For Point B
DPL Conflictss

Figure 2: Proof of Planarity

In Conflict Graph, we create one node for each pattern on
one layer in the layout and one edge in between two nodes if
the minimum Manhattan distance between two correspond-
ing patterns is less than two times the minimum feature size.
In other words, we use Manhattan distance as the metric for
DPL conflict. To prove that CG is planar, we first consider
DPL conflicts induced from abstract points instead of pat-
terns and prove the following lemma:

Lemma 1. Conflict edges induced from a set of points can
only intersect at the endpoints of the conflict edges, under the
condition that points are separated by the minimum spacing
rule and the DPL threshold is less than or equal to two times
the minimum spacing.

Proof: We defined a DPL conflict for two points if their
Manhattan distance is less than the DPL threshold in Sec.
1. We create a conflict edge for the DPL conflict. It is
obvious that conflict edges induced by three points may only
intersect at the endpoints of the edges. As shown in Fig. 2,
the conflict edges A ∼ B and B ∼ D intersect at a shared
endpoint B.

So we focus on conflict edges between two pairs of DPL
conflicting points. In Fig. 2, we try to force conflict edges
A ∼ B and C ∼ D to intersect. We denote the threshold
of DPL conflict as t. Without loss of generality, we assume
that B is within the lower left quadrant of A. Since A and
B are conflicting, we have the following relationship for the
coordinates of A and B:

xA − xB + yA − yB < t (1)

In order to have conflict edge C ∼ D intersecting A ∼ B
between points A and B, points C and D must reside in the
lighter colored regions in Fig. 2. Otherwise, C and D will be
too far away to be DPL conflicting or conflict edge C ∼ D
will not intersect A ∼ B at all. Without loss of generality,
we assume that C lies in the region left to A and D lies in
the region right to B.



We can derive the following inequalities from the mini-
mum spacing rule among A, B, C and D:

xC ≤ xA − s (2)

yC ≥ yB + s (3)

xD ≥ xB + s (4)

yD ≤ yA − s (5)

In the above inequalities, s is the minimum spacing be-
tween patterns. The minimum Manhattan distance between
point C and D is derived as in Inequality (6):

MD(C,D) = xD − xC + yC − yD

≥ xB − xA + 2s+ yB − yA + 2s

> 4s− t (6)

If there exists a conflict between C and D, the Manhat-
tan distance MD(C,D) must be less than the DPL conflict
threshold, i.e., MD(C,D) < t. Combined with Inequality
(6), this will leads to t > 2s. t > 2s is a contradiction with
the spacing and decomposition rules we have. Thus, C and
D cannot be conflicting and it is impossible to construct two
conflict edges that intersect each other at the points other
than the endpoints of the conflict edges. Thus, Lemma 1 is
proved. �

Auxiliary Node

CG Node

Auxiliary Edge

Conflict EdgeCG Node Conflict Edge

Figure 3: Embedding of Planar CG

With Lemma 1, we can prove the following theorem:

Theorem 1. For any Conflict Graph, we can always find
a planar embedding such that Conflict Graph is planar.

Proof: Here is the procedure to construct the embedding.
First, we copy the planar layout onto a plane and create a
CG node inside each pattern. For every DPL conflict, we
find the nearest points that cause DPL conflicts on the two
conflicting patterns and create an auxiliary node on each
point, as shown in Fig. 3. We create one conflict edge
between the auxiliary nodes. We also create auxiliary edges
each of which lies within each pattern and connects the CG
node and an auxiliary node.

Since conflict edges lie outside patterns and auxiliary edges
lie within, they only intersect at the auxiliary points. Obvi-
ously, auxiliary nodes from different patterns are separated
at least by minimum spacing. By setting the auxiliary nodes
for a conflict at the least spaced points on two patterns,
their distance should be less than two times the minimum
feature size, which is less than two times the minimum spac-
ing. From Lemma 1, conflict edges from entirely different
patterns do not intersect. Besides, conflict edges that share
the pattern can only intersect at the auxiliary nodes of the
shared pattern. So all conflict edges can only intersect at
auxiliary nodes.

Next, we contract the existing CG node, auxiliary nodes
and auxiliary edges that belong to the same pattern into

a new single CG node and form the final CG, in which
there exist solely conflict edges. Since the contraction does
not change the relative locations of conflict edges, they still
only intersects at the endpoints of conflict edges. Thus, we
achieve a planar embedding for CG and proved that CG is
planar. �

Furthermore, we can see that the maximum DPL spacing
threshold that guarantees the planarity of CG is two times
the minimum spacing for the layout.

We observe that odd cycles in CG are the sole obstacles for
DPL decomposition and we need to break all the odd cycles.
So long as we can break every odd face in CG, there would
no longer be any odd cycles. Faces are generally smaller
than cycles. Besides, the number of faces is linearly pro-
portional to the number of patterns in the layout while the
number of cycles are exponential. Both factors will reduce
the complexity of breaking odd cycles. Furthermore, the
decomposer can easily identify all the obstacles for decom-
position by looking at the faces in CG instead of repeating
greedy search for odd cycles as in [9].

3. FACE MERGING BASED FORMULATION

(a) Node Splitting

(b) Edge Removal

Figure 4: Two Face Merging Operations

The stitch generation and conflict elimination that assist
DPL decomposition are represented by node splitting and
edge removal in CG, as illustrated in Fig. 4. We observe
that both of the operations merge two faces in CG to form a
bigger face. We model the feasibility of merging two neigh-
boring faces in Face Graph. FG has one node for each face
in CG including the external face. We call the nodes in FG
corresponding to even and odd faces in CG as even nodes
and odd nodes respectively. We create an edge between two
nodes in FG for the following two situations:

• Node splitting: The two corresponding faces in CG
share nodes and one or more of the shared nodes can
be split. Thus, the faces could be merged by generating
stitches.

• Edge Removal: The two corresponding faces share nodes
but no shared nodes could be sliced without violat-
ing design rules. However, the two neighboring faces
also share a DPL conflicting edge, whose removal will
merge two faces.

The edge costs for the above two types of edges are set
to be cs and cr respectively. We keep cs � cr because
conflict elimination is a much more expensive choice than
stitch generation.



It is obvious that merging one odd face with an even face
will create a bigger odd face, which assists the DPL decom-
position in no sense. So it is rational for decomposer to
merge neighboring odd faces. If some odd faces have no odd
neighbor to merge with, they should be merged with other
non-adjacent odd faces, using even faces as agents.

We define pairing as the shortest path in Face Graph for
two odd nodes. Each pairing in FG represents the least
cost method to merge two odd faces in CG. Because we
need to break every odd face in CG to achieve a valid DPL
decomposition, we need to pair up every odd node in FG.
On the other hand, we can pair up every odd node because
there always are an even number of odd nodes in FG. No
odd node will be left out in the best pairing solution. So the
least cost maximum pairing set would be the best solution
for the new DPL decomposition problem.

It may seem that grouping of an even number of odd nodes
(corresponding to a Steiner tree) is more general than pair-
ing of two odd nodes. Limiting our consideration to pairing
seems to constrain the solution space and produce inferior
solution. However, it is not hard to see that any grouping
of 2k odd nodes can be replaced by a set of k pairings with
the same or lower cost to eliminate the 2k corresponding
odd faces. Hence, it is not beneficial to consider grouping of
more than 2 nodes.

The face merging based formulation brings two benefits.
Firstly, our new decomposer only generate a small set of nec-
essary face merging operations as candidate operations for
the decomposition problem. We choose one node splitting
or edge removal for each pair of neighboring faces. Every
operation in our work is essential because ignoring any face-
merging operation will lead to sub-optimal solution. On the
contrary, [9] generates candidate stitches for every patterns
along the odd cycle in hope that some candidate stitches
would break the odd cycle. To an extreme, [13] generates
candidate stitches at every possible location by slicing pat-
terns into grids. Some of the candidate stitches in [9] and
[13] are useful while most are redundant and ineffective in
breaking odd cycles. The excessive candidate stitch gener-
ation creates many useless candidate stitches that dramati-
cally slow down the runtime, simply because the ILP based
selection is not scalable. Secondly, we can transform the
face-merging based formulation into a mathematical prob-
lem that can be optimized in polynomial time, instead of
depending on ILP. The details about the transformation is
presented in the following section.

4. DECOMPOSITION ALGORITHM

4.1 Face Graph Partition
If we directly pair up odd nodes in FG, the problem size

could be prohibitive. Fortunately, we observe that Conflict
Graph contains a vast number of connected components.
The nodes in FG corresponding to the faces in one connected
component in CG are connected to other nodes only through
the single external face node, as shown in Fig. 5(a). We can
partition FG into subgraphs called SubFGs as illustrated in
Fig. 5(b) and perform pairing on them instead.

Each SubFG has the nodes corresponding to the faces in
one connected component in CG, one virtual external face
node that represents the boundary of the connected com-
ponent, and the edges between these nodes inherited from
FG. We assign the parity of the virtual face node for each

(a) CG and FG (b) SubFG

Figure 5: Converting FG into SubFG

SubFG in the following way. If the connected component in
CG has even number of odd faces, the virtual node for the
corresponding SubFG is even. If the connected components
has odd number of odd faces, the corresponding virtual node
is odd. In such way, every SubFG always have even number
of odd nodes.

We prove in Lemma 2 that combining the best pairing
solution in each SubFG will lead to the best pairing solution
in FG.

Lemma 2. The combination of best pairing solutions in
SubFGs will form a best pairing solution in FG.

Proof: Assume that in a pairing solution, there is one
pairing with two ends coming from two different SubFGs,
shown as pairing A in Fig. 6. Let us focus on one of the
SubFGs, α. We show all the odd nodes in α in Fig. 6.
We have two possible cases depending on whether the α has
even or odd number of odd nodes.

(a) Even Number of Odd Nodes

(b) Odd Number of Odd Nodes

Figure 6: Independent Decomposition

For the case shown in Fig. 6(a) where SubFG α has an
even number of odd nodes, one odd node will be left without
pairing unless it is paired with another odd node in other
SubFG. The newly added pairing is B. These two pairings
both cross the external node because it is the only node that
connects α to the other SubFGs. We can rearrange A and
B to form two new pairings. The new pairing C passes the
external node for α and fully resides in α.

For the SubFG α with odd number of odd nodes, as shown
in Fig. 6(b), it seems one node has to get paired up with
a node in other SubFG. On a second thought, the setup of
polarity guarantees that the total number of odd nodes stays
even in each SubFG. We can separate the original pairings
A into two A′ and A′′.

For both cases presented above, we can always rearrange
any pairing sets in FG into pairings that reside fully in Sub-
FGs, without changing of the costs. By solving the least
cost pairing problem in each SubFGs and combining the so-
lutions, we can generate a least cost pairing solution for the
entire FG. Thus we prove Lemma 2. �



After we split the FG into SubFGs corresponding to con-
nected components in CG, the pairing process would be car-
ried out on each of these SubFGs independently.

4.2 SubFG Simplification
Since odd faces are the only type of faces that need to

be eliminated and even faces are only used to assist the
elimination of odd faces, we simplify each SubFG to generate
a graph only containing the odd nodes in the following way.
We first use Floyd-Washall algorithm [15] to find the shortest
path for each pair of odd nodes in each SubFG. We create
a complete graph for the odd nodes in SubFG, in which the
edge weight is set to the cost of the shortest path between
the corresponding pair of odd nodes in the SubFG. We call
the newly created graph Pairing Cost Graph (PCG). The
PCG stores the costs of all possible pairings in a SubFG.

(a) (b)

Figure 7: Shortest Pairings

We find that an edge in SubFG may be embedded into
multiple edges in PCG. It seems that the decomposer might
choose several edges that contain identical SubFG edges and
thus overcount the costs in final solution. Such situation
does not exist. For two pairings that shared an edge, as
shown in Fig. 7(a), the nodes involved could be paired up
differently as shown in Fig. 7(b). The second pairing solu-
tion costs less than the first one. Thus, the first pairing case
shown in Fig. 7(a) would never be chosen in the least cost
solution.

4.3 Matching Based Solution
After the simplification in previous subsection, we want to

pair up every node in the PCG with a minimum weight. Be-
cause every SubFG has even number of odd nodes, the sim-
plification process in last section will generate PCGs with
even number of nodes. Besides, every PCG generated is a
complete graph. It is obvious that a complete graph with
even nodes always has a perfect matching in which all the
vertices are matched. So to solve the odd face merging prob-
lem for DPL layout decomposition, we just need to find a
minimum weighted perfect matching for every PCG.

Since the only matching solvers we can find is for maxi-
mum matching problems, we convert the minimum weighted
perfect matching on a graph to maximum weighted match-
ing in the following way. For a PCG G with the maximum
edge weight MAXw. We denote H as MAXw + 1. We con-
struct another graph G′ with the same topology as G. The
weight for edge e′

i in G′ is set to H −Wi where Wi is the
weight for the corresponding edge in G. In such a way, we
transform the minimum weighted perfect matching problem
on G into a maximum weighted matching on G′. We create
a G′ for each PCG by modifying the edge weights and use an
O(n3) maximum weighted matching package [16] to achieve
solution for the entire DPL layout decomposition problem.

It is worth mentioning that a paper [17] published in 1975
applying a similar matching based method to solve maxi-
mum cut of a planar graph in polynomial time. They used
minimum odd circuit cover problem in planar graph as a
start point, carried out a series of transformation and ended

up in a maximum matching problem. Although the work
looks similar to our work, in the DPL decomposition prob-
lem, we can use node splitting to merge odd faces, so we
have an extra operation, i.e. node splitting, to merge two
odd faces. Besides, our face graph is more complex than
normal dual graph.

4.4 Dependent Stitches

Figure 8: Dependent Stitches

Because our decomposer needs to analyze all the conflicts
and possible face merging operations to simultaneously make
decisions, it mandates that all the face merging operations
should be independent. However, we devised a structure il-
lustrated in Fig. 8 that violates such requirement. In Fig.
8, stitch shields are introduced to prevent stitches on certain
locations where stitches will cause design rule violation or
pattern boundaries that are in DPL conflicts with other pat-
terns. With the stitch shields, the only places to use stitches
to break the odd faces in Fig. 8 are A and B. However,
stitches A and B cannot coexist or there would be a DPL
conflict no matter how subpatterns α , β and γ are assigned.
We see that the stitches require α, β and β, γ assigned onto
different masks, so no matter which mask we assign β to,
α and γ would be assigned onto the other mask. However,
the distance between α and γ is less than the DPL conflict
threshold so their coexistence on the same mask violates
DPL decomposition rule. Because our decomposer assumes
face merging and thus the edges in FG are independent, the
matching formulation cannot handle dependent stitches.

Dependent stitches occur only in this carefully constructed
example. Even though we did not observe any dependent
cases in the experiments, we design a post-processing step
in our decomposer to tackle such situation. If dependent
stitches are found in matching based solution, we enumerate
the two possible cases of disallowing one of the two stitches
by removing the corresponding edge in FG. We rerun both
cases and the final solution is the better of the two.

5. EXPERIMENTS
We implement our new decomposer in C and test it on a

2.6GHz Intel Linux machine with 6GB memory. We use the
same benchmark as [10] and compare the results of the new
decomposer with it. The benchmark AES is a real world
design from opencore.org while the rest three are artificial
designs instantiated from more than 600 different cell mas-
ters. The original minimum spacing and minimum feature
size is 140nm and 100nm respectively. They are scaled down
by a factor of 0.4, i.e., 56nm minimum spacing and 40nm
minimum feature size, to simulate future designs. We com-
pare the results of our decomposer to [10] in Table 1.



Table 1: Experimental Results
Our Decomposer [10] [14]

Design #Patterns # ER # Stitches cpu(s) # ER # Stitches cpu(s) # ER # Stitches cpu(s)

AES 90394 0 30 4.8 0 35 17.2 0 30 5.9
TOP-B 545000 637 10892 42.6 800 14027 448.1 865 10265 15.4
TOP-C 2725000 3502 67581 205.5 4000 69490 6629.0 4273 64385 310.7
TOP-D 1090000 1328 25853 97.3 1600 27908 1228 1724 24767 85

In Table 1, “# ER” is the number of edges to be removed
while “# Stitches” is the number of stitches. Comparing
to [10], our decomposer generates solutions with 15% less
conflicts to eliminate and 7% less of stitches. Moreover,
we achieve 25 times speed-up. We notice that [10] also op-
timizes the overlap length of stitches, which sacrifices the
number of stitches so the results might not be directly com-
parable. However, the scale of reduction of both stitches
generation and conflict elimination is significant enough to
demonstrate the effectiveness of our new decomposer. In
comparison to [14], we dramatically reduce the number of
conflict edge removal by 20% at the cost of merely 5% over-
head of stitches. For runtime, the matching based decom-
poser is marginally slower than [14] on small benchmarks.
However, it outperforms the fastest previous work for large
designs, which is the common work for current VLSI designs.

We cannot get the results of [13] on the same benchmarks
for comparison due to IP issues. However, according to the
results in [13], the decomposer needs 70 seconds to decom-
pose just 18975 patterns (their largest benchmark). Consid-
ering the fact that the ILP based decomposer is not scalable,
the speed is just too slow for modern design with millions of
patterns.

We are aware that speed is a secondary criteria to judge
DPL decomposer. Design quality factors such as the num-
ber of stitches generated and conflicts to eliminate are more
important. However, due to the exploding pattern num-
ber and the unavoidable rounds of redesign, effective control
over runtime is a must for DPL decomposer. The speed is
critical especially when, in the early design stage, designers
know the incompatibility of layout but want to know where
to carry out layout modification. Our decomposer produces
optimal solutions in a much shorter runtime than previous
approaches.

In our experiments, the largest number of odd faces for
a connected component in CG is 10, leading to a PCG of
merely 45 edges. Besides, a connected component has 1.24
odd faces on average. By adopting the face-pairing based
formulation, we greatly reduce the complexity for DPL de-
composition problem.

6. CONCLUDING REMARKS
In this paper, we prove the planarity for DPL Conflict

Graph and develop a face merging based optimal solution for
the DPL decomposition problem. Our experimental results
show that the new framework can achieve significantly less
number of stitches generated and conflicts to eliminate. Our
future research will focus on DPL guided detail routing.

We want to point out an assumption made in edge re-
moval, the second type of face merging operation. We give
our decomposer the power to remove a conflict edge without
affecting the surrounding conflicts or void of conflicts. In re-
ality, patterns in a compact layout are spatially correlated
so that modifying patterns may not only remove the DPL
conflict in focus, but also affect DPL geometric relationships

between multiple patterns. It may occasionally remove or
generate a few DPL conflicts. Some previous decomposers
consider a few detailed objectives about layout modification,
like the minimization of displacement of patterns involved in
the conflict elimination. Even so, they still leave out critical
issues like the connection between layers, timing and noise.
These issues are essential for the correctness of layout mod-
ification. However, they are too complicated to be included
in a DPL decomposer, which makes the partial considera-
tion of layout modification in DPL decomposers useless. So
we hold the believe that so long as the DPL decomposer
pinpoints and minimizes the conflicts to eliminate for layout
modification, the details about the modification should be
left for experts or more focused layout modification tools.

7. REFERENCES
[1] Chang-Moon Lim, et al., “Positive and negative tone double

patterning lithography for 50nm flash memory,” Proc. SPIE
6154, 2006

[2] Jungchul Park, et al., “Application challenges with double
patterning technology (DPT) beyond 45 nm,” Proc. SPIE
6349, 2006

[3] Mircea Dusa, et al., “Pitch doubling through
dual-patterning lithography challenges in integration and
litho budgets,” Proc. SPIE 6520, 2007

[4] Yuichi Inazuki et al., “Decomposition difficulty analysis for
double patterning and the impact on photomask
manufacturability,” Proc. SPIE 6925, 2008

[5] George E. Bailey, et al., “Double pattern EDA solutions for
32nm HP and beyond,” Proc. SPIE 6521, 2007

[6] Martin Drapeau, et al., “Double patterning design split
implementation and validation for the 32nm node,” Proc.
SPIE 6521, 2007

[7] Tsann-Bim Chiou, et al., “Development of layout split
algorithms and printability evaluation for double patterning
technology,” Proc. SPIE 6924, 2008

[8] Anton van Oosten, et al., “Pattern split rules! A feasibility
study of rule based pitch decomposition for double
patterning,” Proc. SPIE 6730, 2007

[9] A.B. Kahng, et al., “Layout decomposition for double
patterning lithography,” ICCAD 2008, Nov. 2008

[10] A.B. Kahng, et al., “Revisiting the layout decomposition
problem for double patterning lithography,” Proc. SPIE
7122, 2008

[11] C. Chiang , et al., “Fast and Efficient Bright-Field AAPSM
Conflict Detection and Correction,” TCAD, Volume 26,
Issue 1, Jan. 2007

[12] A.B. Kahng, et al., “New graph bipartizations for
double-exposure, bright field alternating phase-shift mask
layout,” Proceedings of the ASP-DAC, 2001

[13] Kun Yuan, et al., “Double Patterning Layout
Decomposition for Simultaneous Conflict and Stitch
Minimization,” International Symposium on Physical
Design (ISPD), San Diego, March 2009

[14] Y. Xu, et al., “GREMA: Graph Reduction Based Mask
Assignment for Double Patterning Technology,” ICCAD
2009, Nov. 2009

[15] Robert W. Floyd, “Algorithm 97: Shortest path,” Commun.
ACM 5, 1962

[16] http://elib.zib.de/pub/Packages/mathprog/
matching/weighted/

[17] F. Hadlock, “Finding a Maximum Cut of a Planar Graph in
Polynomial Time,” SIAM J. Comput. 4, 221, 1975


