
Multiprocessor Cache Synchronization
Issues, Innovations, Evolution

Philip Bitar *'** Alv in M. Despain **

* Research Institute for Advanced Computer Science
NASA Ames Research Center

Moffett Field, CA 94503

** Computer Science Division
University of California
Berkeley, CA 94720

Abstract

Many options are possible in a cache synchronization (or con-
sistency~ scheme for a broadcast system. We clarify basic con-
cepts, analyze the handling of shared data, and then describe a
protocol that we are currently exploring. Finally, we analyze the
evolution of options that have been proposed under write-in (or
write-backi policy We show how our protocol extends this evolu-
tion with new methods for efficient busy-wait lacking, waiting,
and unlocking The lock scheme allows locking and unlocking to
occur in zero time, eliminating the need for test-and-set. The
scheme also integrates processor atomic read-modify-write
instructions and programmer/compiler busy-wait-synchronized
operations under the same mechanism. The wait scheme elim-
inates all unsuccessful retries from the bus, and allows a process
to work while waiting.

Sections

A. Context
B. Synchronization Issues
C. Basic Concepts
D. Shared Data
E. Protocol Mechanics
F. Protocol Evolution
G. Conclusion

A. Context

A.I. Synchronization in Shared-Memory Architecture. One
of the most pressing issues in computer architecture today is how
to design multiprocessor systems that can realize the speedup
potential of multiple processors. In view of this, we seek to iden-
tify features of shared-memory architecture that speed up the
coordination, or synchronization, of multiple processors.

In Project Aquarius at Berkeley, we are investigating the design
of a high-performance, multiprocessor system to execute logic
programs, currently Prolog (Dobry, Despain, Patt 1985). We
seek efficient synchronization schemes that will allow us to
exploit the concurrency inherent in logic programs. At the same
time, we recognize that single-bus architecture offers a low-cost
approach to building a multiple-microprocessor system, so is
rapidly gaining importance (Bell et al. 1985). Our research,
therefore, addresses both the high performance and the low cost
approaches. A designer taking either approach will be able to
select the features that best serve their interest.

A.2. Full Broadcast . We limit our attention here to multipro-
cessor cache systems that implement full broadcast, or more sim-
ply, broadcast. In such a system, at each setting of the
processor-memory switch, or interconnect, every processor cache
that has access to the switch can broadcast its request to all
other processor sites, each of which is able to evaluate all of the
requests, and service at least one of them, if appropriate. The
advantage of this is that the operation is entirely distributed and
parallel, hence is fast. In addition, main memory is simple, not
needing to maintam cache state or manage cache

synchronization. In this article we do not address other cache
systems - partial-broadcast or non-broadcast - such as those of
Tang (1976), Censier and Feautrier (1978), Yen and Fu (1982),
Dubois and Briggs (1982), Archibald and Baer (1984).

For ease of discussion, we also assume that the processor-
memory interconnect is a single bus. In fact, broadcast is
currently seen only in single or dual bus systems, because this
limits the number of simultaneous broadcasters to one or two,
respectively, greatly simplifying implementation of broadcast.

B. Synchronizat ion Issues

We currently identify three primary, low-level synchronization
issues for shared-memory architecture.
• Cache synchronization: the sharing of replicated writable data
• Busy wait: locking and unlocking, waiting
• Sleep wait: enqueuing and dequeuing, saving and loading state

B.1. Cache Synchronization. Smith (1984) stresses the
significance of the issue:

The solution of the multicache consistency problem for large
numbers of processors is one of the most important current
problems in computer architecture, and it is one of the major
barriers to effective multiprocessing.(p.19)

Specifically, processes in a shared-memory system communicate
by taking sole access to some shared data object and writing it,
leaving information there for another process to read. One
example, typical of Prolog and dataflow, is the
producer/consumer relationship. In this case, one process pro-
duces a value, say • variable binding, for another process, and
that process, in turn, reads the value and uses it. The second
process may report back to the first, in which case it also writes
a shared-variable. Another example is the management of
service-request queues, where one process leaves a service request
for another process in the latter's request queue. The latter
eventually reads the request and services it. This will typic•fly
occur among processes running on different processors. For
example, a process running on a program interpreter may send a
service request to a floating-point processor or an I/O processor.

The processor caches must correctly implement the read/write
sharing of data that is requested by the software, •cross multiple
sites. So the problem of cache synchronization consists in this:
• Read/write sharing of replicated data

B.2. Busy Wait, Sleep Wait. If the wait for sole access to a
shared object is expected to be short, the process will busy wait;
that is, it will continue to run while waiting, though this does
not mean that it must continually test a hit while waiting. On
the other hand, if the wait is expected to be long, the process will
be switched out of the processor and will sleep wait on a queue,
allowing another process to run on that processor. However, if
the hardware in a multiprocessor system does not itself imple-
ment queuing, then by default the software must implement it
using busy wait. In this case, a queue-manager procedure
(instead of invoking hardware queues) will busy wait for access
to soRware-implemented queues, and when it gains access to a

o884-7495/86/0ooo/o424SOl .oo © 1986 IEEE
424

http://crossmark.crossref.org/dialog/?doi=10.1145%2F17356.17405&domain=pdf&date_stamp=1986-05-01

queue, will insert or delete a process, as appropriate. If sema-
phores are used, they will be part of the queue descriptor.

This identifies the two reasons for using busy wait.
• A si tuation where busy wait is less costly t h an sleep wait
• A system where busy wait is necessary in order to implement

sleep wait

B.3. Our F o c u s . We address the first two issues: synchroniza-
tmn of caches and implementat ion of busy wait. Both of these.
issues, as well as sleep wait, are treated in Bitar (1985}, to which
we refer the reader who seeks further details.

C. B a s i c C o n c e p t s

C.1. Read /Wri te S y n c h r o n i z a t i o n . Read/write sha r ing of
replicated data, and thus synchronizing caches, entai ls three log-
ical facets: atomicity - sole access for writers; concurrency -
shared access for readers ; and replication - get t ing the la tes t
version of the data upon access. Bu t these three logical facets
reduce to just two implementat ion requirements:
• Serialize conflicting accesses: write-read, write-write
• Provide the latest version of the data: wherever it m a y be
The first requirement mus t be met in order for the second to
have meaning.

C.2. A toms . In order for software to implement an atomic
operation (insuring sole access for a writer), the ha rdware m u s t
provide some primitive atomic operation for the software to use.
This can be as simple as writ ing a single bit, as in Petersen 's
algori thm IPeterson, Silb. 1985, p. 332). But for the sake of
speed, the hardware will probably provide at least a tes t -and-set
operation or atomic swap, allowing the software to insure sole
access without so m a n y bit reads and writes as otherwise needed.

It is crucial to recognize two types of atomic (shared, writablel
da ta objects, then.
• Hard atom: Data object tha t is atomized by the ha rdware -

access conflicts are serialized by the hardware.
• Soft atom: Data object tha t is atomized by the software.
An unders tand ing of the differences is not only required to
insure correctness in a cache synchronization scheme, bu t m a y
also allow the design to be substant ia l ly simplified, especially for
a non-broadcast sy s t em (Bitar 1985).

C.3. C a c h e S y n c h r o n i z a t i o n . The synchronization of caches,
then, reduces to the following two requirements , each hav ing the
occasions shown:
• Serialize conflicting accesses: hard a toms only

[] Two different processes on two different processors access the
same hard atom.

• Provide the latest version of the data: all writable objects
E. Two different processes on two different processors access the

same writable, shared data (hard or sgft atom).
[] One process on two different processors (due to migration}

accesses the same writable, shared or unshared , data.

D. S h a r e d D a t a

D.I. T h e I s sue . For unshared data, write-in (or write-back), as
opposed to write-through, has been shown to reduce bus traffic
and concomitant processor idle t ime (Smith 1982; Norton, Abra-
h a m 1982). However, it has recently been suggested t ha t the
reverse is t rue for actively shared, or more simply, shared data .
Tha t is, when data is being shared by several caches, it m a y be
better for a processor to write th rough to update other copies,
ra ther t h a n invalidate them (Rudolph, Segall 1984; McCreight
1984; Archibald, Baer 1985; Vernon, Holliday 1985). Accord-
ingly, the Xerox Dragon and DEC Firefly (reported by Archibald,
Baer) and Rudolph and Segall take this approach:
• Write-through to other caches: for actively shared da ta
• Write-in: for other, 'unshared ' da ta

In the Dragon and Firefly protocols, a block is defined as shared
if it current ly resides in more t han one cache. This s t a tu s is
determined when a cache writes th rough or fetches a block, for
all caches hav ing a copy raise the bus hit line. notifying the
requester. In addition, on a fetch any other cache hav ing a copy
enters the block's s ta tus as shared. In Rudolph and Segall 's
scheme, a block is defined as shared if accesses to it are currently
interleaved among the processors. Specifically, a block is
unshared if a processor writes it twice (or more generally, n
times, for some n) while no other processor accesses it.

D.2. Ana lys i s . Under a full-broadcast system, the impor tan t
distinction between write-in and wri te- through with regard to
cache synchronization is not the policy for updat ing main
memory, but the policy for updat ing other caches. In view of this,
write-in and write-through m a y be dis t inguished by three
features of the updates - granular i ty , occasion, and target.
• Write-in updates

Granularity: block
= Occasion: access to block
D Target - demand based: requester

• Write- through updates
D Granularity: word
[] Occasion: write to word
.vJ Target -prediction based: all caches hav ing a copy

Write- through actually has three potential ta rgets - valid copies
in other caches, invalid copies in other caches (discussed later),
and main memory. But unless otherwise qualified, we will
a s sume tha t the target consists of valid copies. In this context,
the distinctive action on a write to a shared block is this:
• Write-in: invalidate the block in other caches
• Write-through: update the block in other caches

Al though both policies provide the latest version of a block in the
same way - from a cache or main memory, as appropriate -
they serialize accesses to hard atoms differently. Write-through
forces the processor to wait for access to the bus on every write
to actively shared data. In contrast, write-in allows a processor
to acquire the sole copy of the blocks containing an atom and
write them any number of times before unlocking the atom,
thereby alleviating the need to wait for bus access at every such
write. In view of this, under write-in, no other data should be
placed in a block with an atom, so tha t when a process locks an
atom, no other process will be accessing the blocks of the atom.

We see tha t write-through for shared da ta incurs the cost of
small granularity of updates , inappropriate for an atom whose
blocks are writ ten more t han a few t imes while the a tom is
locked. Write- through also incurs the cost of updat ing all caches
hav ing copies of an atom, potentially interfering with all of the
respective processors, whereas the updates t ha t are useful are
only those t ha t update the next processor (or processors) to read
the data. In effect, wri te- through predicts t h a t if an a tom is
actively shared, one of the caches tha t ha s a copy will be the
next to read the atom and will do so before purg ing its blocks.
In contrast, write-in updates another cache only on demand.

In brief, write- threugh for shared data does not look so promising
if the following four points are appreciated.
• A process does not access an atom unt i l it is unlocked by the

current user.
• Under write-in, blocks should be devoted to atoms, so t h a t

when an atom is locked, there is no contention for its blocks.
• Write-in is demand based; while wri te- through is predictive,

not necessarily updat ing the nex t cache to read the atom.
• Write- through updates all caches hav ing a copy of the atom,

not jus t the next to read the atom (if a t all).
The model of shar ing under write-in t ha t was introduced by
Dubois and Briggs c19821 fails to appreciate the first two points.
so degrades the performance of write-in.

425

In spite of this. one case where wri te- through to shared data is
clearly useful is in efficient busy wait, where several processors
may be wait ing for a lock bit to be cleared, mak i ng it advan ta -
geous to broadcast writes (Section E.4).

D.3. Internal Fragmentation u n d e r Write-In. Since a block,
under write-in, should be devoted to an atom t ha t it contains,
internal f ragmentat ion of blocks can degrade performance, espe-
cially for large block size, for an entire block mus t be t ransferred
when access is requested to the (possibly smaller) a tom on the
block. A solution is to t ransfer smal ler transfer units. This can
improve performance for unshared data (Goodman 1983; Hill,
Smith 19841, and we can now see tha t it will also improve per-
formance for atoms. To synchronize the caches, valid and dirty
s ta tus mus t be stored with each t ransfer unit , and all dirty
transfer uni ts of a block mus t be transferred when source s t a t u s
(discussed later~ is transferred. Alternatively, the full s ta te can
be stored with each t ransfer uni t so tha t individual t ransfer
uni ts can be transferred on request. This appears simpler, bu t
will require three, ra ther t h a n jus t two, state bits per t ransfer
uni t if the protocol has more t han four s tates for a cache block.

E. P r o t o c o l M e c h a n i c s

Before describing the evolution of broadcast protocols, we will
present the mechanics of a protocol t ha t we are current ly s tudy-
ing. This presentat ion should not only to fix ideas for the reader,
bu t will also introduce several innovations.

E.1. S ta tes . We will consider e ight s ta tes for a cache block:
Invalid
Read
Read, Source, Clean
Read, Source, Dirty
Write, Source, Clean
Write, Source, Dirty
Lock, Source, Dirty
Lock, Source, Dirty, Waiter

The following is a key to the word meanings , which will be illus-
t rated by examples in the next sections.

Invalid Meaningless
Read Read-only privilege (shared-access privilege)
Write Read and write privilege (sole-access privilege)
Lock Read and write privilege, locked by the cache
Source Source of the latest version of the block

• Location of clean/dirty s t a tu s for the block
• When the block is fetched by another cache, the

source provides it and its clean/dirty s t a tus
• When purg ing the block, the source flushes it if

the block is dirty

Dirty The block was wri t ten by some processor, and
memory has not yet been updated

Waiter Another processor requested the block while it
was locked

E.2. Bas ic Act ions . Figures 1-9 i l lustrate the interaction of the
processors, caches, and memory, while Figure 10 summar izes the
s tate t ransi t ions for a cache block. (Notice the note and templa te
prior to Figure 1.) Keep in mind tha t the last cache to fetch a
block becomes its source, and provides the block when the block
is next requested by another cache /unless the source purges the
block in the meantime~.
Fetching Unshared Data on Read Miss. Usual ly a reques ter
cache assumes read~write~lock privilege for a block if the reques t
is for read/write~lock privilege, respectively. Bu t Figure 1 shows
tha t if the request is for read privilege and the block is not
present in another cache - no cache s ignals hit - the reques ter
assumes write privilege, so tha t if its processor subsequent ly
writes the block, a bus access will not be required in order to
obtain write privilege.

Fetching Without Source Cache. Figures 2 and 3 show th a t if
there is no source cache for the block, even if the block is present
in another cache, the block is provided by memory. Fur ther -
more, the requester cache assumes read~write privilege for the
block if the processor's request is read~write, respectively. But if
the request is for read privilege, any cache tha t h a s the block
signals hit; otherwise the requester will a s sume write privilege,
as depicted above.

Cache-to-Cache Transfer. Figure 4 shows tha t if there is a source
cache for a block, the source provides the contents of the block, if
requested, along with the clean/dirty s t a tus of the block. The
presence of this s t a tus on the bus s ignals the presence of a source
cache, bu t the actual value is only needed if the request is for
read privilege, since the block would otherwise become dirty any-
way. Figure 5 shows tha t if the requester cache a l ready h a s a
valid copy at a processor write, it only requests write privilege,
not the block itself.

I/O Transfer. In execut ing an input operation, an [/O processor
will simply invalidate the block in all caches (request ing write
privilege for the block) as it writes to memory. In execut ing a
paging-out operation, the I/O processor will fetch the block for
write privilege, thereby inval idat ing the block in all caches. In
executing a non-paging output operation, the I/O processor will
give a special read request, notifying the source cache not to give
up source s tatus. The need to dis t inguish between the two out-
pu t operations can be avoided by f lushing dirty blocks on cache-
to-cache transfers (Feature 7, Section F.3}. In t ha t case, a block
would simply be fetched for write-privilege by the I/O processor
on all output operations.

E.3. Eff ic ient Lock ing . Figure 6 i l lustrates how busy-wai t
locking can be efficiently executed in a fully associative cache.
The first block of the atom is fetched for write privilege and
locked unti l the entire operation is done; and the cache supplies
the target word to its processor, as on a read instruct ion.
Further , as shown in Figure 8, the unlock can occur at the final
write to the block. So the lock instruction is a special processor
read instruction, and the unlock instruction can be a special
write instruction. An unencoded way of implement ing th is is to
devote a separate processor line to the function, which will be
interpreted by the cache as lock on a read and unlock on a write.

If another cache requests the atom while it is locked, it will
request write privilege for the first block, as noted above, and
will find it locked. The cache holding the lock will record t h a t
another cache is wait ing, us ing the lock-waiter s ta te (Figure 7).
The requester cache, then, enters the block address in a special
busy-wait register, se t t ing the stage for efficient busy wait.

Efficiency. Locking a block, here, is concurrent with fetching the
block, so generates no extra bus traffic, nor delays the processor.
Furthermore, the first read and last write of the a tom will prob-
ably be to the first block of the atom since, under the first reason
for busy wait (Section B.21, the atom will probably be contained
entirely on one block, and under the second reason for busy wait ,
the atom will probably contain the entire queue descriptor. So
locking and unlocking will usually occur in zero time.

Therefore, cache-state locking is as fast as holding an ent ire
cache or memory module th roughout the operation, b u t h a s two
important advantages .
• Fine-grained locking: Only the ta rget a tom is locked.
• Trapping: Traps do not require abort ing the operation (though

process-switching traps are precluded anyway, as noted below).
Compared to us ing a tes t-and-set bit, cache s ta te locking h a s
these advantages:
• Locking and unlocking usual ly occur in zero t ime, as opposed

to fetching a lock bit and then the data.
• No blocks are devoted to lock bits (hard atoms) unde r write-in.
Finally. cache-state locking can be executed by a single-cycle-

426

instruction processor, such as a reduced-instruction-set processor
(Patterson 1985). This kind of processor can now execute atomic
operations as efficiently as any other.

In conclusion, cache-state locking most efficiently implements
both processor atomic read-modify-write instruct ions, and
programmer/compiler-implemented busy-wait locking.

Two Concerns. Two concerns tha t mus t be considered in th is
locking scheme are the need to switch processes while a block is
locked, and the need to purge a locked block. In the first case, a
process would be put to sleep while a block t ha t it h a s locked is
still in a cache. In the second case, the lock would be lost if the
block mus t be purged to make room for another block.

With regard to process switching, under any locking scheme,
especially busy-wait locking, it is impor tant to preclude the
switching of processes (or threads of control) while a lock is held,
in order to avoid prolonging the t ime for which other processes
may have to wait for access to the atom. This is achieved by
precluding page faults, I/O, and relevant traps. Consequent ly ,
the problem should not occur. With regard to purging a locked
block, this should not occur in a fully associative cache, due to
the large set size (the entire cache), bu t may occur in a cache
with small set size. In this case, under a minor modification to
the protocol, a lock bit is writ ten to memory when a locked block
mus t be purged. The lock bit can be either a ha rdware tag bit
on each memory block, or very simply, a bit, in the first block of
the atom, tha t is reserved for hardware use by the compiler.

E.4. Eff ic ient B u s y Wait. Purpose. We conceive two purposes
for efficient busy wait.
• El iminate unsuccessful retries from the bus.
• Relieve a wait ing processor of polling the s t a tu s of a lock,

allowing it to work while waiting.
In a broadcast system, the first purpose is achieved by broadcast-
ing lock or unlock actions if a processor may be wait ing. The
second purpose is achieved by devoting hardware to moni tor ing
the lock, and hav ing it in terrupt the processor when it h a s
acquired the lock. A processor can work while wai t ing if it
requests the lock when ready bu t still h a s work to do for a short
t ime, executing a ' ready section' of code. We do not yet know if
ready sections can actually be arranged. The nex t best a l terna-
tive is to prefetch a lock jus t before it is needed, the offset
depending on the expected wait time.

The primary importance of efficient wait ing is to serve the second
reason for busy wait (Section B.2). Specifically, the manipu la -
tions of the sleep-wait and ready queues tha t mus t be accessed in
order for the software to implement sleep wait may require
several block fetches, say three or four, per queue. And, in addi-
tion, there may be quite a few processes tha t access each queue,
especially a global ready queue, thereby genera t ing h igh
contention for the queue.

Our Proposal. In our scheme, when a locked block is unlocked,
this action is broadcast on the bus if the s ta te in the locker cache
is lock-waiter - indicating tha t another processor had requested
the block while it was locked (Figure 8). A busy-wai t register
wait ing on tha t lock recognizes the unlocking and joins the nex t
bus arbitration. The winn ing cache will fetch the block for write
privilege, lock the block us ing the lock-waiter s ta te (since t ha t
will probably be appropriate), and in ter rupt its processor; while
the other caches will let their processors continue whatever they
are doing and will not access the bus, m a k i n g no a t t empt to fetch
the block again (Figure 9).

Regarding the bus arbitration, the wai t ing caches will specify
very high priorities, say by us ing the most significant priority
bit, devoted to this purpose. So if it t u rns out tha t there are no
waiters aRer all (because the wai t ing processes were switched
out of their processors), the arbi t rat ion will proceed normally,
with no wasted time.

Basic Approaches. The two basic approaches to efficient busy
wait, in contrast, derive from write-in and write-through.
• Write-in: When wri t ing a lock bit, invalidate the correspond-

ing block in other caches.
• Write-through: When writ ing a lock bit, update the

corresponding block in other caches.
In either case, a waiter loops on a one in its cache (Censier,
Feautrier 1978), and unnecessary inval idat ions or updates ,
respectively, are avoided by set t ing a lock bit only if it is zero.
The lock-state protocol for locking could be modified to accommo-
date either of these two approaches if the cost of the busy-wai t
register were not warranted in the system of interest.

Rudolph, Segall (1984). Finally we observe tha t Rudolph and
Segall (Section D.1) have oriented their cache scheme around
efficient busy wait. Specifically, write-through is used on a
proeessor's first write to a block after another processor has
accessed the block, bu t write-in is used on subsequent writes -
unt i l another processor accesses the block. Consequently, after a
lock bit is set Ilocked) on the first write to it, if another processor
begins wait ing before it is unlocked, the processor will read the
bit, so write-through will occur again when the bit is cleared.

On the other hand, if no other processor begins wai t ing while the
lock is locked, other waiters will be indirectly notified by write-in
(invalidation) when the bit is cleared (the second write). The
first wait ing processor to get the bus after tha t will set the bit on
its first write (a test-and-set). In order to have the corresponding
write-through notify other waiters, whose blocks m a y now be
invalid, write-throughs update invalid, as well as valid, copies.
However, in order to for this to work on other data, block size is
limited to one word. This will inflate the area of a cache devoted
to addresses, and may degrade performance for other data, so we
point out tha t one-word t ransfer uni t s m a y be better (Section
D.3). Finally, we note t ha t the protocol also has a block fetch
update invalid copies, bu t this does not seem to add any useful
function since the write phase of the test-and-set will update the
invalid copies anyway.

F. P r o t o c o l Evolut ion

Table 1 traces key steps of the evolution of broadcast, write-in
protocols. The upper par t shows the evolution of states, while
the lower part shows the evolution of other features. The s ta tes
and the features will be discussed in turn , following a glance a t
historical context. (The discussion of the s tates includes forward
references to relevant features, thereby ty ing the two discussions
together. We suggest, however, tha t the reader ignore the for-
ward references on the first reading.}

F.I. His to r i ca l Con tex t . Giving no reference to the l i terature,
Censier and Feautr ier (1978) s ta te tha t the classic approach to
cache synchronization, implemented in dual processor sys tems, is
to use identical dual directories in each cache, devoting one direc-
tory to the processor and the other to a bus on which invalida-
tion requests are broadcast. Wri te- through to ma in memory (not
other caches) is used. But in addition to updat ing ma in memory,
a write causes its address to be broadcast on the inval idat ion
bus, and accordingly any other cache t ha t has a valid copy of
tha t block invalidates its entry. The cache directory moni tor ing
the bus el iminates the interference of irrelevant inval idat ion
requests - requests per ta in ing to a block not valid in t h a t cache.
According to Censier and Feautrier , th is scheme does not, how-
ever, guaran tee tha t conflicting single reads and writes (to h a rd
atoms) will be serialized, for to do so would require a processor to
wait for access to the bus on every write, as in wri te- through for
shared data (Section D.2~.

Smith ~1982~ and Yen et al. (1985) describe a scheme for the
IBM 370/168 and 3033 tha t sounds similar; consequently, Cen-
sier and Feautr ier may be referring to t ha t scheme. Goodman
11983) and Frank 11984) independent ly reinvented the idea of

427

Abbreviations for Figures 1-10

B Busy-wait register is loaded
block Target block
C Clean
D Dirty
EBW End busy wait
F Fetch
I Invalid
L Lock privilege
LW Lock waiter
0 Non-paging output operation
P Processor
R Read privilege
R/W Read or write
S Source
U Unlock
W Write privilege
word Target word

Note for Figures 1-9
A state indicator inside a cache indicates
that the target block is present in that
cache and has that state. A blank cache
indicates that the block is absent or
invalid in that cache.

"R,F"

I I

word ~ iiic~tl : : ~.hlt.
I I

Figure 2. Fetching Without
Source Cache.

I

eee~

I

E

I
Figure 5.

I
Request Only For
Write Privilege.

by processor and ~o:::::r , . q u e . , ,hen ~, c.ch.

Resulting cache t [
request broadcast on
bus lf necessary [main memory I

by caches ancllor
by main memory

[main memory I

Template for Figures 1-9.

I I

Siii :::S
I I

Figure 3. Fetching Without
Source Cache.

.W,F.L--~ """ [~ "

I I
Figure 6. Locking a Block.

"D',block

"RoF"

I I

I I
Figure 1. Fetching Unshared

Data on Read Miss.

"R,F"

I I

I I
Figure 4. Cache-to-Cache Transfer.

I I

I I
Figure 7. Requesting Locked Block;

Initiating Busy Wait.

428

.U.owOr~ e e" ~ e"" ~

I I

I
Figure 8. Unlocking a Block.

••thase c a c h e s n o w arbitrate for the bus

e e e c o o

iF"

I I .,oo.. o, bus arbitration

.D, blocs "'" F E~ "*" ~]Interrupt

I I
Figure 9. End Busy Wait.

References continued.

Peterson, J.L., Silberschatz, A. 1985. Operating System Concepts.
Reading, Mass: Addison-Wesley, 1985.

Rudolph, L., Segall, Z, 1984. "Dynamic decentralized cache schemes
for MIMD parallel processors." 11th ISCA, 1984, 340-347.

Smith, A.J. 1982. "Cache memories." Computing Surveys, 14(3), Sept.
1982, 473-530. Update: Smith (1984).

Smith, A.J. 1984. "CPU Cache memories." DraR April 24, 1984. To
appear in M. Flynn and G. Rossman (eds.), Handbook for Computer
Designers. Update of Smith (1982).

Smith, A.J, 1985. "Cache evaluation and the impact of workload
choice." 12th ISCA, 1985, 64-73.

Tang, C.K. 1976. "Cache system design in the tightly coupled multipro-
cessor system." NCC, 45, 1976, 749-753.

Vernon, M.K., Holliday, M.A. 1985. "Performance analysis of mul-
tiprocessor cache consistency protocols using generalized timed petri
nets." November 1985. TR 618, CS Dept., U. of Wisconsin, Madison,
WI 53706

Yen, W.C., Fu, K-S. 1989.. "Coherence problem in a multicaehe sys-
tem." Intl. Conf. on Par. Proc., 1982, 332-339.

Yen et al. 1985. Yen, W.C., Yen, D.W.L., Fu, K-S. "Data coherence
problem in a multicache system." IEEE-TC. C-34(1), Jan. 1985, 56-
65.

Requester Cache Other Cache
R / W

: R/W

Arc Label Fields: Processor Request :
Bus Request : Status in Other Cache.
(Field 3 or beth 2 and 3 are omitted if
irrelevant. Arcs not shown would be
bugs.) Notes: 1. Cache then implements
busy wait (Figure 7). 2. From I, bus
request also fetches block (not Figure 5).
3. I in all other caches (Figure 1). 4. End
Busy Wait (Figure 9).

Figure 10. Cache State Transitions.

(,)

Are Label Field: Bus
Request. (Arcs not shown
would be bugs.) Notes:
1. Cache also signals hit on
bus (Figure 2). 2. Cache also
provides dirty status, and, if
requested, the block (Figures
4,5).

(Clearv'dirty status is omitted for simplicity; writing a block makes it dirty.)

Synchronization
Memory

Full
Br°adcast E 3 E Cache

, , - - E
E_ -I I s

i Crombtr

~]========" ...
Main Memory

Figure 11. Aquarius Architecture.
PP = Prolog (or Program) Processor
FPP = Floating Point Processor
IOP = I/O Processor

429

identical dual directories in the context of a write-in, bus-
oriented system (Feature 3; J. Goodman, pers. comm. 1985).

F.2. S ta tes . Censier and Feautr ier suggested direct cache-to-
cache transfer, or, in our terms, the source function, as a useful
feature for a write-in sys tem when one cache alone ha s the la tes t
version of a block requested by another cache. Goodman and
Frank also independently reinvented this concept in the context
of a broadcast system, applying it to the dirty write state.

' Goodman (1983). In this scheme, a cache becomes the source of
a block when it alone h a s the latest version of the block - the
block is dirty there - which occurs in th is protocol only when a
cache has wri t ten the block twice. Specifically, when a dir ty
block is transferred from one cache to another , it is also f lushed
to memory, so it arrives clean. In addition, the first write to the
block goes through to memory and inval idates the block in all
other caches - since the original Mul t ibus does not allow an
invalidation signal while a block is fetched - so the block still
remains clean. The block becomes dirty only on the second
write, at which t ime the cache becomes the source of the block.

Frank (1984). The Synapse computer ha s its own proprietary
bus, which enables invalidation concurrent with block fetch
(Feature 4). Consequently, the clean write s ta te is not useful
here, as it is under Goodman's protocol, where it is the resul t of
the invalidation write-through.

Papamarcos, Patel (1984). This scheme, however, uses the clean
write s ta te for fetching unshared data on a read miss, since no
other process will be us ing the da ta (Figure 1; Fea ture 5). If the
block is not written, aRer all, it will not need to be f lushed to
memory when purged. In addition, if t he block is not wri t ten,
the cache would not need to provide the block to another cache.
However, Papamarcos and Patel do not consider the last option,
for under their scheme, if a cache has a block, it also has source
s t a tus for the block. This extends the source function from dir ty
to clean states, bu t is useful only i f fetching from another cache is
significantly faster than fetching from memory, since the fetch
m a y interfere with the source's processor.

Yen, Yen, Fu (1985). The s ta tes here are those of Goodman.

Katz, Eggers, Wood, Perkins, Sheldon (1985)i-This scheme intro-
duces the dirty read state. The write-dirty-source s ta te is con-
verted to read-dirty-source in a cache when ano ther cache
requests read privilege for the block. The block r ema ins dir ty
because it is not flushed when is transferred. The reason for not
f lushing the block is t ha t if the bus or memory does not support
concurrent f lushing at all, or at the speed of the caches, the f lush
will require an extra t ransfer to memory, or will slow down the
cache-to-cache transfer, respectively (Feature 7).

Our Proposal. This scheme includes both clean and dirty source
states, for the reasons already discussed, and in addition intro-
duces the lock state. The lock s ta te carries the concept of s ta te
information beyond read/write privilege to tha t of lock privilege,
and distr ibutes its location and control among the caches, con-
t inu ing the evolutionary t rend of full-broadcast cache protocols
(Feature 2). The lock-waiter state is also proposed, to inform a
cache when it mus t broadcast the unlocking of a block.

F.3. F e a t u r e s . Feature 1. These features were discussed above.

Feature 2: Fully-Distributed State Information. The advan t age
of fully dis t r ibut ing the s tate information is t ha t it enables a
cache to respond quickly to requests , the information is consoli-
dated in jus t a few bits per block f rame ([log2#states|), and the
s t ructure of memory is simplified. Frank, however, does not
fully distr ibute the source s ta tus , ma in ta in ing a source bit in
ma in memory, which indicates whether memory is the source or
not. In contrast , Goodman's innovation is to fully dis t r ibute
source s ta tus , and when a cache is the source, it informs memory
not to provide the da ta when the cache services a bus request.
Our proposal, in addition, dis tr ibutes lock status.

Feature 3: Directory Duality. Goodman and F rank reestablish
the classic approach of identical dual directories, and Katz et al.
introduce a single, dual-ported-read directory (as well as da ta-
store), which reduces the hardware (Borriello et al. 1985).

However, under both schemes, interference between bus accesses
and processor accesses to the directory information m a y be gen-
erated when the processor writes to the cache, for the s t a tus of
the written block mus t be updated to dirty at t ha t t ime. Bus
requests will be bombarding a cache continually, and according
to Smith (1985), the frequency of writes may reach 35% of a
processor's memory references. Therefore, one m a y wish to
reduce, or el iminate, the interference of upda t ing dir ty s ta tus .

Two methods of reducing th is interference are to update the dir ty
s t a tu s only when it changes; or else in a lower performance
design (Borriello et al.), to have the read and write cycles on the
cache directory al ternate. Another option is to e l imina te the
interference entirely by hav ing non-identical directories. In th is
case, only the processor directory m a i n t a i n s clean/dirty s ta tus ,
for this information is accessed by the cache's bus-controller only
when the cache da ta is accessed by the controller. Accordingly
we ask, Is the frequency of changing a block d i r ty-s ta tus - the
frequency of a write hi t to a clean block - great enough to war-
r an t non-identical directories? Bi tar (1985) derives a formula for
th is frequency, then derives es t imates of .2% to 1.2% from
Smith ' s data. Thus, non-identical directories are probably not
warranted on this ground.

Under our proposal, jus t the same, non-identical directories
would also e l iminate the interference of upda t ing lock-waiter
s ta tus by the cache's bus-controller (Section E.3), so they m a y
still be war ran ted in this scheme.

Feature 4: Bus Invalidate Signal. Whereas Goodman invali-
dates a block by writ ing through to memory qSection F.2),
subsequent designers a s sume tha t the bus allows explicit invali-
dation. Specifically, on a write miss t he inval idate s ignal allows
inval idat ing while reading the block. While on a write hit to a
block for which the cache ha s only read privilege, the same sig-
na l allows a pseudo-write (or pseudo-read) t ha t inval idates the
block in other caches (and in Frank ' s protocol, clears the source
bit in memory), bu t does not ini t iate a memory cycle; t h u s it can
be limited to one bus cycle. Even so, the fractional increase in
bus traffic due to the wri te- through is smal l if cache blocks a re
reasonably large, say n bus-wide words. This is because the
increase appears to be much less t h a n I /n , as es t imated from
Smith ' s da ta (Bitar 1985).

Feature 5: Fetching Unshared Data for Write Privilege on Read
Miss. The last four protocols allow a block to he fetched for write
privilege at a read miss in order to fetch unsha red data . This
does not reduce concurrent access to the da ta since the da ta is
unshared; and if the da ta is subsequent ly wri t ten by the proces-
sor, the bus will not need to be accessed a t t ha t t ime in order to
ga in write privilege. Fur thermore , the clean write s ta te is used
here, as mentioned earlier, to avoid a f lush to memory if the
block is not writ ten (Papamarcos and Patel, Section F.2).

Papamarcos and Patel introduced the fetching of unsha red da ta
for write privilege by us ing a dynamic determinat ion of shar ing ,
namely, whether another cache current ly ha s a valid copy or not.
This uses an open collector hit line as do the Dragon and Firefly
(Section D.1). Yen et al. and Katz et al., on the other hand, sug-
gest a static determinat ion of sharing, which is somewha t more
complicated. First, the processor m u s t have a special ins t ruct ion
to read da ta for write-privilege, which will affect a cache access
only if the access is a miss. Second, the compiler m u s t employ
th i s read instruction in all reads of unsha red data.

Similar to Feature 4, the fractional increase in bus traffic gen-
erated by a protocol t ha t does not fetch unsha red da ta for write
privilege a t a read miss appears to be much less t h a n 1/n, for

430

Table 1. Evolution of Full-Broadcast, Write-In (Write-Back), Cache-Synchronization Schemes

States Good. Frank Pap.Pat. Yen Katz Our
_...(Read = shared-access privilege~ Write = sole-access privilege) _ (1983) (1984) (1984)__ (1985) (1985) proposal

(Regarding states: N -~ non-souree state; S -- source state)
Invalid N N N N N N

Read
Read, Clean
Read, Dirty

Write, Clean
Write, Dirty

Lock, Dirty
Lock, Dirty, Waiter

Features

1. Cache-to-cache transfer; serialization of conflicting single ~/
reads and writes

2. Fully-distributed state information: Read / write / lock / dir- RWDS
ty / source (R/W/L/D/S) (faster response of caches; greater con-
solidation of state information; simpler memory)

3. Directory Duality: 2 Identical Dual (ID) / 2 Non-Identical ID
Dual (NID) / 1 Dual-Ported-Read (DPR). (DPR reduces the
hardware; NID eliminates interference due to updating status -
dirty status is only in processor directory, waiter status is only
in bus directory)

4. Bus invalidate signal: No invalidation write-through
On write hit: Gain write privilege with a one-cycle invalida-
tion (instead of a word-write to memory)
On write miss: Gain write privilege while fetching the block
(instead of a word-write to memory)

5. Fetching unshared data for write privilege on read miss:
Unshared status is determined statically (S) or dynamically
(D) (save bus arbitration and invalidate cycle i f the data is sub-
sequently written)

6. Processor atomic read-modify-write instruction: Serialize
accesses

7. Flushing on cache-to-cache transfer: Flush block (F), or do F
not flush block (NF); transfer clean/dirty status with block (S)
(F is desirable unless bus and memory do not support iC N F re-
quires transfer of clean/dirty status i f source status is being
transferred on a processor read and the block may be clean or
dirty - s e e source states above)

8. Number of sources for read-prlvilege block: Allow multi-
ple sources, thus a source for a read-privilege block must al-
ways arbitrate before providing the block (ARB); allow loss of
(single) source, forcing the block to be fetched from memory
(MEM); have last fetcher become source, allowing least-
recently-used replacement across caches (LRU)

9. Writing without fetch on write miss: (no fetches for process
state blocks)

10. Efficient busy wait

Table 1 Notes
1. A source cache provides data only for a write-privilege re-

quest, not a read-privilege request.
2. No specification is given as to whether the directories are

identical or not.

N N
N N S N S

S S

N S N S S
S (S) I S S S S

S
S

~/ v' x/ ~/ x/

RWD RWDS RWDS RWDS RWLDS

ID ID 2 DPR NID

D S S D

NF F F NF,S NF,S

ARB MEM LRU,
MEM

431

blocks hav ing n bus-wide words (Bitar 1985).

Feature 6: Processor Atomic Read-Modify.Write Instruction.
There are several ways to implement processor atomic read-
modify-write instructions on (hard) a toms so tha t accesses are
serialized. We consider four methods. Only the first requires
going through to memory, bu t the first three do require tha t the
processor inform the cache, at the s tar t of the instruction, t ha t
the instruction is an atomic read-modify-write.

The first method requires a read-modify-write instruction to
access and hold the main memory unit t ha t contains the ta rge t
atom, throughout the operation (Rudolph, Segall 1984).

The second method, apparent ly tha t of Frank, requires t ha t the
a tom be contained entirely on one block (appropriate for write-in,
anyway), t ha t the block be fetched for sole-access (write)
privilege at the beginning of the read-modify-write instruct ion,
and tha t the cache (or cache module) be held th roughout the
operation. Papamarcos and Patel propose a variant : if t he cache
does not have write privilege for the block at the beg inn ing of
the operation, the bus is gotten and held through to the write, at
which t ime write privilege for the block is obtained as usual . We
do not see an advan tage in this special case, over tha t of fetching
the block for write privilege at the beg inn ing of the operation,
while the d isadvantage is t ha t the bus is held longer t h a n
needed. We also point out tha t a processor read instruction t ha t
is used for fetching unsha red da ta for write privilege (Yen et al.,
Katz et al.) will not in general work here, since it only applies on
misses. Ju s t the same. Katz et al. are actually p lann ing to have
their cache, ra ther t h a n their processor, execute test-and-set in a
manne r similar to tha t depicted for F rank ' s processor, and they
are not concerned with implement ing other atomic read-modify-
write instruct ions (R. Katz, personal communicat ion 1986).

Under the third method, the cache does not fetch the block for
write privilege unt i l the write, nor does it hold the bus in the
meant ime. So if the write generates a miss, it m e a n s tha t t he
block was stolen between the read and the write, and atomicity
is violated. Thus the cache raises an exception t h a t causes the
processor to abort the instruction, and the cache aborts the pend-
ing write request.

The fourth method is to use the cache lock.state to lock jus t the
target a tom (Section E.3).

Feature 7: Flushing on Cache-to-Cache Transfer. W h e n
transferr ing a block from one cache to another , there are three
advantages to f lushing it.
• If the block is dirty: Reliability in the face of subsequent cache

failures is increased.
• If source s t a tus is being transferred on a processor read and

the block may be clean or dirty: Clean~dirty status need not be
transferred.

• In our protocol, only one output operation is needed (Sec. E.2).
Keep in mind tha t a protocol supports cache-to-cache t ransfer
only from a cache hav ing source s ta tus for the block (indicated a t
the top of the table).

In view of this, if a source can have either clean or dirty status
and source s t a tus can be transferred on a processor read,
(Papamarcos and Patel, Katz et al., our proposal}, t hen
clean/dirty s t a tus should be transferred along with the block,
unless the block is flushed to memory while t ransferred - as it is
in the Papamarcos and Pate l scheme. Papamarcos and Patel,
jus t the same, flush only dirty blocks, so clean/dirty s t a tu s mus t ,
in effect, be put on the bus in their protocol, anyway. If memory
can keep up with the f lushes and if available bus codes are
scarce, it may be useful to flush all blocks so tha t two different
codes are not needed for cache-to-cache transfer.

Due to its advantages , f lushing should be implemented if it can
be done concurrently with the t ransfer at the speed of the caches.

Even so, we depict the non-flush option in order to elucidate the
more complex option tha t will be necessary under m a n y buses.
We also point out tha t the need to t ransfer clean/dirty s t a tu s in
the Katz et al. protocol can be el iminated by giving their clean
write state non-source status. (This state is entered only on a
read miss to unshared data.) This eliminates an inconsistency in
the protocol as well, namely, giving the clean write state source
status, but not doing the same for a clean read state. For the
reason for a clean source state is that fetching from another
cache is significantly faster than fetching from memory
(Papamarcos and Patel, Section F.2).

Feature 8: Number of Sources for Read-Privilege Block. Under
Papamarcos and Patel, if a block is in any cache, it is fetched
from a cache, ra ther t h a n from memory. Yet if the block h a s
read s ta tus , several caches m a y have the block, so any such
cache m u s t arbi t ra te in order to select the actual source. This is
done so tha t only one cache m a y interfere with its processor, and
if necessary, to limit the n u m b e r of devices dr iving the bus.
Arbitration slows down the cache-to-cache transfer, however,
increasing the bus traffic, as well as the requester wait.

Under Katz et el. and our proposal, in contrast , arbi trat ion of
potential sources is never required. Yet, if a block h a s read
s ta tus in several caches and the source purges the block (f lushing
it to memory if dirty), there will be no source cache for the block.
So the next fetch of the block m u s t be serviced by memory ~Fig-
urea 2,3), a d i sadvantage if a fetch from memory is slower t h a n
cache-to-cache t ransfer with arbitration. If LRU replacement
tends to hold across caches, however, our protocol can t ake
advantage of it since the last cache to fetch a block a lways
becomes the new source, reducing the chance of losing a source.

Feature 9: Writing without Fetch on Write Miss. Under write-
without-fetch, if the processor is going to write all of the da ta in
a block, the block need not be fetched on a miss, t hough the bus
mus t be accessed in order to inval idate the block in o ther caches,
as usual. In order to implement this, the compiler m u s t know
when a processor will write all of the da ta in a block. This m a y
occur in initializing data, bu t more important ly , in saving state
at a process switch. In the Aquar ius system, for example, we
anticipate frequent process switching, hence the switching m u s t
be very efficient. The processor m u s t also have a way to inform
the cache of this kind of write.

Feature 10: Efficient Busy Wait. Among the protocols shown in
the table, only ours m a k e s it clear how efficient busy wait can be
achieved (Section E.4).

Feature 11: I/O Transfer. Although not itemized in the table, a
protocol must explicate how I/O is performed (Section E.2).

G. Conclusion

G.1. Feature Evaluation. The innovations that have been
described are shown in Table 2. The extent to which any feature
improves performance needs to be evaluated for the particular
system of interest. The system of immediate interest to us is the
Aquarius multiprocessor Prolog architecture, whose design is
being developed (Dobry, Despain, Patt 1985). Figure 11 shows
the two switch-memory systems of the architecture. The upper
one, hav ing a single bus, contains the program synchronization
data, while the lower one, hav ing a crossbar, hand les instruc-
tions and non-synchronization data.

A separate switch-memory system for synchronizat ion was pro-
posed because we intend to implement Proiog predicates (pro-
cedures) as l ightweight processes, thereby genera t ing m a n y
medium-grained, l ightweight processes and m a n y synchroniza-
tion operations in the system. Consequently, the speed advan-
tage of full broadcast will be of great value. Bu t in order to
avoid the h igh cost of implement ing full broadcast in a h igh-
concurrency switch, such as a crossbar, we will implemen t broad-
cast in a separate sys tem using a single bus, as shown. The

432

caches in tha t system will follow a full-broadcast synchronizat ion
protocol, and the options presented in this article will be
evaluated as to their effect on performance in this cache system.
Furthermore, all hard atoms will reside in the upper sys tem,
thereby simplifying the lower cache system. In particular, t he
latter will not need to serialize accesses to a block, bu t will only
need to provide the latest version of each block.

G.2. Ove rv i ew . We have seen tha t m a n y options for broadcast
cache-synchronization schemes have been proposed since
Goodman's paper in 1983. We have further seen t ha t a cache
can play a crucial role in efficient busy-wai t locking and wait ing,
and we believe tha t our proposals of the lock state and busy-wai t
register are promising, especially in the synchronization system
of the Aquarius architecture. In this system, an improvement in
the efficiency of busy-wait locking and wai t ing m a y offer a
significant improvement in performance since the resul t ing
traffic will consti tute a relatively large fraction of the whole in
tha t system. Finally. we look forward to obtaining performance
statistics for our system, as well as avai l ing ourselves of the
much-needed work of others in this direction (e.g., Papamarcos,
Patel 1984; Archibald, Baer 1985; Vernon, Holliday 1985).

Acknowledgements

The first author is grateful to Peter Denning for providing the opportun-
ity to pursue this research at RIACS, summer 1985. We thank Yale
Patt, Jim Goodman, Vason Srini, Steve Melvin, and George Adams for
valuable insights, stimulating ideas, and helpful criticism. We also
appreciate interactions with Alan Smith, Randy Katz, Mark Hill, David
Wood, Susan Eggers, Jim Archibald, Mike Karels, and Chien Chen, as
well as the support of the other members of RIACS, the Aquarius team
at Berkeley, and the U.C. Computer Science Division staff.

This work was supported by RIACS grant NAS 2-11530, and DARPA
(DoD~ order 4871. monitored by Naval Electronics Systems Command
under contract N00039-84-C-0089.

References
Several Abbreviations:

CS Computer Science
IEEE-TC IEEE Transactions on Computers
ISCA International Symposium on Computer Architecture
NCC AFIPS Conf. Proc., National Computer Conference
TR Technical Report

Archibald, J., Baer0 J-L. 1984. "An economical solution to the cache
coherence problem." 11th ISCA. 1984, 355-362.

Archibald, J., Baer, J-L. 1985. "An evaluation of cache coherence
solutions in shared-bus multiprocessors." Oct. 1985. TR 85-i0-05, CS
Dept., U. of Washington, Seattle, WA 98195.

Bell et al 1985. Bell, C.G., Burkhart, HB. Ill, Emmerich, S., Anzelmo,
A., Moore, R., Schanin, D., Nassi, I., Rupp, C. "The Encore contin-
uum." NCC, 54, 1985, 147-155.

Bitar, P. 1985. "Fast synchronization for shared-memory multiproces-
sors." Dec. 1985. TR 85.11, Research Institute for Advanced Com-
puter Science, NASA Ames Research Center, MS 230-5, Moffett Field,
CA 94503. Several errors in the TR have been corrected above.

Borriello et aL 1985. Borriello, G., Eggers, S., Katz, R., McKinley, H.,
Perkins, C., Scott, W., Sheldon, R., Whalen, S., Wood, D. "Design and
implementation of an integrated snooping data cache." Jan. 1985.
TR UCB/CSD 84/199, CS Division, U. of California, Berkeley, CA
94720. Sequel: Katz et al. (1985).

Censier, L.M., Feautrier, P. 1978. "A new solution to coherence prob-
lems in multicache systems." IEEE-TC, C-27(12), Dec. 1978, 1112-8.

Dobry, T.P., Despain, A.M., Patt, Y.N. 1985. "Performance studies of
a Prolog machine architecture." 12th ISCA, 1985.

Dubois, M., Briggs, F.A. 1982. "Effects of cache coherency in mul-
tiprocessors." IEEE-TC, C-31(11), Nov. 1982, 1083-1099.

Frank, S. 1984. "Tightly coupled multiprocessor system speeds
memory-access times." Electronics, Jan. 12, 1984. Description of the
Synapse computer system.

Goodman, J.R. 1983. "Using cache memory to reduce processor-
memory traffic." lOth ISCA, 1983, 124-131. Update: TR 580, CS
Dept., U. of Wisconsin, Madison, WI 53706.

Hill, M.D., Smith A.J. 1984. "Experimental evaluation of on-chip
microprocessor cache memories." l l th ISCA, 1984, 158-166.

Tab l e 2. I n n o v a t i o n Summary

Early Schemes (Sections F.1, F2, E.4)
• Class ic (pre-1978) - w r i t e - t h r o u g h

[] Identical dual directories
[] Broadcast an invalidation request on every write

• Censier, Feautrier (1978) -par t ia l -broadcas t , wri te- in
[] Cache-to-cache t ransfer for dirty blocks
[] Primitive efficient busy wait - loop on block in cache

Full Broadcast, Write-In (Sections F, E.3, E.4)
a G o o d m a n (1983)

[] Identical dual directories
o Fully-distributed read/write/dirty/source s t a tus

Cache-to-cache t ransfer (source s tatus) for dirty blocks
Flushing on cache-to-cache t ransfer

[] Serializing conflicting single reads and writes
a F r a n k (1984)

o Bus invalidate signal
[] No flushing on cache-to-cache t ransfer

• Papamarcos , Patel (1984)
[] Cache-to-cache t ransfer (source s tatus) for dean blocks
O Fetching unshared da ta for write privilege on read miss -

dynamic determinat ion of unshared s t a tus us ing bus hit line
Multiple sources for read-shared block; a read-privilege
source arbitrates before providing a block

[] Serializing atomic read-modify-writes
• Yen, Yen, Fu (1985)

o Fetching unsha red data for write privilege - static determi-
nation of unshared s t a tus us ing program declaration

• Katz, Egge r s , Wood, P e r k i n s , S h e l d o n (1985)
c3 Cache-to-cache t ransfer for read request, wi thout f lushing -

dirty read s tate
[] Dual-ported-read directory and data-store
D Single source for read-shared (dirty) block - fetch from

memory if source purges block
• Our p r o p o s a l

[] Efficient busy-wai t locking - lock state
[] Efficient busy-wait ing - lock-waiter state, busy-wait register

Analysis of interdirectory interference
Single source for read-shared block, bu t last fetcher becomes
source, allowing LRU replacement across caches

[] Writ ing without fetch on write miss, to save process s ta te

Write-In/Write-Through Schemes (Sections D.I, E.4)
• Write-in for unshared data, w r i t e - t h r o u g h for shared da ta
a D r a g o n , Firef ly (McCre igh t 1984; Arch iba ld , B a e r 1985)

[] Dynamic determinat ion of shared s ta tus us ing bus hit line
• R u d o l p h , Segal l (1984)

[] Dynamic determinat ion of shared s t a tus us ing interleaving of
accesses among the processors

[] Efficient busy wait

Katz et al. 1985. Katz, R.H., Eggers, S.J., Wood, D.A., Perkins, C.L.,
Sheldon, RG. "Implementing a cache consistency protocol." 12th
ISCA, 1985, 276-283.

McCreight, E.M. 1984. "The Dragon computer system." NATO
Advanced Study Institute on Microarchitecture of VLSI Computers.
Urbino, Italy, 1984.

Norton, R.L., Abraham, J.A. 1982. "Using write back cache to
improve performance of multiuser multiprocessors." Intl. Con~ on
Par. Proc., 1982, 326-331.

Papamarcos, M.S., Patel, J.H. 1984. "A low-overhead coherence solu-
tion for multiprocessors with private cache memories." 11th ISCA,
1984, 348-354.

Patterson, D.A. 1985. "Reduced Instruction Set Computers," CACM,
28~IL Jan. 1985, 8-21

References are continued following Figure 9.

433

