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ABSTRACT 
The architecture of a proto-type 

functional level simulator element of a 
massively parallel machine (MAN-YO) 
designed for logic design automation is 
presented. At functional level, hardware 
systems are described in a hardware 
description language, FDL. The FDL 
description is compiled into stack 
oriented intermediate language 
instructions. Communicating with other 
gate level/block level/ functional level 
processors, each functional simulator 
interprets the compiled instructions and 
simulates various circuits using 4-value 
logic. In order to realize high speed 
processing of 4-value logic/arithmetic 
operations, the functional simulator 
utilizes low-level parallelism realized 
by 3 ALUs which are controlled by the 
different fields of a long horizontal type 
microinstruction. 

By utilizing low-level parallelism at 
processor level, as well as processor 
level parallelism, high speed execution of 
mixed level simulation becomes possible. 
The system also provides further 
performance enhancement by compiling often 
used FDL macros into microcode. 

This paper describes an outline of the 
MAN-YO (Japanese for ten thousand leaf- 
nodes in the processor tree),a brief 
description of FDL, and the architecture 
of the functional level simulator element 
(called FDLPE). A rough performance based 
on the current design is also described. 

1 INTRODUCTION 

The rapid increase in VLSI complexity has 
made various impacts on design 
methodologies and CAD tools. Conventional 
simulators implemented by software have 
become inadequate, as far as processing 
speed is concerned. One answer to this 
problem is the development of special 
purpose-hardware logic simulation engines. 
Several engines, such as HALCl][2][3], 
YSEC4I and Zycad Logic Evaluators, have 
been developed. These accelerators have 

been successful in enhancing simulation 
speed by several orders of magnitude. 
However, their application fields are 
limited to gate level or block level 
simulations and they alone cannot cope 
with another trend in VLSI design. Namely, 
in order to meet the increase in VLSI 
complexity, there is a tendency to shift 
the logic design step to a higher 
(functional) level. To cope with this 
tendency, there has been an increasing 
demand for an efficient mix-level 
simulator, which supports functional level 
simulation while maintaining the high- 
speed processing capability of dedicated 
hardware simulators. 

HAN-YO [5] is a parallel processor array, 
designed to provide significant 
performance improvement in executions of 
logic automation tasks. In the MAN-YO 
system, a large array (on the order of a 
thousand) of processor modules are 
connected by a loop-structured inter- 
connection (See Fig. 1.1). Each processor 
element in the system contains a logic 
simulation element, a functional level 
simulation element, a microprocessor and 
a router cell. The logic simulation 
element performs gate and block level 
simulation. ( A block is a collection of 
10 to 100 gates.) The microprocessor, 
which manages symbolic data, performs 
symbolic simulation and knowledge based 
processings. The router cell manages 
packet transmission among PEs. 

This paper describes the architecture of 
the functional level simulation element, 
called FDLPE (FDL Processor Element). At 
the functional level, hardware systems are 
described in a hardware description 
language called FDL. The FDL description 
is compiled into stack oriented 
intermediate language instructions. The 
FDLPE interprets these instructions and 
simulates various circuits, using 4-value 
logic. In order to realize high speed 
processing of 4-value logic/arithmetic 
operations, the FDLPE uses low-level 
parallelism. 

L o w - l e v e l  p a r a l l e l i s m  i s  d e f i n e d  as  a 
f i n e  g r a i n e d  p a r a l l e l i s m  a t  t h e  r e g i s t e r -  
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PEij Processor Element 

I '  I I I 

(A) Han-Yo System Organization 

A :  Lozic Simulation Ensine 
B : Functional Simulation Engine 
C :General Purpose Hicro-Processor 

(8) Processor Element blockdiagram 

Figure 1 Han-Yo System b]ockdiagram 

transfer level, where several ALUs, memory 
control units and sequencers operate in 
parallel under the control of a long word 
instruction ( or a horizontal type 
microinstruction.) Several experimental or 
commercial processors with low-level 
parallelism have been built, such as, QA- 
216][7], AP-120B and MENTOR Graphic 
Corporation's Compute Engine[8]. Until 
recently, these processors had been 
large-scaled processors. However, with the 
availability of hardware building blocks, 
such as AMD29300 series and CMOS gate 
arrays, it has become possible to utilize 
processors with low-level parallelism as 
an element in a multi-processor system. 

In the FDLPE, three ALUs work in 
parallel, sharing a 2-port register file 
and a hardware stack, under the control of 
a horizontal type microinstruction. In 
order to reduce the overhead involved in 
memory access, two kinds of cache 
(instruction cache and a read-only data 
cache) were implemented. 

By combining low-level parallelism at 
functional processor element level with 

processor-level parallelism due to 
parallelism in the simulation algorithm, 
large-scaled mix simulator can be realized 
which operate at several orders of 
magnitude faster than conventional 
software simulators. 

2 FDL: A STRUCTURAL BEHAVIOR DESCRIPTION 
LANGUAGE 

2.1 Overview of the FD_.L 
This section briefly describes the 

hardware description language used in the 
authors' system called FDL. As this paper 
is not meant to describe FDL, the authors 
only touch on the characteristics of the 
FDL and how FDL is processed in the 
system. For more details on FDL, see [9]. 

In an FDL program, a digital circuit is 
described as a set of interconnected 
elements, called nodes. A node is a 
section of a circuit, such as a 
combinatorial circuit, register, memory or 
a combination of the three. Usually, a 
node corresponds to a block in a hardware 
block diagram. FDL is a structural 
behavior language(or structural/functional 
language[lO]). In FDL, each node is 
described within one statement. A hardware 
element may appear only once in the left 
hand side of an FDL statement. A set of 
FDL statements describes one hardware 
module, such as a small gate, LSI, CPU or 
a logic library. 

There are seven kinds of statements in 
FDL. INPUT, OUTPUT and INOUT statements 
describe boundary (interface) signals. 
MODULE statement describes other FDL 
module invocations and interfacing signals 
which go into / out of these modules. 
REGISTER, TERMINAL and MEMORY statements 
describe internal signals or node 
definitions. INPUT,OUTPUT, INOUT and 
MODULE statements can be considered as 
declaration statements and the 
REGISTER,TERMINAL and MEMORY statements 
can be considered as execution statements. 

The  r i g h t  h a n d  s i d e  o f  t h e  l a t t e r  t h r e e  
s t a t e m e n t s  a r e  e x p r e s s i o n s ,  w h i c h  a r e  
r e c u r s i v e l y  c o m p o s e d  o f  CASE c l a u s e s ,  I F  
c l a u s e s  a n d  o p e r a t i o n s  on s u b - e x p r e s s i o n s ,  
No r i g o r o u s  d e f i n i t i o n  o f  t h e s e  c l a u s e s  o r  
operations will be given, but roughly 
speaking, the CASE clause corresponds to a 
switch expression (that is, a switch 
statement which returns a value), an IF 
clause corresponds to an if expression and 
various operations correspond to 
operations in the C language. Meanings of 
various operations are shown in Table 1, 
and an example circuit and its FDL 

description are shown in Fig. 2.1. 
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Table 1 Operators i n  the FDL 

CLASS OPERATOR NOTAT I ON 

LOGICAL 
OPERATOR 

FUNCTIONAL 
OPERATOR 

ARITHHETIC 
OPERATOR 

RELATION 
OPERATOR 

NOT 
OR 
AND 
EXCLUSIVE OR 
COINCIDENCE 
GATING 
REDUCTION OR 
REDUCTION AND 
REDUCTION EXCLUSIVE OR 

SHIFT LEFT 
SHIFT RIGHT 
ROTATE LEFT 
ROTATE RIGHT 
CONCATENATE 
ADJUST SIZE 
COPY PATTERN 
LEAOINCO 
LEAOINGI 
TRUE AND COHPLEMENT 

ADO 
SUBTRACT 
MULTIPLY 
OIVIDE 
CARRY 

EQUAL 
H0T EQUAL 
CREATER THAN 
CHEATER OR EQUAL 
LESS THAN 
LESS 0R EQUAL 

.NOT. or ~ 

.OR. or  + 

.AND. or ¢ 

.XOR. OR 

.COIN. 

.IF. 

.ROR. 

.RAND. 

.RXOR. 

.SHL. 

.SHR. 

.ROTL. 

.ROTR. 

.COHB. or - -  

.s~z~. 

.COPY. 

.LOO. 

.LOt. 

.TC. 

.AOD. 

.SUB. 

.HUL. 

.OlV. 

.CRY. 

.EQ. 

.NE. 

.GT. 

.GE. 

.LT. 

.LE. 

TIHING I CO UP j .UP. 
OPERATOR GO DOWN I .DN. 

2 . 2  FDL PROCESSING SYSTEM 

The FDL processing system consists of 
compiler, linker, and mix level-simulator. 

The compiler compiles the FDL program 
into a stack-oriented intermediate code. 
It also derives the linking information 
from the INPUT, OUPUT, INOUT and MODULE 
statements, and puts them out in a tabular 
form for the linker. From these tables, 
the linker creates a node network which 
consists of fan-in-lists, node values, and 
fan-out lists. 

The intermediate codes for FDL can be 
classified into the following groups. 
a) Get codes: These operations read the 

value from the fan-in list and push them 

on the stack. 
b) Operator codes: These codes correspond 
to operations in FDL. They pop-up the 
operand(s) from the stack, perform 
logical/arithmetic operations and push the 
result on the stack. 
c) Branches: Used for IF clauses, Case 

A B 

ZL ~ C ~ ~  l c 
o o A AND B 

I 01 A OR B 
10 A + B 

I l A - B 

INPUT A(O:8), B(O:8), I (0:2) ;  
OUTPUT C(lO:B) ; 
C(O:B) = CASE I OF 

/O O/ A .AND. B, 
/ 0  1 /  A .OR. B, 
/I O/ A .ADD. B, 
/ 1  1 /  A ,SUB. B; 

~, ~z 6"5 6", 6"s 

TERMINAL GH<4,S,fi> = (Gl~tG2tG3)+(G4~:GS); 

Figure 2.1 Example C i r cu i t s  and t h e i r  FDL Descr ip t ions  

clauses and exits. 
d)Assignment codes: These codes put the 

value on the stack to the appropriate 
node. If the new value differs from the 
old value, then an event is registered on 
the event wheel. 
The compiled code and the node network is 
loaded on to the FDL processor at runtime, 
and the simulation is started. 

2.3 Mix Level Simulator 
The mix level simulator of MAN-YO is an 

event driven simulator. Summarized below 
is the logic simulation process for the 
prototype FDL processor. 

l)Event set : When events are sent from 
other FDL processors, gate level 
processors, or block level processors, 
they are registered in an input event 
queue. The FDLPE extracts the events and 
sets them into input event node lists 
which are connected by a fan-in list. It 
then registers the functional node 
corresponding to the hardware which 
receives the event in an input event list. 
2) Functional node evaluation:Each 

function node has a pointer which points 
to the intermediate code corresponding to 
the FDL description of the node. The 
FDLPE simulates each node by interpreting 
the intermediate codes and registers the 
output data with the delay count in an 
event wheel. 
3) Delay Operation: Each time the time 

204 



wheel is advanced by one, the FDLPE 
decrements the delay count by one and 
extracts values whose delay count is zero. 
If the new value differs from the old 

Valuethe FDLPE searches for the addresses 
of the hardware element (logic gate node / 
block node/ or FDL node) connected to the 
changed output. If the element resides 
within this FE, the output data is 
transferred to the input queue. Otherwise 
the FDLPE creates an event packet and 
sends it to the router for delivery. 

2.4.MLcro:c_oJnPiJ~.~i~n 
The FDLPE was designed to efficiently 

simulate the hardware blocks by 
interpreting the FDL-intermediate codes. 
However there is another way to gain 
performance, namely by microcompiling. 
Microcompiling has been implemented on 
systems such as the QA-2[II] and the 
LAMBDA machine[12], and have proved to be 
useful if core functions which are used 
often are compiled. By compiling FDL codes 
of often used macros into microcode, an 
additional 200-300~ performance gain can 
be expected. 

3 HARDWARE ORGANIZATION OF THE FDLPE 

3.1 Over-all OrKanization 
The over-all configuration of the FDLPE 

is shown in Fig.3.1. It consists of the 
MIU (Macro-lnstruction Unit), the FEU 
(Function Evaluation Unit), and the 
SCU(Sequence Control Unit). These units 
are controlled by the separate fields of a 
horizontal type microinstruction. The MIU 
is mainly concerned with fetching the next 
intermediate FDL-code, and determines the 
entry point for the microroutine 
corresponding to the next FDL-code. The 
FEU fetches the logic values from the 
fan-in lists, and executes 
logical/arithmetic operations, specified 
by the intermediate FDL code on data 
stored on a stack . These two units are 
connected by a 2-port register file. So, 
for FDL-codes, such as conditional / 

I Control Storage 
/ ~ I "~ Sequence 

/ ~ I Control 
/control ~control I Unit 

Macro [ Function 
Instruction Evaluation 
Unit ~ Unit 
instruction 0ata 

Memory Memory 

~ f r o =  the 

router 

~ to the 
: router 

multiway branches, t h e s e  units work 
together , communicating through t h e  
register file. Also, when executing 
complex operations, the MIU can work as a 
part of the FEU. These units also work 
together in event set and delay operation 
phases. The SCU fetches the next 
microinstruction of the FEU. The 
microinstruction fetch and the execution 
phases are overlapped to provide maximum 
efficiency. 

3 . 2  The  O r g a n i z a t i o n  o f  t h e  MIU 
The  h a r d w a r e  o r g a n i z a t i o n  o f  t h e  MIU i s  

s h o w n  i n  F i g .  3 . 2 .  I t  c o n s i s t s  o f  t h e  
i n s t r u c t i o n  m e m o r y ,  i n s t r u c t i o n  c a c h e ,  
m i c r o i n s t r u c t i o n  a d d r e s s  t a b l e  a n d  an ALU 
with several registers plus a 
communication register to the FEU. Design 
considerations, which led to the 
implementation of the instruction cache 
are summarized below. 
i) As has been stated before, the 

intermediate language for the FDL is stack 
oriented, and has many codes which are 
only o n e  byte in size. Thus, t h e  
instruction memory must have byte access 
capability and must contain bus exchange 
logic to bring arbitrary byte fields to 
the 32-bit ALU. 
2) FDL programs become very large for 

complex systems. So in order to meet the 
capacity demands, it would be necessary to 
use dynamic RAMS. (with t h e  capacity of 
64-kw*4bits or more). 
3) On the other hand, if the instruction 

memory is too slow, the efforts spent in 
speeding up the ALU operations will be 
wasted due to the overhead involved in 

Instru 
I Men 

l 
I lnstru 

Ca( 

RBUS 
LBUS 

Frol 

CoHun icate I 
~ntryAddress Register I /Reg ster 

:tionj 
he { 

Figure 3.1 Over-al l  Configuration of the FDLPE Figure 3.2 flardvare Organization of the Macro instruct ion Unit 
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instruction fetch and decode phases [ii]. 
For the memory to keep pace with the speed 
of the FEU (I00 nsec or so,), some kind of 
cache is necessary. 
4) It is desired to build the whole 

system using many FDLPEs, so the entire 
implementation will have to be cheap. 
In order to satisfy these conditions, the 

authors designed a cheap instruction cache 
taking advantage of the high-bandwidth 
offered by the dual ported video RAMs. 
By combining the VRAMS with shift 

registers, as shown in Fig. 3.3, the 
instruction memory also acts as an 
instruction buffer The shifters 
implement the bus exchange logic and the 
instruction cache. By this configuration, 
overhead due to slow memory speed is 
reduced to zero for most cases. The only 
exceptions are various branch operations, 
which are taken care of by microprograms. 
(Even in this case, overhead is as little 
as 60nsec for short branches and at 
maximum, 300nsec for long branches.) 

V I d e o RAM's I 

Instruction 
Data Register 

Figure 3.3 Organization of the Instruction Cache 

While the FEU is executing the 
appropriate Iogical/arithmetlc operations, 
the MIU fetches the next opcode of the FDL 
intermediate code, and derives the entry 
of the microroutine by referring to the 
microinstruction address table. The entry 
address is used by the SCU at the end of 
the microroutine, to get the next 
microinstruction address. 

3,3 Hardware Or~anizatios_of the FEU 
(Function Evaluation Unit) 
The FEU is composed of the evaluation 

unit (comprised of two ALUs , a 2-port 
register file, a hardware stack) a data 
collector, and the data memory ~See Fig. 
3.4). Features of each part are briefly 
outlined. 

Irt~Onl MIU 
From NI~JI 

I 

I I 

ointer[ 

? ' ,  

LBUS 
RS~ 

tLeU$ 
IRgUS: 

Figure 3.4 Hard~are Organization of the Function Evaluation Unit 

3.3.1 Data Format 
As mentioned before, the FDLPE simulates 

functional blocks using 4-value(0,1,z(high 
impedance) and x(unknown) )logic. There 
are three data categories; short (up to 
32-bits), double (up to 64-bits) and 
triple ( up to 96-bits). In each category, 
the x-z bits and 0-1 bits are grouped as 
shown in Fig. 3.5. By treating the 0-1 
bits and x-z bits as one would treat the 
real part and the imaginary part of a 
complex number, the overhead in 
logic/arithmetic operations due to 
treating 4-value logic can be kept to a 
minimum. 

Z (h'gh impedance) 
X (unknown) 

:.::,': 
a three bi t  data with the value IZ¢ wi l l  
be encoded as shown below 

I I~111~1 I 171~1~1 
X-Zbits ~ - l b i t s  

Figure 3.5 B i t  encoding scheme fo r  the 4 -b i t  values 

3 . 3 . 2  E v a l u a t i o n  U n i t  
T h e  h a r d w a r e  c o n f i g u r a t i o n  o f  t h e  

e v a l u a t i o n  u n i t  i s  s h o w n  i n  F i g  3 . 4 .  
T h e  ALUs a n d  t h e  r e g i s t e r  f i l e  a r e  3 2 -  

b i t s  w i d e ,  w h i l e  t h e  s t a c k  i s  6 4 - b i t s  
w i d e .  T h e  ALUs o p e r a t e  i n  p a r a l l e l  on  d a t a  
i n  t h e  r e g i s t e r s ,  a n d  t h e  s t a c k .  T h e  
m i c r o i n s t r u c t i o n s ,  w h i c h  c o n t r o l  t h e  ALUs 
a n d  t h e  r e g i s t e r s  a r e  o f  t h e  3 o p e r a n d  
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type to provide maximum flexibility. The 
operations supported are the usual 
arithmetic/logical operations. Status bits 
include zero, minus and parity. The last 
is used in exclusive-or operations. 

The register file is a 64-word by 32-bit 
dual port register file, using either the 
AHD 29323 or 4 copies of high-speed RAMs. 
The hardware stack (1-kw x 64-bits) is a 
FIFO, of which only the top 64-bit data 
can be accessed in one microinstruction. 
The 64-bit data is composed of the 32-bit 
x-z bits and the 32-bit 0-1 bits. The 
upper 32-bits and the lower 32-bits can be 
independently accessed by all the ALUs ( 
including t h e  ALU of t h e  MIU) in one 
microinstruction. When stack 
overflow/underflow occurs, an interrupt at 
microprogram level will be invoked. 

3.3.3 Data memory and the data collector 
Due to the structure of the fan-in lists, 

Sometimes the data in the FDLPE is stored 
in the manner shown in Fig.3.6. So, in 
order to efficiently transform the data in 
the main memory to the data format used by 
the evaluation unit, a data collector was 
designed for collecting the x-z bits and 
the 0-i bits from multiple words , using 
the VRAHs and shift registers as in the 
case for the instruction cache, as shown 
in Fig 3.7. Barring refresh cycles, this 
collector can collect an n-bit data 
(n<=32) in 120+40n nsecs. 

3.4 Hardware Organization of the SCU 
The SCU determines the address of the 

next microinstruction and fetches the 
microinstruction from the control storage. 
The overall configuration of the SCU is 
shown in Fig 3.8. The capacity of the 
control storage is 2-KNs. The SCU 
supports unconditional branches, 
microsubroutine calls/returns (up to 32 
levels), indirect branch using the value 
from the data sent from the MIU 
conditional branches o f  the type i f  
<condition> then goto label else NEXT, and 
a multiway jump using two status bits. For 
the conditional branch, one status bit, 
chosen from various status bits sent from 
the 3 ALUs is used. As the 
microinstructlon fetch is overlapped with 
the execution phase, the status used by 
the SCU will have to be determined by the 
microinstruction before the execution of 
the conditional and multiway branches. 
When a micro-interrupt (such as hardware 
stack overflow/underflow or interrupt from 
the master processor in the MAN-YO), 
occurs, it is treated just like a 
microsubroutine call, except that the 
address of the current (not the next) 
address is saved on the stack. It is 
intended to implement the SCU either using 
the AM29331 or a custom CMOS gate array. 

32-b its 
' Oata 

I [ linking inforsation 
linking nfor=at on 

[ t__ Cdbit 
- - X ' Z b i t  

Figure 3.6 Data Format in the Data flemory 

I vR M I I  

IShif ter(X'Zbits)~ 

[ [Sh i fte r( ~-I b i ts)l"---- 

l To the LRBuses 

I I= Control Storage (160bitsX2kv) I 

fro= MIU (Micro-routine address) 
Statuses (for sultiuay) ~ [ iext~Address 

Status <for ~r bran~h~l =Pisser I 

[ ,, c J 

IControl Storage Address Register I 

Return 
Address 

Figure 3.7 Configurationof the Data Collector Figure 3.8 Hardware Organization of the Sequence Control Unit 
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4 PERFORMANCE ESTIMATION 

As hardware design is still at the early 
stage, it is difficult to estimate the 
performance of the FDLPE let alone the 
total throughput for the system. However, 
in order to determine the effectiveness of 
the implementation decisions , we 
calculated the the number of EFU micro- 
cycles for the FDL statement shown in Fig. 
4.1. The number of micro-instructions 
executed is shown in Table 4.1. In this 
simple case, even with the data collector, 
over head due to data memory access is 
influential. As the FDL expression becomes 
more complex, this overhead is expected to 
decrease. However, even for these cases, 
assuming a 120 nsec microcycle time, 
(which we believe is quite reasonable,) 
the execution time of one FDLPE would be 
10 times that of a VAX-780 and would be 
comparable to 10 MIPS mainframe computers 
at much less hardware cost. As the 
granularity level of functional level 
simulation is much larger than the 
granularity level of gate-level 
processors, by employing a network of 
FDLPEs, with gate-level PEs and block- 
level PEs, mix-level simulators will 
become possible, which are on the order of 
several orders of magnitude faster than 
conventional simulators 

Table 4.1 Performance Est imat ion  

Estimated cycle f o r  simulating 
C(0:8) = CASE I OF 

/o O/ A.AND. B 
/0 1/ A .OR. B 
/I O/ A.AD0. B 
/1 I/ A.SUB. B 

in 4 value logic 
Number of microcycles 30~32 
~ycle loss due to memory access 8 

5 CONCLUSION 

The architecture of a functional 
simulator element of a massively parallel 
processor for logic design automation was 
presented. By making use of low-level 
(fine grained) parallelism and pipelining 
, as well as processor level (coarse 
grained ) parallelism, mix-level 
simulations will become possible, which 
are on the order of several orders of 
magnitude faster than conventional 
simulators 
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