
A Variation on "Take"

Freder ich Macash i l l
LPA Sol%ware, Inc.
290 Woodcliff Drive
Fairport , NY 14450

Tel: 716-248-9600 (Fax: 716-248-9100)

The dyadic mixed primitive function Take can
be used to selectively take data out of an array or
to increase the size of the dimensions of an array.
With the exception of a scalar, Take cannot be used
to increase the rank of the array.

When "over taking" with Take the array is
filled out with zeroes if it is a numeric array and
blanks if it is a character array. The left; argument
is the size of each dimension to take, the, right
argument is the variable which is to be taken.

When over taking a mixed array we rur~ into
difficulty. Should the system be filling out with
zeroes or blanks? If so why? Is there any logical
reason why we should be filling out with zeroes and
blanks? The assumption is that zero and blank-axe
the typical representatives of the classes of data
called numeric and character. But this may not be
the case.

View data as being alphabet soup. The letters
are floating in a background "substance." When we
take our data from the mixture we will take with
the data the background in which the data lies.
APL assumes this to be blanks. This is not neces-
sarily so. Similarly, numeric data may be taken
from an environment where the background could
he anything but zero.

To solve this problem it is proposed that a
system variable, OFILL, be introduced. This would
be a two-element vector where the first element is
the numeric fill item and the second clement the
character fill item. By default these would be zero
and blank.

From the above:

OFILL÷ - 3 2 7 6 8 '*'

A÷ 1 2 3

5÷A

1 2 3 -32758 -32758
B÷ ' ABC'

5÷B

ABC**

Similarly, Expand also pads out data %with a fill
charac te r :

1 0 1 0 1 0 \ B
A * B * C *

This enhancemen t to the language would make
Expand and Take more general in nature . •

GDDM Emulator for
Dyalog APL for Windows

A n d r e i K o n d r a s h e v
Lingo Allegro U_S.A., Inc.

203 N. LaSalle Street , #2100
Chicago, IL 60601 USA

E-maih 71303.3224@CompuServe .corn

This ar t icle presents the exper ience of develop-
ing a graphics auxi l iary processor for Dyalog
APL/W in the MS Windows env i ronment using
Dynamic Data Exchange (DDE) technology. The
auxil iary processor implements a subset of the IBM
Graphical Data Display Manager (GDDM) tha t sup-
ports the operat ion of IBM APL2 G R A P H P A K
under Dyalog APL/W.

Dyalog APL for Microsoft Windows by Dyadic
Systems Ltd. [1] is a well- implemented t rue Win-
dows application. APL/W gives an APL program-
mer a Bri t ish dialect of APL2 combined with a
powerful and convenient envi ronment . However ,
many impor tant Windows funct ions have not been
implemented in the first release, in use at Lingo
Allegro. For example, graphics is not supported. It
will have to be included in future versions. As we
had graphical packages which we would like to run
under Dyalog APL/W, we had to find some way to
write our own graphics extension for APL/W.

Dyalog APL/W offers two ways to wri te exten-
sions. The first way is auxi l iary processors which
are built into the APL system and appear in the
workspace as external defined functions. The
second is auxi l iary processors which arc connec ted
to the APL system via shared variables. The
shared variables technique is implemented in
Dyalog APL/W with the help of the DDE protocol ,
which is a s tandard mechanism for in terprocess
communicat ion in Microsoft Windows. We have
chosen the second method, because this is a uni-
versal approach tha t permits us to run our exten-
sions with APL/W and o ther Windows programs
that support DDE sessions. Additionally, the DDE
approach doesn' t requi re special l ibrar ies and a
compiler; we could use the s tandard Microsoft Soft-
ware Development Kit (SDK)_ As we found out
la ter on, this approach also requires less memory.

The DDE protocol is based on the cl ient-server
model and is a set of messages and rules tha t spec-
ify the method of t ransfe r r ing data f rom one appli-
cation to another th rough common global memory
blocks_ There are three possible kinds of l ink
between a client and a server: cold, warm, and hot.
These types differ by the act ions of a se rver when
its data are changed.

When we made a decision regard ing the kind of
graphics we would like to have, we chose the

AP-L Quote Quad 7

http://crossmark.crossref.org/dialog/?doi=10.1145%2F173834.173838&domain=pdf&date_stamp=1993-06-01

