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Abs t r ac t  

As modular programming grows in importance, the 
efficiency of procedure calls assumes an ever more critical 
role in system performance. Meanwhile, software 
designers are becoming more aware of the benefits of 
object-oriented programming in structuring large software 
systems. But object-oriented programming requires a 
good deal of support, which can best be distributed 
between the compiler and architectural levels. A majol 
part of this support relates to the execution of procedure 
calls. Must such support exact an unacceptable perfor- 
mance penalty? By considering the case of the Intel 432, a 
prominent object-oriented architecture, we argue that it 
need not. The 432 provided all the facilities needed to 
support object orientation. Though its procedure call was 
slow, the reasons were only tenuously related to object 
orientation. Most of the inefficiency could be removed in 
future designs by the adoption of a few new mechanisms: 
stack-based allocation of contexts, a memory-clearing 
coprocessor, and the use of multiple register sets to hold 
addressing information. These proposals offer the prospect 
of an object-oriented procedure call that can, on average, 
be performed nearly as fast as an ordinary unprotected 
procedure call. 

1. In t roduc t ion  

There are currently two general points of agreement 
about object-oriented programming systems: they 
represent a desirable programming environment [1]-[3]; 
and their existing implementations are too slow [4]-[7]. 
Procedure call/return linkage, a major overhead even in 
conventional systems, can easily dominate the perfor- 
mance of object-based systems. This paper will discuss 
some problems of object-based procedure-linkage mechan- 
isms, offering strategies for combatting the overheads, and 
quantifying the effects of such strategies. 

Object-oriented systems come in two major "styles". 
Smalltalk [3] is typical of one, and the Intel 432 [5] or IBM 
System/38 [8] could represent the other. The object- 
orientation of the 432 is manifested in several ways: 
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• All information is encapsulated into protected sets 
called objects (instruction segments, data structures, 
processes, messages). 

• Every memory reference, whether an instruction fetch 
or operand access, is checked for read/write privilege 
and base/bounds validity. 

• Pointers to objects are protected. These pointers are 
not directly manipulated by the user program, but 
only by trusted hardware and microcode on behalf of 
the user. 

This style of object orientation can be viewed as a conven- 
tional system with runtime checking built into the 
addressing mechanism. 

The Smalltalk style of object orientation is built on a 
different paradigm, but presents the same challenges to the 
implementor. In Smalltalk, computation proceeds via 
messages passed from one object to another, requesting 
that various operations, called methods, be performed by 
the receiver object on the receiver's data structures. The 
methods themselves can be altered, added, or deleted at 
runtime. 

Procedure calls are among the most frequently exe- 
cuted instructions, accounting for 12% [9] to 25% [10] of 
executable statements. In conventional systems, 
call/return overhead is high enough to merit special atten- 
tion at the architecture and compiler levels [9], [11]. The 
SOAR (Smalltalk On A RISC) project [12] devotes 
hardware resources to the call-linkage mechanism. The 
432 incorporates an elaborate protected-call mechanism 
that provided separate contexts for each procedure, but 
runs so slowly that the overall performance is severely 
impacted. 

The Intel 432 is an excellent vehicle for measuring the 
impact of object orientation on procedure-call efficiency. 
It performs all of the operations necessary to support 
object orientation. Through the courtesy of the Intel Cor- 
poration, several 432 programs have been traced at the 
register-transfer level [13]. All of the steps in a 432 pro- 
cedure call have been accounted for. By analyzing which 
are needed in any object-oriented architecture, and which 
are artifacts of the 432's implementation, we can estimate 
how much overhead is inherent in an object-oriented pro- 
cedure call. 
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2. Division o f  L a b o r :  Compi l e r  vs. A r c h i t e c t u r e  

The implementation of an object-oriented system is a 
matter of teamwork between the compiler and the archi- 
tecture. Determining what architectural complexity needs 
to be associated with object orientation is primarily a 
question of deciding what the architecture can do more 
effectively than the compiler. We propose a division of 
labor between the compiler and the architecture: the com- 
piler is responsible for the correct functioning of each 
separately compiled module, while inter-module interfaces 
are entrusted to the architecture. Let us explore the rea- 
sons for this decision. 

If a program is to run with high efficiency, it must 
avoid re-doing unnecessary work. Decisions that  can be 
made once and for all at compile time should not be 
deferred until runt,me, when they might have to be re- 
made repeatedly, each time that a piece of code is exe- 
cuted. One example is bounds checking of a constant sub- 
script, or a subscript whose range can be determined by 
flow analysis. On most architectures, compile-time bounds 
checking saves substantial execution time. Another exam- 
ple is pipeline optimizv:tion in the MIPS machine: the com- 
piler is charged with scheduling the initiation of pipeline 
operations [14] to avoid collisions. Note that in both of 
these examples, the necessary checks could be made 
efficiently at run time, but at the cost of a more compli- 
cated architecture. A segmented memory system could be 
used for dynamic bounds checking, but most segments 
would probably be small [15], a source of further 
inefficiency [16]. Hardware could be provided to interlock 
pipe stages dynamically, as is done on most other 
machines, including the VAX and M68000. But, critics 
have charged, this hardware is usually complex, slows the 
basic clock cycle of the machine, provides little functional- 
ity that cannot be provided better by the compiler, and 
could have been used for other purposes to enhance overall 
performance. 

A graphic indication of the pitfalls of re-doing 
unnecessary work is provided by the performance of two 
benchmarks on the Intel 432. The highly recurs,re 
Ackermann's function, which does little except pass 
parameters and perform procedure calls, was the worst 
performing of the 432 programs benchmarked at Berkeley 
[17], running 26 times slower than on a VAX. After calcu- 
lating the effects of a variety of software and hardware 
optimizations, Colwell [13] still found it the slowest, run- 
ning four times slower than on a "generic", non-object 
oriented architecture. The crucial factor is the acker 
function's need to use the 432's protected call instruction, 
which performs extensive address-space manipulations 
catering to protection requirements, even though acker 
calls only itself. The sole alternative provided by the 432 
architecture is a simple branch_and_link instruction, which 
is insufficient for recurs,re calls, since it cannot change the 
size of activation records, l 

Shifting responsibility to the compiler, then, achieves 
two important advantages: It allows programs to execute 

fewer instructions, and it helps reduce architectural com- 
plexity. Both of these factors contribute to better perfor- 
mance. In addition to bounds checking, a compiler can 
take on several tasks for which architectural solutions 
have been proposed, such as type checking (including 
variant-record discriminant checking) [18], automatically 
initializing pointers to nil, and replacement of some pro- 
cedure calls by branch-and-link instructions [13]. Increas- 
ing the compiler's responsibility means we are entrusting 
the correct functioning of the module more completely to 
the compiler; but a module cannot run successfully in any 
case unless it is compiled correctly. This division of labor 
does not, however, make the correct functioning of the 
system (including separate programs and separately com- 
piled modules) more dependent on the compiler. 

The compiler cannot be relied upon to insure inter- 
module protection, because it cannot guarantee the 
correctness of code beyond its purview. Code that it com- 
piles can be linked with other languages, or programs from 
the same language compiled with older or newer versions 
of the same compiler. Other modules are subject to errors 
from source-language bugs, compiler bugs, or inconsistent 
assumptions about interfaces. Some errors can comprom- 
ise protection, as, for example, when an arbitrary bit pat- 
tern is used as a pointer due to confusion about the 
number or ordering of inter-module parameters. Today's  
single-user systems run programs linked together from 
"reusable" modules supplied by programmers of uncertain 
competence or trustworthiness (witness the "Trojan 
horse" and the "worm"); this renders them nearly as 
vulnerable as conventional time-sharing systems. Hence 
some mechanism must be provided to allow new modules 
to be installed without jeopardizing other portions of the 
system. 

In recent years, a variety of software mechanisms 
have been developed to promote inter-module integrity; 
e.g., Ada's compilation-order rules [19] and RCS/MAKE 
[20]. These systems keep track of inter-module dependen- 
cies, requiring recompilatlon whenever an interface 
changes. Although useful, these methods have their limi- 
tations. First, they work only with languages or projects 
that  use them; and hence they cannot be relied upon as 
the sole means of inter-module protection. Architectural 
mechanisms, on the other hand, are inevitably used by all 
modules. Second, a bug in such a system could comprom- 
ise all modules that use it; new versions of compilers some- 
times contain bugs when delivered, so one would expect an 
inter-module control system to be subject to the same fal- 
libility. Finally, in large software systems, a change to a 
heavily used module might require recompiiation of a large 
volume of code, an expense that  is sure to grow as software 
complexity increases. All of these factors argue for inter- 
module protection at the architectural level. 

'Strictly speaking, this is not true. The 432 provideJ a special call in- 
struction, call through domain, that  can be used for intra-module calls. Howev- 
er, it is nearly aJ slow as the inter-module ca//instruction because it does all of 
the same address-space manipulation except for making a new domain object  
(which contains code and private data for the called module) addreasabie [51 
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3. Factorl  Affecting the  Performance of  the  In te l  
432 

The Intel 432 has been observed to execute s lowly-  
early versions ran benchmarks from 10 to 26 times as slow 
as a VAx, or from 2 to 23 times more slowly than an 8 
MHz 8086 [17]. Evidently, some of the penalty must be 
due to object orientation, and would be particularly obvi- 
ous during procedure calls and return. To establish the 
performance impact of object orientation, we must first 
account for other aspects of the 432's architecture or 
implementation that  influence its speed. Toward that  end, 
we summarize a set of performance measurements that  
appear in greater detail in [13]. This summary includes 
four benchmarks: 

• acker, a procedure to compute Ackermann's function, 

• sieve, a prime-number finder, 

• CFA5, a program for LU matrix decomposition, and 

• Dhrystone, a synthetic benchmark based on a set of 
language and OS studies I21]. 

Several factors not directly related to object orientation 
have major effects on the benchmark measurements. 

• The tendency of the 432 Ads compiler to generate 
spurious enter_environment instructions. To under- 
stand this, it is necessary to consider how a 432 pro- 
gram specifies a virtual address. Much 'as a virtual 
address in an ordinary segmented memory consists of 
a {segment number, displacement) pair, a virtual 
~ddress in a capability-based system consists of a 
(capability specifier, displacement) pair. On the 432, 
capabilities are called access descriptors (AD's). The 
capability specifier selects an AD in one of four 
objects: the Current Context or Environments 1, 2, or 

3. 2 These objects are called the four entry access 
environments (EAE's). 

EAE O, the Current Context, is loaded automatically 
during a procedure call. EAE's 1, 2, and 3 are loaded 
by an enter_environment, which traverses several lev- 
els of addressing information, including access 
descriptors (capabilities) and object tables {direc- 
tories). The first access to any object must be pre- 
ceded by an enter_environment, but the Ada compiler 
generates enter_environments before the first access 
in each basic block. Most of these could be avoided 
by a compiler that  performed a moderate amount of 
flow analysis. 

• The 432 Ads compiler does not perform 
common-subexpression elimination, and does 
not re-use addresses and temporary data 
across several instructions. 

• The compiler invariably passes in and in o u t  
parameters by value/result, even when the 
parameter is a large array. In the Dhrystone 
benchmark, passing a single array by 
value/result took 10 times as long as the rest 
of the benchmark! 

• The compiler never uses the simple branch and_link 
instruction in place of the much slower protected call 
instruction, even when the call graph would permit it 
(i.e., for intra-module calls that  are neither recursive 
nor mutually recursive). 

• Instructions are bit aligned in the 432, which requires 
the instruction decoder to reconstitute instructions 
after fetching and before decoding. During linear 
code sequences, reconstitution can be overlapped with 
the execution of another instruction. But for pipeline 
breaks such as jumps, calls, and returns, a number of 
cycles are lost while the execution unit is stalled wait- 
ing on the instruction decoder to flush the pipe and 
refill it from the new stream. 

• The 432 instruction set does not provide for 
instruction-stream literals other than zero and one. A 
study performed within Intel early in the 432 project 
concluded that  the constants zero and one would 
cover nearly all of the need for constants. This con- 
clusion was almost certainly in error, but it facilitated 
the instruction-decoder/execution-unit split. This 
functional partitioning of the 432 system helped make 
it possible to fabricate such a complex system on sili- 
con [22]. Since the 432's instruction stream is bit- 
aligned, literals would have had to be reconstituted in 
the instruction decoder's barrel shifter and then sent 
to-the execution unit. No suitable transmission path 
existed for such a transfer. 

The bar chart in Figure 1 shows the relative contribution 
of each of these items to the overall cycles that  the 432 
"wasted" on the benchmark set [13]. The pie chart indi- 
cates that approximately one-third of all cycles executed 
were wasted, one-third were required by intrinsic register- 
transfer paths, and one-third could have been saved if 
implementation technology had been advanced enough to 
allow wider buses, general registers, a separate floating- 
point unit, etc. 

4. P r o c e d u r e  Calls  on  t he  In te l  432 

Even if all the above mistakes had been avoided, 432 
procedure calls would still have been slow. Table 1 com- 
pares a 432 procedure call with two other architectures' in 

RThe full form of a virtual address is (sdector, i~dsz, di~4accmeat), where 
vdector is a two-hit field designating the Current Context  or one of  the  other 
three environments, and indez tell8 which AD in the selected environment is to 
b¢ used. 

T a b l e  1: Comparison of Procedure-Call Memory Tramc 

Reads Writes Total Bits Total 
Transferred Clk Cycles 

VAx 11/780 3 10 392 85 
MC68010 8 13 336 94 
Intel 432 16 24 1848 1022" 

These measurements assume four integers passed as parameters. 

*Including 282 waitstates; 740 clock cycles w/o  waitstates. 
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Figure  1: Relative Contributions of Cycle Sinks to Benchmark Execution Time 

Table  2: How a Call Affects Fields in the Context Object 

Access Descriptors Data Items 

Current Context P 
Global Constants P 
Context Message P 
Defining Domain W 
Local Constants W 
Environment 1 C 
Environment 2 C 

'Environment 3 C 
Calling Context P 
Context Link P 
Top of Descriptor Stack W 
Top of Storage Stack W 
IPC Message C 
Static Link W 

Operand Stack 
Working Storage 
Trace-Control Data 
Instruction Pointer W 
Current Inst Obj DAI W 
Operand Stack Ptr W 
Context Status W 

Key: P--Pre-Written; W-Writ ten;  C--Cleared 

terms of the memory references they 
generate. Note that this measure is 
independent of the factors cited 
above. As we shall see, many of these 
references are performed for reasons 
tangential to object orientation. 

At the outset, note that the 432 
procedure-call timing contains 282 
waitstates. 3 The Intel 432/670 
development system incorporated a 
slow, asynchronous memory/bus 
interconnection that added a 
s~gnificant (hut unspecified) delay to 
every memory reference, estimated at 
6 waitstates [23]. Since it is possible 
to create faster memory bus designs 
for the 432, subsequent analysis will 
begin by assuming that waitstates 
have been eliminated, and that a pro- 
cedure call takes 740 clock cycles. 

4.1, Linked Allocation of  Con- 
texts  

Each activation record created 
by a 432 program resides in a 
separate object, known as a contezt 
object. In Release 2.0 of the iMAX 
operating system, procedure calls 
used a linked (rather than stack- 
based) allocation mechanism. Hence, 
each call required the creation of a 
new context object, which is "fairly 
expensive, since it means allocating 
memory to the object, entering the 
object in an "object table" directory, 
and creating an access descriptor 

(capability) for the object. The benefit 
of this strategy is that a single mechanism suffices 
for procedure calls, coroutines, and independent 
subprocesses [24]; but at the cost of several more 
memory references during a procedure call. Jones 
and Schiller [25] have compared the cost of the 
linked strategy with that of the stack-based stra- 
tegy. They found that for an idealized implementa- 
tion of each, the linked strategy required more than 
twice as many memory references (13 vs. 5) when 
no parameters were passed or returned, while both 
implementations required an additional two 
memory references for each parameter. 

The cost of linked allocation is mitigated in 
Release 3.0, which in essence pre-allocates a chain 
of re-usable contexts so that procedure calls no 
longer need to perform dynamic memory allocation 

aA waitstate  is a c lock cycle that  the p r o c e u o r  spends waiting 
for some memory reference to  complete.  
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for every call. However, for a highly recursive program 
such as acker these pre-allocated contexts are depleted 
quickly, and the machine must soon resort to the original 
mechanism. Even pre-allocated contexts require five extra 
memory references on the 432.1 

4.2. A n a t o m y  o f  a 432 Procedure  Call  

At the time of a call, each context object is endowed 
with a number of AD's (capabilities) and several data 
items. Table 2 lists the items associated with each context 
on the Release 3.0 432, telling which are written at the 
time of context pre-allocation (P), or read (R) or written 
(W) when the call takes place. Objects in the called con- 
text which are neither pre-written nor written must be 
cleared so that  arbitrary bit patterns left over from the 
last time the memory was used cannot be used as AD's 
pointing to random locations in memory. Because inter- 
module protection depends on it, clearing of memory is an 
intrinsic cost of object orientation. It consumes 263 cycles, 
or 35% of the time needed for a procedure call. In Section 
5.3, we propose a technique for minimizing its impact. 

The first "writ ten" AD is the Defining Domain. It 
points to the domain object for the module to which the 
executing procedure belongs. It is used to access informa- 
tion that is "globally" accessible while executing within 
the module. Non-object-oriented architectures can get by 
with a single block of global information, but an object- 
oriented architecture cannot, since the globals change 
every time an inter-module call occurs. Hence this AD is 
intrinsic to object orientation. 

Deferring consideration of the Local Constants AD 
for awhile, the next two "writ ten" AD's are the Top of 
Descriptor Stack and Top of Storage Stack. The 432 uses 
these to reclaim storage automatically when a procedure 
returns. Any procedure activation may create objects. 
The 432 divides objects into two categories: those that are 
used for temporary storage which need not outlive the life- 
time of the procedure activation that  created them; and 
those that are used for more permanent storage, having a 
potentially unbounded lifetime [26]. Objects in the first 
category are allocated according to a stack discipline, and 
deallocated when a procedure returns. 

The 432 uses a standard capability-based addressing 
mechanism (see Figure 2), in which location and length 
information for objects is found in descriptors located in 
object tables. It also uses storage-resource objects 
(SRO's), which contain information on allocated and unal- 
located regions of virtual memory. When an object is 
deleted, its descriptor and SRO entry 5 must be deallo- 
cated. The Top of Descriptor Stack and Top of Storage 

4Two of these are essentially due to the fact  that  when a return is done,  
the "top-of-stack" is not necessarily at the end of the (fixed-length) calling- 
context object ,  so stack pointers must be maintained separately.  

Sir any. Not  all objects  have SRO entries, Some objects  are created as 
refinements (sub-objects) of existing objects, and hence have no new storage as- 
ecmiatod with them. 

I Process 1 1 

F i g u r e  2: Capability-Addressing Paradigm 

Stack AD's tell how many descriptors and SRO entries 
should be deallocated when the procedure returns. 
Although these are full-fledged AD's in the 432, in princi- 
ple they could be simple integers, assuming they were pro- 
tected from modification by the procedure itself (such 
modification could cause deallocation of objects belonging 
to its caller, for example). Two 16-bit integers could fit 
into a single 432 AD slot, and both could be initialized to 0 
at the time of a call. 

A fourth "writ ten" AD, the Static Link, is needed 
only when lexical-levei addressing is required. In fact, the 
432 procedure call writes a static link only when one is 
supplied as a parameter to the call instruction. But static 
nesting of modules is less common than static nesting of 
procedures (although it is allowed in Ada). 

The last "writ ten" AD and the one of the "pre- 
written" AD, the Global and Local constants, are an 
artifact of the 432 implementation, which lacks 
instruction-stream literals. A future object-oriented archi- 
tecture would undoubtedly include them, making these 

two AD's unnecessary, and saving one-and-a-halt ~ memory 
references and approximately 19 microcycles per pro- 
cedure call, as well as a similar pre-allocation cost at 
process-initiation time. 

The first AD slot in the Current Context is occupied 
by a pre-written self-reference to the Current Context 
(EAE 0-see  Section 3). Since an addressing path may 
start with the Current Context, an AD for it is just as 
necessary as the Segment-Table Base Register in a seg- 
mented memory system. However, because the Current 
Context is different for each procedure activation, a slot 
must be reserved for it in each context. The 432's four- 
environment addressing structure is not inherent to object 
orientation, but regardless of the structure used, the 
address-translation algorithm must have a reference from 
which to begin. This reference point may change with 
each inter-module call, hence the need to write a capabil- 
ity at each call. Section 5.2 will describe how this informa- 
tion can be held in a register rather than a main-memory 
location. 

6A sixty-four bit memory reference could become a 32-bit reference. 
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The next pre-writ ten AD points to the Context Mes- 
sage, an object tha t  holds the parameters  passed to the 
procedure. F rom an aesthetic standpoint ,  viewing the 
parameters as a message to the procedure fits nicely with 
the' abstract  notion of a procedure as an actor that  receives 
inputs and produces outputs,  and serves to emphasize the 
similarity between calling a procedure and initiating an 
independent process, which receives a message with its 
parameters. From a practical standpoint ,  the parameters  
could be placed at the end of the context object  itself. 
Doing so would avoid the need for this AD. It would also 
save the cost of creating the Context  Message object. Hen- 
ceforth, we shall assume that  parameters  are kept  in the 
Context Object.  

The Calling Context AD is a link used during a pro- 
cedure return. It would not be needed if a stack-based 
context-allocation scheme were used. However, because of 
inter-module protection requirements, even with stack- 
based contexts, a procedure cannot be allowed to move its 
stack pointer in such a way as to delete par t  of the context 
of its caller. The information necessary to prevent this 
(e.g., the value of the stack pointer at the time of the call), 
would be approximately as large as the Calling Context 
AD; hence the cost of writing the Calling Context AD can 
be considered intrinsic to object  orientation. However, as 
we shall see, if contexts can be overlapped, it may not be 
necessary to write both the Current Context and Calling 
Context AD's. 

Finally, the Context Link AD points to the pre- 
allocated context that  will be used on the next procedure 
call. It is an art ifact  of linked allocation of contexts that  
would be unnecessary if s tack-based allocation were used. 

In summary,  of the ten AD's pre-writ ten or wri t ten at  
the time of a c a l l -  

• Two (Defining Domain and Current  Context) are 
intrinsic to object orientation and would need to 
appear  in some form in any object-oriented system. 

• Two (Top of Descriptor Stack and Top of Storage 
Stack) contain information necessary to the 432's 
sophisticated memory-management  system, which 
a t tempts  to minimize the cost of garbage collection. 
They might be compressed into a single 32-bit AD 
slot by t ighter encoding. 

• One (Calling Context) is necessary, but  if contexts 
could be overlapped, the Current  Context AD from 
the previous context could be used instead. 

• One (Static Link) is used in lexically scoped languages 
on non-object-oriented architectures. It is used less 
frequently in inter-module calls on object-oriented 
architectures. 

• Four (Global Constants, Local Constants, Context 
Message, and Context Link) are artifacts of the 432 
implementation, and need not appear  in other 
object-oriented architectures. 

TAn earlier version of the 432 architecture required separate segments for 
AD's and data. 

In addit ion to the AD's tha t  are written at  each pro- 
cedure call, several da ta  items are also writ ten into the 
context object  of the calling procedure. (The 432 employs 
the "fenced segment" approach T to segregating AD's from 
data: AD's are placed at  one end of an object, and da ta  at  
the other; see Figure 3). A bounds field known as a 
"fence" separates the two. Operations on AD's are 
automatical ly interpreted as applying to the AD portion of 
the object, so that  da ta  cannot inadvertent ly or mali- 
ciously be treated as an AD.) Two of these, the Current  
Instruction Object DAI and the Instruction Pointer,  
specify the index and displacement, respectively, of the 
return address. Analogous to the (segment number, dis- 
placement) return address in an ordinary segmented- 
memory system, these are intrinsic to any procedure call, 
object oriented or not. A third field, the Operand Stack 
Pointer, is used to restore the top-of-stack on a return. It 
would not be needed if contexts were allocated from a 
stack, since the top-of-stack for the caller would be the 
same as the base of the called context. The last da ta  item 
written is the Context Status, used to tell whether the con- 
text is faulted or tracing, among other things. It provides 
functionality unrelated to object  orientation and could be 
included or excluded in a future architecture depending on 
whether the added functionali ty is deemed worthwhile. In 
summary, of the da ta  items wri t ten--  

• Two (Current Instruction Object  DAI and Instruction 
Pointer), are intrinsic to any procedure call, object  
oriented or not. 

• One (Operand Stack Pointer)  is an art ifact  of the 
432's linked allocation of contexts. 

• One (Context Status) provides functionality unre- 
lated to object  orientation. 

A procedure call performs 40 memory references alto- 
gether (Table 3). Space does not permit  a complete dis- 
cussion of all of them. Four  of them deserve mention 
because they are directly a t t r ibutable  to object  orienta- 
tion. These are used to find the instruction object  for the 
called procedure. An AD and descriptor for the domain 
object must be read; the domain object  contains an AD for 
the instruction (code) object,  and the descriptor for this 
object is read too. 

Obj~ 

Descriptor 

] I '  
AD's 

Data 

J 

Figure 3: Segregating Capabili t ies from Data  in the 432 
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T a b l e  3: How a Procedure Call Spends its Time 

Category Memory Clock 
References Cycles 

Read instruction 2 35 
Otherwise needed in non-o-o calls 4 96 
Unique to obj.-oriented call 8 144 
.Due to 432 memory management 3 55 
Due.to linked context allocation 5 71 
Due to clearing memory 14 275 
Due to lack of literals 1 9 
Miscellaneous 3 39 

Waitstates not included. 

The eight memory references directly due to object 
orientation are only one-fifth of the total, or about one- 
third if memory-clearing references are excluded. As a 
comparison, adding eight memory references to the pro- 
cedure call of the VAx would represent an increase of 62~; 
eight references in the 68010 call would represent an 
increase of 38~0. The microcycles attributable to object 
orientation are less encouraging, because they represent 
more than the total procedure-call time on either of the 
two other architectures. However, 70 of the 144 are 
directly due to memory references, which take 6-12 cycles 
depending on the width; further, the 432 microengine is 
not very well optimized for extracting bit fields, which is 
important when checking rights. 

5. Improving  Procedure-Cal l  Pe r fo rmance  

Let us consider several strategies to improve the per- 
formance of object-oriented procedure calls. We will begin 
by attacking the three memory references and 55 clock 
cycles attributable to 432 memory management. The 432 
maintains a level number for each context allocation, in 
order to facilitate deallocation of objects on a LIFO basis, 
as noted in Section 4.2. A discussion of the exact method 

AD Stack 

Context 3 

Context 2 

Context 1 

Data Stack 

0~d: 

~ntext 3 

Context 2 

Context I 

Figure 4: Contexts as Refinements of Two Stack Objects 

is beyond the scope of this paper, but may be found in 
[26]. The level numbers could in principle be stored in 
on-chip registers, but due to space constraints in the 432 
processor chip, were instead maintained inside the process 
object. If a register were provided for this purpose, or if 
this storage-allocation philosophy were discarded in favor 
of more sophisticated storage management by the com- 
piler, the memory references and most of the clock cycles 
could be avoided. Assuming the existence of registers, 
about six to ten cycles would be required to manipulate 
them, a savings of three memory references and nearly 50 
clock cycles. 

5.1.  Stack-Based Contex t  Allocation 

Since linked context allocation is a significant source 
of inefficiency, let us briefly sketch how stack-based alloca- 
tion might be accomplished in an architecture like the 
432's. The discussion will necessarily omit details, but 
should serve as a basis for the optimizations to be 
presented later. 

The basic idea is to make contexts refinements (sub- 
objects) of a stack object. As noted earlier (Figure 3), 432 
objects contain both AD's and data. Refinements must be 
contiguous, but all contexts must overlap both the AD and 
data portions of the stack object. This would require the 
information adjacent to the fence to be within all context 
objects, which clearly violates protection. Our solution, 
then, is to use two stack objects per process, one to hold 
the data portions of context objects, and the other the AD 
portions (Figure 4). Note that this mechan_ism does not 
suffice for coroutines or the creation of independent 
processes; in this case, stacks must be linked together 
much like "spaghetti stacks" of deep-binding Lisp sys- 
tems, or the "cactus stack" of the B6700/6800. However, 
coroutines and subprocesses are much less frequent than 
procedure calls [27]. 

5.2.  Reg i s t er  Se t s  for Address ing In format ion  

Multiple register sets with overlapping windows are 
by now a well known mechanism [91 for maintaining a 
small amount of information in fast storage and exchang- 
ing it at each procedure call. In a 432-1ike object-oriented 
architecture, information used in address translation fits 
both criteria: it must be rapidly accessible and must 

change on each inter-module ca l l  s Candidates for 
inclusion are the Current Context (both the data and AD 
portions, which are no longer contiguous), the Defining 
Domain, and the Top of Descriptor and Storage Stacks. It 
is important for Context Objects to be created rapidly; to 
facilitate this, a descriptor for a context object can be held 
in an extension of the register containing its AD (Figure 
5). The descriptor need not be written to the Object 

SNone of the addressing information need change on an intra-module call. 
The Current Context can be expanded instead of changed. The 432 uses a 

different Instruction Object for each procedure, but a single Instruction Object 
could in principle hold all the procedures of a module. 
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Table in memory at all, except if the context is shared by 
having its AD copied or if a subprocess is initiated. 

Although not directly involved in a procedure call, 
the Environments 1, 2, and 3 must be rapidly accessible, so 
three registers are reserved for them. The remaining regis- 
ter is devoted to an AD parameter.  There is good reason 
to believe that  a single parameter  register will be sufficient 
for most calls. The "domain capabi l i ty"  approach asserts 
that  modules should be callable only by invoking an 
operation on a (single) object  that  they implement; this is 
consistent with the philosophy of Smalltalk methods [3] 
and the MONADS system [28]. 

The registers may be overlapped so tha t  the parame- 
ter remains accessible after a call. An AD for the Current 
Context (AD portion) remains accessible, too, and serves 
as the Calling Context AD. Thus, ten registers are accessi- 
ble at  a time. 

As shown in Figure 5, a register set actually "sha- 
dows" a par t  of the corresponding Context Object  (AD 
portion). It is occasionally necessary to save the register 
set to memory, either because the system is about to run 
out of register sets, or because a subprocess has been ini- 
tiated. Then the registers are copied to the associated 
Context Object,  except for the register extensions, whose 
information is copied into the Object  Table. 

Provision of the register sets saves four of the eight 
"object-oriented" memory accesses during a procedure 
calli writing the descriptor for the new context object, 
writing the AD for the defining domain, and reading and 
writing the Top of Descriptor and Storage Stacks. The 
savings amount  to forty cycles for memory references, plus 
sixteen for address translation. New costs include two 
cycles to read and write each register and extension 
(except for Environments 1-3, which are writ ten only by 
the callee) for a total of approximately  7 x 2 = 14 cycles. 
Net savings are 42 cycles, or about  30% of the est imated 
cost of object  orientation. The register sets also save two 
references that  would otherwise be incurred in the switch 
to stack-oriented context allocation: writing the Current 
Context and Calling Context AD's. The five memory 
references and most of the 71 cycles associated with linked 
allocation are thereby avoided. 

How large would the register sets need to be? No 
data  is available on the nesting depths of inter-module 
calls. As a first-order approximation,  we may extrapolate 
from Weicker 's  [21] survey, which found that  just  over 
one-half (8/15) of procedure calls were inter-module. If we 
assume tha t  four sets--half the number on the RISC I - a r e  
sufficient, then we need a total  of 32 registers plus eight 
64-bit extensions, for a total of 1536 bits, which is 37.5% 
of the size of the RISC I register file. 

The SOAR [12] architecture employs register sets to 
hold da ta  across calls in a Smalltalk program, and the Cal- 
tech Object  Machine [29] maintains addressing informa- 
tion in an associative context cache. But until now, 
stack-oriented register sets have never been suggested for 

the addressing mechanisms of an object-oriented architec- 
ture. But it is in object-oriented architectures that  they 
may be most appropriate.  Interest among RISC designers 
has recently turned to algorithms for optimizing register 
usage across procedure boundaries as a possible substi tute 
for multiple register sets [30]. Clearly the same approach 
is inapplicable to separately compiled modules. Register 
sets for AD's could even be combined with register- 
allocation optimization for da ta  in the same architecture. 

8.3. Using the  M e m o r y  Control ler  to Clear 
M e m o r y  

In order to prevent unauthorized transfers of infor- 
mation between tasks conventional t imeshared systems 
often clear memory used by a task before that  memory is 
re-allocated to another task. In capabil i ty-based systems 
it is even more important  to "sterilize" memory. Other- 
wise, random collections of bits could be erroneously or 
maliciously used to gain access to da ta  or instructions that  
could ul t imately bring down the entire system. The 432's 
procedure call spends a very high proportion of its time 
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clearing the called context 's AD list (21%) and da ta  seg- 
ment  (13~) .  This has a first-order effect on the overall 
length of the procedure call. 

At  a register-transfer level, it is clearly sub-optimal 
for the central processor to perform the memory-clearing 
operation. The processor must transfer each address to be 
cleared, and then the da ta  (0), a highly redundant  set of 
information transfers. The memory-clearing operation is 
so simple, however, that  after the first address /da ta  
transfer has taken place, enough information has been 
given to the memory that  the rest of the writes can be con- 
trolled locally without further assistance by the processor. 

To accomplish this, the memory controller needs to 
have a counter, loadable from the processor-memory da ta  
bus, so that  it can keep t rack of the number of writes 
being done. The memory address register can be a 
parallel-loadable controller, with normal writes being pro- 
pagated through to the memory array. To clear a section 
of memory, the processor sends a control word to the con- 
troller, signifying the Clear operation. The processor then 
writes a zero to the first location to be cleared, and the 
memory controller performs the rest of the clears automat-  
ically. This mechanism has similarities to the copy-back 
techique proposed for the context cache in the Caltech 
Object  Machine [29]. 

This s trategy saves cycles in four ways. First ,  no 
waitstates are wasted on processor-memory bus transfers 
which are redundant  anyway. Second, the memory clear- 
ing da ta  path  can be wider than the processor needs. For  
instance, the memory da ta  pa th  can be made 256 bits wide 
during the clear operation, allowing the clear to terminate 
in fewer cycles. Third,  minimizing the bus traffic reduces 
contention with other processors. Fourth ,  the processor 
can be doing useful work while the clear is transpiring. 
This is true for two reasons: a clear can be ini t iated when 
memory is freed rather than when it is allocated; also, dur- 
ing a 432 procedure call, a very large amount  of on-chip 
activity occurs tha t  does not require memory accesses. 

Some practical details will have to be taken into 
account for this idea to work. For instance, in an inter- 
leaved memory system each controller will have to make 
sure that  only the appropriate  writes are performed, skip- 
ping addresses which may not belong. If the processor (or 

any other processor) needs to get access to memory while a 
clear is in progress, provision can be made for the clear to 
suspend until the access is satisfied. It is worth noting that  
workstations with b i tmapped displays often include a 
BitBlt operator,  which is already capable of writing areas 
of memory to a given pat tern  (say, 0!); these could imple- 
ment  the memory-clearing operat ion at no addit ional cost 
in hardware or software. At  any rate,  the magni tude of 
the savings in the case of the 432 is such tha t  providing 
hardware support  for memory-clearing may be a wise allo- 
cation of resources. 

If we assume tha t  the cost of communication between 
the central processor and memory controller is 30 cycles 
(two I /O writes) and that  only minimal interference 
occurs, the procedure call would be speeded up by approx- 
imately 31~ .  

5.4. S u m m a r i z i n g  the  Savings  

The mechanisms we have proposed have resulted in 
savings in several of the categories in Table 3. The biggest 
reduction is in the time to clear memory, but  other 
significant reductions are obtained by avoiding linked allo- 
cation, using multiple register sets and a register for level 
numbers, and from including instruct ion-stream literals. 
Table 4 summarizes the savings. 

T a b l e  4: Savings Due to Mechanisms from Section 5 

Category Memory Clock 
References Cycles 

Register sets for obj .-oriented call 4 42 
Provision of level reg. (mere. mgt.) 3 45 
Stack-based context allocation 5 60 
Using controller to clear memory 14 245 
Provision of literals 1 9 

27 401 Totals  

In total,  401 of 740 clock cycles, or 54% of the time 
for a procedure call has been saved. More impressively, 
the 13 remaining memory references and 472 bits 
transferred compares quite favorably with the figures for 
the Vxx and M68010 from Table 1. 

This paper  has considered only the cost of a Call 
instruction and not the cost of a Return. However, the 
two are highly correlated due to the Return's need to 
restore information from the same places the Call saves it. 
In the 432 the cost of clearing memory at  a Call has its 
counterpar t  in the work performed to restore the address- 
ing state for the EAE's  upon return. This could be greatly 
speeded by expanding the 432's Data-Segment  Cache to 
include AD's. Colwell [13] est imated tha t  an expansion of 
the cache from five to nine entries could yield a hit rate of 
93%, if the Dhrystone benchmark is representative of a 
typical large Ada  program in its AD reference patterns.  

6. Conc lus ions  

The overhead of object  orientation derives largely 
from the need to maintain and traverse more complicated 
addressing information. However, a reasonably sized 
cache usually speeds up the traversal enough to make it 
negligible [13], [31] in comparison to the cost of 
maintenance--loading the cache and updat ing the environ- 
ment on a procedure call. This paper has focused on the 
second of these problems. If the cost of clearing memory is 
neglected, the cost of an object-oriented call has been 
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s h o w n  to  be  b e t w e e n  1.5 t i m e s  (in t e r m s  o f  m e m o r y  re fe r -  

ences )  a n d  2.5 t i m e s  (in t e r m s  of  c lock  cycles)  as  e x p e n s i v e  
as  a n o n - o b j e c t - o r i e n t e d  call .  T h e r e  a r e  good  r ea s ons  for  
c o n s i d e r i n g  t h e  lower  b o u n d  a b e t t e r  e s t i m a t e .  

B y  p r o p o s i n g  t w o  a d d i t i o n a l  m e c h a n i s m s ,  m u l t i p l e  
r eg i s t e r  se t s  for  a d d r e s s i n g  i n f o r m a t i o n  a n d  a m e m o r y -  
c l ea r ing  m e m o r y  con t ro l l e r ,  we h a v e  s h o w n  t h a t  t h e  ove r -  
h e a d  o f  a p r o c e d u r e  call c an  be  l i m i t e d  to  fou r  m e m o r y  
r e f e r e n c e s  a n d  t h e  a s soc i a t ed  c lock cycles  (p lus  w h a t e v e r  
cos t  is a s s o c i a t e d  w i t h  occas iona l ly  s av ing  a n d  r e s t o r i n g  
t h e  reg i s te r s ) .  S ince  all o f  th i s  o v e r h e a d  h a s  to  do  w i t h  
l oca t i ng  t h e  p r o c e d u r e  to  be ca l led ,  it  is s u b j e c t  to  s p e e d u p  
b y  m o r e  s o p h i s t i c a t e d  cach ing  s c h e m e s .  

T h i s  p a p e r  has  a t t e m p t e d  to  i den t i f y  t h e  cos t  o f  a 

p a r t i c u l a r  aspect  of  o b j e c t  o r i e n t a t i o n .  T h e  t w o  m e c h a n -  
i sms  i t  p r o p o s e s  cou ld  be used  to  s p e e d  p r o c e d u r e  calls in 
a n y  o b j e c t - o r i e n t e d  s y s t e m .  I t  a l so  sugges t s  t h a t  o b j e c t  
o r i e n t a t i o n  n e e d  n o t  u n d u l y  c o m p l i c a t e  a m a c h i n e ;  t h e  
In te l  432 s u p p o r t s  a wide  v a r i e t y  o f  h igh- l eve l  p r o g r a m -  
m i n g  c o n c e p t s .  M o s t  o f  t h e m ,  s u c h  as  s u p p o r t  for  m e m o r y  
m a n a g e m e n t  a n d  t r a n s p a r e n t  m u l t i p r o c e s s i n g  a re  o r t h o g o -  
ha l  o r  n e a r l y  o r t h o g o n a l  to t h e  i n t r i n s i c  cos t  o f  an  o b j e c t -  
o r i e n t e d  call .  

T h e  In te l  432 r e p r e s e n t s  a f i rs t  a t t e m p t  a t  d e v e l o p i n g  

a p r o d u c t i o n - q u a l i t y  o b j e c t - o r i e n t e d  a r c h i t e c t u r e .  I t  h a s  
fo l lowed  t h e  classic p a r a d i g m  for  c o n s t r u c t i o n  o f  a n y  la rge  
s y s t e m :  s t r a i g h t f o r w a r d  i m p l e m e n t a t i o n  of  t h e  bas ic  con-  

cep t s ,  f o l lowed  by  ca re fu l  m e a s u r e m e n t  to  i den t i f y  p e r f o r -  
m a n c e  b o t t l e n e c k s .  T h e  r e su l t s  i t  h a s  p r o v i d e d  a re  su re  to  
f ind  w i d e s p r e a d  a p p l i c a t i o n  in i ts  successors  a n d  o t h e r  

f u t u r e  o b j e c t - b a s e d  s y s t e m s .  
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