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Abstract  

Many options are possible in a cache synchronization (or con- 
sistency~ scheme for a broadcast system. We clarify basic con- 
cepts, analyze the handling of shared data, and then describe a 
protocol that we are currently exploring. Finally, we analyze the 
evolution of options that have been proposed under write-in (or 
write-backi policy We show how our protocol extends this evolu- 
tion with new methods for efficient busy-wait lacking, waiting, 
and unlocking The lock scheme allows locking and unlocking to 
occur in zero time, eliminating the need for test-and-set. The 
scheme also integrates processor atomic read-modify-write 
instructions and programmer/compiler busy-wait-synchronized 
operations under the same mechanism. The wait scheme elim- 
inates all unsuccessful retries from the bus, and allows a process 
to work while waiting. 
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A. Context 

A.I. Synchronization in Shared-Memory Architecture.  One 
of the most pressing issues in computer architecture today is how 
to design multiprocessor systems that can realize the speedup 
potential of multiple processors. In view of this, we seek to iden- 
tify features of shared-memory architecture that speed up the 
coordination, or synchronization, of multiple processors. 

In Project Aquarius at Berkeley, we are investigating the design 
of a high-performance, multiprocessor system to execute logic 
programs, currently Prolog (Dobry, Despain, Patt 1985). We 
seek efficient synchronization schemes that  will allow us to 
exploit the concurrency inherent in logic programs. At the same 
time, we recognize that single-bus architecture offers a low-cost 
approach to building a multiple-microprocessor system, so is 
rapidly gaining importance (Bell et al. 1985). Our research, 
therefore, addresses both the high performance and the low cost 
approaches. A designer taking either approach will be able to 
select the features that best serve their interest. 

A.2. Full Broadcast .  We limit our attention here to multipro- 
cessor cache systems that implement full broadcast, or more sim- 
ply, broadcast. In such a system, at each setting of the 
processor-memory switch, or interconnect, every processor cache 
that has access to the switch can broadcast its request to all 
other processor sites, each of which is able to evaluate all of the 
requests, and service at least one of them, if appropriate. The 
advantage of this is that the operation is entirely distributed and 
parallel, hence is fast. In addition, main memory is simple, not 
needing to maintam cache state or manage cache 

synchronization. In this article we do not address other cache 
systems - partial-broadcast or non-broadcast - such as those of 
Tang (1976), Censier and Feautrier (1978), Yen and Fu (1982), 
Dubois and Briggs (1982), Archibald and Baer (1984). 

For ease of discussion, we also assume that the processor- 
memory interconnect is a single bus. In fact, broadcast is 
currently seen only in single or dual bus systems, because this 
limits the number of simultaneous broadcasters to one or two, 
respectively, greatly simplifying implementation of broadcast. 

B. Synchronizat ion Issues 

We currently identify three primary, low-level synchronization 
issues for shared-memory architecture. 
• Cache synchronization: the sharing of replicated writable data 
• Busy wait: locking and unlocking, waiting 
• Sleep wait: enqueuing and dequeuing, saving and loading state 

B.1. Cache Synchronization. Smith (1984) stresses the 
significance of the issue: 

The solution of the multicache consistency problem for large 
numbers of processors is one of the most important current 
problems in computer architecture, and it is one of the major 
barriers to effective multiprocessing.(p.19) 

Specifically, processes in a shared-memory system communicate 
by taking sole access to some shared data object and writing it, 
leaving information there for another process to read. One 
example, typical of Prolog and dataflow, is the 
producer/consumer relationship. In this case, one process pro- 
duces a value, say • variable binding, for another process, and 
that process, in turn, reads the value and uses it. The second 
process may report back to the first, in which case it also writes 
a shared-variable. Another example is the management of 
service-request queues, where one process leaves a service request 
for another process in the latter's request queue. The latter 
eventually reads the request and services it. This will typic•fly 
occur among processes running on different processors. For 
example, a process running on a program interpreter may send a 
service request to a floating-point processor or an I/O processor. 

The processor caches must correctly implement the read/write 
sharing of data that is requested by the software, •cross multiple 
sites. So the problem of cache synchronization consists in this: 
• Read/write sharing of replicated data 

B.2. Busy Wait, Sleep Wait. If the wait for sole access to a 
shared object is expected to be short, the process will busy wait; 
that is, it will continue to run while waiting, though this does 
not mean that it must continually test a hit while waiting. On 
the other hand, if the wait is expected to be long, the process will 
be switched out of the processor and will sleep wait on a queue, 
allowing another process to run on that processor. However, if 
the hardware in a multiprocessor system does not itself imple- 
ment queuing, then by default the software must implement it 
using busy wait. In this case, a queue-manager procedure 
(instead of invoking hardware queues) will busy wait for access 
to soRware-implemented queues, and when it gains access to a 
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queue, will insert or delete a process, as appropriate. If sema- 
phores are used, they will be part of the queue descriptor. 

This identifies the two reasons for using busy wait. 
• A si tuation where busy wait  is less costly t h an  sleep wait  
• A system where busy wait is necessary in order to implement  

sleep wait  

B.3. Our  F o c u s .  We address the  first two issues: synchroniza- 
tmn of caches and implementat ion of busy wait. Both of these. 
issues, as well as sleep wait, are treated in Bitar  (1985}, to which 
we refer the  reader who seeks further  details. 

C. B a s i c  C o n c e p t s  

C.1. Read /Wri te  S y n c h r o n i z a t i o n .  Read/write sha r ing  of 
replicated data,  and thus  synchronizing caches, entai ls  three log- 
ical facets: atomicity - sole access for writers; concurrency - 
shared access for readers ;  and replication - get t ing  the  la tes t  
version of the  data  upon access. Bu t  these  three logical facets 
reduce to just  two implementat ion requirements:  
• Serialize conflicting accesses: write-read, write-write 
• Provide the latest version of the data: wherever it m a y  be 
The first requirement  mus t  be met  in order for the  second to 
have  meaning.  

C.2. A toms .  In order for software to implement  an  atomic 
operation (insuring sole access for a writer), the  ha rdware  m u s t  
provide some primitive atomic operation for the  software to use. 
This can be as simple as writ ing a single bit, as  in Petersen 's  
algori thm IPeterson, Silb. 1985, p. 332). But  for the  sake  of 
speed, the  hardware  will probably provide at  least  a tes t -and-set  
operation or atomic swap, allowing the  software to insure sole 
access without so m a n y  bit reads and  writes as otherwise needed. 

It is crucial to recognize two types of atomic (shared, writablel 
da ta  objects, then. 
• Hard atom: Data object tha t  is atomized by the  ha rdware  - 

access conflicts are serialized by the hardware.  
• Soft atom: Data object tha t  is atomized by the  software. 
An unders tand ing  of the  differences is not only required to 
insure correctness in a cache synchronization scheme, bu t  m a y  
also allow the design to be substant ia l ly  simplified, especially for 
a non-broadcast sy s t em (Bitar 1985). 

C.3. C a c h e  S y n c h r o n i z a t i o n .  The synchronization of caches, 
then,  reduces to the  following two requirements ,  each hav ing  the  
occasions shown: 
• Serialize conflicting accesses: hard  a toms only 

[] Two different processes on two different processors access the  
same hard  atom. 

• Provide the latest version of the data: all writable objects 
E. Two different processes on two different processors access the  

same writable, shared data  (hard or sgft atom). 
[] One process on two different processors (due to migration} 

accesses the  same writable, shared or unshared ,  data.  

D. S h a r e d  D a t a  

D.I. T h e  I s sue .  For unshared data,  write-in (or write-back), as 
opposed to write-through, has  been shown to reduce bus  traffic 
and concomitant  processor idle t ime (Smith 1982; Norton, Abra-  
h a m  1982). However, it has  recently been suggested t ha t  the  
reverse is t rue for actively shared, or more simply, shared data .  
Tha t  is, when data  is being shared by several  caches, it m a y  be 
better for a processor to write th rough  to update other  copies, 
ra ther  t h a n  invalidate them (Rudolph, Segall 1984; McCreight  
1984; Archibald, Baer 1985; Vernon, Holliday 1985). Accord- 
ingly, the  Xerox Dragon and DEC Firefly (reported by Archibald,  
Baer) and  Rudolph and Segall take  this  approach: 
• Write-through to other caches: for actively shared  da ta  
• Write-in: for other, 'unshared '  da ta  

In the Dragon and Firefly protocols, a block is defined as shared 
if it current ly resides in more t han  one cache. This  s t a tu s  is 
determined when a cache writes th rough  or fetches a block, for 
all caches hav ing  a copy raise the  bus  hit line. notifying the  
requester. In addition, on a fetch any  other cache hav ing  a copy 
enters the block's s ta tus  as shared. In Rudolph and  Segall 's  
scheme, a block is defined as shared if accesses to it are currently 
interleaved among the processors. Specifically, a block is 
unshared  if a processor writes it twice (or more generally, n 
times, for some n) while no other processor accesses it. 

D.2. Ana lys i s .  Under  a full-broadcast system,  the  impor tan t  
distinction between write-in and  wri te- through with regard to 
cache synchronization is not the  policy for updat ing  main 
memory, but  the  policy for updat ing  other caches. In view of this, 
write-in and write-through m a y  be dis t inguished by three 
features of the  updates - granular i ty ,  occasion, and  target.  
• Write-in updates  

Granularity: block 
= Occasion: access to block 
D Target - demand based: requester  

• Write- through updates 
D Granularity: word 
[] Occasion: write to word 
.vJ Target -prediction based: all caches hav ing  a copy 

Write- through actually has  three potential  ta rgets  - valid copies 
in other caches, invalid copies in other caches (discussed later), 
and main  memory. But  unless  otherwise qualified, we will 
a s sume tha t  the target consists of valid copies. In this  context, 
the  distinctive action on a write to a shared block is this: 
• Write-in: invalidate the  block in other caches 
• Write-through: update the  block in other  caches 

Al though both policies provide the  latest  version of a block in the  
same way - from a cache or main memory, as appropriate - 
they serialize accesses to hard atoms differently. Write-through 
forces the processor to wait for access to the bus on every write 
to actively shared data. In contrast, write-in allows a processor 
to acquire the sole copy of the blocks containing an atom and 
write them any number of times before unlocking the atom, 
thereby alleviating the need to wait for bus access at every such 
write. In view of this, under write-in, no other data should be 
placed in a block with an atom, so tha t  when a process locks an  
atom, no other process will be accessing the  blocks of the  atom. 

We see tha t  write-through for shared da ta  incurs the  cost of 
small granularity of updates ,  inappropriate for an  atom whose 
blocks are writ ten more t han  a few t imes  while the  a tom is 
locked. Write- through also incurs the  cost of updat ing  all caches 
hav ing  copies of an  atom, potentially interfering with all of the  
respective processors, whereas  the  updates  t ha t  are useful are  
only those t ha t  update the  next  processor (or processors) to read 
the  data.  In effect, wri te- through predicts t h a t  if an  a tom is 
actively shared,  one of the  caches tha t  ha s  a copy will be the  
next  to read the  atom and will do so before purg ing  its blocks. 
In contrast,  write-in updates  another  cache only on demand. 

In brief, write- threugh for shared data  does not  look so promising 
if the following four points are appreciated. 
• A process does not access an  atom unt i l  it is unlocked by the  

current  user. 
• Under  write-in, blocks should be devoted to atoms, so t h a t  

when an  atom is locked, there  is no contention for its blocks. 
• Write-in is demand based; while wri te- through is predictive, 

not necessarily updat ing the  nex t  cache to read the  atom. 
• Write- through updates  all caches hav ing  a copy of the atom, 

not jus t  the  next  to read the  atom (if a t  all). 
The model of shar ing under  write-in t ha t  was introduced by 
Dubois and Briggs c19821 fails to appreciate the  first two points. 
so degrades the  performance of write-in. 
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In spite of this. one case where wri te- through to shared data  is 
clearly useful is in efficient busy wait, where several processors 
may be wait ing for a lock bit to be cleared, mak i ng  it advan ta -  
geous to broadcast writes (Section E.4). 

D.3. Internal Fragmentation u n d e r  Write-In.  Since a block, 
under write-in, should be devoted to an  atom t ha t  it contains,  
internal  f ragmentat ion of blocks can degrade performance, espe- 
cially for large block size, for an  entire block mus t  be t ransferred 
when access is requested to the  (possibly smaller) a tom on the  
block. A solution is to t ransfer  smal ler  transfer units. This  can 
improve performance for unshared  data  (Goodman 1983; Hill, 
Smith 19841, and we can now see tha t  it will also improve per- 
formance for atoms. To synchronize the  caches, valid and  dirty 
s ta tus  mus t  be stored with each t ransfer  unit ,  and all dirty 
transfer uni ts  of a block mus t  be transferred when source s t a t u s  
(discussed later~ is transferred. Alternatively,  the  full s ta te  can 
be stored with each t ransfer  uni t  so tha t  individual  t ransfer  
uni ts  can be transferred on request.  This appears  simpler, bu t  
will require three, ra ther  t h a n  jus t  two, state bits per t ransfer  
uni t  if the protocol has  more t han  four s tates  for a cache block. 

E. P r o t o c o l  M e c h a n i c s  

Before describing the  evolution of broadcast protocols, we will 
present the  mechanics of a protocol t ha t  we are current ly  s tudy-  
ing. This presentat ion should not only to fix ideas for the  reader,  
bu t  will also introduce several  innovations.  

E.1. S ta tes .  We will consider e ight  s ta tes  for a cache block: 
Invalid 
Read 
Read, Source, Clean 
Read, Source, Dirty 
Write, Source, Clean 
Write, Source, Dirty 
Lock, Source, Dirty 
Lock, Source, Dirty, Waiter  

The following is a key to the  word meanings ,  which will be illus- 
t rated by examples in the  next  sections. 

Invalid Meaningless 
Read Read-only privilege (shared-access privilege) 
Write Read and write privilege (sole-access privilege) 
Lock Read and write privilege, locked by the  cache 
Source Source of the  latest  version of the block 

• Location of clean/dirty s t a tu s  for the  block 
• When the block is fetched by another  cache, the  

source provides it and  its clean/dirty s t a tus  
• When purg ing  the block, the  source flushes it if 

the  block is dirty 

Dirty The block was wri t ten by some processor, and  
memory has  not yet  been updated 

Waiter Another  processor requested the  block while it 
was locked 

E.2. Bas ic  Act ions .  Figures  1-9 i l lustrate the  interaction of the  
processors, caches, and memory,  while Figure 10 summar izes  the  
s tate  t ransi t ions for a cache block. (Notice the note and templa te  
prior to Figure 1.) Keep in mind  tha t  the  last cache to fetch a 
block becomes its source, and provides the  block when  the block 
is next  requested by another  cache /unless  the source purges  the  
block in the  meantime~. 
Fetching Unshared Data on Read Miss. Usual ly  a reques ter  
cache assumes read~write~lock privilege for a block if the  reques t  
is for read/write~lock privilege, respectively. Bu t  Figure  1 shows 
tha t  if the  request  is for read privilege and  the  block is not 
present in another  cache - no cache s ignals  hit - the  reques ter  
assumes  write privilege, so tha t  if its processor subsequent ly  
writes the  block, a bus  access will not  be required in order to 
obtain write privilege. 

Fetching Without Source Cache. Figures 2 and 3 show th a t  if 
there is no source cache for the  block, even if the block is present  
in another cache, the  block is provided by memory.  Fur ther -  
more, the  requester  cache assumes  read~write privilege for the  
block if the  processor's request  is read~write, respectively. But  if 
the  request is for read privilege, any  cache tha t  h a s  the  block 
signals hit; otherwise the  requester  will a s sume  write privilege, 
as depicted above. 

Cache-to-Cache Transfer. Figure 4 shows tha t  if there  is a source 
cache for a block, the  source provides the  contents  of the  block, if 
requested, along with the  clean/dirty s t a tus  of the  block. The  
presence of this s t a tus  on the  bus  s ignals  the  presence of a source 
cache, bu t  the actual  value is only needed if the  request  is for 
read privilege, since the  block would otherwise become dirty any-  
way. Figure 5 shows tha t  if the requester  cache a l ready h a s  a 
valid copy at  a processor write, it only requests  write privilege, 
not the block itself. 

I/O Transfer. In execut ing an input operation, an  [/O processor 
will simply invalidate the  block in all caches (request ing write 
privilege for the block) as it writes to memory.  In execut ing a 
paging-out operation, the  I/O processor will fetch the  block for 
write privilege, thereby inval idat ing the  block in all caches. In 
executing a non-paging output operation, the  I/O processor will 
give a special read request,  notifying the  source cache not to give 
up source s tatus.  The need to dis t inguish between the two out- 
pu t  operations can be avoided by f lushing dirty blocks on cache- 
to-cache transfers  (Feature 7, Section F.3}. In t ha t  case, a block 
would simply be fetched for write-privilege by the  I/O processor 
on all output  operations. 

E.3. Eff ic ient  Lock ing .  Figure 6 i l lustrates  how busy-wai t  
locking can be efficiently executed in a fully associative cache. 
The first block of the  atom is fetched for write privilege and  
locked unti l  the entire operation is done; and the cache supplies 
the  target  word to its processor, as on a read instruct ion.  
Further ,  as shown in Figure 8, the  unlock can occur at  the  final 
write to the  block. So the  lock instruction is a special processor 
read instruction, and  the  unlock instruction can be a special 
write instruction. An unencoded way of implement ing  th is  is to 
devote a separate processor line to the  function, which will be 
interpreted by the cache as lock on a read and unlock on a write. 

If another  cache requests  the  atom while it is locked, it will 
request  write privilege for the  first block, as noted above, and  
will find it locked. The cache holding the  lock will record t h a t  
another  cache is wait ing,  us ing  the  lock-waiter s ta te  (Figure 7). 
The requester  cache, then,  enters the  block address  in a special 
busy-wait register, se t t ing  the  stage for efficient busy  wait.  

Efficiency. Locking a block, here, is concurrent  with fetching the  
block, so generates  no extra  bus  traffic, nor delays the  processor. 
Furthermore,  the  first read and last write of the  a tom will prob- 
ably be to the  first block of the  atom since, under  the  first reason 
for busy wait  (Section B.21, the  atom will probably be contained 
entirely on one block, and  under  the  second reason for busy  wait ,  
the  atom will probably contain the  entire queue descriptor. So 
locking and unlocking will usually occur in zero time. 

Therefore, cache-state locking is as fast as holding an  ent ire  
cache or memory module th roughout  the  operation, b u t  h a s  two 
important  advantages .  
• Fine-grained locking: Only the  ta rget  a tom is locked. 
• Trapping: Traps do not require abort ing the  operation ( though 

process-switching traps are precluded anyway,  as noted below). 
Compared to us ing  a tes t-and-set  bit, cache s ta te  locking h a s  
these advantages:  
• Locking and unlocking usual ly  occur in zero t ime,  as  opposed 

to fetching a lock bit and  then  the  data.  
• No blocks are devoted to lock bits (hard atoms) unde r  write-in. 
Finally. cache-state locking can be executed by a single-cycle- 
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instruction processor, such as a reduced-instruction-set processor 
(Patterson 1985). This kind of processor can now execute atomic 
operations as efficiently as any  other. 

In conclusion, cache-state locking most  efficiently implements  
both processor atomic read-modify-write instruct ions,  and 
programmer/compiler-implemented busy-wait  locking. 

Two Concerns. Two concerns tha t  mus t  be considered in th is  
locking scheme are the need to switch processes while a block is 
locked, and the need to purge a locked block. In the  first case, a 
process would be put  to sleep while a block t ha t  it h a s  locked is 
still in a cache. In the second case, the  lock would be lost if the  
block mus t  be purged to make  room for another  block. 

With regard to process switching, under  any  locking scheme, 
especially busy-wait  locking, it is impor tant  to preclude the  
switching of processes (or threads  of control) while a lock is held, 
in order to avoid prolonging the  t ime for which other processes 
may  have to wait  for access to the  atom. This  is achieved by 
precluding page faults, I/O, and  relevant  traps. Consequent ly ,  
the  problem should not occur. With regard to purging a locked 
block, this should not occur in a fully associative cache, due to 
the  large set size (the entire cache), bu t  may  occur in a cache 
with small  set size. In this  case, under  a minor  modification to 
the  protocol, a lock bit is writ ten to memory when a locked block 
mus t  be purged. The lock bit can be either a ha rdware  tag  bit  
on each memory block, or very simply, a bit, in the  first block of 
the  atom, tha t  is reserved for hardware  use by the  compiler. 

E.4. Eff ic ient  B u s y  Wait.  Purpose. We conceive two purposes 
for efficient busy  wait. 
• El iminate  unsuccessful retries from the bus. 
• Relieve a wait ing processor of polling the  s t a tu s  of a lock, 

allowing it to work while waiting. 
In a broadcast system, the  first purpose is achieved by broadcast- 
ing lock or unlock actions if a processor may  be wait ing.  The 
second purpose is achieved by devoting hardware  to moni tor ing  
the  lock, and hav ing  it in terrupt  the  processor when  it h a s  
acquired the  lock. A processor can work while wai t ing  if it 
requests  the  lock when ready bu t  still h a s  work to do for a short  
t ime, executing a ' ready section' of code. We do not  yet  know if 
ready sections can actually be arranged.  The nex t  best a l terna-  
tive is to prefetch a lock jus t  before it is needed, the  offset 
depending on the  expected wait  time. 

The primary importance of efficient wait ing is to serve the second 
reason for busy wait (Section B.2). Specifically, the  manipu la -  
tions of the  sleep-wait and ready queues  tha t  mus t  be accessed in 
order for the  software to implement  sleep wait  may  require 
several block fetches, say three or four, per queue. And,  in addi- 
tion, there may  be quite a few processes tha t  access each queue,  
especially a global ready queue, thereby genera t ing  h igh 
contention for the  queue. 

Our Proposal. In our scheme, when  a locked block is unlocked, 
this  action is broadcast on the  bus  if the  s ta te  in the locker cache 
is lock-waiter - indicating tha t  another  processor had  requested 
the  block while it was locked (Figure 8). A busy-wai t  register 
wait ing on tha t  lock recognizes the  unlocking and joins the nex t  
bus  arbitration. The winn ing  cache will fetch the block for write 
privilege, lock the block us ing the  lock-waiter s ta te  (since t ha t  
will probably be appropriate), and in ter rupt  its processor; while 
the  other caches will let their  processors continue whatever  they  
are doing and will not access the  bus, m a k i n g  no a t t empt  to fetch 
the  block again  (Figure 9). 

Regarding the  bus arbitration, the  wai t ing caches will specify 
very high priorities, say by us ing  the  most  significant priority 
bit, devoted to this  purpose. So if it t u rns  out tha t  there are no 
waiters aRer all (because the  wai t ing processes were switched 
out of their processors), the  arbi t rat ion will proceed normally,  
with no wasted time. 

Basic Approaches. The two basic approaches to efficient busy  
wait, in contrast, derive from write-in and  write-through. 
• Write-in: When wri t ing a lock bit, invalidate the  correspond- 

ing block in other caches. 
• Write-through: When writ ing a lock bit, update the  

corresponding block in other caches. 
In either case, a waiter loops on a one in its cache (Censier, 
Feautrier  1978), and unnecessary  inval idat ions or updates ,  
respectively, are avoided by set t ing a lock bit only if it is zero. 
The lock-state protocol for locking could be modified to accommo- 
date either of these two approaches if the  cost of the  busy-wai t  
register were not warranted  in the  system of interest. 

Rudolph, Segall (1984). Finally we observe tha t  Rudolph and 
Segall (Section D.1) have  oriented their  cache scheme around 
efficient busy wait. Specifically, write-through is used on a 
proeessor's first write to a block after another  processor has  
accessed the block, bu t  write-in is used on subsequent  writes - 
unt i l  another  processor accesses the  block. Consequently,  after a 
lock bit is set Ilocked) on the  first write to it, if another  processor 
begins wait ing before it is unlocked, the  processor will read the  
bit, so write-through will occur again  when the bit is cleared. 

On the other hand,  if no other processor begins wai t ing while the  
lock is locked, other waiters will be indirectly notified by write-in 
(invalidation) when the bit is cleared (the second write). The 
first wait ing processor to get  the  bus  after tha t  will set the  bit on 
its first write (a test-and-set). In order to have  the  corresponding 
write-through notify other waiters, whose blocks m a y  now be 
invalid, write-throughs update invalid, as well as valid, copies. 
However, in order to for this  to work on other data,  block size is 
limited to one word. This will inflate the  area of a cache devoted 
to addresses, and may  degrade performance for other data,  so we 
point out tha t  one-word t ransfer  uni t s  m a y  be better  (Section 
D.3). Finally, we note t ha t  the  protocol also has  a block fetch 
update  invalid copies, bu t  this  does not  seem to add any  useful 
function since the  write phase of the  test-and-set  will update the  
invalid copies anyway.  

F. P r o t o c o l  Evolut ion 

Table 1 traces key steps of the evolution of broadcast, write-in 
protocols. The upper par t  shows the evolution of states,  while 
the  lower part  shows the evolution of other features. The s ta tes  
and the  features will be discussed in turn ,  following a glance a t  
historical context. (The discussion of the  s tates  includes forward 
references to relevant features, thereby ty ing  the two discussions 
together. We suggest,  however, tha t  the reader ignore the  for- 
ward references on the first reading.} 

F.I. His to r i ca l  Con tex t .  Giving no reference to the  l i terature,  
Censier and Feautr ier  (1978) s ta te  tha t  the  classic approach to 
cache synchronization, implemented in dual  processor sys tems,  is 
to use identical dual directories in each cache, devoting one direc- 
tory to the  processor and the other to a bus  on which invalida- 
tion requests  are broadcast. Wri te- through to ma in  memory  (not 
other caches) is used. But  in addition to updat ing  ma in  memory,  
a write causes its address to be broadcast on the  inval idat ion 
bus, and accordingly any  other cache t ha t  has  a valid copy of 
tha t  block invalidates its entry.  The cache directory moni tor ing  
the bus  el iminates  the  interference of irrelevant inval idat ion 
requests  - requests  per ta in ing  to a block not valid in t h a t  cache. 
According to Censier and Feautrier ,  th is  scheme does not, how- 
ever, guaran tee  tha t  conflicting single reads and  writes (to h a rd  
atoms) will be serialized, for to do so would require a processor to 
wait for access to the bus  on every write, as in wri te- through for 
shared data  (Section D.2~. 

Smith ~1982~ and Yen et al. (1985) describe a scheme for the  
IBM 370/168 and 3033 tha t  sounds similar; consequently,  Cen- 
sier and Feautr ier  may  be referring to t ha t  scheme. Goodman 
11983) and Frank 11984) independent ly  reinvented the  idea of 

427 



Abbreviations for Figures 1-10 

B Busy-wait register is loaded 
block Target block 
C Clean 
D Dirty 
EBW End busy wait 
F Fetch 
I Invalid 
L Lock privilege 
LW Lock waiter 
0 Non-paging output operation 
P Processor 
R Read privilege 
R/W Read or write 
S Source 
U Unlock 
W Write privilege 
word Target word 

Note for Figures 1-9 
A state indicator inside a cache indicates 
that the target block is present in that 
cache and has that state. A blank cache 
indicates that the block is absent or 
invalid in that cache. 

"R,F" 

I I 

word ~ iiic~tl : : ~.hlt. 
I I 

Figure 2. Fetching Without 
Source Cache. 

I 

eee~ 

I 

E 

I 
Figure 5. 

I 
Request Only For 
Write Privilege. 

by processor and ~o:::::r , . q u e . ,  ,hen ~, c.ch. 

Resulting cache t [ 
request broadcast on 
bus lf necessary [ main memory I 

by caches ancllor 
by main memory 

[ main memory I 

Template for Figures 1-9. 

I I 

Siii  :::S 
I I 

Figure 3. Fetching Without 
Source Cache. 

.W,F.L--~ """ [ ~  " 

I I 
Figure 6. Locking a Block. 

"D',block 

"RoF" 

I I 

I I 
Figure 1. Fetching Unshared 

Data on Read Miss. 

"R,F" 

I I 

I I 
Figure 4. Cache-to-Cache Transfer. 
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I I 
Figure 7. Requesting Locked Block; 

Initiating Busy Wait. 
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Figure 8. Unlocking a Block. 
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Figure 9. End Busy Wait. 
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(Field 3 or beth 2 and 3 are omitted if 
irrelevant. Arcs not shown would be 
bugs.) Notes: 1. Cache then implements 
busy wait (Figure 7). 2. From I, bus 
request also fetches block (not Figure 5). 
3. I in all other caches (Figure 1). 4. End 
Busy Wait (Figure 9). 

Figure 10. Cache State Transitions. 
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Request. (Arcs not shown 
would be bugs.) Notes: 
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bus (Figure 2). 2. Cache also 
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4,5). 
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identical dual directories in the  context of a write-in, bus-  
oriented system (Feature 3; J.  Goodman, pers. comm. 1985). 

F.2. S ta tes .  Censier and  Feautr ier  suggested direct cache-to- 
cache transfer, or, in our terms,  the  source function, as a useful  
feature for a write-in sys tem when one cache alone ha s  the  la tes t  
version of a block requested by another  cache. Goodman and  
Frank also independently reinvented this  concept in the  context  
of a broadcast system, applying it to the  dirty write state.  

' Goodman (1983). In this  scheme, a cache becomes the  source of 
a block when it  alone h a s  the  latest  version of the  block - the  
block is dirty there - which occurs in th is  protocol only when  a 
cache has  wri t ten the  block twice. Specifically, when  a dir ty 
block is transferred from one cache to another ,  it is also f lushed 
to memory,  so it arrives clean. In addition, the  first write to the  
block goes through to memory  and  inval idates the  block in all 
other caches - since the  original Mul t ibus  does not allow an  
invalidation signal while a block is fetched - so the  block still 
remains  clean. The block becomes dirty only on the  second 
write, at  which t ime the  cache becomes the  source of the  block. 

Frank (1984). The Synapse  computer  ha s  its own proprietary 
bus, which enables invalidation concurrent with block fetch 
(Feature 4). Consequently,  the  clean write s ta te  is not  useful  
here, as it is under  Goodman's  protocol, where it is the  resul t  of 
the  invalidation write-through. 

Papamarcos, Patel (1984). This  scheme, however, uses  the  clean 
write s ta te  for fetching unshared data on a read miss, since no 
other process will be us ing  the  da ta  (Figure 1; Fea ture  5). If  the  
block is not written, aRer all, it will not need to be f lushed to 
memory  when purged. In  addition, if t he  block is not  wri t ten,  
the  cache would not  need to provide the  block to another  cache. 
However, Papamarcos  and  Patel  do not consider the  last  option, 
for under  their  scheme, if a cache has  a block, it also has  source 
s t a tus  for the  block. This extends  the  source function from dir ty  
to clean states,  bu t  is useful only i f  fetching from another cache is 
significantly faster than fetching from memory, since the  fetch 
m a y  interfere with the  source's processor. 

Yen, Yen, Fu (1985). The s ta tes  here are those of Goodman. 

Katz, Eggers, Wood, Perkins, Sheldon (1985)i-This scheme intro- 
duces the  dirty read state. The write-dirty-source s ta te  is con- 
verted to read-dirty-source in a cache when ano ther  cache 
requests  read privilege for the  block. The block r ema ins  dir ty 
because it is not flushed when is transferred. The reason for not  
f lushing the  block is t ha t  if the  bus  or memory  does not  support  
concurrent f lushing at  all, or at  the  speed of the  caches, the  f lush 
will require an  extra  t ransfer  to memory,  or will slow down the  
cache-to-cache transfer,  respectively (Feature 7). 

Our Proposal. This scheme includes both clean and dirty source 
states,  for the  reasons already discussed, and  in addition intro- 
duces the lock state. The lock s ta te  carries the  concept of s ta te  
information beyond read/write privilege to tha t  of lock privilege, 
and  distr ibutes its location and  control among  the  caches, con- 
t inu ing  the  evolutionary t rend of full-broadcast cache protocols 
(Feature 2). The lock-waiter state  is also proposed, to inform a 
cache when it mus t  broadcast  the  unlocking of a block. 

F.3. F e a t u r e s .  Feature 1. These features  were discussed above. 

Feature 2: Fully-Distributed State Information. The advan t age  
of fully dis t r ibut ing the  s tate  information is t ha t  it enables  a 
cache to respond quickly to requests ,  the  information is consoli- 
dated in jus t  a few bits per block f rame ( [log2#states| ), and  the  
s t ructure  of memory is simplified. Frank,  however,  does not  
fully distr ibute the  source s ta tus ,  ma in ta in ing  a source bit in 
ma in  memory,  which indicates whether  memory is the  source or 
not. In contrast ,  Goodman's innovation is to fully dis t r ibute  
source s ta tus ,  and  when a cache is the  source, it informs memory  
not  to provide the  da ta  when  the  cache services a bus  request.  
Our  proposal, in addition, dis tr ibutes lock status.  

Feature 3: Directory Duality. Goodman and F rank  reestablish 
the  classic approach of identical dual  directories, and  Katz  et al. 
introduce a single, dual-ported-read directory (as well as da ta-  
store), which reduces the  hardware  (Borriello et al. 1985). 

However, under  both schemes, interference between bus  accesses 
and processor accesses to the  directory information m a y  be gen- 
erated when the processor writes to the  cache, for the  s t a tus  of 
the  written block mus t  be updated to dirty at  t ha t  t ime. Bus  
requests  will be bombarding a cache continually,  and  according 
to Smith (1985), the  frequency of writes may  reach 35% of a 
processor's memory  references. Therefore, one m a y  wish to 
reduce, or el iminate,  the  interference of upda t ing  dir ty s ta tus .  

Two methods of reducing th is  interference are to update  the  dir ty 
s t a tu s  only when  it changes;  or else in a lower performance 
design (Borriello et al.), to have  the  read and  write cycles on the  
cache directory al ternate.  Another  option is to e l imina te  the  
interference entirely by hav ing  non-identical directories. In th is  
case, only the  processor directory m a i n t a i n s  clean/dirty s ta tus ,  
for this  information is accessed by the  cache's bus-controller only 
when the cache da ta  is accessed by the  controller. Accordingly 
we ask, Is the  frequency of changing a block d i r ty-s ta tus  - the  
frequency of a write hi t  to a clean block - great  enough  to war-  
r an t  non-identical directories? Bi tar  (1985) derives a formula  for 
th is  frequency, then  derives es t imates  of .2% to 1.2% from 
Smith ' s  data.  Thus,  non-identical directories are  probably not  
warranted  on this  ground. 

Under  our proposal, jus t  the  same, non-identical  directories 
would also e l iminate  the interference of upda t ing  lock-waiter 
s ta tus  by the  cache's bus-controller (Section E.3), so they  m a y  
still be war ran ted  in this  scheme. 

Feature 4: Bus Invalidate Signal. Whereas  Goodman invali- 
dates  a block by writ ing through to memory qSection F.2), 
subsequent  designers a s sume  tha t  the  bus  allows explicit invali- 
dation. Specifically, on a write miss t he  inval idate  s ignal  allows 
inval idat ing while reading the  block. While on a write hit to a 
block for which the  cache ha s  only read privilege, the  same  sig- 
na l  allows a pseudo-write (or pseudo-read) t ha t  inval idates  the  
block in other  caches (and in Frank ' s  protocol, clears the  source 
bit  in memory),  bu t  does not ini t iate a memory  cycle; t h u s  it can 
be limited to one bus  cycle. Even so, the  fractional increase in 
bus  traffic due to the  wri te- through is smal l  if cache blocks a re  
reasonably large, say n bus-wide words. This  is because the  
increase appears to be much  less t h a n  I /n ,  as es t imated  from 
Smith ' s  da ta  (Bitar 1985). 

Feature 5: Fetching Unshared Data for Write Privilege on Read 
Miss. The last  four protocols allow a block to he fetched for write 
privilege at  a read miss  in order to fetch unsha red  data .  This  
does not  reduce concurrent  access to the  da ta  since the  da ta  is 
unshared;  and if the  da ta  is subsequent ly  wri t ten by the  proces- 
sor, the bus  will not need to be accessed a t  t ha t  t ime in order to 
ga in  write privilege. Fur thermore ,  the  clean write s ta te  is used  
here, as mentioned earlier, to avoid a f lush to memory  if the  
block is not writ ten (Papamarcos and  Patel, Section F.2). 

Papamarcos  and Patel  introduced the fetching of unsha red  da ta  
for write privilege by us ing a dynamic determinat ion  of shar ing ,  
namely,  whether  another  cache current ly  ha s  a valid copy or not. 
This  uses  an  open collector hit line as do the  Dragon and  Firefly 
(Section D.1). Yen et al. and  Katz et al., on the  other hand,  sug- 
gest  a static determinat ion of sharing,  which is somewha t  more 
complicated. First, the  processor m u s t  have  a special ins t ruct ion 
to read da ta  for write-privilege, which will affect a cache access 
only if the  access is a miss. Second, the  compiler m u s t  employ 
th i s  read instruction in all reads of unsha red  data.  

Similar  to Feature  4, the  fractional increase in bus  traffic gen-  
erated by a protocol t ha t  does not fetch unsha red  da ta  for write 
privilege a t  a read miss  appears  to be much  less t h a n  1/n, for 
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Table 1. Evolution of Full-Broadcast, Write-In (Write-Back), Cache-Synchronization Schemes 

States Good. Frank Pap.Pat. Yen Katz Our 
_...(Read = shared-access privilege~ Write = sole-access privilege) _ (1983) (1984) (1984)__ (1985) (1985) proposal 

(Regarding states: N -~ non-souree state; S -- source state) 
Invalid N N N N N N 

Read 
Read, Clean 
Read, Dirty 

Write, Clean 
Write, Dirty 

Lock, Dirty 
Lock, Dirty, Waiter 

Features 

1. Cache-to-cache transfer; serialization of conflicting single ~/ 
reads and writes 

2. Fully-distributed state information: Read / write / lock / dir- RWDS 
ty / source (R/W/L/D/S) (faster response of  caches; greater con- 
solidation of  state information; simpler memory) 

3. Directory Duality: 2 Identical Dual (ID) / 2 Non-Identical ID 
Dual (NID) / 1 Dual-Ported-Read (DPR). (DPR reduces the 
hardware; NID eliminates interference due to updating status - 
dirty status is only in processor directory, waiter status is only 
in bus directory) 

4. Bus invalidate signal: No invalidation write-through 
On write hit: Gain write privilege with a one-cycle invalida- 
tion (instead of  a word-write to memory) 
On write miss: Gain write privilege while fetching the block 
(instead of a word-write to memory) 

5. Fetching unshared  data  for write privilege on read miss: 
Unshared status is determined statically (S) or dynamically 
(D) (save bus arbitration and  invalidate cycle i f  the data is sub- 
sequently written) 

6. Processor atomic read-modify-write instruction: Serialize 
accesses 

7. Flushing on cache-to-cache transfer: Flush block (F), or do F 
not flush block (NF); transfer clean/dirty status with block (S) 
(F is desirable unless bus and memory do not support iC N F  re- 
quires transfer of clean/dirty status i f  source status is being 
transferred on a processor read and the block may be clean or 
dirty - s e e  source states above) 

8. Number of sources for read-prlvilege block: Allow multi- 
ple sources, thus a source for a read-privilege block must al- 
ways arbitrate before providing the block (ARB); allow loss of  
(single) source, forcing the block to be fetched from memory 
(MEM); have last fetcher become source, allowing least- 
recently-used replacement across caches (LRU) 

9. Writing without fetch on write miss: (no fetches for process 
state blocks) 

10. Efficient busy wait  

Table 1 Notes 
1. A source cache provides data only for a write-privilege re- 

quest, not a read-privilege request. 
2. No specification is given as to whether the directories are 

identical or not. 

N N 
N N S N S 

S S 

N S N S S 
S (S) I S S S S 

S 
S 

~/ v' x/ ~/ x/ 

RWD RWDS RWDS RWDS RWLDS 

ID ID 2 DPR NID 

D S S D 

NF F F NF,S NF,S 

ARB MEM LRU, 
MEM 
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blocks hav ing  n bus-wide words (Bitar 1985). 

Feature 6: Processor Atomic Read-Modify.Write Instruction. 
There are several ways to implement  processor atomic read- 
modify-write instructions on (hard) a toms so tha t  accesses are  
serialized. We consider four methods.  Only the  first requires  
going through to memory,  bu t  the first three do require tha t  the  
processor inform the cache, at the s tar t  of the instruction,  t ha t  
the  instruction is an  atomic read-modify-write. 

The  first method requires a read-modify-write instruction to 
access and hold the main memory unit t ha t  contains the  ta rge t  
atom, throughout  the operation (Rudolph, Segall 1984). 

The second method, apparent ly  tha t  of Frank,  requires t ha t  the  
a tom be contained entirely on one block (appropriate for write-in, 
anyway),  t ha t  the  block be fetched for sole-access (write) 
privilege at  the  beginning of the  read-modify-write instruct ion,  
and  tha t  the cache (or cache module) be held th roughout  the  
operation. Papamarcos  and  Patel propose a variant :  if t he  cache 
does not have  write privilege for the  block at  the  beg inn ing  of 
the  operation, the bus is gotten and held through to the write, at  
which t ime write privilege for the  block is obtained as usual .  We 
do not see an advan tage  in this  special case, over tha t  of fetching 
the  block for write privilege at  the  beg inn ing  of the  operation, 
while the  d isadvantage  is t ha t  the  bus  is held longer t h a n  
needed. We also point out  tha t  a processor read instruction t ha t  
is used for fetching unsha red  da ta  for write privilege (Yen et al., 
Katz  et al.) will not in general  work here, since it only applies on 
misses. Ju s t  the same. Katz et al. are actually p lann ing  to have  
their cache, ra ther  t h a n  their  processor, execute test-and-set  in a 
manne r  similar to tha t  depicted for F rank ' s  processor, and they  
are not concerned with implement ing  other atomic read-modify- 
write instruct ions (R. Katz, personal communicat ion 1986). 

Under  the  third method, the  cache does not  fetch the  block for 
write privilege unt i l  the  write, nor does it hold the  bus  in the  
meant ime.  So if the  write generates  a miss, it m e a n s  tha t  t he  
block was stolen between the  read and  the  write, and  atomicity 
is violated. Thus  the  cache raises an  exception t h a t  causes the  
processor to abort the  instruction,  and the  cache aborts  the  pend- 
ing write request. 

The fourth method is to use  the  cache lock.state to lock jus t  the  
target a tom (Section E.3). 

Feature 7: Flushing on Cache-to-Cache Transfer. W h e n  
transferr ing a block from one cache to another ,  there  are three  
advantages  to f lushing it. 
• If the  block is dirty: Reliability in the  face of subsequent  cache 

failures is increased. 
• If source s t a tus  is being transferred on a processor read and  

the  block may  be clean or dirty: Clean~dirty status need not be 
transferred. 

• In our protocol, only one output  operation is needed (Sec. E.2). 
Keep in mind tha t  a protocol supports cache-to-cache t ransfer  
only from a cache hav ing  source s ta tus  for the  block (indicated a t  
the  top of the  table). 

In view of this, if a source can have  either clean or dirty status 
and source s t a tus  can be transferred on a processor read, 
(Papamarcos and  Patel, Katz  et al., our proposal}, t hen  
clean/dirty s t a tus  should be transferred along with the  block, 
unless the  block is flushed to memory  while t ransferred - as it is 
in the Papamarcos  and  Pate l  scheme. Papamarcos  and  Patel,  
jus t  the  same,  flush only dirty blocks, so clean/dirty s t a tu s  mus t ,  
in effect, be put  on the  bus  in their  protocol, anyway.  If memory  
can keep up with the  f lushes and  if available bus  codes are  
scarce, it may  be useful to flush all blocks so tha t  two different 
codes are not needed for cache-to-cache transfer.  

Due to its advantages ,  f lushing should be implemented  if it can 
be done concurrently with the  t ransfer  at  the  speed of the  caches. 

Even so, we depict the non-flush option in order to elucidate the  
more complex option tha t  will be necessary under  m a n y  buses. 
We also point out tha t  the  need to t ransfer  clean/dirty s t a tu s  in 
the  Katz et al. protocol can be el iminated by giving their  clean 
write state non-source status. (This state is entered only on a 
read miss to unshared data.) This eliminates an inconsistency in 
the protocol as well, namely, giving the clean write state source 
status, but not doing the same for a clean read state. For the 
reason for a clean source state is that fetching from another 
cache is significantly faster than fetching from memory 
(Papamarcos and Patel, Section F.2). 

Feature 8: Number of Sources for Read-Privilege Block. Under  
Papamarcos  and Patel, if a block is in any  cache, it is fetched 
from a cache, ra ther  t h a n  from memory.  Yet if the  block h a s  
read s ta tus ,  several caches m a y  have  the  block, so any such 
cache m u s t  arbi t ra te  in order to select the  actual  source. This  is 
done so tha t  only one cache m a y  interfere with its processor, and  
if necessary, to limit the  n u m b e r  of devices dr iving the bus. 
Arbitration slows down the cache-to-cache transfer, however, 
increasing the  bus  traffic, as well as the  requester  wait. 

Under  Katz et el. and  our proposal, in contrast ,  arbi trat ion of 
potential sources is never  required. Yet, if a block h a s  read 
s ta tus  in several caches and the  source purges the  block (f lushing 
it to memory if dirty), there  will be no source cache for the  block. 
So the  next  fetch of the  block m u s t  be serviced by memory  ~Fig- 
urea 2,3), a d i sadvantage  if a fetch from memory  is slower t h a n  
cache-to-cache t ransfer  with arbitration. If LRU replacement 
tends to hold across caches, however, our protocol can t ake  
advantage  of it since the  last cache to fetch a block a lways  
becomes the  new source, reducing the  chance of losing a source. 

Feature 9: Writing without Fetch on Write Miss. Under  write- 
without-fetch, if the  processor is going to write all of the  da ta  in 
a block, the  block need not  be fetched on a miss, t hough  the  bus  
mus t  be accessed in order to inval idate the  block in o ther  caches, 
as usual.  In order to implement  this, the  compiler m u s t  know 
when a processor will write all of the  da ta  in a block. This  m a y  
occur in initializing data,  bu t  more important ly ,  in saving state 
at a process switch. In the  Aquar ius  system, for example,  we 
anticipate frequent  process switching, hence the  switching m u s t  
be very efficient. The processor m u s t  also have  a way  to inform 
the cache of this  kind of write. 

Feature 10: Efficient Busy Wait. Among  the  protocols shown in 
the  table, only ours m a k e s  it clear how efficient busy  wait  can be 
achieved (Section E.4). 

Feature 11: I/O Transfer. Although not itemized in the table, a 
protocol must explicate how I/O is performed (Section E.2). 

G. Conclusion 

G.1. Feature Evaluation. The innovations that have been 
described are shown in Table 2. The extent to which any feature 
improves performance needs to be evaluated for the particular 
system of interest. The system of immediate interest to us is the 
Aquarius multiprocessor Prolog architecture, whose design is 
being developed (Dobry, Despain, Patt 1985). Figure 11 shows 
the two switch-memory systems of the architecture. The upper 
one, hav ing  a single bus, contains the  program synchronization 
data, while the  lower one, hav ing  a crossbar, hand les  instruc- 
tions and non-synchronization data. 

A separate switch-memory system for synchronizat ion was  pro- 
posed because we intend to implement  Proiog predicates (pro- 
cedures) as l ightweight  processes, thereby genera t ing  m a n y  
medium-grained,  l ightweight  processes and  m a n y  synchroniza-  
tion operations in the  system. Consequently,  the  speed advan-  
tage of full broadcast will be of great  value. Bu t  in order to 
avoid the  h igh cost of implement ing  full broadcast  in a h igh-  
concurrency switch, such as a crossbar, we will implemen t  broad- 
cast in a separate  sys tem using a single bus, as shown. The  
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caches in tha t  system will follow a full-broadcast synchronizat ion 
protocol, and the  options presented in this  article will be 
evaluated as to their  effect on performance in this  cache system.  
Furthermore,  all hard  atoms will reside in the  upper  sys tem,  
thereby simplifying the  lower cache system. In particular,  t he  
latter will not  need to serialize accesses to a block, bu t  will only 
need to provide the latest  version of each block. 

G.2. Ove rv i ew .  We have  seen tha t  m a n y  options for broadcast  
cache-synchronization schemes have  been proposed since 
Goodman's paper in 1983. We have  further  seen t ha t  a cache 
can play a crucial role in efficient busy-wai t  locking and wait ing,  
and we believe tha t  our proposals of the  lock state and  busy-wai t  
register are promising, especially in the synchronization system 
of the Aquarius architecture. In this  system, an improvement  in 
the  efficiency of busy-wait  locking and wai t ing m a y  offer a 
significant improvement  in performance since the  resul t ing  
traffic will consti tute a relatively large fraction of the  whole in 
tha t  system. Finally. we look forward to obtaining performance 
statistics for our system, as well as avai l ing ourselves of the  
much-needed work of others in this  direction (e.g., Papamarcos,  
Patel  1984; Archibald, Baer 1985; Vernon, Holliday 1985). 
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