
Fast Object -Oriented Procedure Calls:
Lessons from the Intel 432

Edward F. Gehringer
Department of Electrical and Computer Engineering

Department of Computer Science

North Carolina State University

Raleigh, NC 27695-7911

Robert P. Colwell
Multiflow Computer, Inc.

175 No. Main St.

Branford, CT 06405

Abs t r ac t

As modular programming grows in importance, the
efficiency of procedure calls assumes an ever more critical
role in system performance. Meanwhile, software
designers are becoming more aware of the benefits of
object-oriented programming in structuring large software
systems. But object-oriented programming requires a
good deal of support, which can best be distributed
between the compiler and architectural levels. A majol
part of this support relates to the execution of procedure
calls. Must such support exact an unacceptable perfor-
mance penalty? By considering the case of the Intel 432, a
prominent object-oriented architecture, we argue that it
need not. The 432 provided all the facilities needed to
support object orientation. Though its procedure call was
slow, the reasons were only tenuously related to object
orientation. Most of the inefficiency could be removed in
future designs by the adoption of a few new mechanisms:
stack-based allocation of contexts, a memory-clearing
coprocessor, and the use of multiple register sets to hold
addressing information. These proposals offer the prospect
of an object-oriented procedure call that can, on average,
be performed nearly as fast as an ordinary unprotected
procedure call.

1. In t roduc t ion

There are currently two general points of agreement
about object-oriented programming systems: they
represent a desirable programming environment [1]-[3];
and their existing implementations are too slow [4]-[7].
Procedure call/return linkage, a major overhead even in
conventional systems, can easily dominate the perfor-
mance of object-based systems. This paper will discuss
some problems of object-based procedure-linkage mechan-
isms, offering strategies for combatting the overheads, and
quantifying the effects of such strategies.

Object-oriented systems come in two major "styles".
Smalltalk [3] is typical of one, and the Intel 432 [5] or IBM
System/38 [8] could represent the other. The object-
orientation of the 432 is manifested in several ways:

This research h u been supported in part by the U.S, Army Center for
Tactical Computer Systems under contract number DAAB 07-82-C-J164. The
cooperation of the Intel Corporation is also gratefully acknowledged.

• All information is encapsulated into protected sets
called objects (instruction segments, data structures,
processes, messages).

• Every memory reference, whether an instruction fetch
or operand access, is checked for read/write privilege
and base/bounds validity.

• Pointers to objects are protected. These pointers are
not directly manipulated by the user program, but
only by trusted hardware and microcode on behalf of
the user.

This style of object orientation can be viewed as a conven-
tional system with runtime checking built into the
addressing mechanism.

The Smalltalk style of object orientation is built on a
different paradigm, but presents the same challenges to the
implementor. In Smalltalk, computation proceeds via
messages passed from one object to another, requesting
that various operations, called methods, be performed by
the receiver object on the receiver's data structures. The
methods themselves can be altered, added, or deleted at
runtime.

Procedure calls are among the most frequently exe-
cuted instructions, accounting for 12% [9] to 25% [10] of
executable statements. In conventional systems,
call/return overhead is high enough to merit special atten-
tion at the architecture and compiler levels [9], [11]. The
SOAR (Smalltalk On A RISC) project [12] devotes
hardware resources to the call-linkage mechanism. The
432 incorporates an elaborate protected-call mechanism
that provided separate contexts for each procedure, but
runs so slowly that the overall performance is severely
impacted.

The Intel 432 is an excellent vehicle for measuring the
impact of object orientation on procedure-call efficiency.
It performs all of the operations necessary to support
object orientation. Through the courtesy of the Intel Cor-
poration, several 432 programs have been traced at the
register-transfer level [13]. All of the steps in a 432 pro-
cedure call have been accounted for. By analyzing which
are needed in any object-oriented architecture, and which
are artifacts of the 432's implementation, we can estimate
how much overhead is inherent in an object-oriented pro-
cedure call.

0884-7495/86/0000/0092S01.00 © 1986 IEEE
92

http://crossmark.crossref.org/dialog/?doi=10.1145%2F17356.17367&domain=pdf&date_stamp=1986-05-01

2. Division o f L a b o r : Compi l e r vs. A r c h i t e c t u r e

The implementation of an object-oriented system is a
matter of teamwork between the compiler and the archi-
tecture. Determining what architectural complexity needs
to be associated with object orientation is primarily a
question of deciding what the architecture can do more
effectively than the compiler. We propose a division of
labor between the compiler and the architecture: the com-
piler is responsible for the correct functioning of each
separately compiled module, while inter-module interfaces
are entrusted to the architecture. Let us explore the rea-
sons for this decision.

If a program is to run with high efficiency, it must
avoid re-doing unnecessary work. Decisions that can be
made once and for all at compile time should not be
deferred until runt,me, when they might have to be re-
made repeatedly, each time that a piece of code is exe-
cuted. One example is bounds checking of a constant sub-
script, or a subscript whose range can be determined by
flow analysis. On most architectures, compile-time bounds
checking saves substantial execution time. Another exam-
ple is pipeline optimizv:tion in the MIPS machine: the com-
piler is charged with scheduling the initiation of pipeline
operations [14] to avoid collisions. Note that in both of
these examples, the necessary checks could be made
efficiently at run time, but at the cost of a more compli-
cated architecture. A segmented memory system could be
used for dynamic bounds checking, but most segments
would probably be small [15], a source of further
inefficiency [16]. Hardware could be provided to interlock
pipe stages dynamically, as is done on most other
machines, including the VAX and M68000. But, critics
have charged, this hardware is usually complex, slows the
basic clock cycle of the machine, provides little functional-
ity that cannot be provided better by the compiler, and
could have been used for other purposes to enhance overall
performance.

A graphic indication of the pitfalls of re-doing
unnecessary work is provided by the performance of two
benchmarks on the Intel 432. The highly recurs,re
Ackermann's function, which does little except pass
parameters and perform procedure calls, was the worst
performing of the 432 programs benchmarked at Berkeley
[17], running 26 times slower than on a VAX. After calcu-
lating the effects of a variety of software and hardware
optimizations, Colwell [13] still found it the slowest, run-
ning four times slower than on a "generic", non-object
oriented architecture. The crucial factor is the acker
function's need to use the 432's protected call instruction,
which performs extensive address-space manipulations
catering to protection requirements, even though acker
calls only itself. The sole alternative provided by the 432
architecture is a simple branch_and_link instruction, which
is insufficient for recurs,re calls, since it cannot change the
size of activation records, l

Shifting responsibility to the compiler, then, achieves
two important advantages: It allows programs to execute

fewer instructions, and it helps reduce architectural com-
plexity. Both of these factors contribute to better perfor-
mance. In addition to bounds checking, a compiler can
take on several tasks for which architectural solutions
have been proposed, such as type checking (including
variant-record discriminant checking) [18], automatically
initializing pointers to nil, and replacement of some pro-
cedure calls by branch-and-link instructions [13]. Increas-
ing the compiler's responsibility means we are entrusting
the correct functioning of the module more completely to
the compiler; but a module cannot run successfully in any
case unless it is compiled correctly. This division of labor
does not, however, make the correct functioning of the
system (including separate programs and separately com-
piled modules) more dependent on the compiler.

The compiler cannot be relied upon to insure inter-
module protection, because it cannot guarantee the
correctness of code beyond its purview. Code that it com-
piles can be linked with other languages, or programs from
the same language compiled with older or newer versions
of the same compiler. Other modules are subject to errors
from source-language bugs, compiler bugs, or inconsistent
assumptions about interfaces. Some errors can comprom-
ise protection, as, for example, when an arbitrary bit pat-
tern is used as a pointer due to confusion about the
number or ordering of inter-module parameters. Today's
single-user systems run programs linked together from
"reusable" modules supplied by programmers of uncertain
competence or trustworthiness (witness the "Trojan
horse" and the "worm"); this renders them nearly as
vulnerable as conventional time-sharing systems. Hence
some mechanism must be provided to allow new modules
to be installed without jeopardizing other portions of the
system.

In recent years, a variety of software mechanisms
have been developed to promote inter-module integrity;
e.g., Ada's compilation-order rules [19] and RCS/MAKE
[20]. These systems keep track of inter-module dependen-
cies, requiring recompilatlon whenever an interface
changes. Although useful, these methods have their limi-
tations. First, they work only with languages or projects
that use them; and hence they cannot be relied upon as
the sole means of inter-module protection. Architectural
mechanisms, on the other hand, are inevitably used by all
modules. Second, a bug in such a system could comprom-
ise all modules that use it; new versions of compilers some-
times contain bugs when delivered, so one would expect an
inter-module control system to be subject to the same fal-
libility. Finally, in large software systems, a change to a
heavily used module might require recompiiation of a large
volume of code, an expense that is sure to grow as software
complexity increases. All of these factors argue for inter-
module protection at the architectural level.

'Strictly speaking, this is not true. The 432 provideJ a special call in-
struction, call through domain, that can be used for intra-module calls. Howev-
er, it is nearly aJ slow as the inter-module ca//instruction because it does all of
the same address-space manipulation except for making a new domain object
(which contains code and private data for the called module) addreasabie [51

93

3. Factorl Affecting the Performance of the In te l
432

The Intel 432 has been observed to execute s lowly-
early versions ran benchmarks from 10 to 26 times as slow
as a VAx, or from 2 to 23 times more slowly than an 8
MHz 8086 [17]. Evidently, some of the penalty must be
due to object orientation, and would be particularly obvi-
ous during procedure calls and return. To establish the
performance impact of object orientation, we must first
account for other aspects of the 432's architecture or
implementation that influence its speed. Toward that end,
we summarize a set of performance measurements that
appear in greater detail in [13]. This summary includes
four benchmarks:

• acker, a procedure to compute Ackermann's function,

• sieve, a prime-number finder,

• CFA5, a program for LU matrix decomposition, and

• Dhrystone, a synthetic benchmark based on a set of
language and OS studies I21].

Several factors not directly related to object orientation
have major effects on the benchmark measurements.

• The tendency of the 432 Ads compiler to generate
spurious enter_environment instructions. To under-
stand this, it is necessary to consider how a 432 pro-
gram specifies a virtual address. Much 'as a virtual
address in an ordinary segmented memory consists of
a {segment number, displacement) pair, a virtual
~ddress in a capability-based system consists of a
(capability specifier, displacement) pair. On the 432,
capabilities are called access descriptors (AD's). The
capability specifier selects an AD in one of four
objects: the Current Context or Environments 1, 2, or

3. 2 These objects are called the four entry access
environments (EAE's).

EAE O, the Current Context, is loaded automatically
during a procedure call. EAE's 1, 2, and 3 are loaded
by an enter_environment, which traverses several lev-
els of addressing information, including access
descriptors (capabilities) and object tables {direc-
tories). The first access to any object must be pre-
ceded by an enter_environment, but the Ada compiler
generates enter_environments before the first access
in each basic block. Most of these could be avoided
by a compiler that performed a moderate amount of
flow analysis.

• The 432 Ads compiler does not perform
common-subexpression elimination, and does
not re-use addresses and temporary data
across several instructions.

• The compiler invariably passes in and in o u t
parameters by value/result, even when the
parameter is a large array. In the Dhrystone
benchmark, passing a single array by
value/result took 10 times as long as the rest
of the benchmark!

• The compiler never uses the simple branch and_link
instruction in place of the much slower protected call
instruction, even when the call graph would permit it
(i.e., for intra-module calls that are neither recursive
nor mutually recursive).

• Instructions are bit aligned in the 432, which requires
the instruction decoder to reconstitute instructions
after fetching and before decoding. During linear
code sequences, reconstitution can be overlapped with
the execution of another instruction. But for pipeline
breaks such as jumps, calls, and returns, a number of
cycles are lost while the execution unit is stalled wait-
ing on the instruction decoder to flush the pipe and
refill it from the new stream.

• The 432 instruction set does not provide for
instruction-stream literals other than zero and one. A
study performed within Intel early in the 432 project
concluded that the constants zero and one would
cover nearly all of the need for constants. This con-
clusion was almost certainly in error, but it facilitated
the instruction-decoder/execution-unit split. This
functional partitioning of the 432 system helped make
it possible to fabricate such a complex system on sili-
con [22]. Since the 432's instruction stream is bit-
aligned, literals would have had to be reconstituted in
the instruction decoder's barrel shifter and then sent
to-the execution unit. No suitable transmission path
existed for such a transfer.

The bar chart in Figure 1 shows the relative contribution
of each of these items to the overall cycles that the 432
"wasted" on the benchmark set [13]. The pie chart indi-
cates that approximately one-third of all cycles executed
were wasted, one-third were required by intrinsic register-
transfer paths, and one-third could have been saved if
implementation technology had been advanced enough to
allow wider buses, general registers, a separate floating-
point unit, etc.

4. P r o c e d u r e Calls on t he In te l 432

Even if all the above mistakes had been avoided, 432
procedure calls would still have been slow. Table 1 com-
pares a 432 procedure call with two other architectures' in

RThe full form of a virtual address is (sdector, i~dsz, di~4accmeat), where
vdector is a two-hit field designating the Current Context or one of the other
three environments, and indez tell8 which AD in the selected environment is to
b¢ used.

T a b l e 1: Comparison of Procedure-Call Memory Tramc

Reads Writes Total Bits Total
Transferred Clk Cycles

VAx 11/780 3 10 392 85
MC68010 8 13 336 94
Intel 432 16 24 1848 1022"

These measurements assume four integers passed as parameters.

*Including 282 waitstates; 740 clock cycles w/o waitstates.

94

Better Env. Mgt.

i

Code Optimization :

i i . '111

Unprotected Call "
°

i

Call-by-Reference

Instruction Set. Align.
,

laterals

0

k'
$

0 ")~
I

3o

30
g

S
ICS

" ~ - -] C5

A

-L--- lc s

0.5(I 11.75
I I

I cs

Oashed ba rs assume
c a l l - b y - r e f e r e n c e

3o

1.(XI

-lo

Io

d cs

Jill I

. . . . ° .

.JA
IS

-'1o
IA

, IS
I CS

. . . ,o... '°' '"

" " l Dhrystone 90% (36%) [
I Acker 2% I
[Sieve 15% |

ICF 44% I

Figure 1: Relative Contributions of Cycle Sinks to Benchmark Execution Time

Table 2: How a Call Affects Fields in the Context Object

Access Descriptors Data Items

Current Context P
Global Constants P
Context Message P
Defining Domain W
Local Constants W
Environment 1 C
Environment 2 C

'Environment 3 C
Calling Context P
Context Link P
Top of Descriptor Stack W
Top of Storage Stack W
IPC Message C
Static Link W

Operand Stack
Working Storage
Trace-Control Data
Instruction Pointer W
Current Inst Obj DAI W
Operand Stack Ptr W
Context Status W

Key: P--Pre-Written; W-Writ ten; C--Cleared

terms of the memory references they
generate. Note that this measure is
independent of the factors cited
above. As we shall see, many of these
references are performed for reasons
tangential to object orientation.

At the outset, note that the 432
procedure-call timing contains 282
waitstates. 3 The Intel 432/670
development system incorporated a
slow, asynchronous memory/bus
interconnection that added a
s~gnificant (hut unspecified) delay to
every memory reference, estimated at
6 waitstates [23]. Since it is possible
to create faster memory bus designs
for the 432, subsequent analysis will
begin by assuming that waitstates
have been eliminated, and that a pro-
cedure call takes 740 clock cycles.

4.1, Linked Allocation of Con-
texts

Each activation record created
by a 432 program resides in a
separate object, known as a contezt
object. In Release 2.0 of the iMAX
operating system, procedure calls
used a linked (rather than stack-
based) allocation mechanism. Hence,
each call required the creation of a
new context object, which is "fairly
expensive, since it means allocating
memory to the object, entering the
object in an "object table" directory,
and creating an access descriptor

(capability) for the object. The benefit
of this strategy is that a single mechanism suffices
for procedure calls, coroutines, and independent
subprocesses [24]; but at the cost of several more
memory references during a procedure call. Jones
and Schiller [25] have compared the cost of the
linked strategy with that of the stack-based stra-
tegy. They found that for an idealized implementa-
tion of each, the linked strategy required more than
twice as many memory references (13 vs. 5) when
no parameters were passed or returned, while both
implementations required an additional two
memory references for each parameter.

The cost of linked allocation is mitigated in
Release 3.0, which in essence pre-allocates a chain
of re-usable contexts so that procedure calls no
longer need to perform dynamic memory allocation

aA waitstate is a c lock cycle that the p r o c e u o r spends waiting
for some memory reference to complete.

95

for every call. However, for a highly recursive program
such as acker these pre-allocated contexts are depleted
quickly, and the machine must soon resort to the original
mechanism. Even pre-allocated contexts require five extra
memory references on the 432.1

4.2. A n a t o m y o f a 432 Procedure Call

At the time of a call, each context object is endowed
with a number of AD's (capabilities) and several data
items. Table 2 lists the items associated with each context
on the Release 3.0 432, telling which are written at the
time of context pre-allocation (P), or read (R) or written
(W) when the call takes place. Objects in the called con-
text which are neither pre-written nor written must be
cleared so that arbitrary bit patterns left over from the
last time the memory was used cannot be used as AD's
pointing to random locations in memory. Because inter-
module protection depends on it, clearing of memory is an
intrinsic cost of object orientation. It consumes 263 cycles,
or 35% of the time needed for a procedure call. In Section
5.3, we propose a technique for minimizing its impact.

The first "writ ten" AD is the Defining Domain. It
points to the domain object for the module to which the
executing procedure belongs. It is used to access informa-
tion that is "globally" accessible while executing within
the module. Non-object-oriented architectures can get by
with a single block of global information, but an object-
oriented architecture cannot, since the globals change
every time an inter-module call occurs. Hence this AD is
intrinsic to object orientation.

Deferring consideration of the Local Constants AD
for awhile, the next two "writ ten" AD's are the Top of
Descriptor Stack and Top of Storage Stack. The 432 uses
these to reclaim storage automatically when a procedure
returns. Any procedure activation may create objects.
The 432 divides objects into two categories: those that are
used for temporary storage which need not outlive the life-
time of the procedure activation that created them; and
those that are used for more permanent storage, having a
potentially unbounded lifetime [26]. Objects in the first
category are allocated according to a stack discipline, and
deallocated when a procedure returns.

The 432 uses a standard capability-based addressing
mechanism (see Figure 2), in which location and length
information for objects is found in descriptors located in
object tables. It also uses storage-resource objects
(SRO's), which contain information on allocated and unal-
located regions of virtual memory. When an object is
deleted, its descriptor and SRO entry 5 must be deallo-
cated. The Top of Descriptor Stack and Top of Storage

4Two of these are essentially due to the fact that when a return is done,
the "top-of-stack" is not necessarily at the end of the (fixed-length) calling-
context object , so stack pointers must be maintained separately.

Sir any. Not all objects have SRO entries, Some objects are created as
refinements (sub-objects) of existing objects, and hence have no new storage as-
ecmiatod with them.

I Process 1 1

F i g u r e 2: Capability-Addressing Paradigm

Stack AD's tell how many descriptors and SRO entries
should be deallocated when the procedure returns.
Although these are full-fledged AD's in the 432, in princi-
ple they could be simple integers, assuming they were pro-
tected from modification by the procedure itself (such
modification could cause deallocation of objects belonging
to its caller, for example). Two 16-bit integers could fit
into a single 432 AD slot, and both could be initialized to 0
at the time of a call.

A fourth "writ ten" AD, the Static Link, is needed
only when lexical-levei addressing is required. In fact, the
432 procedure call writes a static link only when one is
supplied as a parameter to the call instruction. But static
nesting of modules is less common than static nesting of
procedures (although it is allowed in Ada).

The last "writ ten" AD and the one of the "pre-
written" AD, the Global and Local constants, are an
artifact of the 432 implementation, which lacks
instruction-stream literals. A future object-oriented archi-
tecture would undoubtedly include them, making these

two AD's unnecessary, and saving one-and-a-halt ~ memory
references and approximately 19 microcycles per pro-
cedure call, as well as a similar pre-allocation cost at
process-initiation time.

The first AD slot in the Current Context is occupied
by a pre-written self-reference to the Current Context
(EAE 0-see Section 3). Since an addressing path may
start with the Current Context, an AD for it is just as
necessary as the Segment-Table Base Register in a seg-
mented memory system. However, because the Current
Context is different for each procedure activation, a slot
must be reserved for it in each context. The 432's four-
environment addressing structure is not inherent to object
orientation, but regardless of the structure used, the
address-translation algorithm must have a reference from
which to begin. This reference point may change with
each inter-module call, hence the need to write a capabil-
ity at each call. Section 5.2 will describe how this informa-
tion can be held in a register rather than a main-memory
location.

6A sixty-four bit memory reference could become a 32-bit reference.

96

The next pre-writ ten AD points to the Context Mes-
sage, an object tha t holds the parameters passed to the
procedure. F rom an aesthetic standpoint , viewing the
parameters as a message to the procedure fits nicely with
the' abstract notion of a procedure as an actor that receives
inputs and produces outputs, and serves to emphasize the
similarity between calling a procedure and initiating an
independent process, which receives a message with its
parameters. From a practical standpoint , the parameters
could be placed at the end of the context object itself.
Doing so would avoid the need for this AD. It would also
save the cost of creating the Context Message object. Hen-
ceforth, we shall assume that parameters are kept in the
Context Object.

The Calling Context AD is a link used during a pro-
cedure return. It would not be needed if a stack-based
context-allocation scheme were used. However, because of
inter-module protection requirements, even with stack-
based contexts, a procedure cannot be allowed to move its
stack pointer in such a way as to delete par t of the context
of its caller. The information necessary to prevent this
(e.g., the value of the stack pointer at the time of the call),
would be approximately as large as the Calling Context
AD; hence the cost of writing the Calling Context AD can
be considered intrinsic to object orientation. However, as
we shall see, if contexts can be overlapped, it may not be
necessary to write both the Current Context and Calling
Context AD's.

Finally, the Context Link AD points to the pre-
allocated context that will be used on the next procedure
call. It is an art ifact of linked allocation of contexts that
would be unnecessary if s tack-based allocation were used.

In summary, of the ten AD's pre-writ ten or wri t ten at
the time of a c a l l -

• Two (Defining Domain and Current Context) are
intrinsic to object orientation and would need to
appear in some form in any object-oriented system.

• Two (Top of Descriptor Stack and Top of Storage
Stack) contain information necessary to the 432's
sophisticated memory-management system, which
a t tempts to minimize the cost of garbage collection.
They might be compressed into a single 32-bit AD
slot by t ighter encoding.

• One (Calling Context) is necessary, but if contexts
could be overlapped, the Current Context AD from
the previous context could be used instead.

• One (Static Link) is used in lexically scoped languages
on non-object-oriented architectures. It is used less
frequently in inter-module calls on object-oriented
architectures.

• Four (Global Constants, Local Constants, Context
Message, and Context Link) are artifacts of the 432
implementation, and need not appear in other
object-oriented architectures.

TAn earlier version of the 432 architecture required separate segments for
AD's and data.

In addit ion to the AD's tha t are written at each pro-
cedure call, several da ta items are also writ ten into the
context object of the calling procedure. (The 432 employs
the "fenced segment" approach T to segregating AD's from
data: AD's are placed at one end of an object, and da ta at
the other; see Figure 3). A bounds field known as a
"fence" separates the two. Operations on AD's are
automatical ly interpreted as applying to the AD portion of
the object, so that da ta cannot inadvertent ly or mali-
ciously be treated as an AD.) Two of these, the Current
Instruction Object DAI and the Instruction Pointer,
specify the index and displacement, respectively, of the
return address. Analogous to the (segment number, dis-
placement) return address in an ordinary segmented-
memory system, these are intrinsic to any procedure call,
object oriented or not. A third field, the Operand Stack
Pointer, is used to restore the top-of-stack on a return. It
would not be needed if contexts were allocated from a
stack, since the top-of-stack for the caller would be the
same as the base of the called context. The last da ta item
written is the Context Status, used to tell whether the con-
text is faulted or tracing, among other things. It provides
functionality unrelated to object orientation and could be
included or excluded in a future architecture depending on
whether the added functionali ty is deemed worthwhile. In
summary, of the da ta items wri t ten--

• Two (Current Instruction Object DAI and Instruction
Pointer), are intrinsic to any procedure call, object
oriented or not.

• One (Operand Stack Pointer) is an art ifact of the
432's linked allocation of contexts.

• One (Context Status) provides functionality unre-
lated to object orientation.

A procedure call performs 40 memory references alto-
gether (Table 3). Space does not permit a complete dis-
cussion of all of them. Four of them deserve mention
because they are directly a t t r ibutable to object orienta-
tion. These are used to find the instruction object for the
called procedure. An AD and descriptor for the domain
object must be read; the domain object contains an AD for
the instruction (code) object, and the descriptor for this
object is read too.

Obj~

Descriptor

] I '
AD's

Data

J

Figure 3: Segregating Capabili t ies from Data in the 432

97

T a b l e 3: How a Procedure Call Spends its Time

Category Memory Clock
References Cycles

Read instruction 2 35
Otherwise needed in non-o-o calls 4 96
Unique to obj.-oriented call 8 144
.Due to 432 memory management 3 55
Due.to linked context allocation 5 71
Due to clearing memory 14 275
Due to lack of literals 1 9
Miscellaneous 3 39

Waitstates not included.

The eight memory references directly due to object
orientation are only one-fifth of the total, or about one-
third if memory-clearing references are excluded. As a
comparison, adding eight memory references to the pro-
cedure call of the VAx would represent an increase of 62~;
eight references in the 68010 call would represent an
increase of 38~0. The microcycles attributable to object
orientation are less encouraging, because they represent
more than the total procedure-call time on either of the
two other architectures. However, 70 of the 144 are
directly due to memory references, which take 6-12 cycles
depending on the width; further, the 432 microengine is
not very well optimized for extracting bit fields, which is
important when checking rights.

5. Improving Procedure-Cal l Pe r fo rmance

Let us consider several strategies to improve the per-
formance of object-oriented procedure calls. We will begin
by attacking the three memory references and 55 clock
cycles attributable to 432 memory management. The 432
maintains a level number for each context allocation, in
order to facilitate deallocation of objects on a LIFO basis,
as noted in Section 4.2. A discussion of the exact method

AD Stack

Context 3

Context 2

Context 1

Data Stack

0~d:

~ntext 3

Context 2

Context I

Figure 4: Contexts as Refinements of Two Stack Objects

is beyond the scope of this paper, but may be found in
[26]. The level numbers could in principle be stored in
on-chip registers, but due to space constraints in the 432
processor chip, were instead maintained inside the process
object. If a register were provided for this purpose, or if
this storage-allocation philosophy were discarded in favor
of more sophisticated storage management by the com-
piler, the memory references and most of the clock cycles
could be avoided. Assuming the existence of registers,
about six to ten cycles would be required to manipulate
them, a savings of three memory references and nearly 50
clock cycles.

5.1. Stack-Based Contex t Allocation

Since linked context allocation is a significant source
of inefficiency, let us briefly sketch how stack-based alloca-
tion might be accomplished in an architecture like the
432's. The discussion will necessarily omit details, but
should serve as a basis for the optimizations to be
presented later.

The basic idea is to make contexts refinements (sub-
objects) of a stack object. As noted earlier (Figure 3), 432
objects contain both AD's and data. Refinements must be
contiguous, but all contexts must overlap both the AD and
data portions of the stack object. This would require the
information adjacent to the fence to be within all context
objects, which clearly violates protection. Our solution,
then, is to use two stack objects per process, one to hold
the data portions of context objects, and the other the AD
portions (Figure 4). Note that this mechan_ism does not
suffice for coroutines or the creation of independent
processes; in this case, stacks must be linked together
much like "spaghetti stacks" of deep-binding Lisp sys-
tems, or the "cactus stack" of the B6700/6800. However,
coroutines and subprocesses are much less frequent than
procedure calls [27].

5.2. Reg i s t er Se t s for Address ing In format ion

Multiple register sets with overlapping windows are
by now a well known mechanism [91 for maintaining a
small amount of information in fast storage and exchang-
ing it at each procedure call. In a 432-1ike object-oriented
architecture, information used in address translation fits
both criteria: it must be rapidly accessible and must

change on each inter-module ca l l s Candidates for
inclusion are the Current Context (both the data and AD
portions, which are no longer contiguous), the Defining
Domain, and the Top of Descriptor and Storage Stacks. It
is important for Context Objects to be created rapidly; to
facilitate this, a descriptor for a context object can be held
in an extension of the register containing its AD (Figure
5). The descriptor need not be written to the Object

SNone of the addressing information need change on an intra-module call.
The Current Context can be expanded instead of changed. The 432 uses a

different Instruction Object for each procedure, but a single Instruction Object
could in principle hold all the procedures of a module.

98

Table in memory at all, except if the context is shared by
having its AD copied or if a subprocess is initiated.

Although not directly involved in a procedure call,
the Environments 1, 2, and 3 must be rapidly accessible, so
three registers are reserved for them. The remaining regis-
ter is devoted to an AD parameter. There is good reason
to believe that a single parameter register will be sufficient
for most calls. The "domain capabi l i ty" approach asserts
that modules should be callable only by invoking an
operation on a (single) object that they implement; this is
consistent with the philosophy of Smalltalk methods [3]
and the MONADS system [28].

The registers may be overlapped so tha t the parame-
ter remains accessible after a call. An AD for the Current
Context (AD portion) remains accessible, too, and serves
as the Calling Context AD. Thus, ten registers are accessi-
ble at a time.

As shown in Figure 5, a register set actually "sha-
dows" a par t of the corresponding Context Object (AD
portion). It is occasionally necessary to save the register
set to memory, either because the system is about to run
out of register sets, or because a subprocess has been ini-
tiated. Then the registers are copied to the associated
Context Object, except for the register extensions, whose
information is copied into the Object Table.

Provision of the register sets saves four of the eight
"object-oriented" memory accesses during a procedure
calli writing the descriptor for the new context object,
writing the AD for the defining domain, and reading and
writing the Top of Descriptor and Storage Stacks. The
savings amount to forty cycles for memory references, plus
sixteen for address translation. New costs include two
cycles to read and write each register and extension
(except for Environments 1-3, which are writ ten only by
the callee) for a total of approximately 7 x 2 = 14 cycles.
Net savings are 42 cycles, or about 30% of the est imated
cost of object orientation. The register sets also save two
references that would otherwise be incurred in the switch
to stack-oriented context allocation: writing the Current
Context and Calling Context AD's. The five memory
references and most of the 71 cycles associated with linked
allocation are thereby avoided.

How large would the register sets need to be? No
data is available on the nesting depths of inter-module
calls. As a first-order approximation, we may extrapolate
from Weicker 's [21] survey, which found that just over
one-half (8/15) of procedure calls were inter-module. If we
assume tha t four sets--half the number on the RISC I - a r e
sufficient, then we need a total of 32 registers plus eight
64-bit extensions, for a total of 1536 bits, which is 37.5%
of the size of the RISC I register file.

The SOAR [12] architecture employs register sets to
hold da ta across calls in a Smalltalk program, and the Cal-
tech Object Machine [29] maintains addressing informa-
tion in an associative context cache. But until now,
stack-oriented register sets have never been suggested for

the addressing mechanisms of an object-oriented architec-
ture. But it is in object-oriented architectures that they
may be most appropriate. Interest among RISC designers
has recently turned to algorithms for optimizing register
usage across procedure boundaries as a possible substi tute
for multiple register sets [30]. Clearly the same approach
is inapplicable to separately compiled modules. Register
sets for AD's could even be combined with register-
allocation optimization for da ta in the same architecture.

8.3. Using the M e m o r y Control ler to Clear
M e m o r y

In order to prevent unauthorized transfers of infor-
mation between tasks conventional t imeshared systems
often clear memory used by a task before that memory is
re-allocated to another task. In capabil i ty-based systems
it is even more important to "sterilize" memory. Other-
wise, random collections of bits could be erroneously or
maliciously used to gain access to da ta or instructions that
could ul t imately bring down the entire system. The 432's
procedure call spends a very high proportion of its time

Parameter

Curt. Ctx~ (AD)

Curt. Ctxt (Data)

Environment 1

Environment 2

Environment 3

Defining Domain

Sto/Desc Stk Top

(refinement info.) !

(refinement info.)

Register Extensions

Overlapped portion of
register set is outlined
in boldface.

A Register Set

Reg. Set 4 I
Overlapped ql~ - ,,

portion Reg. Set 3
m

Reg. Set 2

Reg. Set 1

Shaded portions
of COII1e3ff3 a r e

being shadowed
overlapp~g

register sets.

AD Stack

Context 3

Context 2

Con~xt 1

F i g u r e 5: Register Sets and Contexts

99

clearing the called context 's AD list (21%) and da ta seg-
ment (13~) . This has a first-order effect on the overall
length of the procedure call.

At a register-transfer level, it is clearly sub-optimal
for the central processor to perform the memory-clearing
operation. The processor must transfer each address to be
cleared, and then the da ta (0), a highly redundant set of
information transfers. The memory-clearing operation is
so simple, however, that after the first address /da ta
transfer has taken place, enough information has been
given to the memory that the rest of the writes can be con-
trolled locally without further assistance by the processor.

To accomplish this, the memory controller needs to
have a counter, loadable from the processor-memory da ta
bus, so that it can keep t rack of the number of writes
being done. The memory address register can be a
parallel-loadable controller, with normal writes being pro-
pagated through to the memory array. To clear a section
of memory, the processor sends a control word to the con-
troller, signifying the Clear operation. The processor then
writes a zero to the first location to be cleared, and the
memory controller performs the rest of the clears automat-
ically. This mechanism has similarities to the copy-back
techique proposed for the context cache in the Caltech
Object Machine [29].

This s trategy saves cycles in four ways. First , no
waitstates are wasted on processor-memory bus transfers
which are redundant anyway. Second, the memory clear-
ing da ta path can be wider than the processor needs. For
instance, the memory da ta pa th can be made 256 bits wide
during the clear operation, allowing the clear to terminate
in fewer cycles. Third, minimizing the bus traffic reduces
contention with other processors. Fourth , the processor
can be doing useful work while the clear is transpiring.
This is true for two reasons: a clear can be ini t iated when
memory is freed rather than when it is allocated; also, dur-
ing a 432 procedure call, a very large amount of on-chip
activity occurs tha t does not require memory accesses.

Some practical details will have to be taken into
account for this idea to work. For instance, in an inter-
leaved memory system each controller will have to make
sure that only the appropriate writes are performed, skip-
ping addresses which may not belong. If the processor (or

any other processor) needs to get access to memory while a
clear is in progress, provision can be made for the clear to
suspend until the access is satisfied. It is worth noting that
workstations with b i tmapped displays often include a
BitBlt operator, which is already capable of writing areas
of memory to a given pat tern (say, 0!); these could imple-
ment the memory-clearing operat ion at no addit ional cost
in hardware or software. At any rate, the magni tude of
the savings in the case of the 432 is such tha t providing
hardware support for memory-clearing may be a wise allo-
cation of resources.

If we assume tha t the cost of communication between
the central processor and memory controller is 30 cycles
(two I /O writes) and that only minimal interference
occurs, the procedure call would be speeded up by approx-
imately 31~ .

5.4. S u m m a r i z i n g the Savings

The mechanisms we have proposed have resulted in
savings in several of the categories in Table 3. The biggest
reduction is in the time to clear memory, but other
significant reductions are obtained by avoiding linked allo-
cation, using multiple register sets and a register for level
numbers, and from including instruct ion-stream literals.
Table 4 summarizes the savings.

T a b l e 4: Savings Due to Mechanisms from Section 5

Category Memory Clock
References Cycles

Register sets for obj .-oriented call 4 42
Provision of level reg. (mere. mgt.) 3 45
Stack-based context allocation 5 60
Using controller to clear memory 14 245
Provision of literals 1 9

27 401 Totals

In total, 401 of 740 clock cycles, or 54% of the time
for a procedure call has been saved. More impressively,
the 13 remaining memory references and 472 bits
transferred compares quite favorably with the figures for
the Vxx and M68010 from Table 1.

This paper has considered only the cost of a Call
instruction and not the cost of a Return. However, the
two are highly correlated due to the Return's need to
restore information from the same places the Call saves it.
In the 432 the cost of clearing memory at a Call has its
counterpar t in the work performed to restore the address-
ing state for the EAE's upon return. This could be greatly
speeded by expanding the 432's Data-Segment Cache to
include AD's. Colwell [13] est imated tha t an expansion of
the cache from five to nine entries could yield a hit rate of
93%, if the Dhrystone benchmark is representative of a
typical large Ada program in its AD reference patterns.

6. Conc lus ions

The overhead of object orientation derives largely
from the need to maintain and traverse more complicated
addressing information. However, a reasonably sized
cache usually speeds up the traversal enough to make it
negligible [13], [31] in comparison to the cost of
maintenance--loading the cache and updat ing the environ-
ment on a procedure call. This paper has focused on the
second of these problems. If the cost of clearing memory is
neglected, the cost of an object-oriented call has been

100

s h o w n to be b e t w e e n 1.5 t i m e s (in t e r m s o f m e m o r y re fe r -

ences) a n d 2.5 t i m e s (in t e r m s of c lock cycles) as e x p e n s i v e
as a n o n - o b j e c t - o r i e n t e d call . T h e r e a r e good r ea s ons for
c o n s i d e r i n g t h e lower b o u n d a b e t t e r e s t i m a t e .

B y p r o p o s i n g t w o a d d i t i o n a l m e c h a n i s m s , m u l t i p l e
r eg i s t e r se t s for a d d r e s s i n g i n f o r m a t i o n a n d a m e m o r y -
c l ea r ing m e m o r y con t ro l l e r , we h a v e s h o w n t h a t t h e ove r -
h e a d o f a p r o c e d u r e call c an be l i m i t e d to fou r m e m o r y
r e f e r e n c e s a n d t h e a s soc i a t ed c lock cycles (p lus w h a t e v e r
cos t is a s s o c i a t e d w i t h occas iona l ly s av ing a n d r e s t o r i n g
t h e reg i s te r s) . S ince all o f th i s o v e r h e a d h a s to do w i t h
l oca t i ng t h e p r o c e d u r e to be ca l led , it is s u b j e c t to s p e e d u p
b y m o r e s o p h i s t i c a t e d cach ing s c h e m e s .

T h i s p a p e r has a t t e m p t e d to i den t i f y t h e cos t o f a

p a r t i c u l a r aspect of o b j e c t o r i e n t a t i o n . T h e t w o m e c h a n -
i sms i t p r o p o s e s cou ld be used to s p e e d p r o c e d u r e calls in
a n y o b j e c t - o r i e n t e d s y s t e m . I t a l so sugges t s t h a t o b j e c t
o r i e n t a t i o n n e e d n o t u n d u l y c o m p l i c a t e a m a c h i n e ; t h e
In te l 432 s u p p o r t s a wide v a r i e t y o f h igh- l eve l p r o g r a m -
m i n g c o n c e p t s . M o s t o f t h e m , s u c h as s u p p o r t for m e m o r y
m a n a g e m e n t a n d t r a n s p a r e n t m u l t i p r o c e s s i n g a re o r t h o g o -
ha l o r n e a r l y o r t h o g o n a l to t h e i n t r i n s i c cos t o f an o b j e c t -
o r i e n t e d call .

T h e In te l 432 r e p r e s e n t s a f i rs t a t t e m p t a t d e v e l o p i n g

a p r o d u c t i o n - q u a l i t y o b j e c t - o r i e n t e d a r c h i t e c t u r e . I t h a s
fo l lowed t h e classic p a r a d i g m for c o n s t r u c t i o n o f a n y la rge
s y s t e m : s t r a i g h t f o r w a r d i m p l e m e n t a t i o n of t h e bas ic con-

cep t s , f o l lowed by ca re fu l m e a s u r e m e n t to i den t i f y p e r f o r -
m a n c e b o t t l e n e c k s . T h e r e su l t s i t h a s p r o v i d e d a re su re to
f ind w i d e s p r e a d a p p l i c a t i o n in i ts successors a n d o t h e r

f u t u r e o b j e c t - b a s e d s y s t e m s .

R e f e r e n c e s

[1] Brad J. Cox, "Message/Object Programming: An Evolutionary
Change in Programming Technology," IEEE Software, pp. 50-81,
January 1984.

[2] G.D. Buzzard and T.N. Mudge, "Object-Based Computing and the
Ada Language," IEEE Computer, voL 18, no. 3, pp. 11-19, March
1985.

[3] Adele Goldberg and David Robson, Smalltalk.80: the Language and
itJ Implementation. Addison-Wesley, 1983.

[4] Y. I~kikawa and M. Tokoro, *'The Design of an Object Oriented
Architecture," Proceedings of the llth Symposium on Computer
Architecture, pp. 173.187, 1984.

[5] Elllott Organick, A Programmer's View of the Intel 43~ McGraw-
Hill, 1983.

[6[S.H. Dahlby, G.G. Henry, D.N. Reynolds, and P.T. Tsylor, "The
IBM System/38: A High-Level Machine," in Computer Structures
Principles and Ezamples, A. Newell, Ed McGraw Hill, pp. 533 539.
1982.

[7] J.R. Falcons and J.R. Stinger, '*The Smalltalk-80 Implementation
at Hewlett-Packard," in Srnalltalk-80: Bits of History, WordJ of
Advice, Glenn Krasner, Ed Addison-Wesley, pp. 79-112, 1983.

[8] M.E. Houdek, F. G. Soltis, and R. L. Hoffman, "IBM System/38
support for capability-based addressing," Proceedings o/the Eighth
Annual Symposium on Computer Architecture, pp. 341-48, May 1981.

{9] D.A. Patterson and C. H. Sequin, "RISC I: a reduced instrti~inn
set VLSI computer," Proceedings of the Eighth Annual Symposium on
Computer Architecture, pp. 443-457, May 1981.

[101 Andrew S. Tanenbaum, "Implications of Structured Programming
for Machine Architecture," CommunicalionJ of the ACM, vol. 21,
no. 3, pp. 237-248, March 1978.

[11] Butler W. Lampson, "Hints for Computer System Design," ACM
Operating $ysteraa Review, vol. 17, no. 5, pp. 33-48, 1983.

[12] David Ungar, Ricki Bian, Peter Foley, Daln Samples, and David
Patterson, "Architecture of SOAR: Smalltalk on a RISC,"
Proceedings of the 11th Annual Symposium on Computer Architectures,
pp. 183-197, June 1984.

[13] R . P . Colwell, "The performance effects of functional migration
and architectural complexity in object-oriented systems," Ph.D.
Thesis, Department of Electrical and Computer Engineering,
Carnegie-Mellon University, August 1985.

[14] J. Heunessy, N. Jouppi, F. Baskett, T. Gross, and J.
Gill, "Hardware/Software Tradeoffs for Increased Performance,"
Proceedings of the Symposium on Architectural Support for Program-
ming Languages and Operating Systems, pp. 2-11, March 1982.

[15] A.P . Batson and R. E. Brundsge, "Segment sizes and lifetimes in
Algol 60 programs," Commonicalioru of the ACM, voL 20, no. 1,
pp. 36-44, January 1977.

[18] R . M . Needham, "The CAP project: an interim evaluation,"
Proceedings of the Si:th Symposium on Operating Systems Principles,
pp. 17-22, November 1977,

[17] P.M. Hansen, M.A. Linton, R.N. Mayo, M. Murphy, and D.A.
Patterson, "A Performance Evaluation of the Intel iAPX 432,"
Computer Architecture News, vol. 1O, no. 4, p. 17, June 1982.

[18] E .F . Gehringer and J. L. Keedy, "Tagged architecture: how com-
pelling are its advantages?," Proceedings of the Twelfth Internattonal
Symposium on Computer Architecture, pp. 182-170, June 1985.

[19] "Military standard: Ads programming language," MIL-STD-ISIS,
December 10, 1980.

[20] W.F . Tichy, "RCS--a system for version control," Software Prac-
tice and Ezperience, vol. 15, no. 7, pp. 837-854, July 1985.

[21] Reinhold P. Weicker, "Dhrystone: A Synthetic Systems Program-
ruing Benchmark," Communications of the ACM, vol. 27, no. 10, pp.
1013-1030, October 1984.

[22] George Cox, January 1985, Private communication.

[23] Konrad Lal, June 1984, Private communication.

[24] B.W. Lampson, "Fast procedure calls," Proceedings of the Syrups.
slum on Architectural Support for Programming LanouageJ and Operat-
ing Systems, pp. 86-78, March 1982.

[25] A. K. Jones and Lee Schiller, "Dynamic support for small
domains," Department of Computer Science, Carnegie-Mellon
University, September 1978.

[26] F.J. Pollack, G.W. Cox, D.W. Hammerstrom, K.C. Kahn, K.K.
Lai, and J.R. Rattner, "Supporting Ada Memory Management in
the iAPX-432," Proceedings of the Symposium on Architedaral Sup-
port/or Programming Lan~ages and Operating Systenu, March 1982.

[27] L. Peter Deutsch and Alan M. Schiffman, "Efficient implementa-
tion of the Smalltalk-80 system," Proceedings of the ACM Sympo-
sium on Principles o/Programming Languages, pp. 297-302, January
1984.

[28] J . L . Keedy, "Support for software engineering in the MoNAns
computer architecture," Ph.D. Thesis, Department of Computer ~
Science, Monash University, August 1982.

[29] William J. Dally and James T. Kajiya, "An object-oriented archi-
tecture," Proceedings o/ the Twelfth International Symposium on
Computer Architecture, pp. 154-161, June 1985.

[30] D.A. Patterson, "Reduced instruction set computers," Communi-
ealion~ of the ACM, vol. 28, no. 1, pp. 8-21, January 1985.

[311 E .F . Gehringer, Z. Z. Segall, and D. P. Siewiorek, Cm*: an Ezperi-
ment in Multiprocessing. Digital Press, 1986.

101

