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ABSTRACT
This paper considers the problem of Multi-Geography Route
Planning (MGRP) where the geographical information may
be spread over multiple heterogeneous interconnected maps.
We first design a flexible and scalable representation to model
individual geographies and their interconnections. Given
such a representation, we develop an algorithm that ex-
ploits precomputation and caching of geographical data for
path planning. A utility-based approach is adopted to de-
cide which paths to precompute and store. To validate the
proposed approach we test the algorithm over the workload
of a campus level evacuation simulation that plans evacu-
ation routes over multiple geographies: indoor CAD maps,
outdoor maps, pedestrian and transportation networks, etc.
The empirical results indicate that the MGRP algorithm
with the proposed utility based caching strategy significantly
outperforms the state of the art solutions when applied to a
large university campus data under varying conditions.

1. INTRODUCTION
Many emerging applications such as integrated simula-

tions, gaming, navigation, and intelligent transportation sys-
tems require path planning over multiple interconnected ge-
ographies. We refer to the problem of path planning over
such geographies as multi-geography route planning (MGRP).
The goal is to determine the least cost weighted paths from
sources to destinations where sources and destinations may
reside in different geographies (described in multiple rep-
resentation paradigms). These geographies may be hetero-
geneous, may represent space using different models (raster
versus vector representations), different coordinate represen-
tations, and so on.
Our primary motivation to study the MGRP problem

comes from our research in the emergency response domain
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via the RESCUE1 and SAFIRE2 projects. During emer-
gencies first responders have to quickly and safely navigate
through unfamiliar spaces to conduct search and rescue op-
erations. Today, agencies are typically hired to conduct
offline site surveys of public and critical infrastructure to
collect GIS information information such as location of haz-
ardous materials, ventilation structures, entry/exits and to
create detailed site maps for planning; this process is ex-
pensive, time-consuming and often incomplete. In contrast,
a real-time route planning system (enabled by MGRP) will
help responders navigate through spaces/structures, to vic-
tims and stay in touch with each other.

Consider another example of a meta-simulation platform
that models a campus level evacuation triggered by an ex-
treme event and conducts detailed what-if analyses to under-
stands the efficacy of campus response processes. Individu-
als in campus buildings will exit their respective buildings
via stairwells and proceed to preplanned evacuation zones or
other destinations through the pedestrian networks. They
may proceed to parking lots or collect at different “transit
points” to be transported to safe regions using public trans-
port. The building data needed to model this evacuation
may be in the form of floor plans (raster or vector data),
the outdoor networks may be modeled in a transportation
simulator using a graph representation. The building infor-
mation, in turn may be stored in CAD database which con-
tains information about the floor plans of say 500 buildings.
To enable rapid evacuation, we need to identify appropriate
paths/exits within buildings and routes on campus - actual
shortest paths may require navigation through buildings and
across areas on campus that are not actually part of a pedes-
trian network (e.g. across a field). Likewise, specialized sim-
ulators and geography representations may need to be incor-
porated to model other constraints - e.g. chemical release
that occurs as a secondary effect of the primary disaster.

Building the capability of the meta-simulator to run di-
verse component simulators in consonance in the context of a
task raises many challenges. One such challenge is the ability
to do path planning over diverse geographies, i.e., the abil-
ity to find the best path from say inside a large building to
some other location on campus. Such a least cost path may
require an agent to exit the building via a specific exit, go
through the pedestrian network, and pass through other re-
gions and buildings. MGRP can be incorporated into such a
simulation integration platform to model activities in multi-
ple geographies, e.g. evacuation paths from building through

1http://www.itr-rescue.org
2http://www.ics.uci.edu/∼cert/safire



the campus to outdoor transportation corridors and support
multiple concurrent processes through geographies, e.g. oc-
cupant evacuation and first responder activities.
A straightforward approach is to integrate the multiple

geographies into a single homogeneous map and then use
traditional path planning solutions, such as Dijkstra’s and
Bellman Ford algorithms [10, 16, 23] or A* [25]. Depending
on the number and size of the geographies, planning across a
single homogeneous representation can be computationally
expensive and inefficient. In fact, such integration, when
feasible, requires significant manual effort (e.g., map confla-
tion) – this is a significant drawback in emergency response
context where rapid route planning may be needed over mul-
tiple independent maps. To overcome some of the problems
of large homogeneous graphs, hierarchical techniques like
HEPV [14, 15], HWA [7] or HiTi [17] can be applied. Such
hierarchical techniques consider graph-subgraph hierarchies
by dividing a large graph into fragments and pushing com-
mon nodes between fragments to the higher level [14, 15],
while a few others use hierarchical techniques to provide
faster planning in game grids [5, 6]. We discuss some of
these techniques in more details in Section 2.
The second strategy (one adopted in this paper) is to de-

velop a federated approach that does not convert the multi-
ple heterogeneous geographies into a single map. In particu-
lar, we adapt the existing connectivity relationships between
different geographies to create a flexible multi-geography
overlay through the notion of “anchor points”. A least-
cost path is constructed by a combination of least-cost path
across geographies. There are several advantages of such
an approach. First, it allows individual geographies to be
treated as “black-boxes” - these geographies could may been
created for different purposes by different experts. E.g.,
network representation for traffic planning and congestion
control, raster/grid cell representation for building evacu-
ation etc. Second, it allows each representation and map
to evolve independently without requiring translation to a
common grid or graph representation. For instance, office
spaces within a building can be reconfigured in a raster grid,
outdoor paths/obstacles can be added or removed in a vector
graph. Third, it promotes better reuse of already developed
map data and applications executing on it and encourages
separation of concerns. Applications such as route planning
can be executed without completely rewriting the domain
specific code (that use individual representations optimized
for those applications).
Specifically, the main contributions if this paper are:

• Design of a multi-geography overlay data structure
that logically connects pre-existing multi-geography rep-
resentations (Section 3).

• Design of a MGRP algorithm using the proposed multi-
geography data structure to support weighted least
cost path queries with sources and destination in differ-
ent geographies. The algorithm is designed to be able
to prune search space by using cached path segments
(Section 4).

• Formalization of the utility-based static precomputing
problem for MGRP, studying its complexity and devel-
oping a range of semi-greedy solutions for the problem
(Section 5).

• Empirical evaluation of our approaches in the context
of a large campus with multiple geographies at the
indoor and outdoor scale and comparing the proposed

solutions with existing caching techniques (Section 6).

We next cover related work in Section 2 and then formal-
ize the MGRP problem and the multi-geography model in
Section 3.

2. RELATED WORK
Traditional techniques for path planning include the Dijk-

stra and Bellman Ford algorithms [10,16,23]; optimizations
have been proposed for these basic shortest path algorithms
e.g. [12, 24]. Integration of different geographies for path
planning has also been studied in the context of real-time
robotic localization and navigation in indoor and outdoor
geographies. Hybrid and hierarchical representations [22] of
indoor/outdoor geographies have been explored [13, 20, 22]
and used for real-time simultaneous localization and map-
ping of robots, typically for smaller, well-understood spaces.
Grid based planning techniques, e.g. A*, popular in games,
simulations and robotic path planning etc. can be expen-
sive at high grid resolutions; optimization techniques such
as Fringe A* [4] and hierarchical approaches [5,6] have been
proposed. Other approaches utilize multi-resolution plan-
ning [3] and creation of topological maps on grids [2].

Related work in the data management community has fo-
cused on aspects of scalability [9,18,19,30], query optimiza-
tion, precomputation and caching. For instance, shortest
(least cost) paths have been used to support nearest neigh-
bor queries [21,26] in database applications. In [26] all pair
shortest paths are precomputed and stored using shortest
path quad-trees to aid processing k-NN queries. Early tech-
niques for hierarchical path planning, e.g., HEPV (Hierar-
chical Encoded Path Views) [14, 15] incurred high planning
costs (proportional to the total number of source and des-
tination border nodes). While precomputation and caching
can help with this, it is impractical in the multi-geography
scenario where there can be large number of geographies
and each geography can be large. To reduce precompu-
tation costs Shekhar et al. [11, 28] studied partial memo-
rization strategies including storing the costs of paths to
higher level nodes, or costs of all source shortest paths in
lower level subgraphs etc to study computation gain with
impact on storage. Similar materialization based techniques
for hierarchical representations have been explored by [8,17].
Caching common data across all geographies or caching all
paths within a geography is not sufficient in itself as the
number of geographies increases.

On the commercial side, shortest paths have also been
widely studied and used in intelligent transportation sys-
tems and web based map applications such as yahoo maps
and games [29]. Web-based map services typically imple-
ment approximate shortest paths; much effort is placed on
being able to render maps at multiple scales to answer user
queries. Typically, shortest paths are determined on either
on single large homogeneous maps, or on multiple resolutions
of the same underlying representation (e.g., graphs or grids).
Unlike existing web based route support systems, and intel-
ligent transportation systems that primarily focus on out-
door maps, multigeography path planning in our case must
integrate multiple indoor and outdoor maps that are het-
erogeneous and possibly overlapping. We believe our work
has the potential to enable a new level of navigation and
integrated travel systems that for example, combine road
networks with pedestrian networks and indoor spaces.



3. MULTI-GEOGRAPHY MODELING
In this section we describe a multi-geography model that

encapsulates different geographies connecting them topolog-
ically to provide a global view of the space. We start by cov-
ering issues related to individual geographies in Section 3.1.
We then explain possible hierarchical organizations of multi-
geographies in Section 3.2. Next in Section 3.3 we define
the concept of an overlay network and formalize the MGRP
problem. Finally, we cover the self-containment requirement
imposed by the algorithm on each geography, which enables
more structured and efficient path planning.

3.1 Individual Geographies
The Multi-geography G = {G1, G2, . . . , G|G|} is a set of

|G| geographies. Geographies in G are heterogeneous and
can be of varying formats and resolutions. They can have
overlapping regions representing the same regions in differ-
ent formats. For instance, there could be a pedestrian walk-
ing network map and a transportation network map, which
together cover different aspects of the same given region.
Each geography Gi has a type T [Gi] associated with it,

which can be a topological network, a raster image, or a
vector map. These different types of geographies represent
space differently. For instance, in the case of networks the
geography is represented through a set of nodes/vertices and
edges. Nodes represent geographical regions whereas edges
represent paths from one geographical region to another.
Associated with edges are weights that represent the cost
of traversal from one node to another. Networks are com-
monly used for representing transportation/pedestrian net-
works, roads, and so on.
In case of raster representation, a geography is represented

through a grid along a coordinate system. Each grid cell has
a resistance/cost that represents the cost of traversal of the
grid cell. Note that one could translate a grid representation
into a network representation by creating a node for each
grid cell and an edge between two neighboring grid cells. The
weights of the edges would be the resistance of moving from
one grid cell to another. Another representation is vector
maps in which geographical entities are represented using
polygons, lines, and points. Each map has a coordinate
framework. Examples of these are CAD and GIS maps.
Each geography Gi ∈ G has an associated concept of

points which are within the geography Gi. The exact rep-
resentation of point P ∈ Gi differs from geography to ge-
ography depending upon the type of the specific geography.
In a raster geography it is a grid cell, and in the case of a
network it is a node. In case of maps it is a point in the
coordinate system of the map. In addition a point can be a
named entity such as a building name or a room name within
a building. Similarly, each geography Gi ∈ G has a concept
of (direct) paths, or links, that exist within G between some
pairs of points Pi, Pj ∈ G. Each link ek has associated with
it the cost of its traversal wk. The links are directional, that
is, the cost of traversing a link in the direction from Pi to
Pj does not have to be equal to the cost of traversing the
same link from Pj to Pi.
Given the above observations, for any source and destina-

tion points Psrc, Pdst ∈ G we use the standard graph theo-
retic definition to define the least cost path LCP (Psrc, Pdst)
between the two points for that geography. It must be noted
the goal of MGRP is to find the least cost path, which can
be the fastest path, shortest path, least resistance path, and

so on. The criterion is reflected in the link weights. For
instance, for the shortest path the weight can be the actual
distance. For the fastest path it can be the time needed to
traverse the link.

3.2 Hierarchy
Geographies in G are hierarchically interconnected and or-

ganized into multiple layers L1, L2, . . . , LM . Each geography
G ∈ G belongs to a single layer/level in the hierarchy, de-
noted L[G]. The topmost layer L1 consists of several differ-
ent geographical maps of different regions from G. Geogra-
phies in lower layers are sub-regions of top level geographies.
For any geography Gi ∈ G the function P [Gi] returns the
parent geography of Gi. For each geography Gi ∈ L1, func-
tion P [Gi] return the logical root G0.

Lower level geographies are either of the same represen-
tations as the top-level geographies, or part of a structural
hierarchy. For instance, a raster grid of a room is a sub-
geography of the larger raster grid of a floor. An example of
structural hierarchy is an indoor grid map of a floor when
it is a sub-geography of an outdoor map that contains the
building footprint this floor belongs to.

While hierarchical layering can help in a more structured
and efficient path planning by providing guidelines as to
which geographies are next to be searched, hierarchies are
not a requirement for the algorithm proposed in this paper.
The proposed solutions will work irrespective of how we ar-
range the geographies in a hierarchy, e.g., it can work for
a single-level flat organization, as should become clear from
the subsequent sections. Of course, the efficiency of the algo-
rithm will depend on the choice of hierarchical organization.

Figure 1 illustrates a sample 4-level multi-geography. Here
the top level geographies are L1 = {G1, G2}. They represent
outdoor networks of two different regions. The second level
geographies in this case are buildings. Figure 1 shows only
two buildings G3 and G4, which are 3- and 2-story buildings
from G1 and G2 respectively. Nodes e and f represent the
exits to the stairwells on the first floor of G3 which are also
the exits to the outside of this building. Nodes c and d are
exits to the stairwells on the second floor, and a and b –
on the third floor. Each floor in this example is represented
as a network where nodes are room exits and exits to the
stairwells. E.g., G5 corresponds to the third floor of building
G3. A room is represented as an obstacle grid. E.g., G10 is
a room on the third floor of building G3.

3.3 Overlay Network
Adjacent neighboring geographies are naturally intercon-

nected with each other. Typically, each geography has a
set of entrance and exit points, such that a path can exit
a geography only at the exit point and enter the geography
only at an entrance point. For instance, the set of doors in
a building can serve as a set of entrance and exit points of
the building, assuming the only way to get inside a building
is through a door.

A point Pi in a geography Gi that has at least one direct
link to another point Pj in another geography Gj is called
an anchor point for that geography. Each geography Gi ∈ G
has a set of anchor points Ai = {Ai1, Ai2, . . . , Ai|Ai|}. Each
anchor point Aim ∈ Gi has at least one direct link to another
anchor point Ajn ∈ Gj in another geography Gj 6= Gi.

A directional link between two anchor points is called a
wormhole. Each pair of anchors Aim and Ain of the same
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Figure 1: Multi-Geography Model.

geography Gi are connected by the algorithm via an in-
ternal wormhole ek. It corresponds to the least cost path
LCP (Aim, Ain) between Aim and Ain. It should be noted
that this LCP (Aim, Ain) is the absolute least cost path, and
not the least cost path limited to only point from Gi. The
cost wk of link ek is the cost of traversing this least cost path.
A directional link ek between two anchors Aim ∈ Gi and

Ajn ∈ Gj from two different geographies Gi and Gj is called
an external wormhole. Wormhole ek has associated with it
the cost of its traversal wk. This cost, for instance, can rep-
resent the delay of taking stairs between two adjacent floors
in a building. While there can be multiple wormholes be-
tween geographies, we consider only the natural wormholes
as candidates. That is, wormholes are only considered be-
tween geographies that overlap or are adjacent in spaces,
e.g., stairs between adjacent floors. Specifically, a wormhole
can only exist between geographies Gi and Gj , if one is the
parent of the other, or if they are siblings and have a com-
mon parent, that is, if either Gi = P [Gj ], or Gj = P [Gi], or
P [Gi] = P [Gj ]. A wormhole can therefore be classified as
horizontal if it connects two siblings or vertical if it connects
a child and its parent.
A vertical wormhole most often connects two anchorsAim ∈

Gi and Ajn ∈ Gj that correspond to the same point P in
space via a link of cost zero. For instance, a building Gi and
outdoor map Gj can be connected to each other at a door-
way P of the building. For efficiency this case is represented
as a single anchor that has presence in both the child and
parent geographies.
The directional weighted graph formed by the set of all

anchors for all the geographies and all wormholes is called
the overlay network, or overlay, O for multi-geography G.
Overlay O will be employed to facilitate convenient path
planning between geographies. Observe that any least cost
path LCP (Psrc, Pdst) from point Psrc ∈ Gi to Pdst ∈ Gj ,
where Gi 6= Gj , can be represented as: LCP (Psrc, Pdst) =

LCP (Psrc, Aim)·
(

LCP (Aim, Ajn)
)

·LCP (Ajn, Pdst). Here,

Aim is an anchor point from geography Gi, and Ajn is an
anchor point from Gj . The least cost path LCP (Aim, Ajn)
can be computed completely inside the overlay network O,
abstracting out the details of intermediate geographies and
drastically improving the efficiency.
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Figure 2: Sample Graph Gi.
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Figure 3: Hierarchy and Overlay Network.
Wormhole connections from {Ai1, Ai2, Ai3, Ai4} to
{Ai5, Ai6, Ai7} are not shown for clarity.

Figure 2 illustrates the concepts defined in this section.
It shows a flat geography Gi that consists of an outdoor
road network (lighter shaded) and a room network of a 1-
story building with exits f , g, and h (darker shaded). Fig-
ure 3 demonstrates a possible overlay network, wherein also
the building is separated from Gi into a child subgeography
Gj . All anchors of Gi are interconnected via wormhole links
representing the corresponding (absolute) least cost paths.
Pairs of anchors Ai5, Aj1, and Ai6, Aj2 and also Ai7, Aj3 rep-
resent the same physical point in space. Even though logi-
cally they are separated, in the actual implementation they
are represented as a single node each for efficiency. Worm-
hole links among them are also not replicated.

3.4 Enforcing Self-Containment Property
The algorithm constructs overlays and, if needed, reorga-

nizes geographies in G such that the self containment prop-
erty for each geography Gi ∈ G holds.

Definition 1. Let I(Gi) be the geographic and overlay
information, including nodes/points and links/wormholes,
associated with geography Gi. A geography Gi ∈ G is self-
contained if for any two points PA and PB from Gi the in-
formation stored in I(Gi) is sufficient to compute the least
cost path LCP (PA, PB), without using I(Gj) for any other
geography Gj.

Note specifically that LCP (PA, PB) might not be fully in-
side Gi, but the information in Gi itself should still allow
discovery of such a path. Figure 4(a) demonstrates such an
example for two geographies G1 and G2 and points PA, PB ∈
G1. The absolute least cost path LCP (PA, PB) = PA �

A1 � A3 � A4 � A2 � PB is of length 6 and goes through
G1 and G2. But if we limit the least cost path to be only
inside G1, then LCP (PA, PB |G1) = PA � PB is of length 8.
The algorithm always enforces the self-containment prop-
erty and, as has been explained in Section 3.3, it adds a
wormhole link between anchors A1 and A2 of G1, as illus-
trated in Figure 4(b). This wormhole link is of length 4 and
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corresponds to LCP (A1, A2) = A1 � A3 � A4 � A2. Now,
to compute LCP (PA, PB) it is sufficient to use information
I(G1) only, since the wormhole link is a part of it.

3.5 Multi Geography Route Planning Problem
Given a hierarchical, layered multigeography G = {G1,

G2, . . . , G|G|}, where Gi ∈ G is self-contained and points,
Psrc ∈ Gi, Pdst ∈ Gj , Gi, Gj ∈ G, find the least cost path,
LCP (Psrc, Pdst).
Our approach to solving MGRP builds upon A*, a goal-

based path planning algorithm typically employed for grids
[25]. We chose to base our solution on the A* technique as
compared to traditional approaches such as Dijkstra due to
its greater efficiency in terms of the search space explored.
We develop extensions to A* to accommodate the hierar-
chical multi-geography model and implement multiple op-
timizations to improve performance and scalability without
sacrificing on correctness of the least cost path. Key ele-
ments of our approach to solve the multi-geography route
planning problem include:

1. Abstracting out details of individual geographies by
designing and utilizing overlay network.

2. Optimizing representation of the overlay network by
identifying and removing unnecessary nodes and links.

3. Using a hierarchical adaptation of A* algorithm to
prune the search space (Section 4).

4. Exploiting path caching strategies to help to further
improve the A* algorithm (Section 5).

We next describe the techniques that leverage the hierar-
chy to reduce the search space for more efficient path plan-
ning.

4. EXPLOITING HIERARCHIES
In this section we first present a brief overview of the

original A* path finding algorithm in Section 4.1. We then
describe our hierarchical A* approach in Section 4.2.

4.1 Original A* Path Finding Algorithm
In order to introduce the new A*-based approach let us

briefly revisit the original A* algorithm [25]. Its pseudo
code is illustrated in Figure 5. The task of A* is to find the
least cost path LCP (vsrc, vdst) from point vsrc to vdst. The
original A* algorithm maintains the set of already processed
nodes Sdone, which is initially empty, and the priority queue
Q of the nodes to examine next, which initially contains just
the source node vsrc. The key of Q is the value of f [v], ex-
plained next. For each node v the algorithm defines three
values d[v], h[v], and f [v]. The value of d[v] is the cost of
the least-cost vsrc ; v path observed thus far by the algo-
rithm. The value of h[v] is a lower bound on the least-cost

Find-Path-A-Star(vsrc, vdst)
1 Sdone ← ∅ // Set of processed nodes
2 Q← {vsrc} // Priority queue with f [v] as key
3 d[vsrc]← 0 // Least cost distance from vsrc
4 while NotEmpty(Q) do

5 x← Get(Q)
6 if x = vdst then

7 return ReconstructPath(vsrc, vdst)
8 Sdone ← Sdone ∪ {x}
9 for each y ∈ Get-Neighbors(x) do

10 if y ∈ Sdone then

11 continue

12 d← d[x] + LinkCost(x, y)
13 if y 6∈ Q then

14 Put(Q, y)
15 h[y]← Heuristic-Dist(y, vdst)
16 else if d ≥ d[y] then
17 continue

18 came from[y]← x
19 d[y]← d
20 f [y]← d[y] + h[y] // Est. dist. from vsrc to vdst via y
21 return failure

ReconstructPath(vsrc, vdst)
1 v ← vdst, Path← vdst
2 while v 6= vsrc do

3 v ← came from[v]
4 Path← v · Path
5 return Path

Figure 5: The A* Least Cost Path Algorithm.

v ; vdst path, which is often computed as the straight line
distance between v and vdst, or by using heuristics. Value of
f [v] is an estimated length of the least cost vsrc ; v ; vdst
path which is computed as f [v] = v[u]+h[v]. The algorithm
retrieves from the priority queue Q node x, with the lowest
f [x]. The algorithm is constructed such that when x is ex-
tracted from Q, its d[x] is guaranteed to be the cost of the
least cost path LCP (vsrc, x) in the graph and the path itself
can be reconstructed by invoking ReconstructPath(vsrc, x)
procedure. If x = vdst then the algorithm terminates by
returning the corresponding least cost path. Otherwise, it
examines each neighbor y of x inserting them in Q when
necessary and updating d[y], h[y], and f [y] correspondingly.

The original A* algorithm can be applied to the MGRP
problem. It will be able to successfully find the least cost
path LCP (Psrc, Pdst) for points Psrc and Pdst, provided that
it also takes into consideration the anchor nodes and worm-
hole links. However, the efficiency of the algorithm can be
significantly improved by taking into account the hierarchies
and by employing caching strategies, as will be discussed in
the subsequent sections.

4.2 Hierarchical Adaptation of A*
In this section we develop a hierarchical adaptation of

the A* path finding algorithm. The new solution employs
the hierarchy to prune the search space for achieving bet-
ter efficiency. Specifically, we will explore three techniques
to limit path search. The first one allows to skip certain
subgeographies from consideration, the second exploits the
least common ancestor of the source and destination geogra-
phies, and the third one limits the search space when passing
through a geography. All three techniques are implemented
as part of Get-Neighbors(x, vdst, GLCA) procedure used
by the A* algorithm which now takes in two additional pa-
rameters vdst and GLCA. Parameter GLCA will be explained



Get-Neighbors (x, vdst, GLCA)
// GLCA = LCA(G[vsrc], G[vdst])
1 R← ∅ // Result set
2 if IsExterriorAnchor(x) and vdst 6∈ Tree(G[x]) then

3 for each x � y ∈ ExteriorLinks(x) do

4 if y 6∈ P [GLCA] then
5 R← R ∪ {y}
6 else

7 for each x � y ∈ AllLinks(x) do

8 if y ∈ P [GLCA] then
9 continue

10 if vdst 6∈ Tree(G[y]) then

11 continue

12 R← R ∪ {y}
13 return R

Figure 6: Hierarchical Pruning.

later on in this section. The pseudo code of the procedure is
presented in Figure 6. We will use the example in Figure 1
to better illustrate the concepts described in this section.
Avoiding Certain Subgeographies. Assume that A*

is invoked to find the least cost path LCP (vsrc, vdst) from
vsrc to vdst. For instance, vsrc and vdst could be two cells in-
side the roomsG10 andG11 respectively in Figure 1. Assume
that at the current step the algorithm observes path vsrc ;

x and analyzes each of its neighbors y ∈ Get-Neighbors(x)
and the corresponding paths vsrc ; x � y. For instance, x
could be node e on Level 2 in Figure 1.
Suppose that x belongs to geography Gi. Let Gj be any

child subgeography of Gi. Let Tree[Gj ] be the subtree of
the hierarchy rooted at Gj . Subtree Tree[Gj ] contains Gj ,
its children, children of its children, and so on. In Figure 1,
Gi is G3 and Gj is G7.
Observe that if vdst 6∈ Tree(Gj) then there is no need to

go inside geography Gj . That is, paths vsrc ; x � y where
y ∈ Tree(Gj) need not be considered and can be pruned
away. This is because since vdst 6∈ Tree(Gj) such a path
would first leave Gi from some anchor point Am ∈ Gi and
then return back to Gi via another anchor point An ∈ Gi.
But all of the geographies are self-contained and thus since
Am, An ∈ Gi it follows that LCP (Am, An) can be computed
from I(Gi) alone, without considering Tree(Gj). Observe
that this is the case even if portions of path LCP (vsrc, vdst)
actually go via geographyGj , as they will be captured by the
wormhole links inGi. Figure 1 illustrates these observations,
e.g. we can see that there is no need to go inside floor G7

since vdst does not belong to it.
Avoiding considering such vsrc ; x � y paths greatly

reduces the search space of the A* algorithm, making it
significantly more efficient.
Least Common Ancestor. Let vsrc ∈ Gi, vdst ∈ Gj ,

and Gk be the least common ancestor (LCA) of Gi and Gj in
the hierarchy. Observe that least cost path LCP (vsrc, vdst)
is contained entirely in the set of geographies from Tree(Gk).
Consequently, when exploring neighbors y of x in the context
of vsrc ; x � y paths the neighbors that do not belong to
geographies from Tree(Gk) can be pruned away. The only
case where path vsrc ; x is contained in Tree(Gk) whereas
vsrc ; x � y is not is when x is in Gk and y is in its
parent geography P [Gk]. Thus, for pruning in the context
of vsrc ; x � y paths it is sufficient to check whether y is
in P [Gk]. If Gk is the root geography G0 then this pruning
strategy does not apply.
Passing Through a Geography. To explain another

pruning strategy we will need to make several definitions.
An anchor Ak is called an exterior anchor of geography Gi

if it is connected via a wormhole to another anchor in geogra-
phy Gj 6= Gi such that Gj is not a child of Gi. An anchor Ak

is in interior anchor if it is not an exterior anchor. A worm-
hole link between two exterior anchors is an exterior worm-
hole link. In Figure 3 anchors {Ai1, Ai2, Ai3, Ai4} are exte-
rior anchors and {Ai5, Ai6, Ai7} are interior anchors of ge-
ography Gi, and wormhole links among {Ai1, Ai2, Ai3, Ai4}
are exterior links.

Consider again path vsrc ; x � y. When x is an ex-
terior anchor of geography Gi and vdst does not belong to
Tree(Gi) this means the algorithm is simply passing through
Gi without going into any of its children, since the children
do not contain vdst. Thus in such cases there is no need to
consider edges incident to node x except for the wormhole
links that lead to other exterior anchors. Often an exterior
anchor A of geography G would have a significant fraction
of its connections to be wormhole links to the interior nodes
of G and this pruning strategy helps to avoid considering
such connections effectively.

4.2.1 Exploiting Intrageography Hierarchies - Re-
gionalization

In Section 3.3 we have discussed that any least cost path
LCP (Psrc, Pdst) can be represented as a sequence of least
cost paths LCP (Psrc, Aim)·LCP (Aim, Ajn)·LCP (Ajn, Pdst).
Thus far we have focused on optimizing the LCP (Aim, Ajn)
path that goes entirely inside the overlay network. In this
section we discuss a hierarchical technique that optimizes
the local least cost planning part that corresponds to paths
LCP (Psrc, Aim) and LCP (Ajn, Pdst).

It is possible that the internals details of a local geography
Gi are hidden from the overall system. That is, Gi may be
available only as a black box with the interface for comput-
ing the least path inside Gi for any two points in Gi. In that
case the technique described in this section does not apply.
However, often geographies are not provided as black boxes
and amenable to hierarchical optimization techniques. Such
techniques have already been explored in the past especially
in the context of grids. In our work we use the regionaliza-
tion technique from [5] with minor modifications.

Given a grid map, the idea is to use a region decomposi-
tion algorithm to identify smaller regions which might, for
instance, correspond to rooms on a floor. Then the exit
grid cells are found between regions. The overlay network
is created between neighboring exits where the nodes corre-
spond to the exit grid cells and edges to the least cost paths
between them. This overlay network is then employed for
faster path finding.

The region decomposition algorithm [5] starts at the top
leftmost free cell that is not assigned to a region and then
proceeds right until it hits an obstacle, then continues down-
ward filling the region. The method detects if the region has
shrunk left or right. and if the region re-grows after shrink-
ing, then it stops, removing extra filled cells if needed.

We have discovered that, as is, the decomposition tech-
nique [5] does not work effectively on indoor maps, espe-
cially when rooms are differently shaped and/or irregular.
Specifically, it generates many small regions with long com-
mon borders resulting in an unnecessarily large number of
exists. To address this problem we have implemented sev-
eral modifications that (a) bound the growth of a region
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Figure 7: Geography Hierarchy Graph.

to prevent the creation of long borders; (b) merge certain
regions to form more natural subregions with smaller bor-
ders; and (c) eliminate redundant exits. This has resulted
in a drastic reduction in the number of exits, leading to a
better overall performance. The details of these techniques
are covered in [1]. The algorithm guarantees that the re-
gionalization maintains the optimality of the MGRP by the
way the anchors are created and exits are placed. The ef-
fectiveness of the modified algorithm has been validated on
different floor maps and complex building plans. The impact
of regionalization on MGRP will be studied in Section 6.

5. CACHING STRATEGIES
In this section we discuss caching strategies for MGRP.

First in Section 5.1 we present key observations about the
geographies that must be traversed by a given path. These
observations will lead to a design of two types of caches
described in Section 5.2. The physical organization of these
caches will be discussed in Section 5.3. Finally, Section 5.4
will cover the utility-based semi greedy strategy for deciding
the best content of the cache.

5.1 Observations that Motivate Caching
To illustrate how caching can be employed consider Fig-

ures 7 and 8. Figure 7 shows a sample geography hierarchy
graph, where each node corresponds to a geography and a
directed edge representing a parent-child relationship. Fig-
ure 8 demonstrates a possible connectivity graph for this
scenario. There, nodes correspond to geographies and a di-
rected edge is created between any two geographies Gi and
Gj if there is an anchor in Gi that is connected to an anchor
in Gj via a wormhole link. The links in Figure 8 are bidi-
rectional implying there are connections in both directions.
Figures 7 shows for instance that geography G21 is the par-
ent of G31. At the same time Figure 8 shows that there is
no direct connection between G21 and G31 and that G31 is
connected to G21 only indirectly via siblings G32 and G33.
Assume that the goal is to find the least cost path between

points Psrc ∈ Gi and Pdst ∈ Gj . Let GLCA be the least
common ancestor of Gi and Gj in the geography hierarchy
graph. For instance, in Figure 7, we might have Gi = G31,
Gj = G35, and GLCA = G11. Let us define source geography
chain Gsrc

ij for Gi and Gj as the sequence of geographies
in the Gi ; GLCA path in the hierarchy graph, except for
GLCA. Similarly, we can define the destination geography
chain Gdst

ij for Gi and Gj as the sequence of geographies in
the Gj ; GLCA path except for GLCA. Continuing with
our example in Figure 7, we have Gsrc

ij = {G31, G21} and
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Figure 8: Geography Connectivity Graph.

Gdst
ij = {G23, G35}.
We can observe that if LCP (Psrc, Pdst) exists then for any

geography connectivity graph this path must pass through
each of the geographies in Gsrc

ij and Gdst
ij . This statement is

trivial for geographies Gi and Gj as they contain the source
and destination points. Let us prove it for the rest of the
geographies in Gsrc

ij and Gdst
ij . The proof is based on the

observation that, by construction, the connectivity in the
overall graph is such that for a geography Gk its Tree(Gk)
is directly connected to the rest of the graph only via Gk.
Recall that by construction a geography can only be con-
nected to its parent, its children, or its siblings. Thus for a
path the only way in or out of Tree(Gk) is through Gk.

For Gsrc
ij we can see that if parent P [Gi] of Gi is in Gsrc

ij

then the path must pass through it. This is because oth-
erwise, the path will never be able to leave Tree(P [Gi])
subtree (to be more precise, Tree(P [Gi]) \ P [Gi]) of the hi-
erarchy and thus will never be able to reach the destination.
Similar logic applies to the parent of P [Gi] and so on until
GLCA is reached. If the children geographies of GLCA are
not interconnected then the path must reach GLCA, if they
are interconnected however then the path might not reach
GLCA and go directly via its children instead.

The same logic applies to Gdst
ij . A path that is not inside

Tree(Gk) could enter it only via Gk. Thus the geographies
in Gdst

ij must be visited since Pdst belongs to the correspond-
ing subtrees. Similarly, GLCA will also be visited if its chil-
dren are not interconnected, and it might not be visited if
they are interlinked.

For instance, for Figures 7 and 8, when Gi = G31 and
Gj = G35 path LCP (Psrc, Pdst) will include geographies
G31 � G32 � G33 � G21 � G11 � G23 � G35. Thus it
will pass through Gsrc

ij = {G31, G21} and Gdst
ij = {G23, G35}.

Since the children of GLCA = G11 are not interconnected it
will also pass troughG11. An example where LCP (Psrc, Pdst)
will not pass through GLCA is when Gi = G31, Gj = G37,
and GLCA = G0.

5.2 Two Types of Caches
With the help of the observations from the Section 5.1

we can define two types of caches to speed up the MGRP
algorithm.

5.2.1 Node to Geography Cache
The first type of cache is the node to geography (NG)

cache. Assume that the algorithm looks for LCP (vsrc, vdst)
path and currently explores vsrc ; x intermediate path. Let
Gi = G[x] be the geography of x and Gj = G[vdst] be the ge-
ography of vdst. Let Gij be the sequence that includes (1) the



geographies in Gsrc
ij , (2) geography GLCA = LCA(Gi, Gj),

which is included if children ofGLCA are not interlinked, and
(3) geographies in Gdst

ij . Then we know that LCP (vsrc, vdst)
must pass through all the geographies in Gij .
Suppose that for a geography Gm ∈ Gij we have cached

the least cost paths from x to all of the anchors of Gm and
their costs. Then instead of exploring direct links/edges of
x we can jump directly to geography Gm by treating the
cached least cost paths as indirect links to Gm. This is
because the path must pass through Gm and the only way
inside Gm is via its anchors. Intuitively, the closer Gm is to
the destination geography Gi in Gij , the more exploration
steps of the algorithms will be skipped and hence the more
efficient this optimization will be.
Notice that for this optimization to work, path from x to

all of the anchors of Gm should be cached. Assume that this
is not the case and one of anchors Ak ∈ Gm is omitted. Since
LCP (vsrc, vdst) might go through Ak, for correctness, the
A* algorithm now will need to explore not only the indirect
neighbors of x, but also all of the direct neighbors, defeating
the purpose of this optimization.
Let us use Figure 1 to illustrate this idea of caching.

There, Psrc can be a point inside room G12, Pdst a point
inside G10, and x can be an anchor k of G8. Assume that
the least cost paths from x to all anchors of G5 are cached.
Then instead of exploring direct neighbors of x in the con-
text of vsrc ; x paths, the algorithm can jump directly to
the anchor points of G5, avoiding many of explorations and
thus reducing the search space.
To implement this NG caching policy the beginning of

Get-Neighbors(x, vdst, GLCA) procedure will need to be
modified as illustrated in Figure 9. The idea is for path
vsrc ; x to keep track of its geography chain Gij . Then if
paths from x to some of the geographies in Gij are cached
then simply jump to the geography that is closest in the hier-
archy to the destination geography Gj . The LinkCost(x, y)
procedure in Figure 5 will also need to be modified for the
indirect links to get their cost from the NG cache. Similarly,
ReconstructPath(vsrc, vdst) procedure for indirect links will
need to get the cached portion of the path from the NG
cache.

5.2.2 Geography to Geography Cache
The second type of cache is the geography-to-geography

(GG) cache. The GG cached can be viewed as a two dimen-
sional |G| × |G| array GG. This array can be disk-based but
in practice it is small and can easily fit in memory. Each its
element GGij caches the set of geographies that can be tra-
versed next on a path originated from a geography Gi ∈ G
and with a destination in the geography Gj ∈ G. Now,
when the algorithm analyzes vsrc ; x � y intermediate
path, if geographies G[x] of x and G[y] of y are different,
and if y is not in any of the geographies in GG[G[x], G[y]]
then vsrc ; x � y path can be pruned away. This pruning
strategy is reflected in Lines 12, 13 and 18, 19 in Figure 9.
For the case in Figure 8, if Gi = G33 and Gj = G35

then GG33,35 = {G21}. From this example we can see that
when looking for the least cost path LCP (Psrc, Pdst), where
Psrc ∈ G33 and Pdst ∈ G35, if GG cache is not used then
the algorithm might proceed exploring nodes in G32 and
G31. Using the GG cache, however, we can determine that
for path LCP (Psrc, Pdst) the only feasible geography after
G33 is G21 and the geographies G32 and G31 need not be

Get-Neighbors(x, vdst, GLCA)
1 R← ∅// Result set

2 Gij ← ComputeSrcToDstChain(x, vdst)
3 for k ← |Gij | to 1 do

4 G← Gij [k]
5 if NotInNGCache(x,G) then

6 continue

7 for each anchor A ∈ G do

8 R← R ∪ {A}
9 return R

10 if IsExterriorAnchor(x) and vdst 6∈ Tree(G[x]) then

11 for each x � y ∈ ExteriorLinks(x) do

12 if G[x] 6= G[y] and y 6∈ GG[G[x], G[vdst]] then
13 continue

14 if y 6∈ P [GLCA] then
15 R← R ∪ {y}
16 else

17 for each x � y ∈ AllLinks(x) do

18 if G[x] 6= G[y] and y 6∈ GG[G[x], G[vdst]] then
19 continue

20 if y ∈ P [GLCA] then
21 continue

22 if vdst 6∈ Tree(G[y]) then

23 continue

24 R← R ∪ {y}
25 return R

Figure 9: Get-Neighbors() for NG and GG Caching.

explored.
Each element GGij of the GG cache are computed by

analyzing all of the least cost paths from each anchor of
geography Gi to geography Gj using one of the known all
pair least cost paths algorithms [27]. From these paths the
set of the next geographies that follow Gi can be trivially
deduced.

5.3 Physical Cache Organization
We use physical cache organization that is similar to that

of HEPV [15]. We cache only anchor nodes though the same
ideas apply to any nodes in general. Assume that there are n
anchors in total. Then the complete NG cache can be viewed
as an n × n matrix NG. This matrix stores compactly the
least cost paths between all pairs of anchors, where each
element Nij of NG stores information about the least cost
path LCP (Ai, Aj). Specifically, for path Ai � Ak � A` ;

Aj , entry Nij stores the cost of the path and the next hop
anchor to be traversed from Ai, which is Ak. Consequently,
the Nkj entry will in turn contain A`, and so on, allowing to
reconstruct the sequence of anchors for the least cost path
LCP (Ai, Aj). The actual physical path is constructed from
this sequence of anchors with the help of the overlay network,
as it stores on disk the actual paths that correspond to the
wormhole links between anchors.

For the incomplete NG cache some of its entries can be
empty. To avoid pointing to the next hop entry that is
empty, the Nij entry now contains a sequence of anchors in
the LCP (Ai, Aj) path that ends with the first cached entry
or with the destination anchor Aj . For instance, for LCP
Ai � Ak � A` ; Aj if Nkj is empty but N`j is not, the Nij

will contain the sequence Ak, A` instead of simply the next
hop Ak. The NG cache is implemented as a disk-resident
hash table with the source and the destination anchor pair
as the key.



As explained in Section 5.2.2, in practice the GG cache can
be represented as a small memory resident array. However,
if necessary, it can also be represented as a disk-resident
hash table similar to the NG cache.

5.4 Caching Strategies
The complete NG cache can be large for large geogra-

phies (O(N2) where N is the total number of anchors) and
might not fit into the available storage space. Thus a so-
lution might be preferred where only some of the elements
of the complete of NG cache are present in the cache. This
would create the storage size versus efficiency tradeoff, as a
large cache size would lead to a more efficient processing.
A strategy would also need to be developed to decide which
elements to cache and which not to cache. Before we discuss
the caching strategy employed by the proposed MGRP so-
lution, let us formalize the problem of selecting the content
of the cache.

5.4.1 Formalizing Cache Content Selection Problem
Assume that the size of the NG cache is restricted to be

no greater than S. Let NGij be each cache entry storing
the cost and path information for path LCP (Ai, Aj). Each
entry occupies some disk space sij . In terms of speeding up
the computations, each entry has a benefit µcached

ij if cached,

and a benefit µnotcached
ij if not cached. The befit reflects the

number of explorations needed by A* algorithm to discover
LCP (Ai, Aj). These explorations will be avoided if the path
is cached. While benefit µnotcached

ij is 0, the benefit µcached
ij

is much more complex to compute. For instance, caching
path LCP (Ai, Aj) impacts the cost of any least cost path
Ak ; Ai ; Aj .
Suppose that there are K anchors in total in G. For each

pairs of anchors Ai and Aj let nij be the number of times
LCP (Ai, Aj) will be invoked. Let the decision variable dij
take the value of 1 if path LCP (Ai, Aj) is cached and 0 if it
is not cached. Then the goal is to maximize the benefit of
the cache given the storage limitations:
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∑
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(

dijµ
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notcached
ij

)

subject to:
K
∑

i=1

K
∑

j=1

sijdij ≤ S

(1)

Since µnotcached
ij is zero, the part (1−dij)µ

notcached
ij evalu-

ates to zero as well. If we assume that µcached
ij and sij can be

any constant independent values, then we can see that this
problem is a traditional combinatorial optimization problem
and can be reduced from a 0-1 knapsack problem directly
and hence is NP-hard. However, in our case µcached

ij variables
have dependencies that are hard to model accurately. The
actual benefit of any cached entry depends on the number
of steps skipped in the path planning as a result of caching
this segment of data. It is impacted by such factors as which
other entries are cached, the length of the path, the topology
of the graph, and the heuristic employed during A* process.

5.4.2 Semi-Greedy Utility Based Caching
Characterizing the utility of the cached data is difficult

due to the different variables and factors affecting it. One
solution is to estimate the utility µcached

ij of NGij using sam-

ple A* runs between anchors Ai and Ai to evaluate the im-
pact of NGij on different paths in terms of number of node
visits saved. We will describe a solution that employs this
method to estimate utilities to compute the cache using a
semi-greedy strategy. The proposed solution for determin-
ing the content of the NG cache consists of the following two
steps:

1. Estimating the cost Cij of running A* between anchors
Ai and Aj . The cost Cij is indicative of how many
steps the algorithm can skip if the path is cached.

2. Estimating the number of the least cost paths paths
Ak ; Ai ; Aj which have the same destination Aj

as the least cost path LCP (Ai, Aj) and hence can use
the cached path LCP (Ai, Aj) for faster MGRP.

The brute force solution for accomplishing the first task
mentioned above is to run A* algorithm for each pairs of
nodes Ai and Ai to determining the cost Cij . The cost Cij

represents the number of nodes visited when computing A*
between Ai and Aj . While the above strategy provides a rea-
sonable estimate of benefit of caching, the drawback is that it
requires running A* algorithm O(K2) times for K anchors.
When K is large this solution is undesirable. We employ
sampling to overcome this problem. For each pair of ge-
ographies Gm and Gn we choose some sample anchor points
{Am1, Am2, . . . , Amk} ∈ Gm and {An1, An2, . . . , An`} ∈ Gn

and compute the cost for each Ami and Anj pair. Then, for
the sampled anchors the cost is set to the actual computed
costs. For the rest of the anchors for these two geographies
the cost is set to the average sampled cost.

The second challenged is to determine which anchor pairs
will potentially use the cached entryNGij for path LCP (Ai, Aj).
The naive solution is to first compute all least cost paths
between all pairs of anchors. Then, to determine for each
LCP (Ai, Aj) every other least cost path Ak ; Ai ; Aj ;

A` it is a subpath of. This is expensive both computation
and storage wise. To reduce this cost, we will make a sim-
plifying assumption and consider only least cost paths of
the form Ak ; Ai ; Aj that have the same destination
Aj as Ai ; Aj . We then compute the least cost path tree
SPTree(Aj) for each anchor Aj . Naturally, any least cost
path Ak ; Aj is affected by the least cost path Ai ; Aj

if Ak belongs to the subtree of SPTree(Aj) rooted at Ai.
This is since such a Ak ; Aj will have to pass through Ai.
Thus, by traversing the least cost path tree we can deter-
mine the set Pimp

ij of all the least cost paths impacted by
NGij , including LCP (Ai, Aj) itself.

The benefit µcached
ij of caching LCP (Ai, Aj) is computed

as the expected saved computations from caching this path.
When the path is cached, instead of performing Cij explo-
rations by A∗, the algorithm will now need to perform one
traversal of the indirect link for the cached path. Similarly,
for the rest of the paths in Pimp

ij the benefit will be pro-
portional to Cij . Thus the benefit is computed as γCij per
each path in Pimp

ij , where γ ∈ (0, 1] is a coefficient of pro-

portionality. But since maximizing
∑∑

γnijdijµ
cached
ij , see

System (1), is the same as maximizing
∑∑

nijdijµ
cached
ij ,

the γ factors out leading to the overall benefit function
µcached
ij = |Pimp

ij |Cij .
To select the best anchor-geography pair to cache in the

NG cache, for each anchor Ai the algorithm keeps track of
overall benefit of caching paths from Ai to all anchors of each



geography Gm, which is computed as
∑

Aj∈Gm
µcached
ij . The

anchor-geography pairs to put into the NG cache are then
chosen using either static or incremental strategies.
The static greedy strategy puts in the NG cache the top k

anchor-geography pairs with the maximum estimated ben-
efit, such that they all fit into the allowed space S. In the
incremental greedy strategy, the highest-benefit pairs Ai and
Gm are added to the NG cache iteratively one by one. After
a pair is added on one iteration, some of the affected ben-
efits µcached

ij will be computed differently compared to the
previous iterations. Specifically, if for LCP Ai ; Ak ; Aj

its subpath Ak ; Aj is already cached, then A* algorithm
will need perform proportional to Cij −Ckj explorations to
discover this path. This formula reflects the original cost,
with the cost of already discovered subpath subtracted. Af-
ter factoring out the γ proportionality coefficient, the benefit
is now computed as µcached

ij = |Pimp
ij |Sij . Here, Sij = Cij if

no subpath of LCP (Ai, Aj) is cached and Sij = Cij − Ckj

for the longest cached Ak ; Aj subpath. The iterations are
repeated until the space limit S is exceeded.
The static greedy approach has the advantage of being

a faster algorithm to create the cache. However, the full
impact of the relationships between path segments is not
taken into account when caching.

5.4.3 Factoring in Access History
The above solution assumes that every path has an equal

probability of being accessed. However, in practice this
might not be the case and the likelihood of certain paths
being accessed are higher than others. This will impact the
caching strategy. For instance clearly there should be lit-
tle benefit of caching a path that is unlikely to be accessed.
To account for the actual access history, in addition to the
method described above, we explore a second utility based
approach. To estimate the access patters we run some sam-
ple test runs on a smaller sized NG cache. We determine the
number of requests βij sent for the NGij entry of the NG
cache by the algorithm. The benefit is then computed as
µcached
ij =

∑

k:Ak;Aj∈P
imp
ij

(α+ βkj)(Sij − 1). This formula

assigns to each path the importance of (α + βkj). Here α

is the base level importance of a path which is set to 1. By
considering both the utility in terms of search area saved and
the actual access patterns, the algorithm computes a better
utility value that results in more efficient path computations
during the run time.

6. EXPERIMENTAL RESULTS
This section presents the experimental setup and the re-

sults of our strategies. First we describe the data prepara-
tion process for the campus related geographical data.

6.1 Geography Data Creation
Testing has been done on real geographic GIS and CAD

data for a section of the UC Irvine campus. From the GIS
perspective, both an aerial view of the campus and layers
modeling buildings, dorms, walking paths and main roads
have been stored within the database. The CAD maps
representing the campus buildings at the floor level have
been rasterized manually and loaded within the database.
The outdoor GIS map has been converted to an outdoor
resistance grid: every cell of the grid has a different resis-
tance value according to the nature of the cell (free, ob-

stacle/building, surface type, etc). A pedestrian network
(consisting of walkways) and transportation network (con-
sisting of roadways) of the outdoor area have also been cre-
ated. Wormholes between indoor and outdoor maps (typi-
cally doors, stairs, etc) have been identified and connected
to meaningful waypoints on the map (e.g., intersections be-
tween different walking paths). Our preliminary analysis
revealed that a 2-level geography (3-level with regionaliza-
tion) was the most natural and meaningful representation
for UCI campus dataset we had. The test data consists of
123 buildings with each floor in the building considered a
single geography and in total there are about 383 indoor
grids. Since creation of these raster grids requires consid-
erable manual effort, we have cloned existing raster maps
to stress test the algorithms. At the top level there are a
total of 1971 anchors. With regionalization, we have a 3-
level graph with approximately 60,000 anchors. The anchor
overlay network has also been precomputed.

6.2 Experimental Setup
Input to the experiments comes from a query generator

which generates sets of 5000 random queries based on a
uniform distribution. Both the geographies and the points
within the geographies are selected randomly based on the
uniform distribution. The random queries select any source
destination in different geographies and hence the queries
can be between two floors in a building, between indoor and
outdoor geographies, or between two outdoor geographies.

Data representation in the cache. The NG matrix is
represented in the disk in a row major fashion. The rows are
indexed by the source anchor id, and represent all the paths
from a source Ai to all other anchors. Each column in the
row is indexed by the destination anchor id. The columns
are clustered based on the geographies the destination an-
chors belong to, and further ordered by their anchor ids.
A memory index for each row contains the start id of each
block in disk, and this id is a hash of the anchor id and the
corresponding geography id. This allows the data manager
to determine which block to retrieve based on either desti-
nation anchor id or geography id. The right block(s) can be
retrieved for a single path query (single source and destina-
tion), or for a query which requests cost from an anchor to
all anchors in a given geography.

Metrics. The main performance metrics are actual run-
ning time in milliseconds, and the number of number of
nodes visited. The number of nodes visited indicates the
search space of the algorithm and hence the complexity in
terms of updating the costs and finding the path. This gives
an indication of the improvement irrespective of the imple-
mentation details and data structures used which can impact
the running time. For caching we also study the number of
cache accesses performed, cache hit rate and I/O perfor-
mance for the different strategies.

In this paper we cover only the main set of experiments
that deal primarily with caching issues. A much more ex-
tensive set of experiments that cover various aspects of our
approach can be found in [1].

6.3 Experimental Results
To understand the value of the basic MGRP algorithm (with

no caching) we compare the MGRP path-planning mechanism
with other existing planning techniques. We use the ba-
sic A* as our starting point; it has been shown to have
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better search directionality than Dijkstra resulting in lesser
number of searched nodes. In addition to A*, we also im-
plement a hierarchical algorithm from [15] adapted to the
multi-geography model that we call Quad given the quadratic
nature of the algorithm. The Quad technique will first find
paths from the source to all anchors in the source geography,
all paths between source anchors and destination anchors in
the anchor interconnection graph, and find the paths be-
tween destination anchors and the destination. The path
is the best path combining the source, source anchor, and
destination anchor and destination path segments. We im-
plement this algorithm and apply it on our data set, and
whenever needed we run A* to determine the path segments.
Since basic A* works on a single level geography represen-
tation, we manually integrated several representative indoor
and outdoor geographies over which A*, Quad and MGRP were
executed. Note that in cases when the source and destina-
tion points are in different buildings we also integrate the
outdoor network into a single geography for A*.
Figure 10 plots the speedup for the three techniques aver-

aged across the different geographies. The speedup is com-
puted as the running time of the techniques divided by the
running time of A*, and thus the speedup of A* is 1 in
this figure. Even for the limited number of geographies in
this experiment, MGRP executes faster (speedup of 3-4) as
compared to A*. This is because MGRP does not perform
local search except in the source and destination geogra-
phies, while A* performs local search in all connecting ge-
ographies. MGRP also performs significantly better than Quad

in our test case. Quad based techniques have been shown to
work well with complete caching using materialization ap-
proaches [28]. This includes caching paths and path costs
from every point in a geography to all anchors within ge-
ographies (PA Cache). In our problem setting, generating
and storing such a fine-grained PA cache for all geographies
is prohibitively expensive (due to a very large number of
points in each geography) even for a moderately low num-
ber of geographies; hence, we do not consider the case of
complete PA caching as a scalable option.
The efficiency of MGRP in the multi-geography scenario is

due to the fact that local level planning is done only once
(a single run of A*) for each source and destination side.
An additional byproduct of this is that the performance of
MGRP is less impacted by the number of anchors in the source
and destination geographies; this is experimentally validated
in [1] under different source and destination geographies.
However, note that multiple A* calls cannot be avoided if
geographies are complete black boxes and running MGRP at
the local level is not possible.

Impact of Geography Pruning and Regionization.
The next set of experiments evaluates the impact of two
types of optimizations on MGRP: (i) across geographies through
geography pruning using the GG-Cache, and (ii) within a ge-
ography by adding sub-regions using the regionization tech-
nique discussed earlier. The results of MGRP with these re-
spective optimizations on a set of 5000 queries generated
uniformly are demonstrated in Figure 11. We can see that
GG-cache based pruning improves the performance of MGRP
by eliminating unwanted explorations when exploring the
anchor interconnection graph. While the improvement is
limited for our current data set, we believe it would be
more significant in other multi-geography topologies. We
find that regionization improves the speed of MGRP signifi-
cantly, by about 20% overall. While the extent of the benefit
obtained by regionization can vary based on the geography
set, and the structure of the geographies; our experiments
indicate that this technique is useful across different grids
in our data set. The combination of regionization and GG
pruning reduces the running time even more - the rest of the
experiments presented in this section include both of these
optimization techniques in the MGRP implementation.

NG Cache Performance. These experiments address
the role of the NG cache in path planning performance. We
evaluate the two utility based strategies proposed in the pre-
vious section under varying cache sizes for the campus-wide
multigeography network (with about 400 sub-geographies).
For comparison, we implement two other simple caching
strategies - a Random caching strategy and a most-frequently
used (MFU) technique. The Random caching strategy selects
anchor-geography pair for caching based on a uniform dis-
tribution. The most frequently used strategy estimates the
number of times each anchor pair is requested, sorts the pairs
in order of frequency of use, and caches the top k entries.

The first of our methods (Util) applies the utility-based
technique under the assumption that every potential cached
segment has an equal probability of being accessed. The sec-
ond utility-based technique (UtilMFU) factors in access histo-
ries (via MFU) to estimate the frequency of requests for cached
segments. In all of the following experiments the algorithm
queries the cache by requesting cost from an anchor to all
anchors in a given geography, hence reducing the number of
disk block reads. All solutions cache anchor-geography pairs
(i.e, an anchor to all anchors in a geography). We vary the
cache size from 0 Mb to size of the full cache of 50 Mb.

We first study the overall performance of the algorithm
by measuring the time taken and search area in terms of
number of nodes visited for all four approaches. The graphs
in Figure 12 and 13 demonstrate the performance of our
strategies in comparison to the other solutions. Our utility
based strategies exhibit superior performance both in terms
of path planning time and search area. By storing path
segments with both higher benefit in terms of cost saved,
and number of other paths impacted, Util and UtilMFU skip
more searches, while also avoiding extra cache accesses by
increasing the probability of finding the destination anchors
earlier. UtilMFU performs best both in terms of time and
search area, while Util is very good for smaller cache sizes.

This is reinforced in Figures 14 and 15 which demonstrate
how the different strategies perform in terms of cache ac-
cesses and cache hit rate. The first graph shows how many
times the cache is accessed - we count the accesses for ev-
ery anchor pair queried. With very small cache sizes, the
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number of accesses is high for all approaches. The number
of accesses drop sharply for the Utility based approaches as
cache sizes increase since useful data is available in the cache
during the earlier stages of the MGRP algorithm and further
accesses are avoided. This implies that utility based strate-
gies provide benefit to the algorithm earlier. UtilMFU, which
incorporates frequency of use information to Util shows im-
proved cache access performance much faster hence perform-
ing well for all cache ranges. As is obvious, when the cache
sizes are large, there is no significant difference in overall
performance in the strategies. We expect to see greater im-
provement for the Util based approaches as the size of the
outdoor network increases, since it permits farther ”jumps”
in exploration due to caching.
The IO performance (covered in detail in [1]) is similar.

Our approaches again demonstrate better performance than
the random and MFU approach, while UtilMFU has higher IO
costs than basic utility approach. The lower number of cache
accesses in general and the possibility of caching paths from
anchors to smaller geographies results in smaller IO costs,
specially for the first utility based approach.

7. CONCLUSION
In this paper we studied the problem of multi-geography

route planning. We have proposed a multi-geography over-
lay structure that allows connecting heterogeneous geogra-
phies. We have presented a multi-geography planning al-
gorithm that effectively uses cached data that utilizes two
utility based caching strategies. We evaluated our solution
on a real-world dataset that corresponds to a large univer-
sity campus. Our experiments demonstrate a significant ad-
vantage of the proposed MGRP approach compared to the
existing techniques.
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