
A Functional Level Simulation Engine of MAN-YO
A Special Purpose Parallel Machine for Logic Design Automation

T o s h i y u k i N a k a t a , N o b u h i k o K o i k e

C&C Systems Laboratories, NEC Corporation
4-1-1Miyazaki Miyamae-ku Kawasaki 213 , JAPAN

ABSTRACT
The architecture of a proto-type

functional level simulator element of a
massively parallel machine (MAN-YO)
designed for logic design automation is
presented. At functional level, hardware
systems are described in a hardware
description language, FDL. The FDL
description is compiled into stack
oriented intermediate language
instructions. Communicating with other
gate level/block level/ functional level
processors, each functional simulator
interprets the compiled instructions and
simulates various circuits using 4-value
logic. In order to realize high speed
processing of 4-value logic/arithmetic
operations, the functional simulator
utilizes low-level parallelism realized
by 3 ALUs which are controlled by the
different fields of a long horizontal type
microinstruction.

By utilizing low-level parallelism at
processor level, as well as processor
level parallelism, high speed execution of
mixed level simulation becomes possible.
The system also provides further
performance enhancement by compiling often
used FDL macros into microcode.

This paper describes an outline of the
MAN-YO (Japanese for ten thousand leaf-
nodes in the processor tree),a brief
description of FDL, and the architecture
of the functional level simulator element
(called FDLPE). A rough performance based
on the current design is also described.

1 INTRODUCTION

The rapid increase in VLSI complexity has
made various impacts on design
methodologies and CAD tools. Conventional
simulators implemented by software have
become inadequate, as far as processing
speed is concerned. One answer to this
problem is the development of special
purpose-hardware logic simulation engines.
Several engines, such as HALCl][2][3],
YSEC4I and Zycad Logic Evaluators, have
been developed. These accelerators have

been successful in enhancing simulation
speed by several orders of magnitude.
However, their application fields are
limited to gate level or block level
simulations and they alone cannot cope
with another trend in VLSI design. Namely,
in order to meet the increase in VLSI
complexity, there is a tendency to shift
the logic design step to a higher
(functional) level. To cope with this
tendency, there has been an increasing
demand for an efficient mix-level
simulator, which supports functional level
simulation while maintaining the high-
speed processing capability of dedicated
hardware simulators.

HAN-YO [5] is a parallel processor array,
designed to provide significant
performance improvement in executions of
logic automation tasks. In the MAN-YO
system, a large array (on the order of a
thousand) of processor modules are
connected by a loop-structured inter-
connection (See Fig. 1.1). Each processor
element in the system contains a logic
simulation element, a functional level
simulation element, a microprocessor and
a router cell. The logic simulation
element performs gate and block level
simulation. (A block is a collection of
10 to 100 gates.) The microprocessor,
which manages symbolic data, performs
symbolic simulation and knowledge based
processings. The router cell manages
packet transmission among PEs.

This paper describes the architecture of
the functional level simulation element,
called FDLPE (FDL Processor Element). At
the functional level, hardware systems are
described in a hardware description
language called FDL. The FDL description
is compiled into stack oriented
intermediate language instructions. The
FDLPE interprets these instructions and
simulates various circuits, using 4-value
logic. In order to realize high speed
processing of 4-value logic/arithmetic
operations, the FDLPE uses low-level
parallelism.

L o w - l e v e l p a r a l l e l i s m i s d e f i n e d as a
f i n e g r a i n e d p a r a l l e l i s m a t t h e r e g i s t e r -

0884-7495/86/0000/0202501.00 © 1986 IEEE
202

http://crossmark.crossref.org/dialog/?doi=10.1145%2F17356.17380&domain=pdf&date_stamp=1986-05-01

PEij Processor Element

I ' I I I

(A) Han-Yo System Organization

A : Lozic Simulation Ensine
B : Functional Simulation Engine
C :General Purpose Hicro-Processor

(8) Processor Element blockdiagram

Figure 1 Han-Yo System b]ockdiagram

transfer level, where several ALUs, memory
control units and sequencers operate in
parallel under the control of a long word
instruction (or a horizontal type
microinstruction.) Several experimental or
commercial processors with low-level
parallelism have been built, such as, QA-
216][7], AP-120B and MENTOR Graphic
Corporation's Compute Engine[8]. Until
recently, these processors had been
large-scaled processors. However, with the
availability of hardware building blocks,
such as AMD29300 series and CMOS gate
arrays, it has become possible to utilize
processors with low-level parallelism as
an element in a multi-processor system.

In the FDLPE, three ALUs work in
parallel, sharing a 2-port register file
and a hardware stack, under the control of
a horizontal type microinstruction. In
order to reduce the overhead involved in
memory access, two kinds of cache
(instruction cache and a read-only data
cache) were implemented.

By combining low-level parallelism at
functional processor element level with

processor-level parallelism due to
parallelism in the simulation algorithm,
large-scaled mix simulator can be realized
which operate at several orders of
magnitude faster than conventional
software simulators.

2 FDL: A STRUCTURAL BEHAVIOR DESCRIPTION
LANGUAGE

2.1 Overview of the FD_.L
This section briefly describes the

hardware description language used in the
authors' system called FDL. As this paper
is not meant to describe FDL, the authors
only touch on the characteristics of the
FDL and how FDL is processed in the
system. For more details on FDL, see [9].

In an FDL program, a digital circuit is
described as a set of interconnected
elements, called nodes. A node is a
section of a circuit, such as a
combinatorial circuit, register, memory or
a combination of the three. Usually, a
node corresponds to a block in a hardware
block diagram. FDL is a structural
behavior language(or structural/functional
language[lO]). In FDL, each node is
described within one statement. A hardware
element may appear only once in the left
hand side of an FDL statement. A set of
FDL statements describes one hardware
module, such as a small gate, LSI, CPU or
a logic library.

There are seven kinds of statements in
FDL. INPUT, OUTPUT and INOUT statements
describe boundary (interface) signals.
MODULE statement describes other FDL
module invocations and interfacing signals
which go into / out of these modules.
REGISTER, TERMINAL and MEMORY statements
describe internal signals or node
definitions. INPUT,OUTPUT, INOUT and
MODULE statements can be considered as
declaration statements and the
REGISTER,TERMINAL and MEMORY statements
can be considered as execution statements.

The r i g h t h a n d s i d e o f t h e l a t t e r t h r e e
s t a t e m e n t s a r e e x p r e s s i o n s , w h i c h a r e
r e c u r s i v e l y c o m p o s e d o f CASE c l a u s e s , I F
c l a u s e s a n d o p e r a t i o n s on s u b - e x p r e s s i o n s ,
No r i g o r o u s d e f i n i t i o n o f t h e s e c l a u s e s o r
operations will be given, but roughly
speaking, the CASE clause corresponds to a
switch expression (that is, a switch
statement which returns a value), an IF
clause corresponds to an if expression and
various operations correspond to
operations in the C language. Meanings of
various operations are shown in Table 1,
and an example circuit and its FDL

description are shown in Fig. 2.1.

203

Table 1 Operators i n the FDL

CLASS OPERATOR NOTAT I ON

LOGICAL
OPERATOR

FUNCTIONAL
OPERATOR

ARITHHETIC
OPERATOR

RELATION
OPERATOR

NOT
OR
AND
EXCLUSIVE OR
COINCIDENCE
GATING
REDUCTION OR
REDUCTION AND
REDUCTION EXCLUSIVE OR

SHIFT LEFT
SHIFT RIGHT
ROTATE LEFT
ROTATE RIGHT
CONCATENATE
ADJUST SIZE
COPY PATTERN
LEAOINCO
LEAOINGI
TRUE AND COHPLEMENT

ADO
SUBTRACT
MULTIPLY
OIVIDE
CARRY

EQUAL
H0T EQUAL
CREATER THAN
CHEATER OR EQUAL
LESS THAN
LESS 0R EQUAL

.NOT. or ~

.OR. or +

.AND. or ¢

.XOR. OR

.COIN.

.IF.

.ROR.

.RAND.

.RXOR.

.SHL.

.SHR.

.ROTL.

.ROTR.

.COHB. or - -

.s~z~.

.COPY.

.LOO.

.LOt.

.TC.

.AOD.

.SUB.

.HUL.

.OlV.

.CRY.

.EQ.

.NE.

.GT.

.GE.

.LT.

.LE.

TIHING I CO UP j .UP.
OPERATOR GO DOWN I .DN.

2 . 2 FDL PROCESSING SYSTEM

The FDL processing system consists of
compiler, linker, and mix level-simulator.

The compiler compiles the FDL program
into a stack-oriented intermediate code.
It also derives the linking information
from the INPUT, OUPUT, INOUT and MODULE
statements, and puts them out in a tabular
form for the linker. From these tables,
the linker creates a node network which
consists of fan-in-lists, node values, and
fan-out lists.

The intermediate codes for FDL can be
classified into the following groups.
a) Get codes: These operations read the

value from the fan-in list and push them

on the stack.
b) Operator codes: These codes correspond
to operations in FDL. They pop-up the
operand(s) from the stack, perform
logical/arithmetic operations and push the
result on the stack.
c) Branches: Used for IF clauses, Case

A B

ZL ~ C ~ ~ l c
o o A AND B

I 01 A OR B
10 A + B

I l A - B

INPUT A(O:8), B(O:8), I (0:2) ;
OUTPUT C(lO:B) ;
C(O:B) = CASE I OF

/O O/ A .AND. B,
/ 0 1 / A .OR. B,
/I O/ A .ADD. B,
/ 1 1 / A ,SUB. B;

~, ~z 6"5 6", 6"s

TERMINAL GH<4,S,fi> = (Gl~tG2tG3)+(G4~:GS);

Figure 2.1 Example C i r cu i t s and t h e i r FDL Descr ip t ions

clauses and exits.
d)Assignment codes: These codes put the

value on the stack to the appropriate
node. If the new value differs from the
old value, then an event is registered on
the event wheel.
The compiled code and the node network is
loaded on to the FDL processor at runtime,
and the simulation is started.

2.3 Mix Level Simulator
The mix level simulator of MAN-YO is an

event driven simulator. Summarized below
is the logic simulation process for the
prototype FDL processor.

l)Event set : When events are sent from
other FDL processors, gate level
processors, or block level processors,
they are registered in an input event
queue. The FDLPE extracts the events and
sets them into input event node lists
which are connected by a fan-in list. It
then registers the functional node
corresponding to the hardware which
receives the event in an input event list.
2) Functional node evaluation:Each

function node has a pointer which points
to the intermediate code corresponding to
the FDL description of the node. The
FDLPE simulates each node by interpreting
the intermediate codes and registers the
output data with the delay count in an
event wheel.
3) Delay Operation: Each time the time

204

wheel is advanced by one, the FDLPE
decrements the delay count by one and
extracts values whose delay count is zero.
If the new value differs from the old

Valuethe FDLPE searches for the addresses
of the hardware element (logic gate node /
block node/ or FDL node) connected to the
changed output. If the element resides
within this FE, the output data is
transferred to the input queue. Otherwise
the FDLPE creates an event packet and
sends it to the router for delivery.

2.4.MLcro:c_oJnPiJ~.~i~n
The FDLPE was designed to efficiently

simulate the hardware blocks by
interpreting the FDL-intermediate codes.
However there is another way to gain
performance, namely by microcompiling.
Microcompiling has been implemented on
systems such as the QA-2[II] and the
LAMBDA machine[12], and have proved to be
useful if core functions which are used
often are compiled. By compiling FDL codes
of often used macros into microcode, an
additional 200-300~ performance gain can
be expected.

3 HARDWARE ORGANIZATION OF THE FDLPE

3.1 Over-all OrKanization
The over-all configuration of the FDLPE

is shown in Fig.3.1. It consists of the
MIU (Macro-lnstruction Unit), the FEU
(Function Evaluation Unit), and the
SCU(Sequence Control Unit). These units
are controlled by the separate fields of a
horizontal type microinstruction. The MIU
is mainly concerned with fetching the next
intermediate FDL-code, and determines the
entry point for the microroutine
corresponding to the next FDL-code. The
FEU fetches the logic values from the
fan-in lists, and executes
logical/arithmetic operations, specified
by the intermediate FDL code on data
stored on a stack . These two units are
connected by a 2-port register file. So,
for FDL-codes, such as conditional /

I Control Storage
/ ~ I "~ Sequence

/ ~ I Control
/control ~control I Unit

Macro [Function
Instruction Evaluation
Unit ~ Unit
instruction 0ata

Memory Memory

~ f r o = the

router

~ to the
: router

multiway branches, t h e s e units work
together , communicating through t h e
register file. Also, when executing
complex operations, the MIU can work as a
part of the FEU. These units also work
together in event set and delay operation
phases. The SCU fetches the next
microinstruction of the FEU. The
microinstruction fetch and the execution
phases are overlapped to provide maximum
efficiency.

3 . 2 The O r g a n i z a t i o n o f t h e MIU
The h a r d w a r e o r g a n i z a t i o n o f t h e MIU i s

s h o w n i n F i g . 3 . 2 . I t c o n s i s t s o f t h e
i n s t r u c t i o n m e m o r y , i n s t r u c t i o n c a c h e ,
m i c r o i n s t r u c t i o n a d d r e s s t a b l e a n d an ALU
with several registers plus a
communication register to the FEU. Design
considerations, which led to the
implementation of the instruction cache
are summarized below.
i) As has been stated before, the

intermediate language for the FDL is stack
oriented, and has many codes which are
only o n e byte in size. Thus, t h e
instruction memory must have byte access
capability and must contain bus exchange
logic to bring arbitrary byte fields to
the 32-bit ALU.
2) FDL programs become very large for

complex systems. So in order to meet the
capacity demands, it would be necessary to
use dynamic RAMS. (with t h e capacity of
64-kw*4bits or more).
3) On the other hand, if the instruction

memory is too slow, the efforts spent in
speeding up the ALU operations will be
wasted due to the overhead involved in

Instru
I Men

l
I lnstru

Ca(

RBUS
LBUS

Frol

CoHun icate I
~ntryAddress Register I /Reg ster

:tionj
he {

Figure 3.1 Over-al l Configuration of the FDLPE Figure 3.2 flardvare Organization of the Macro instruct ion Unit

205

instruction fetch and decode phases [ii].
For the memory to keep pace with the speed
of the FEU (I00 nsec or so,), some kind of
cache is necessary.
4) It is desired to build the whole

system using many FDLPEs, so the entire
implementation will have to be cheap.
In order to satisfy these conditions, the

authors designed a cheap instruction cache
taking advantage of the high-bandwidth
offered by the dual ported video RAMs.
By combining the VRAMS with shift

registers, as shown in Fig. 3.3, the
instruction memory also acts as an
instruction buffer The shifters
implement the bus exchange logic and the
instruction cache. By this configuration,
overhead due to slow memory speed is
reduced to zero for most cases. The only
exceptions are various branch operations,
which are taken care of by microprograms.
(Even in this case, overhead is as little
as 60nsec for short branches and at
maximum, 300nsec for long branches.)

V I d e o RAM's I

Instruction
Data Register

Figure 3.3 Organization of the Instruction Cache

While the FEU is executing the
appropriate Iogical/arithmetlc operations,
the MIU fetches the next opcode of the FDL
intermediate code, and derives the entry
of the microroutine by referring to the
microinstruction address table. The entry
address is used by the SCU at the end of
the microroutine, to get the next
microinstruction address.

3,3 Hardware Or~anizatios_of the FEU
(Function Evaluation Unit)
The FEU is composed of the evaluation

unit (comprised of two ALUs , a 2-port
register file, a hardware stack) a data
collector, and the data memory ~See Fig.
3.4). Features of each part are briefly
outlined.

Irt~Onl MIU
From NI~JI

I

I I

ointer[

? ' ,

LBUS
RS~

tLeU$
IRgUS:

Figure 3.4 Hard~are Organization of the Function Evaluation Unit

3.3.1 Data Format
As mentioned before, the FDLPE simulates

functional blocks using 4-value(0,1,z(high
impedance) and x(unknown))logic. There
are three data categories; short (up to
32-bits), double (up to 64-bits) and
triple (up to 96-bits). In each category,
the x-z bits and 0-1 bits are grouped as
shown in Fig. 3.5. By treating the 0-1
bits and x-z bits as one would treat the
real part and the imaginary part of a
complex number, the overhead in
logic/arithmetic operations due to
treating 4-value logic can be kept to a
minimum.

Z (h'gh impedance)
X (unknown)

:.::,':
a three bi t data with the value IZ¢ wi l l
be encoded as shown below

I I~111~1 I 171~1~1
X-Zbits ~ - l b i t s

Figure 3.5 B i t encoding scheme fo r the 4 -b i t values

3 . 3 . 2 E v a l u a t i o n U n i t
T h e h a r d w a r e c o n f i g u r a t i o n o f t h e

e v a l u a t i o n u n i t i s s h o w n i n F i g 3 . 4 .
T h e ALUs a n d t h e r e g i s t e r f i l e a r e 3 2 -

b i t s w i d e , w h i l e t h e s t a c k i s 6 4 - b i t s
w i d e . T h e ALUs o p e r a t e i n p a r a l l e l on d a t a
i n t h e r e g i s t e r s , a n d t h e s t a c k . T h e
m i c r o i n s t r u c t i o n s , w h i c h c o n t r o l t h e ALUs
a n d t h e r e g i s t e r s a r e o f t h e 3 o p e r a n d

206

type to provide maximum flexibility. The
operations supported are the usual
arithmetic/logical operations. Status bits
include zero, minus and parity. The last
is used in exclusive-or operations.

The register file is a 64-word by 32-bit
dual port register file, using either the
AHD 29323 or 4 copies of high-speed RAMs.
The hardware stack (1-kw x 64-bits) is a
FIFO, of which only the top 64-bit data
can be accessed in one microinstruction.
The 64-bit data is composed of the 32-bit
x-z bits and the 32-bit 0-1 bits. The
upper 32-bits and the lower 32-bits can be
independently accessed by all the ALUs (
including t h e ALU of t h e MIU) in one
microinstruction. When stack
overflow/underflow occurs, an interrupt at
microprogram level will be invoked.

3.3.3 Data memory and the data collector
Due to the structure of the fan-in lists,

Sometimes the data in the FDLPE is stored
in the manner shown in Fig.3.6. So, in
order to efficiently transform the data in
the main memory to the data format used by
the evaluation unit, a data collector was
designed for collecting the x-z bits and
the 0-i bits from multiple words , using
the VRAHs and shift registers as in the
case for the instruction cache, as shown
in Fig 3.7. Barring refresh cycles, this
collector can collect an n-bit data
(n<=32) in 120+40n nsecs.

3.4 Hardware Organization of the SCU
The SCU determines the address of the

next microinstruction and fetches the
microinstruction from the control storage.
The overall configuration of the SCU is
shown in Fig 3.8. The capacity of the
control storage is 2-KNs. The SCU
supports unconditional branches,
microsubroutine calls/returns (up to 32
levels), indirect branch using the value
from the data sent from the MIU
conditional branches o f the type i f
<condition> then goto label else NEXT, and
a multiway jump using two status bits. For
the conditional branch, one status bit,
chosen from various status bits sent from
the 3 ALUs is used. As the
microinstructlon fetch is overlapped with
the execution phase, the status used by
the SCU will have to be determined by the
microinstruction before the execution of
the conditional and multiway branches.
When a micro-interrupt (such as hardware
stack overflow/underflow or interrupt from
the master processor in the MAN-YO),
occurs, it is treated just like a
microsubroutine call, except that the
address of the current (not the next)
address is saved on the stack. It is
intended to implement the SCU either using
the AM29331 or a custom CMOS gate array.

32-b its
' Oata

I [linking inforsation
linking nfor=at on

[t__ Cdbit
- - X ' Z b i t

Figure 3.6 Data Format in the Data flemory

I vR M I I

IShif ter(X'Zbits)~

[[Sh i fte r(~-I b i ts)l"----

l To the LRBuses

I I= Control Storage (160bitsX2kv) I

fro= MIU (Micro-routine address)
Statuses (for sultiuay) ~ [iext~Address

Status <for ~r bran~h~l =Pisser I

[,, c J

IControl Storage Address Register I

Return
Address

Figure 3.7 Configurationof the Data Collector Figure 3.8 Hardware Organization of the Sequence Control Unit

207

4 PERFORMANCE ESTIMATION

As hardware design is still at the early
stage, it is difficult to estimate the
performance of the FDLPE let alone the
total throughput for the system. However,
in order to determine the effectiveness of
the implementation decisions , we
calculated the the number of EFU micro-
cycles for the FDL statement shown in Fig.
4.1. The number of micro-instructions
executed is shown in Table 4.1. In this
simple case, even with the data collector,
over head due to data memory access is
influential. As the FDL expression becomes
more complex, this overhead is expected to
decrease. However, even for these cases,
assuming a 120 nsec microcycle time,
(which we believe is quite reasonable,)
the execution time of one FDLPE would be
10 times that of a VAX-780 and would be
comparable to 10 MIPS mainframe computers
at much less hardware cost. As the
granularity level of functional level
simulation is much larger than the
granularity level of gate-level
processors, by employing a network of
FDLPEs, with gate-level PEs and block-
level PEs, mix-level simulators will
become possible, which are on the order of
several orders of magnitude faster than
conventional simulators

Table 4.1 Performance Est imat ion

Estimated cycle f o r simulating
C(0:8) = CASE I OF

/o O/ A.AND. B
/0 1/ A .OR. B
/I O/ A.AD0. B
/1 I/ A.SUB. B

in 4 value logic
Number of microcycles 30~32
~ycle loss due to memory access 8

5 CONCLUSION

The architecture of a functional
simulator element of a massively parallel
processor for logic design automation was
presented. By making use of low-level
(fine grained) parallelism and pipelining
, as well as processor level (coarse
grained) parallelism, mix-level
simulations will become possible, which
are on the order of several orders of
magnitude faster than conventional
simulators

ACKNOWLEDGEMENTS

The authors wish to thank Dr. Katsuya
Hakozaki and Dr. Masahiro Yamamoto for
their kind interest in this work. They
also thank Mr. Tohru Sasaki, Tsuneo
Kurobe, Nobuyoshi Nomizu and Yoshitada
Fujinami for many helpful discussions, and
Mr. Shinichi Habata for discussions which
led to the implementation of the MIU.

REFERENCES

[1] N . K o i k e , K . O h m o r i , H.Kondo and
T . S a s a k i , "A High Speed L o g i c S i m u l a t i o n
M a c h i n e " , d i g e s t o f p a p e r s , S p r i n g COMPCON,
p p 4 4 6 - 4 5 1 , F e b . , 1 9 8 3

[2] T . S a s a k i , N . K o i k e , K . O h m o r i , and
K . T o m i t a "HAL; A B l o c k L e v e l H a r d w a r e
L o g i c S i m u l a t o r " , p r o c . 2 0 t h D e s i g n
A u t o m a t i o n C o n f . , p p 1 5 0 - 1 5 6 , J u n e , 1983

[3] N . N o m i z u , T . S a s a k i , H . T a n a k a , N . K o i k e
and K . O h m o r i , " B l o c k L e v e l H a r d w a r e L o g i c
S i m u l a t o r - I t s A p p l i c a t i o n and R e s u l t s -
" , p r o c . ICCAD 1984 p p 2 5 4 - 2 5 6 , Nov. 1984

[4] G . F . P f i s t e r , "The YORKTOWN S i m u l a t i o n
E n g i n e : I n t r o d u c t i o n " , p r o c . 1 9 t h D e s i g n
A u t o m a t i o n C o n f . , p p - 5 1 - 5 4 , J u n e , 1963

[5] N . K o i k e and K.Ohmori "MAN-YO : A
S p e c i a l P u r p o s e P a r a l l e l M a c h i n e f o r L o g i c
D e s i g n A u t o m a t i o n " , p r o c . 1985 ICPP,
p p . 5 8 3 - 5 9 0 , A u g . 1 9 8 5

[6] S . T o m i t a , K . S h i b a y a m a , K . K i t a m u r a ,
T . N a k a t a and H . H a g i w a r a , " A U s e r
M i c r o p r o g r a m m a b l e C o m p u t e r w i t h Low L e v e l
P a r a l l e l i s m " , Proc. 10th Annual Int.
Symposium on Computer Architecture,
pp153-159, June 1983.
[7] H.Hagiwara, S.Tomita, S.Oyanagi and

K.Shibayama, "A Dynamically
Microprogrammable Computer with Low-Level
Parallelism", IEEE Trans. on Computers,
Vol.C-29, No.7, pp557-595, July 1980

[8] M.R. B u t t s , "A G e n e r a l - P u r p o s e
A c c e l e r a t o r " , VLSI S y s t e m s D e s i g n , p p . 8 5 -
86, O c t . 1985
[9] S. Kato , and T. Sasaki, "FDL: A

Structural Behavior Description Language"
IFIP-1983, (Computer Hardware Description
Languages and Their Applications Uehara
T., and Barbacci M. (ed) , North-Holland
Publishing Company) pp.137-152(1983)
[i0] S.M.German and K.J.Lieberherr,

"Zeus: A Language for Expressing
Algorithms in Hardware", IEEE Computer,
Vol.18, No.2, pp55-65, Feb. 1985
[11] S.Tomita, K.Shibayama, T.Nakata,

S.Yuasa and H.Hagiwara, "A Computer with
Low-Level Parallelism QA-2

Its Applications to 3-D Graphics and
Prolog/Lisp Machines -", Submitted
to 13th I n t ' l Symp. on Computer

Architecture
[12] LMI, "The Microcompiler"

208

