

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-791508

Bernhard Jaecksch, Wolfgang Lehner, Franz Faerber

A plan for OLAP

Erstveröffentlichung in / First published in:

EDBT/ICDT '10: EDBT/ICDT '10 joint conference, Lausanne 22.-26.03.2010. ACM Digital
Library, S. 681–686.

DOI: https://doi.org/10.1145/1739041.1739126

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-791508
https://doi.org/10.1145/1739041.1739126

A Plan for OLAP

Bernhard Jaecksch
SAP AG

Dietmar-Hopp-Allee 16
Walldorf, Germany

b.jaecksch@sap.com

Wolfgang Lehner
SAP AG

Dietmar-Hopp-Allee 16
Walldorf, Germany

wolfgang.lehner@sap.com

Franz Faerber
SAP AG

Dietmar-Hopp-Allee 16
Walldorf, Germany

franz.faerber@sap.com

ABSTRACT
So far, data warehousing has often been discussed in the
light of complex OLAP queries and as reporting facility for
operative data. We argue that business planning as a means
to generate plan data is an equally important cornerstone of
a data warehouse system, and we propose it to be a first-class
citizen within an OLAP engine. We introduce an abstract
model describing relevant aspects of the planning process
in general and the requirements it poses to a planning en-
gine. Furthermore, we show that business planning lends it-
self well to parallelization and benefits from a column-store
much like traditional OLAP does. We then develop a phys-
ical model specifically targeted at a highly parallel column-
store, and with our implementation, we show nearly linear
scaling behavior.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Parallel databases

1. INTRODUCTION
One of the main purposes of a data warehouse clearly is
to provide insight into historical data, i.e. operational data
that has been accumulated up to the current point in time.
Yet, there is another cornerstone to data warehousing com-
monly used in many businesses that, to our knowledge, has
not attracted too much attention in the research community
so far. Planning is a vital instrument for companies to draw
a detailed picture of their expected operational business and
to use the plan as a means for documentation and compar-
ison of their success. There exist various models describing
multidimensional data structures for data warehousing as
well as a number of operators working on these data struc-
tures that provide the means for querying the data on every
possible level [3, 4]. We argue for the need to extend the
model and the set of operators and therefore make business
planning a first-class citizen in the field of data warehousing.
The basic idea of business planning is to iteratively create
new data to describe the expected outcome of forthcoming

©2010 Copyright held by the owner/author(s). Publication rights licensed to
ACM. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was
published in EDBT 2010, March 22–26, 2010, Lausanne, Switzerland.
DOI: https://doi.org/10.1145/1739041.1739126

periods. Often, the newly created data is based on histor-
ical data and is then modified and transformed to model
future business operations. Planning is an iterative process
between, for example, sales managers at different levels in
an organization. There is a manager who plans a budget
on division level, and there are regional managers who use
the given budget for planning in their specific region. This
top-down process can then run bottom-up and down again,
where the final plan is shaped during an iterative refinement.
Having multiple persons working on a plan also shows that
planning often is a collaborative process.

1.1 Query-Modify-Publish paradigm
By comparing a typical OLAP session with a planning ses-
sion, two contrasting paradigms can be found. OLAP fol-
lows the classical Query-Response model. During an OLAP
session, the user poses queries to drill down or through data,
move to different levels in the aggregation hierarchy, and
add or remove filter criteria. In contrast, we identified a
new Query-Modify-Publish paradigm for planning appli-
cations. In a typical planning session, users select source
data on specific levels of aggregation very much like in a
usual OLAP session. However, they then modify and trans-
form this data in a number of steps until it matches their
expectations, and finally, they publish it into the system
again, making it visible to others. So, in addition to query-
ing, which the new QMP paradigm shares with the tradi-
tional QR approach, it goes far beyond it when existing
data is modified and new data is created.

1.2 Architectural considerations
There are already a number of existing commercial business
planning systems, which all share more or less the same ar-
chitecture having a traditional relational database system as
foundation. Between the user application and the database,
there is a planning engine that interfaces with the database
via SQL and separates the planning logic from the database.
The application itself connects to the planning engine either
via a proprietary API or possibly via an MDX-like language.
In contrast, we propose a clearly structured layered approach
that is oriented at the previously identified QMP paradigm
and has the advantage of special support for the specific re-
quirements of planning. The general requirements of plan-
ning are subsumed in an abstract way on the first model
layer called the General-Planning Model (GPM). For the
following two layers below, we suggest a classical divide into
an operational model side and a storage model. First, with
the operational model, a broad set of planning functions

Final edited form was published in "EDBT/ICDT '10: EDBT/ICDT '10 joint conference. Lausanne 2010", S. 681–686 , ISBN 978-1-60558-945-9
https://doi.org/10.1145/1739041.1739126

1

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Fact table

customer_id

product_id

store_id

date

version

level

sales

quantity

opening

closing

cash_receipts

Customer dimension

customer_id

surname

firstname

age_group

gender

status

Product dimension

product_id

category

group

name

Store dimension

store_id

city

state

category

Figure 1: Schema of example cube

should be expressible and it must also incorporate means
to formulate typical OLAP queries. Second, as a storage
model, we use a column store because of its flexibility. It
allows to easily add or remove columns, which is often nec-
essary for intermediate results, and its independent storage
of individual columns is often a benefit in OLAP scenarios.
Operations often affect a small number of columns instead
of entire tuples. Therefore, a column-store needs to touch
less data than a row-store does when executing these oper-
ations. Additionally, if planning operators work on different
independent columns, they lend themselves well to paral-
lelization. However, using a column store mainly affects the
implementation on the physical layer and is no exclusive
requirement for our planning engine. Third, both layers
should be tightly coupled and implemented within the same
engine. Since business planning can often be a very data-
intensive process, it clearly benefits from moving the logic
close to the data, which avoids having to shuffle around large
data sets between different engines and system boundaries.
Also, the control flow in a planning process is interwoven
very tightly with the data flow; therefore, keeping both to-
gether in one engine also allows for optimization of both. In
the following sections, we will outline specific details of such
an implementation within a column-store, namely the SAP
Business Warehouse Accelerator (SAP BWA) [2].

The next section emphasizes the particularities of business
planning with examples. Section 3 outlines a column-centric
logical calculation model that contains specific planning op-
erators making it possible to express a comprehensive set of
planning functions. Section 4 introduces an example imple-
mentation and concludes with results that show the scala-
bility of our approach.

2. EXAMPLES
We begin with a list of examples and suggest a set of high-
level operations that are necessary to cope with the typical
challenges that business planning poses to an OLAP engine.
Throughout the examples, we refer to the cube with the
schema in Figure 1.

Example 1
Most planning sessions start with a copy of existing data.
In our example, a planner wants to plan sales of products
for different stores for the year 2010. He wants to plan in-
dependent of single customers; hence, customer is excluded
from the aggregation level. The planner also wants to plan
only those products where sales were greater than or equal to

1,000 in the current year. After copying the source data, the
planner wants to introduce a new product for the year 2010
based on an existing product and its sales values.

During each session, the planner chooses multiple levels
of aggregation where planning takes place. That means
measures are changed and manipulated that have no direct
representation in the underlying cube but represent an ag-
gregated view on the facts. For the above example, this
involves aggregating the source data over the customer di-
mension, filtering all tuples with sales values less than 1,000,
and then changing the year dimension from 2009 to 2010.
On every level of aggregation, the generation of new val-
ues can occur. With new values, we refer to combinations of
dimension values as new facts. New facts are either created
by adding a new unique combination of existing dimension
values or, for one or more dimensions, the domain of this
dimension is extended with new values. In the former case,
such a translation often takes place along the time axis, like
in the first part of the example. For the latter case, as in the
second part of the example, the planner has to select an ex-
isting product and map the name to the new product name
that has been added to the product dimension. The plan-
ner could also choose to stop selling a product. Therefore,
deletion of facts is required, too. This, for example, is a
requirement that is not present at all in an OLAP environ-
ment, and it shows that planning functionality is a superset
to standard OLAP functionality.

Example 2
In a next step, a planner wants to plan sales quantities for a
number of products for the year 2010, additionally including
the newly added product. Instead of planning the quantities
for each product individually, which can be cumbersome or
impossible if there is a large number of products, the quanti-
ties are entered on the aggregated product group level or on
state level and should get distributed to each product or each
city.

There is a requirement for the distribution of input val-
ues to more granular levels of aggregation and ultimately
down to fact granularity. Distribution or disaggregation is
somewhat similar to the drill-down operation in queries, but
instead of just selecting values on a finer level, values need
to be adjusted according to a distribution function to accu-
mulate the aggregated values entered by the planner.

Example 3
In a last step, the planner wants to calculate opening and
closing sales values as well as the amount of cash receipts
over a time period of twelve months for all stores. The plan-
ner copies the closing value of January to the opening sales
value of February. Then, he calculates the closing sales of
February based on the sales of the current period multiplied
by a fraction of the sales from January. This calculation is
then continued for subsequent periods where each value in the
current month has a dependency calculated for the previous
month.

Next to basic planning functions like copying or distribut-
ing aggregated values, planning also involves complex cal-
culations. Since the process of planning is very dynamic,
a generic and extensive way of expressing formulas must

Final edited form was published in "EDBT/ICDT '10: EDBT/ICDT '10 joint conference. Lausanne 2010", S. 681–686 , ISBN 978-1-60558-945-9
https://doi.org/10.1145/1739041.1739126

2

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Generate/Delete Distribute Formulas/Custom

Calculation Layer

+ Execution Engine

Application

QCM

User

Query

Copy Enter Values Calculate

GPM

Select Data

Query

Select Data

Query

Select Data

Δ Δ Δ

Finish

Save

Write

Back

Figure 2: Example planning process with General-Planning Model and Query-Calculation Model

be provided. Finally, most of the aforementioned exam-
ples changed measures of the underlying cube or added new
facts. Write-Back of changes and generated data to the
multi-dimensional cube is implicitly required by all previous
examples.

All the examples dealt with the manual type of a planning
process. Manual planning is determined by interactions with
a user, where a session follows the introduced Query-Modify-
Publish paradigm. It can be compared to a long-running
transaction that is finished when the user issues a save or
quit command. During the session, the user has the pos-
sibility to apply different modifications to the data and to
eventually undo the steps taken so far. Another type of a
planning process is batch planning. In contrast to the in-
teractive approach, batch planning executes a defined series
of plan operations in a given order. Since the order of ex-
ecution and the steps involved have been parametrized and
specified beforehand, there is no need for an undo or user
interaction, and it opens the opportunity for optimization.

A number of typical requirements for a planning engine
emerge from a planning process, as shown in Figure 2. First,
there are typical OLAP query operations for the selection
of data required, like slicing, dicing, filtering and aggrega-
tion. Furthermore, there are planning-specific requirements,
as explained in the previous examples. They include: gen-
eration or deletion of values, distribution of aggregated
values to more granular facts, calculation of arbitrary com-
plex formulas on the planned data and saving it to a cube.
Of course, this cannot be a complete list, so custom func-
tions allow for further extensions. Together with the OLAP
query requirements, we subsume these challenges for a plan-
ning engine in the following by the term General Planning
Model (GPM). The GPM forms the top of three model lay-
ers that we use to describe the planning process. On the
second layer, a platform-agnostic model is positioned that
is powerful enough to express any of the required function-
alities from the GPM. We term this the Query-Calculation
Model (QCM) and explain it in detail in the next section.
The implemented execution model, not shown in the pro-
cess, is the one of the SAP BWA execution engine, which
will be described briefly in Section 4.

3. QUERY CALCULATION MODEL (QCM)
Before introducing the entities contained in the Query-Calc-
ulation Model, we describe the expression of one of the ex-
ample planning functions in the previous section.

3.1 QCM Example
One of the identified requirements in Section 2 was the abil-
ity to distribute values from higher levels of aggregation to
lower levels. A planner wants to plan sales quantities for the

PG P qty

PG P qty qty

new

{ProductGroup,Product,Quantity}
{ProductGroup,Quantity}

ColSource UserInput

Foreach

QtyPPG

qty new

PG P qty new

PG P

Foreach

QtyPPG

Distribute

Figure 3: QCM for distributing values using the Dis-
tribute column function

upcoming period on product group level and distribute the
aggregated quantities. As distribution factors, for example,
we could use the sales quantity summed up over all previous
years. In principle, this involves for each product the calcu-
lation of the ratio between its value and the total sum so far,
followed by its multiplication with the new aggregated value.
Since quantities most likely are integer numbers, rounding
errors would be introduced by this naive method. There-
fore, special distribution algorithms exist, which deal with
rounding errors. One possibility would be to express a dis-
tribution algorithm directly within the QCM. Although our
QCM has enough expressive power to model the distribu-
tion algorithm itself through the use of the foreach operator
and column expressions, it makes sense to provide a special
column function for it because distribution was identified as
one of the key functionalities that is used during planning.
Therefore, the example in Figure 3 makes use of a dedicated
distribution column function that is part of the model. The
column function is executed for each product group only,
which means that the Dist function is called once on each
set of products that belong to a product group. Before ex-
ecuting the distribution function, the input values for each
product group are joined to the target data. The result
of this operation forms the input of the foreach operation
that executes the distribution function. With the help of
this example, we also introduced a graphical notation for
the model displayed in Figure 3. A column set is repre-
sented by a box whose name is the operator that is applied
to the (base) columns. On the bottom of the box, the input
columns are specified, and the link to the source columns
shows from which column set or column source they have
been obtained. Likewise, the top of the box describes the
output set of columns that are visible to any other column

Final edited form was published in "EDBT/ICDT '10: EDBT/ICDT '10 joint conference. Lausanne 2010", S. 681–686 , ISBN 978-1-60558-945-9
https://doi.org/10.1145/1739041.1739126

3

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

View

ColumnSet ColSource

Operator

U

Σ

σ

Column

BaseCol ColFunc ColExpr

input

output

Output / internal

ColOpValue
ScalarFunc

UnaryBinary

operand

operands

inputs

operand

Δ

foreach

while

UserInput
NonScalarFunc

Temp

Script

Figure 4: Schema of the Query-Calculation Model
(QCM)

set. Column expressions are drawn as expression graphs on
top of columns. An empty expression means that the in-
put column is routed right through to the output column.
Otherwise, the output column is the result of the column
expression. Multiple expressions can refer to the same in-
put column but produce different output columns, therefore
allowing easy duplication of columns. Furthermore, there is
the notion of an internal column that references one or more
input columns but is not available as output of the column
set. It provides a means to express internal state variables
during the calculation of expressions.

3.2 QCM
The central idea of the QCM is to have column-based views
that can be combined with each other through the use of
operators to form more complex views. In principle, a view
in the QCM is very similar to a database view. However,
the use of columnar data structures and its focus on col-
umn operations differentiates it from a database view and
the typical relational model. It allows the QCM to benefit
from the advantages that a column-store has over row-store
in OLAP query scenarios [1], and the planning functions
themselves profit from it, too. Taking the previous distri-
bution example, multiple column functions can be executed
in parallel on a column set, thus distributing to multiple
facts in one pass. Also, the easy addition of new columns
or the deletion of unused columns makes the column-centric
QCM views much more flexible. For a QCM view, there is
the distinction between a ColumnSet and a ColumnSource.
A ColumnSource represents either base columns from the
underlying data at the most granular aggregation level, i.e.,
dimensions and keyfigures, or a set of input values that are
entered by a user during a planning session. A ColumnSet
can be an arbitrary set of columns at every possible aggre-
gation level containing base columns as well as calculated
columns. This conforms well with the previously mentioned
requirement that planning takes place on various levels of
aggregation. Stacking different views onto each other forms
a directed acyclic graph with the leaf nodes always being
source columns or inputs, and the links between the views
symbolize the flow of data starting at the leaf nodes. So, the
key feature of the model is its ability to express all types of
OLAP queries and additionally allow sophisticated calcula-
tions to change column values or add new columns on each
view.

3.2.1 Column set operators

There are a number of basic operations like Grouping, Union,
and Join that work on complete column sets and are basi-
cally the same as their namesakes in a relational database.
However, we extend the standard set of operators with two
control-flow operators, Foreach and While, both working on
column sets, too. The Foreach operator has the semantics to
perform calculations for each combination of column values.
Additionally, it also allows the definition of a context. The
use of a context partitions the data in a ColumnSet and per-
forms the Foreach loop for every partition separately. Thus,
the context also serves as a hint for parallelization to the
underlying execution engine. As described in Section 2, his-
torical data is often modified to generate new facts. For
these scenarios, the Foreach operator is well suited. Nev-
ertheless, there are cases where entirely new data has to
be generated that cannot be obtained by modifying existing
data. In that case, the While operator steps in and allows it-
erative calculations and the application of column functions
that produce new values. The operator starts with an initial
state and proceeds until a condition is matched.

The following three elements are a core feature of QCM to
express the iterative planning process as described by the
GPM with undo steps and temporary modifications that
are saved at the end of a session. To temporarily mate-
rialize the result of a view, the temp column set operator
can be used as root node in the QCM graph. Optionally,
the delta operator calculates for each measure of its input
the difference to its value in the source cube. Temporary
results containing deltas combined with the actual source
cube represent the current planning results during a user
session. By deleting these intermediate results, the applica-
tion can easily undo the effect of a planning step during the
planning process. An explicit save call aggregates all tem-
porary deltas and merges them into the source cube. The
Script operator allows custom scripting within a calculated
column set and serves as an extension point for calculations
that are beyond the scope of the model. Finally, there are
filter and sort operators. Depending on their position in the
data-flow graph, they serve as input filters and output fil-
ters that allow controlling the data that is consumed by a
column set operation and selecting the data to be passed to
subsequent views after the calculations. The sorting, as the
name implies, can be used to apply orderings to the set of
columns.

3.2.2 Column functions and expressions
So far, column sets and operators that work on column sets
have been discussed. Through the innovative concept of col-
umn functions and column expressions, the model introduces
very powerful calculation capabilities. As can be seen in Fig-
ure 4, the notion of a column has several different meanings.
Each input column of a column set is called a BaseColumn,
regardless of whether it comes from a column source or is a
calculated column that is the output of another column set.
Within each column set, ColumnFunctions can be applied to
columns returning another column or a scalar value. Column
functions are comparable to set functions in the Multidimen-
sional Expression language MDX. Within this analogy, the
input set of a column function is the set of values from the
input column. Typical scalar column functions are SUM,
AVG, MIN, MAX or COUNT, whereas non-scalar functions
are Filter, Range, Sort or Distribute. What makes this con-

Final edited form was published in "EDBT/ICDT '10: EDBT/ICDT '10 joint conference. Lausanne 2010", S. 681–686 , ISBN 978-1-60558-945-9
https://doi.org/10.1145/1739041.1739126

4

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

cept truly useful is the possibility to nest column functions
such that one function is applied to the result of another
function. Together with the fact that column functions are
evaluated for every iteration of the Foreach and While op-
erators, they provide a powerful means to calculate complex
expressions.

Aside from base columns and column functions, columns
can be modeled as the result of a column expression. A
column expression uses arithmetic and Boolean operators
that combine one, two or more columns. There are com-
mon arithmetic operators provided like +,−, ∗, / as well
as Boolean operators like AND, OR, NOT, <, >,≤,≥ etc.
Since each column in a column set has the same number
of values or is a scalar value, the meaning of an expression
like column1 ∗ column2 is straightforward: every value c1i

of column1 is multiplied with value c2j of column2 with
i = j and i, j = 1..size(column1). For a column and a
scalar value, every value of the column is multiplied with
the scalar. Boolean expressions behave the same way and
are evaluated for each pair of values from both columns.

4. EVALUATION
The aim of this section is to verify by experiments that the
implementation of the QCM within the SAP BWA engine
shows excellent scaling behavior. Furthermore, we show that
the proposed planning model benefits from the implementa-
tion on top of a column-store in comparison to a traditional
row-store.

4.1 Implementation
After having introduced the capabilities of the QCM, we ex-
plain the implementation of the QCM on the SAP TREX
execution engine with the help of the previously explained
Distribute function in this section. The TREX execution en-
gine differentiates between plan data and plan operations.
Each plan operation can run independent of another and
in parallel and starts as soon as all data inputs are avail-
able. An execution plan has some plan data inputs and out-
puts. It is a data-flow graph where each plan operation is
connected to another plan operation via its inputs and out-
puts - very much like the QCM model itself. Typically, the
physical representation of a calculation view from the QCM
consists of one or more plan operations and plan data. For
example, for each of the column set operators, there exists
a plan operation. However, since the BWA’s main capa-
bility is fast querying and aggregation, these functionalities
are reused within the execution model. Therefore, instead
of a stack of filtering, sorting and grouping operators, alter-
natively a search operator is available that combines these
operations into one and leverages the power of the highly
parallel BWA engine. In fact, the search operator is used
whenever a column set should be retrieved from an OLAP
column source. It takes as plan data input a query and a ref-
erence to the cube that is the target of the search. It then
outputs a column set data structure that can be used by
all subsequent operators. So-called InternalTables are used
as columnar data structure within the TREX engine repre-
senting ColumnSets of the QCM. Another vital part of the
QCM is the various column functions and column expres-
sions. Column functions are implemented to work directly
on single columns of an InternalTable. In our example, the
distribution function is one such column function that is im-

plemented on an InternalTable column. Column expressions
are evaluated for each value combination that exists in the
columns specified as source for the iteration, i.e they are
evaluated row-wise.

Often, there are different physical execution plans possible to
express a functionality modeled in QCM. We use the exam-
ple of the Distribute function again to explain an execution
plan. As mentioned before, the Search operator delivers an
InternalTable that is then joined with the column that con-
tains the new summed-up quantities on product-group level
supplied by the user. The joined column set then serves as
input for the foreach operator and contains the sales col-
umn that is the target of the disaggregation. The output
of the foreach operator is again an InternalTable, which can
be stored as temporary result using the physical Temp op-
erator. As is signaled by the context argument of the fore-
ach operator, we distribute not one value but one value per
product group, i.e. data partition. Thus, the disaggregation
function can be executed for each set of products indepen-
dently and in parallel. The data partitioning via the context
of the foreach operator can also be used to parallelize the
calculation from Example 2. This is also demonstrated in
the scalability evaluation in Section 4.3. Referring to the
distribution example again, there is another option to intro-
duce parallelism. If the value for a product group is spread
to a very large set of products, it can be useful to split the
set of products into multiple parts. Then, for each part,
an intermediate sum can be calculated that determines how
much all products from that part contribute to the product
group sum. Now, the overall sum is allocated to those partial
sums building a set of new partial sums. The distribution
of these new intermediate sums to individual products can
now be executed in parallel again. This form of hierarchical
distribution can also be combined with the previously de-
scribed parallelization of the distribution of multiple input
values.

For the evaluation, we use the sequence of planning steps
that was explained in the introductory examples. The plan-
ning session contains two copy steps COPY1 and COPY2,
the distribution of values DIST and the calculation of a
complex formula CALC. For the comparison of row- vs.
column-store, we used a dual CPU workstation with 4GB
of main memory running Windows XP 64Bit.

4.2 Column-Store vs. Row-Store
With the first experiment, we wanted to evaluate the suit-
ability of an in-memory column-store as a planning engine
and compared it to a traditional row-store and an in-memory
row-store. The row-store is a well tuned commercial database
system and the functions have been implemented as stored
procedures using procedural SQL. For both systems, the size
of the source dataset is chosen such that it fits completely
into the memory of the workstation and has ≈ 1.000.000
rows. The size of the selected and manipulated data set has
≈ 250.000 rows. Since each planning step during a planning
session produces a temporary result, we used temporary ta-
bles for the row-store to store the results, in order to mini-
mize the influence of logging and make it comparable with
the temporal column sets of the column-store. Furthermore,
before the measuring, we loaded the data into memory to
minimize disk access. All these actions should ensure that

Final edited form was published in "EDBT/ICDT '10: EDBT/ICDT '10 joint conference. Lausanne 2010", S. 681–686 , ISBN 978-1-60558-945-9
https://doi.org/10.1145/1739041.1739126

5

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

 10

 100

 1000

 10000

 100000

 1e+006

COPY1 COPY2 DIST CALC

E
xe

c.
 ti

m
e

in
 m

s
(lo

g.
 s

ca
le

)

Functions

Row vs. Column-store

RS
MCS

Figure 5: Comparison of Row-Store (RS) and In-
Memory Column-Store (MCS)

we compare the two implementation techniques and data
representation paradigms rather than doing a comparison
of disk vs. memory. Figure 5 shows the results of the first
measurements. Overall, the measurements show for each
planning function that the BWA engine is at least 10 times
faster than the row-store. Also, on the row-store, the CALC

function consumes a considerable amount of time.

4.3 Scalability
For the scalability tests, the experimental setup uses a server
blade with 8 CPU cores and 8GB of memory running 64-Bit
Linux. To simulate the scaling, we limited the number of ex-
ecution units in our physical execution plans to the number
of cores simulated. To set a baseline, the plan was executed
by one execution unit only. Subsequently, we distributed
the execution to 2, 3 and up to all 8 CPUs. Figure 6 shows
the reduction of execution time compared to the baseline for
the COPY and CALC functions. As can be clearly seen,
the scaling for both COPY and CALC functions is close
to linear and conforms with our expectations. Obviously,
optimal scaling can only be achieved if the execution plan
can be well parallelized. However, this is most often the case
with planning functionality that is expressed with our QCM.
For example, partitions of data that follow from the foreach
operator or independent calculations on different columns
are always well suited for parallelization. Since these mech-
anisms are inherent to the model, it is very suitable for the
parallel execution infrastructure of the SAP BWA.

5. CONCLUSIONS
In this paper, we argued for planning functionalities to be
treated as first-class citizens in the realm of OLAP modeling
and engines. We summarized the main requirements that a
planning application poses to an underlying engine and iden-
tified a Query-Modify-Publish paradigm that most planning
applications follow. To our knowledge, we introduced for the
first time a model that is powerful enough to express many
of the required planning functions. One key property of the
model is that it is column-centric. Hence, it is well-suited to
be implemented on a column-store, as was shown in the pa-
per. It benefits from the column centricity for the very same
reason as OLAP engines benefit from it. Furthermore, we

 100

 1000

 10000

 100000

1 2 3 4 5 6 7 8

E
xe

c.
 ti

m
e

in
 m

s
(lo

g.
 s

ca
le

)

Number of CPUs

Scalability

COPY
CALC

Figure 6: Scalability of the Copy and Calculate func-
tion on BWA

showed with an example that the model also lends itself well
to an implementation on a parallel processing engine, and we
showed the scalability of this approach on the SAP Business
Warehouse Accelerator, a distributed query and processing
engine. There are a number of issues for future research.
First, the translation between the QCM to the execution
model bears a lot of potential for possible optimization, so
an optimizer between these two layers seems an interesting
and promising thing to look at. Furthermore, this optimizer
can also use parallelization hints within the QCM to create
well parallelized plans. We should also mention that some
of the planning functions have been implemented in Python
for easy prototyping. Implementing them with the BWA’s
native implementation language (C++) will result in further
speedup. Another idea is to omit the step of saving and ma-
terializing the intermediate results of single planning steps.
Instead, the engine could only save the actual QCM, and
whenever the data is requested, calculate the requested re-
sults on the fly. By stacking the models from multiple steps
on top of each other, again, the stacked model provides po-
tential for optimization.

6. ACKNOWLEDGMENTS
We would like to thank the whole TREX team for their
invaluable contributions and their continuous support.

7. REFERENCES
[1] D. J. Abadi, S. R. Madden, and N. Hachem.

Column-stores vs. row-stores: how different are they
really? In SIGMOD ’08: Proceedings of the 2008 ACM
SIGMOD international conference on Management of
data, pages 967–980, New York, NY, USA, 2008. ACM.

[2] R. Burns and R. Dorin. The sap netweaver bi
accelerator - transforming business intelligence, white
paper, winter corporation, 2006,
http://www.wintercorp.com/whitepapers/whitepapers.asp.

[3] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh.
Data cube: A relational aggregation operator
generalizing group-by, cross-tab, and sub-total. In
ICDE, pages 152–159, 1996.

[4] P. Vassiliadis and T. Sellis. A survey on logical models
for olap databases. SIGMOD Record, 28:64–69, 1999.

Final edited form was published in "EDBT/ICDT '10: EDBT/ICDT '10 joint conference. Lausanne 2010", S. 681–686 , ISBN 978-1-60558-945-9
https://doi.org/10.1145/1739041.1739126

6

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

