
Execution Levels for Aspect-Oriented Programming

Éric Tanter ∗

PLEIAD Laboratory
Computer Science Department (DCC)
University of Chile – Santiago, Chile

etanter@dcc.uchile.cl

Abstract
In aspect-oriented programming languages, advice evaluation is
usually considered as part of the base program evaluation. This
is also the case for certain pointcuts, such as if pointcuts in
AspectJ, or simply all pointcuts in higher-order aspect languages
like AspectScheme. While viewing aspects as part of base level
computation clearly distinguishes AOP from reflection, it also
comes at a price: because aspects observe base level computation,
evaluating pointcuts and advice at the base level can trigger infinite
regression. To avoid these pitfalls, aspect languages propose ad-
hoc mechanisms, which increase the complexity for programmers
while being insufficient in many cases. After shedding light on the
many facets of the issue, this paper proposes to clarify the situation
by introducing levels of execution in the programming language,
thereby allowing aspects to observe and run at specific, possibly
different, levels. We adopt a defensive default that avoids infinite
regression in all cases, and give advanced programmers the means
to override this default using level shifting operators. We imple-
ment our proposal as an extension of AspectScheme, and formalize
its semantics. This work recognizes that different aspects differ in
their intended nature, and shows that structuring execution contexts
helps tame the power of aspects and metaprogramming.

1. Introduction
In the pointcut-advice model of aspect-oriented programming, as
embodied in e.g. AspectJ [16] and AspectScheme [11], crosscutting
behavior is defined by means of pointcuts and advices. A pointcut
is a predicate that matches program execution points, called join
points, and an advice is the action to be taken at a join point
matched by a pointcut. An aspect is a module that encompasses
a number of pointcuts and advices.

A major challenge in aspect language design is to cleanly and
concisely express where and when aspects should apply. To this
end, expressive pointcut languages have been devised. While orig-
inally pointcuts were conceived as purely “meta” predicates that
cannot have any interaction with base level code [28], the needs of
practitioners have led aspect languages to include more expressive
pointcut mechanisms. This is the case of the if pointcut in AspectJ,

∗ Partially funded by FONDECYT projects 11060493 & 1090083.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
AOSD 2010 Submission
Copyright c© 2010 ACM TBA. . . $5.00

which takes an arbitrary Java expression and matches at a given join
point only if the expression evaluates to true. Going a step further,
higher-order aspect languages like AspectScheme consider a point-
cut as a first-class, higher-order function like any other, thus giving
the full computational power of the base language to express both
pointcuts and advices.

While pointcuts were initially conceived of as pure metalevel
predicates, advices were seen as a piece of base-level functional-
ity [28]. In other words, an advice is just like an ordinary func-
tion or method, that happens to be triggered “implicitly” when-
ever the associated pointcut predicate matches. Considering advice
as base-level code clearly distinguishes AOP from runtime meta-
object protocols (to many, the ancestors of AOP). Indeed, a meta-
object runs, by definition, at the metalevel [18]. This makes it possi-
ble to consider metaobject activity as fundamentally different from
base level computation, and this can be used to get rid of infinite
regression [8]. In AOP, infinite regression can also happen, and
does happen, easily1: it is sufficient for a piece of advice to trig-
ger a join point that is potentially matched by itself (either directly
or indirectly). This is one of the reasons why a specific kind of
join point, which denotes advice execution, has been introduced in
AspectJ [28]. This join point allows one to rule out join points that
are caused by executing an advice.

In recent work, we analyze this issue further and show that
AspectJ fails to properly recognize the possibility of infinite re-
gression due to pointcut evaluation [22]. We proposed a solution
that consists in introducing a pointcut execution join point, and a
defensive default that avoids aspects matching against their own
execution. Other languages like AspectScheme and AspectML [6]
introduce special primitives to control infinite regression. For in-
stance, AspectML suggests a disable primitive to evaluate an ex-
pression without generating any join point. However, all these so-
lutions rely on control flow checks, which are eventually unable to
properly discriminate aspect computation from base computation.

Since all these issues are reminiscent of conflation of levels in
reflective architectures [3], we choose to question the basic assump-
tion that pointcut and advice are intrinsically either base or meta.
For instance, looking at how programmers use advices, it turns
out that some advices are clearly base code, while some are not:
e.g. generic aspects, advices that use thisJoinPoint (reification
of the current join point to be used in the advice), etc. To get rid
of this tension between AOP and MOPs, or between “all is base”
and “all is meta”, we propose a reconciliating approach in which
the metaness concern is decoupled from the pointcut-advice mech-
anism. This is done by introducing in the core execution model
a notion of level of execution. Aspects are bound to observe exe-
cution of particular levels. To alleviate the task for non-expert pro-

1 http://www.eclipse.org/aspectj/doc/released/progguide/pitfalls-
infiniteLoops.html

grammers, we adopt a defensive default that avoids regression in all
cases by making aspect computation happen at a higher level. For
the advanced programmer, level shifting operators provide com-
plete control over what aspects see and where they run (i.e. who
sees them). Execution levels seamlessly address all the issues of
current proposals, while maintaining extreme simplicity in the most
common cases.

This paper is structured as follows: Section 2 describes several
issues with the current state of affairs regarding aspect weaving.
Section 3 briefly discusses current attempts at addressing these is-
sues. Section 4 connects these issues to the fundamental issue of
conflation. Section 5 develops our proposal of execution levels, in-
cluding its safe default, explores the flexibility offered by explicit
level shifting, and shows how all the issues raised previously are
seamlessly addressed. We formalize the operational semantics of
our proposal in Section 6, by modeling a higher-order aspect lan-
guage with execution levels. Section 7 discusses related work and
Section 8 concludes.

2. A Plethora of Issues
This section briefly visits several issues associated to the current
state of affairs of aspect languages. The first one, advice loops, is
widely known, so much so that its “solution”, which rely on control
flow checks, has almost acquired the status of a pattern. The second
issue we discuss, pointcut loops, is only doubtfully and partially
addressed, while the last three issues reveal fundamental flaws of
currently acknowledged patterns.

We illustrate the issues in pedagogical variants of the geometri-
cal shapes example—basically, points that can be moved around—
using AspectJ as an implementation language.

2.1 Advice Loops
Consider an Activity aspect that traces whenever a point is active,
that is, when one of its methods is executing:

aspect Activity {
before(Point p) :

execution (* Point.*(..)) && this(p) {
System.out.println("point active: " + p);
}
}

While straightforward, this definition fails: tracing a point object is
done by (implicitly) calling its toStringmethod, whose execution
is going to be matched by the same aspect, and so on infinitely.
Folk wisdom knows that the solution consists in excluding join
points that occur in the control flow of the advice execution. To
identify the advice execution, AspectJ includes a specific pointcut
designator, which can be used as follows:

execution(* Point.*(..)) && this(p)
&& !cflow(adviceexecution() && within(Activity));

The added conjunction excludes join points that are in the control
flow of an advice execution join point triggered by the Activity
aspect (the adviceexecution join point itself is not parametrized
in AspectJ). Note that there exists variants of this pattern, but
which are too “strict”: omitting the within part implies exclud-
ing join points in the control flow of any advice of any aspect,
while using only cflow(within(Active)) rules out join points
that can occur in the control flow of a standard, non-advice, method
of Activity (an aspect, like an object, may have instance vari-
ables and methods). Finally, not using cflow, but just checking for
!within(Active) is too “loose”, since it only rejects join points
that occur lexically in the advice; this would clearly be insufficient
in our example, because the execution of toString is not lexically
in the advice (only the call is).

2.2 Pointcut Loops
Let us refine the Activity aspect such that only point objects
within a given area are subject to monitoring. We can use the if
pointcut designator for this purpose:

aspect Activity {
Area area = ...;
before(Point p) : execution (* Point.*(..))
&& this(p) && if(p.isInside(area)) ... {
...

}
}

We use this(p) to get a hold on the currently-execution point
object and use it in the if condition to check that the point is within
the area. This definition is however incorrect, for a similar reason
as above. Calling isInside eventually results in an execution join
point against which that very same pointcut is evaluated again,
provoking an infinite loop. In this case however, we cannot use a
precise cflow check because there is no way to refer to a pointcut
execution (in AspectJ or in any aspect language we know of).

We could revert to an imperfect (too strict) variant, by ruling out
join points in the control flow of any join point that occurs in the as-
pect: !cflow(within(Activity)). While something equivalent
would work in AspectScheme, this is totally impossible with cur-
rent AspectJ compilers (in the absence of a complete formal seman-
tics of the language, compilers dictate). Surprisingly, both ajc and
abc hide join points occurring lexically in an if pointcut. There-
fore, the roots of the guilty flows of execution cannot be identified,
because they are hidden! The only solution is to refactor the aspect
and move out the if condition from the pointcut to the advice(s).

2.3 Confusion all Around
To add to the already-large confusion and complexity, control flow
checks, when possible, interfere in unpleasing ways with the kind
of advice bound to a pointcut.

Up to now, we have only used before advice in the examples.
Aspect languages generally support around advice as well, with
the following equivalence2:

before() : pc() { ...before action... }

is equivalent to:

Object around() : pc() {
...before action...
return proceed();

}

Consider the following tracing aspect:

aspect Activity {
Object around(Point p) :

execution (* Point.*(..)) && this(p) && {
System.out.println("execution on point: " + p);
return proceed(p);
}
}

With before advice, Activity prints all method executions on
p, including executions caused by self calls (such as move calling
setX, or recursive methods). Of course, because the advice prints

2 The degree to which this equivalence is explicitly recognized and accepted
differs according to the language. For instance, in AspectScheme, before ad-
vice is really but syntactic sugar for around advice following the given pat-
tern. The formal semantics of AspectScheme therefore contemplates only
around advice. On the contrary, AspectJ implementations do not consider
before advice as syntactic sugar, but as an opportunity for optimization.

the point object, it is subject to an advice loop that can only be
avoided using a control flow check (Section 2.1). As it turns out, it
is impossible to obtain that same behavior (tracing all executions)
with an around advice! The reason is that the advice now has to
call proceed in order to trigger the original base computation.
This means that the advice execution control flow check, whose
purpose is to avoid the advice loop, also discards all subsequent
join points of the nested base program execution. The core of the
issue is that control flow checks are unable to discriminate advice
execution from the original base program computation triggered by
proceed. We consider the unfortunate interaction between control
flow checks and proceed a major issue of current languages.

2.4 Visibility (of) Aspects
Previous issues mostly deal with the visibility of aspect computa-
tion to itself. It is also important to consider the fact that several
aspects coexist in a program, and may or may not need to observe
each other’s computation.

Suppose we add a FrequencyDisplay aspect that measures
the number of times a point object is used per time unit in order to
update its displayed size accordingly. The sheer fact of having the
Activity aspect calling isInside and toString means that the
measurements of FrequencyDisplay are silently affected.

Conversely, one may want the computation of an aspect to be (at
least partially) visible to others. Suppose that the Activity aspect
calls the refresh() method of a global Display. In addition, a
Coalescing aspect is in charge of gathering all refresh actions
that occur within a certain time interval into a single refresh. Both
base objects and Activity call refresh, and Coalescing ought
to be aware of all of them. For that, part of Activity’s computation
must be visible to the coalescing aspect.

Control-flow checks cannot fulfill the need for visibility control
between aspects in a satisfying manner, mostly for the same reason
we described in Section 2.3; neither can aspect precedence, which
only deals with the issue of shared join points.

2.5 Concurrency
Finally, control-flow checks completely brake in the presence of
concurrency. Suppose the Activity aspect logs its output to a file.
In order to be more efficient, writing to the file is delegated to a
timer thread that buffers pending log actions, and flushes them to
the file at certain time intervals. In AspectJ, a simplified version of
this behavior could be implemented using the Timer/TimerTask
framework of Java, e.g.:

class LogTask extends TimerTask {
Point p;
LogTask(Point p){ this.p = p; }
void run(){
log.write(p.toString());

}
}

aspect Activity {
Timer t = new Timer();
before(Point p) :

execution (* Point.*(..)) && this(p) {
timer.schedule(new LogTask(p), 1000);
}
}

Writing to the file in the LogTask implies calling the toString
method of point objects, resulting in an infinite loop. This loop,
however, cannot be avoided through control-flow checks related to
the advice execution, simply because the execution of toString

does not happen in the control flow of the advice, but in a separate
thread of execution. Note that if the LogTask class were defined
lexically within Activity, either as a named or anonymous inner
class, then the !cflow(within(..)) pattern would work. How-
ever, this is clearly not the general case, and in addition, as argued
in Section 2.1, the pattern is too strict.

3. Preliminary Solutions
There have been several attempts to address the above issues, ei-
ther by selectively and explicitly disabling aspect weaving, or by
implicitly detecting looping situations and avoiding them. Other
related proposals are discussed in Section 7.

Explicit disabling of weaving. AspectScheme supports a primi-
tive function application, app/prim, which does not generate a join
point. This is required in AspectScheme to address obvious looping
issues: because pointcuts and advice are standard first-class func-
tions, even applying the proceed function itself can generate an
infinite loop. Therefore, app/prim is typically used to apply the
proceed function as well as to apply functions in pointcuts. Unfor-
tunately, app/prim does not help in any of the issues presented here
because it only hides the application join point, not the subsequent
function execution and nested computation (in that sense, it shares
the same limitations as the lexical within pointcut of AspectJ).
AspectML suggests a disable primitive that hides the computation
of a whole expression. While this is certainly more effective than
a pure lexical primitive like app/prim, it shares the same flaws as
the control flow patterns in AspectJ.

Controlling aspect reentrancy. In previous work, we draw an
analysis of the two first issues of the previous section, under the um-
brella term of aspect reentrancy [22]. We distinguish base-triggered
reentrancy (caused when an aspect matches join points that are
produced by e.g. a recursive base program, not discussed here),
advice-triggered reentrancy (Section 2.1), and pointcut-triggered
reentrancy (Section 2.2). We show that base- and advice-triggered
reentrancy can be avoided using well-known patterns like control-
flow checks, at the expense of complex definitions. We also pin-
point the fact that current AspectJ compilers make it impossible to
get rid of pointcut-triggered reentrancy without having to refactor
the aspect definition.

In particular, we propose a revised semantics for if pointcuts,
such that their execution is fully visible to all aspects, except
themselves. To be able to determine reentrant join points at a
pointcut, we introduce a pointcut execution join point, similarly to
the already-existing advice execution join point found in several
aspect languages. Such a join point is produced internally upon
pointcut evaluation, and is necessary to be able to get rid of
pointcut-based reentrancy.

While they seem to address the looping issues, all these ap-
proaches are (at best) based on control flow checks and therefore
fail when considering the three last issues presented in Section 2.
None of them considers the issue of confusing base and advice ex-
ecution through proceed (the reentrancy control proposal is for-
mulated only in terms of before advice). Mutual visibility among
aspects as well as the possibility of delayed advice computation are
also not considered. In summary, we believe that relying on control-
flow checks is inherently flawed. This analysis points towards a
fundamental issue, yet to be identified. Ideally, a proper solution to
the fundamental issue would make it possible to straightforwardly
address all of them in an elegant and robust manner.

pc()

...setX(2)...

call
pcexec

..isInside(a)..

call
ctx

adv(..ctx..)
advexec

..toString()..

call

base
meta

Figure 1. Join points and aspect execution in aspect languages
with if pointcuts or higher-order pointcuts, and base-level advice.

4. Stepping Back: Conflation
Let us look back a little:

“very often, the concepts that are most natural to use at the
meta-level cross-cut those provided at the base level.” [13]

This visionary sentence from a seminal paper that reveals the seed
of what is now known as aspect-oriented programming is intrigu-
ing. It clearly places what we now call an aspect at the “meta-level”,
something of a different kind. Arising from work in meta-object
protocols, designed to address what was mostly a locality issue, as-
pects have since then lost their “metaness”, at least to some extent.
While a pointcut is originally seen as a pure metalevel entity (a
method applicability predicate expressed in its own language [28]),
advice is just another—probably misnamed—piece of code that has
the same ontological status as a method [14].

Clearly, the pure view of pointcuts does not hold in practice:
pointcuts do generate join points. This is the case with the if point-
cut of AspectJ, and simply with all pointcuts in higher-order aspect
languages like AspectScheme, AspectML, and our new language,
AspectScript [17]. Whether advice is meta or not is debatable, and
we believe, depends on what advice we are considering. Our stance
on this issue is that while we recognize that some aspects can be
part of the base application logic, we also acknowledge the fact
that AOP can be (and is) used for metaprogramming. Many ap-
plications that used to be considered as illustrative of MOPs [29],
like synchronization and monitoring, are now programmed using
aspects, mostly due to the practical benefits of pointcut languages.

Why does it matter? History. As a matter of fact, the issues
we have been exposing up to now are reminiscent of the issue
of meta-circularity, which has long been identified in reflective
architectures [9]. In the context of AOP, meta-circularity stems
from the fact that we are using all the power of the base language
(e.g. Java) to redefine, via (if) pointcuts and advices, the meaning
of some specific base computation (join points). The widely-used
and ad hoc solution to this problem is to add base checks that
stop regression, such as explicit control-flow checks in AspectJ,
or the default reentrancy control we proposed previously [22].
Another solution is to introduce a more primitive mechanism that
is not subject to redefinition, like AspectScheme’s app/prim and
AspectML’s disable.

This said, the meta-object protocol literature has recognized that
these approaches eventually fall short. In particular, Chiba, Kicza-
les and Lamping show that they fail to address the fundamental
problem, which is that of conflating levels that ought to be kept
separate [3]. That these ad-hoc approaches fail is precisely the point
we have made in this paper so far. To see the connection with con-
flation of levels, let us consider Figure 1. When a call occurs at
the base level, a call join point is created (snaky arrow). The join
point (call box) is passed to the pointcut. As already discussed, the
evaluation of the pointcut does not occur entirely at the metalevel,
due to the presence of e.g. if pointcuts. The pointcut returns either
false (if there is no match), or a list of bindings (ctx) if there is a
match. The bindings are used to expose context information to the

advice. The advice is then called, and runs at the base level. This
means that calls occurring in the dynamic extent of the pointcut or
advice execution are reified as call join points, just as visible as the
first one. The fact that all join points (boxes) are present at the same
“level” depicts conflation. Figure 1 also shows pointcut and advice
execution join points, used in control-flow checks.

Following the meta-helix architecture proposed by Chiba et
al. would mean placing pointcut and advice execution at a higher-
level of execution (n + 1) than “base” code (n). On the one hand,
this allows for a stable semantics, where issues of conflation can
be avoided [3, 8]. On the other hand, this boils down to reconsid-
ering AOP as just a form of metaprogramming. Only Bodden et
al. have looked at this issue in AOP and proposed a solution based
on placing aspects at different levels of execution, recognizing ad-
vice execution as a meta activity [2]. However, seeing advice as
inherently meta defeats the original idea of AOP [14].

We propose to resolve this conflict by decoupling the
“metaness” concern from the pointcut and advice mechanism. We
introduce execution levels in the language, in order to structure
computation. We opt for a default semantics regarding pointcuts
and advices that favors stability. That is, by default, we consider
both pointcut and advice execution as higher-level computation,
invisible to aspects. This arguable choice is purely motivated by
a defensive concern: the unaware programmer should not face po-
tential interferences unless she consciously chooses to. Beyond our
own experience and that of others [2], a brief study of the AspectJ
examples included with the standard distribution shows that this de-
fault does make sense. As we will see, when necessary in order to
observe aspectual computation, aspects can be explicitly deployed
at higher levels. In addition, we provide level shifting operators in
the language, so that advanced programmers can specify their intent
with respect to the ontological status of their pointcuts and advices
(and by extension, of any expression).

5. Execution Levels
In this section, we introduce execution levels and discuss how they
can be used in conjunction with aspects. Section 5.1 exposes the de-
fault way in which pointcuts and advices are evaluated, highlighting
one of the major difference between relying on execution levels vs.
relying on control flow checks. Section 5.2 gives more control to
programmers by introducing level shifting expressions. Section 5.3
defines a notion of control flow that is sensitive to execution levels.
It also highlights the second fundamental difference between exe-
cution levels and control flow, in that it is possible to capture and
later reinstate an execution level. Section 5.4 explains how it is pos-
sible, using execution level shifting and higher-order programming,
to overwrite our defensive default to revert to the view of pointcuts
as meta, advice as base. Section 5.5 summarizes the benefits of exe-
cution levels and how they make it possible to address all the issues
we have raised so far. Section 5.6 briefly discusses an interesting
perspective raised by the introduction of execution levels.

5.1 Aspects and Levels: Default
Figure 2 depicts the default evaluation of pointcuts and advice
with level shifting. As before, we adopt the convention that the
evaluation of base code (at level 0) generates join points at level 1
(e.g. the call box), where aspects can potentially match and trigger
advice. Pointcut and advice execution join points are generated, but
at level 2. Similarly the whole evaluation of pointcuts and advices
is done at level 1, so the join points produced in the dynamic extent
of these evaluations are generated at level 2. This ensures that the
call of isInside done during pointcut evaluation of Activity is
not seen at the same level as the call to setX (level 0). The same
holds for the call to toString in the advice. The default semantics
therefore addresses both issues raised in Sections 2.1 and 2.2.

pc()

...setX(2)...

call

pcexec

..isInside(a)..

call

ctx
adv(..ctx..)

advexec

..toString()..

call

Figure 2. Running pointcut and advice at a higher level of execu-
tion.

pc()

..move(..)..

call

pcexec

..setX(..)..

call

ctx
adv(..ctx..)

advexec

..before.. (proceed p) ..after..

Figure 3. Proceeding to the original computation is done at the
lower level.

Proceed. As briefly explained in Section 3, an advice can proceed
to the computation originally described by the join point. Logically,
the original computation clearly belongs to the same level as the
original expression. This is fundamental, and is precisely why using
control flow checks to discriminate advice execution fails. Base
computation should remain base computation, no matter if some
aspect applies or not, and no matter the advice kind. There is no
reason why using around advice (with proceed) rather than before
advice should change the status of the underlying computation.

In order to address this crucial issue, it is also important to
remember that when several aspects match the same join point,
the corresponding advices are chained such that calling proceed
in advice k triggers advice k + 1. The original computation is
performed only when the last advice proceeds.

Therefore, our default semantics ensures that the last call to
proceed in a chain of advices triggers the original computation
at the lower original level. Subsequently, join points generated by
the evaluation of the original computation (level 0 in that case) are
seen at the same level as before (level 1). This is shown on Figure 3,
and addresses the issue raised in Section 2.3.

Aspects of aspects. The default semantics of computing pointcut
and advice at a higher-level ensures that other aspects do not see
these computations. As discussed in Section 2.4, this is the desired
semantics to avoid interferences between aspects. For instance,
using the Activity aspect should not affect the measurements
performed by FrequencyDisplay.

However, this layering also implies that Coalescing cannot
see the computation of Activity; therefore it cannot optimize the
refreshing of the Display. In order to allow aspects to observe the
activity of other aspects, while keeping the same default semantics,
it is necessary to define aspects at higher levels. For instance, with
stratified aspects [2], this is done by declaring certain aspects as
meta[n] where n is the level at which the aspect stands. The
following section introduces a more uniform and flexible solution
to this issue.

up[move(..)]

move(..)

call

....setX(..)....

call

Figure 4. Shifting up.

down[disp.refresh()]

disp.refresh()

call

..paint()..

call

Figure 5. Shifting down.

5.2 Shifting Execution Levels
While installing aspects at higher levels is correct, it stays within
the perspective of “aspects are meta”. From a software engineering
viewpoint, it also implies that at the time Coalescing is deployed,
it is known that this aspect may be required at higher levels.

As we already mentioned before, AOP is not solely metapro-
gramming with syntactic sugar: the original idea is that advice is
a piece of base-level code [28, 14]. In some cases, advice execu-
tion should be visible to aspects that observe base level execution.
This approach is more compatible with the traditional AO view that
“advices are base”. From an engineering viewpoint, it allows the
implementor of an aspect to declare that some part of its (pointcut
and/or) advice should be considered as standard base code. Other
aspects then do not need to be explicitly deployed at a higher level;
they perceive that computation just like base computation.

Up and down. In order to reconcile both approaches, we intro-
duce explicit level shifting operators in the language, such that a
programmer can decide at which level an expression is evaluated.
Level shifting is orthogonal to the pointcut/advice mechanism, and
can be used to move any computation.

Figure 4 shows that shifting up an expression moves the com-
putation of that expression a level above the current level. This im-
plies that join points generated during the evaluation of that expres-
sion are visible one level above. Conversely, shifting an expression
down moves the computation of that expression a level below the
current level, as depicted on Figure 5.

Using up and down, it is possible to control where aspectual
computation is performed, relative to the default semantics de-
scribed in Section 5.1. One can also use these level shifting op-
erators to actually deploy aspects at a particular level.

Deploying aspects of aspects. In Section 5.1 we mentioned the
fact that the default semantics requires aspects of aspects to be de-
ployed at a higher level. To illustrate this, as well as to start con-
necting with our upcoming formalization and implementation (Sec-
tion 6), we briefly introduce a simple aspect-oriented extension to
the higher-order procedural programming language Scheme, which
considers only one kind of join points, function application.

An aspect is defined by two functions, a pointcut function and an
advice function. An aspect is deployed globally using the deploy
primitive. For instance:

(deploy pc adv)

Assuming the above expression is evaluated at level 0, its effect
is to deploy an aspect defined by pointcut pc and advice adv at
level 1. This aspect then observes base level computation. In order
to deploy an aspect that observes aspect computation at level 1, we
can simply deploy it using the up level shifting operator:

(up (deploy pc adv))

Assuming the expression is evaluated at level 0, up shifts evalua-
tion to level 1, where the aspect deployment expression is then eval-

uated. This results in the aspect being deployed at level 2, thereby
observing the computation of aspects standing at level 1. This ad-
dresses one part of the visibility issue discussed in Section 2.4.

Shifting some aspect computation. One can use level shifting
operators directly within the definitions of pointcut and advice.
Briefly, a pointcut is a function that takes a join point as input and
returns either false (#f) if it does not match, or a (possibly empty)
list of context values exposed to the advice. An advice takes as
parameters a proceed function, a list of context values (coming
from the pointcut), and the arguments at the join point3.

The following code defines a point-in-area pointcut, which
checks whether the first argument at the join point is a point struc-
ture (using Point?), and if that point is within a given area (using
is-inside). The activity advice writes out the point object, re-
freshes the display, and proceeds. Finally, the aspect is deployed
(with global scope).

(define point-in-area
(let ((area ...))
(λ (jp)
(let ((x (car (args jp))))
(if (and (Point? x)

(is-inside x area))
’() #f)))))

(define activity
(λ (proceed ctx . args)
(write "point active˜a˜n" (car args))
(down (display-refresh))
(proceed args)))

(deploy point-in-area activity)

In the definition of the advice, we use the level shifting operator
down to move the computation of display-refresh down to
the base level. This allows another aspect, like Coalescing, to
take effect and optimize that computation. Note that evaluating the
pointcut does not cause infinite loops, because the application of
both the Point? predicate and the is-inside function remain at
the meta level and are therefore not observable by aspects at the
same level4. This example illustrates how execution levels can be
used to fully address the visibility issues of Section 2.4.

Note however that moving down a part of an aspect computa-
tion may potentially lead back to pointcut or advice loops; e.g. con-
sider what would happen if we were to move down the compu-
tation of is-inside in the point-in-area pointcut. This is be-
cause the join points corresponding to the lowered computation are
seen on the same level as where the aspect resides. To avoid these
self-caused loops (caused by explicitly moving down a computa-
tion), reentrancy control is needed. Such control would be simpler
than our previous work [22] because having execution levels only
leaves open that specific case. An in-depth and formal treatment of
reentrancy control in conjunction with execution levels is however
outside the scope of this paper. (AspectScript [17] integrates both.)

3 This modeling follows—save some details about currying of advice—the
model of AspectScheme [11].
4 In AspectJ, the Point? predicate would be performed by an instanceof
check, which happens to not pertain to the join point model, so there is
no risk of loops. In contrast, here it is just a function application, like the
application of is-inside, and the proceed function. All these could lead
to loops in AspectScheme, if app/prim were not used.

5.3 Exploiting Execution Levels
Execution levels provide a certain amount of structure to computa-
tion, a structure that can be used to reason about the computation
that is taking place. We now extend the traditional notion of control
flow to take levels into account. Finally, we show how the ability
to capture execution levels in certain functions makes it possible
to address the concurrency issue of traditional control flow checks
(Section 2.5).

Level-sensitive control flow. Certain pointcuts perform join point
selection not only by looking at the current join point, but by
looking at its context, which may include other join points. This
is the case of cflow pointcuts, which inspect the current stack
of execution5. It is important for these pointcuts to be able to
distinguish between levels, in order to avoid conflation. Section 2
has illustrated the many downsides of a conflating control flow
pointcut. As another example, consider an aspect that watches
for a particular sequence of nested calls in the base computation.
When observing the stack, it would be unfortunate for the aspect to
consider join points that do not belong to base computation at all.

The stack of execution is reified as a chain of join points, each
referencing its parent join point, denoting the surrounding pending
application. Given a join point jp, (parent jp) returns its parent,
and has-parent? tests whether a join point has a parent (only the
root join point does not). Also, (level jp) returns the level at
which join point jp occurs. It is straightforward to define a non-
conflating control flow pointcut descriptor:

(define cflow
(λ (pc)
(λ (jp)
(or (pc jp)

((cflowbelow pc) jp)))))

(define cflowbelow
(λ (pc)
(λ (jp)
(and (has-parent/l? jp)

((cflow pc) (parent/l jp))))))

This mutually-recursive definition of cflow and cflowbelow is
standard [11, 26]. The only modification needed to make these
PCDs non-conflating is to use has-parent/l? and parent/l.
These functions only find a parent join point if it occurs at the same
level as the given join point.

Capturing execution levels. We now turn our attention to the last,
still unresolved issue, that of concurrency (Section 2.5). Consider
that the activity advice defined previously schedules a logging
task to be run by a separate timer thread. How can we recognize
that the computation of that task relates to the advice execution?

In the model we have presented so far, functions run at the
level at which they are applied. Intuitively, this corresponds to
dynamic scoping, and fits with the notion that the execution level is
a property of a flow of execution. The counterpart of this dynamic
scoping strategy for execution levels is static scoping: executing a
function at the level at which it was defined. As it turns out, this is
precisely the feature we need to track delayed advice execution6.

5 We do not consider state-based (as opposed to stack-based) implementa-
tion of control flow checks here [19]. It is straightforward to extend our
argument to state-based cflow.
6 The idea of level-capturing functions is directly inspired by the reflective
language Blond [7], which supports two different kinds of reflective proce-
dures (more on this in Section 7).

cflow checks
plain

levels

-
no

yes [λ•]

delayed aspect
computation

partial [cannot hide]

yes [higher or down]
partial [cannot hide]

visibility wrt
other aspects

yes

discriminate
aspect/base

-
no [proceed conflation]

yes

avoid pc
loops

avoid adv
loops

nono
(no)

yes
yes

Table 1. Benefits of execution levels to address the issues of Section 2.

We therefore introduce a new kind of lambda abstraction, de-
noted λ•, called a level-capturing function. A λ•-abstraction is ex-
ecuted at the level at which it was defined.

(define activity
(λ (proceed ctx . args)
(schedule-task (λ•() (log-to-file (car args))))
(proceed args)))

By defining the activity advice as above, using a level-
capturing function, ensures that the call to the point structure per-
formed by the timer thread when running the task is actually per-
formed at the same level as the advice that originated it. This ad-
dresses the issue described in Section 2.5.

5.4 Overriding the Default Semantics
As a final exercise with the practice of execution levels, let us
see how to override the default semantics according to which both
pointcuts and advices execute at the meta level. We want to easily
deploy an aspect such that the original AO view holds: pointcuts at
the meta level, and advice at the base level.

We can certainly take advantage of the fact that we are deal-
ing with advice as first-class functions, and define a shift-down
higher-order function that takes a function f and returns a new func-
tion that applies f one level below:

(define (shift-down f)
(λ args (down (apply f args))))

However, simply deploying an aspect with shift-down as follows:

(deploy pc (shift-down adv))

would be incorrect. Indeed, multiple advices are chained together
by means of proceed. As we have seen, in a higher-order aspect
language, an advice is a function that receives, amongst other
arguments, a proceed function used to either call the next advice,
or to run the original computation, if it is the last advice in the
chain. Therefore, simply shifting the execution level of one advice
implies that subsequent advices also run at the modified level, and
that the base computation runs potentially at a different level than
where it originated.

Therefore, care must be taken to preserve levels appropriately.
The following higher-order function adv-shift-down ensures
that the execution levels are properly maintained by shifting the
proceed function in the reverse direction: i.e. the advice body
is shifted down, while the proceed function is shifted up with
shift-up (defined similarly to the shift-down function above).

(define (adv-shift-down adv)
(λ (proceed ctx . args)
(let ((new-proc (shift-up proceed)))
(down (apply adv (append (list new-proc ctx)

args))))))

It is now possible to depart from the chosen default semantics,
for a given aspect, in order to express the original AO view

according to which pointcuts are metalevel predicates and advice is
base code. We can define a syntactic sugar deploy-aj as follows:

(deploy-aj pc adv)
≡ (deploy pc (adv-shift-down adv))

To conclude, this exercise illustrates once again the fundamental
difference between execution levels and traditional/conflating con-
trol flow checks. The possibility to shift up/down the proceeding
computation is fundamental in order to avoid the confusion raised
by conflation.

5.5 Summary: Benefits of Execution Levels
Table 1 summarizes the benefits of execution levels compared to
current aspect-oriented programming practice. The columns refer
to the different issues described in Section 2, in order. The first row
describes the situation of “plain” AOP, that is, without using any
particular defense against loops; unsurprisingly, infinite loops are
not avoided. Using control flow checks, one avoids advice loops.
However, current AspectJ compilers do not make it possible to
avoid pointcut loops. (These are avoided in [22], and can be avoided
using disable [6].) Also, it is not possible to properly discriminate
aspect computation from base computation, due to proceed confla-
tion. In both cases, computation of aspects is always visible to other
aspects, i.e. it is not possible to hide some aspectual computation.
Also, using cflow, it is not possible to recognize aspect computa-
tion that has been delayed or delegated to some other thread.

Introducing execution levels in an aspect-oriented language
seamlessly addresses all the issues described. Programmers do
not have to use defensive programming patterns to avoid loops:
loops are avoided by default, simply by having pointcut and ad-
vice computation occurring at a higher level. Because the last call
to proceed in a chain of aspects shifts down back to the original
level, there is no confusion between aspect and base computation.
In addition, using control flow in aspect definitions does not intro-
duce any risk of conflation, because a level-sensitive control flow
pointcut is used. By default, aspectual computation is hidden from
other aspects, but it can be made visible either by deploying aspects
at a higher level, or by lowering just the relevant part of the aspect
computation. (In that case, reentrancy control is needed to avoid
self-caused loops.) Finally, level-capturing functions make it possi-
ble to discriminate aspect computation even when it is executed by
another thread.

5.6 Perspective: Level Shifting and Information Hiding
As we have explained, moving (parts of) pointcuts and advices
up and down allows one to control their visibility with respect
to other aspects. As it turns out, level shifting is orthogonal to
the pointcut/advice mechanism, to the extent that it applies to
any expression, not only expressions within pointcuts and advice
bodies. This mechanism can therefore be used to run any arbitrary
piece of code at another level of execution.

For instance, if a function invokes a security manager each time
it is applied in order to ensure that its execution is authorized, it

V alue v ::= (λ(x · · ·) e) | n | #t | #f
| (list v · · ·) | prim | unspecified

prim ::= list | cons | car | cdr | empty?
| eq? | + | − | . . .

Expr e ::= v | x | (e e · · ·) | (if e e e)

v ∈ V , the set of values
n ∈ N , the set of numbers
list ∈ L , the set of lists
x ∈ X , the set of variable names
e ∈ E , the set of expressions

EvalCtx E ::= [] | (v · · · E e · · ·) | (if E e e)

Figure 6. Syntax of the core language.

can “hide” the invocation and execution of the security manager
from aspects observing its execution level by pushing it to a higher
level. This means that level shifting can be used to address, to some
extent, the issue of information hiding violation that has been raised
with respect to standard aspect languages. For instance, in Open
Modules [1], only join points explicitly exposed through pointcuts
declared in the interface of a module are visible to aspects of other
modules.

Finally, the level-shifting operators up and down are relative
only, making it possible to shift execution one level up or down,
respectively. One could consider a bottom operator that moves
execution down to level 0, as well as a top operator that moves
execution to the uppest level, so that execution is invisible to all
aspects. It remains to be determined through practical experience
whether the operators we propose are sufficient7. The semantics
we present in the following section only considers up and down,
though it would be straightforward to accomodate others.

6. Semantics
We now turn to the formal semantics of higher-order aspects with
level shifting. We introduce a core language extended with execu-
tion levels and aspect weaving. In this section we only present the
essential elements, and skip the obvious. The complete formal de-
scription of the language is provided online (see Section 6.6).

Figure 6 presents the user-visible syntax of the core language,
i.e. without aspects nor execution levels. The language is a simple
Scheme-like language with booleans, numbers and lists, and a num-
ber of primitive functions to operate on these. The only expressions
considered are multi-arity function application, and if expressions.
The full language includes also sequencing (begin) and binding
(let) expressions for convenience. The notation X · · · denotes zero
or more occurrences of the pattern X .

We describe the operational semantics of our language via a
reduction relation ↪→, which describes evaluation steps:

↪→: L ×J × E → L ×J × E

An evaluation step consists of an execution level l ∈ L (initially
0), a join point stack J ∈ J and an expression e ∈ E . The
reduction relation takes a level, a stack, and an expression and

7 Our yet-unextensive experience with both our Scheme implementation
(Section 6.6) and AspectScript [17], is that in most cases, explicit level
shifting is not necessary and therefore just 2 levels suffice. When aspects
of aspects are required, for instance for access control, we make use of a
third level. We have not found the need for bottom, and our recent work on
access control through aspects strongly discourages the presence of top.

Expr e ::= . . . | (up e) | (down e) |
(in-up e) | (in-down e)

EvalCtx E ::= . . . | (in-up E) | (in-down E)

〈l, J, E[(up e)]〉 ↪→ 〈l + 1, J, E[(in-up e)]〉 INUP
〈l, J, E[(in-up v)]〉 ↪→ 〈l − 1, J, E[v]〉 OUTUP

〈l, J, E[(down e)]〉 ↪→ 〈l − 1, J, E[(in-down e)]〉 INDWN
〈l, J, E[(in-down v)]〉 ↪→ 〈l + 1, J, E[v]〉 OUTDWN

Figure 7. Shifting execution levels.

maps this to a new evaluation step. The reduction rules for the core
language are standard and not presented here.

In the following we describe the semantics of execution levels,
join points, aspects and their deployment, as well as the weaving
semantics. By convention, when we introduce new user-visible
syntax (e.g. the aspect deployment expression), we use bold font.
Extra expression forms added only for the sake of the semantics are
written in typewriter font.

6.1 Execution Levels
The language supports explicit execution level shifting forms, up
and down (Figure 7). Correspondingly, there are two (not user-
visible) marker expressions, in-up and in-down used to keep
track of the level counter. When encountering an up expression,
the level counter is increased, and an in-upmarker is placed in the
execution context (INUP). When the nested expression has been
reduced to a value, the in-up mark is disposed, and the level
counter is decreased (OUTUP). Evaluation of a down expression
is done similarly (see rules INDOWN and OUTDOWN).

6.2 Join Points
We follow Clifton and Leavens [4] in the modeling of the join
point stack (Figure 8). The join point stack J is a list of join point
abstractions j, which are tuples dl, k, v, v · · ·e: the execution level
of occurrence l, the join point kind k, the applied function v, and the
arguments v · · · . An interesting benefit of using execution levels
is that it is not necessary anymore to introduce advice execution
join points to avoid advice loops, or pointcut execution join points
to avoid pointcut loops. Pointcut and advice evaluation are normal
function applications, that just happen to occur at a higher level.
For simplicity and conciseness, we only consider call join points.

In order to keep track of the join point stack in the semantics we
introduce two (not user-visible) expression forms: jp j introduces
a join point, and (in-jp e) keeps track of the fact that execution is
proceeding under a given dynamic join point. The definition of the
evaluation context is updated accordingly (Figure 8).

A join point abstraction captures all the information required to
match it against pointcuts, as well as to trigger its corresponding
computation when necessary. For instance, consider the reduction
rule for call join points (Figure 8, APP). The rule specifies that
when a function is applied to a list of arguments, the expression is
reduced to a jp expression with the definition of the corresponding
join point, which embeds the execution level at which it is visible
(l+1), its kind call, the applied function, and the values passed to
it. A later rule (WEAVE, explained below) pushes the thus created
join point to the stack J , marking the expression with in-jp, and
then triggers weaving. Poping a join point from the stack is done
by the OUTJP rule, when the expression under a dynamic join point
has been reduced to a value.

J ::= j + J | ε
j ::= dl, k, v, v · · ·e
k ::= call | . . .

l ∈ N
J ∈ J , the set of join point stacks

Expr e ::= . . . | jp j | (in-jp e)

EvalCtx E ::= . . . | (in-jp E)

〈l, J, E[((λ(x · · ·) e) v · · ·)]〉 APP

↪→ 〈l, J, E[jp dl + 1, call, (λ(x · · ·) e), v · · ·e]〉

〈l, j + J,E[in-jp v]〉 ↪→ 〈l, J, E[v]〉 OUTJP

Figure 8. Join points: stack, creation and disposal.

Aspects A = {〈li, pci, advi〉 | i = 1, . . . , |A |}
Pointcut pc ∈ J → {#f} ∪L

Advice adv ∈ (V ∗ → V)×L × V ∗ → V

prim ::= . . . | deploy

〈l, J, E[(deploy vpc vadv)]〉 DEPLOY

↪→ 〈l, J, E[unspecified]〉 and A = {〈l + 1, vpc, vadv〉} ∪A

Figure 9. Aspects and deployment (global environment A).

6.3 Aspects and Deployment
As described on Figure 9, an aspect is a tuple 〈l, pc, adv〉 where
l denotes the execution level at which it stands, pc is the pointcut
and adv the advice (both first-class functions). More precisely, a
pointcut is a function that takes a join point stack as input and
produces either #f if it does not match, or a (possibly empty) list
of context values exposed to the advice. Following [10, 11], higher-
order advice is modeled as a function receiving first a function
to apply whenever the advice wants to proceed, a list of values
exposed by the pointcut, and the arguments passed at the original
join point (we omit the currying of advice).

An aspect environment A is a set of such aspects. An aspect is
deployed with a deploy expression (added as a primitive to the lan-
guage, see Figure 9). To simplify our reduction semantics, in this
section we have not included the aspect environment as part of the
description of an evaluation step. Rather, we simply “modify” the
global aspect environment A upon aspect deployment8 (see rule
DEPLOY). Also note that we do not model the different scoping
strategies of AspectScheme here—we restrain ourselves to deploy-
ment in a global aspect environment. For more advanced manage-
ment of aspect scoping and aspect environments, see [23]. When an
aspect is deployed, it is annotated with the execution level at which
it stands. This means that, when executing at level l, (deploy p a)
deploys the aspect such that it sees join points at level l+ 1 (which
in turn denote computation of level l); (up (deploy p a)) deploys

8 The complete semantics we provide properly includes the aspect environ-
ment in the evaluation steps (Section 6.6).

〈l, J ′, E[jp dl, k, vλ, v · · ·e]〉 WEAVE

↪→ 〈l, J, E[(in-jp (up (app/primW J|A |KJ v · · ·)))]〉
where J = j + J ′

and, with J = dl, k, (λ(x · · ·) e), v · · ·e+ J ′:

W J0KJ = (λ(a · · ·)
(down (app/prim (λ(x · · ·) e) a · · ·)))

W JiKJ = (app/prim (λ(p)
(if (eq? li l)

(let ((c (pci J)))
(if c

(λ(a · · ·)(advi p c a · · ·))
p))

p))
W Ji− 1KJ)

Figure 10. Aspect weaving, with level shifting.

Expr e ::= . . . | (app/prim e e · · ·)
EvalCtx E ::= . . . | (app/prim v · · · E e · · ·)

〈l, J, E[(app/prim (λ(x · · ·) e) v · · ·)]〉APPPRIM

↪→ 〈l, J, E[e{v · · · /x · · · }]〉

Figure 11. Primitive application.

the aspect a level above, such that it sees join points of level l + 2,
i.e. which denote execution at level l + 1.

6.4 Weaving
We now turn to the semantics of aspect weaving. The WEAVE rule
describes the process (Figure 10). A jp expression reduces to an
in-jp expression, and the join point is pushed onto the stack. The
inner expression of in-jp is the application, one execution level
up, of the list of advice functions that match the given join point,
properly chained together, to the original arguments.

The weaving process is closely based on that described by
Dutchyn. It only differs in that we deal with execution levels, and
introduce both pointcut and advice join points. The W metafunc-
tion recurs on the global aspect environment A and returns a com-
posed procedure whose structure reflects the way advice is going to
be dispatched.

For each aspect 〈li, pci, advi〉 in the environment, W first
checks whether the aspect is at the same execution level as the join
point, i.e. if the aspect can actually “see” the join point. If so, it
applies its pointcut pci to the current join point stack. If the point-
cut matches, it returns a list of context values, c. W then returns
a function that, given the actual join point arguments, applies the
advice advi. All this process is parameterized by the function to
proceed with, p. This function is passed to the advice, and if an as-
pect does not apply, then W simply returns this function. The base
case, W J0KJ corresponds to the execution of the original function.
Note that it is performed by downing the execution level, to reflect
the fact that while pointcuts and advice run at an upper level, the
original function runs at its original level of application.

The WEAVE rule uses a primitive application form, app/prim,
described in Figure 11. This form denotes an application that does

Expr e ::= . . . | (λ•(x · · ·) e) | (in-shift(l) e)
V alue v ::= . . . | (λl(x · · ·) e)

EvalCtx E ::= . . . | (in-shift(l) E)

〈l, J, E[(λ•(x · · ·) e)〉 CAPTURE

↪→ 〈l, J, E[(λl(x · · ·) e)]〉

〈l1, J, E[(app/prim (λl2(x · · ·) e) v · · ·)]〉 APPSHIFT

↪→ 〈l2, J, E[(in-shift(l1) e{v · · · /x · · · })]〉

〈l2, J, E[(in-shift(l1) v)〉 ↪→ 〈l1, J, E[v]〉 SHIFT

Figure 12. Level-capturing functions.

not trigger a join point: rule APPPRIM simply performs the clas-
sical βv reduction. app/prim is used to hide “administrative” ap-
plications, i.e. the initial application of the composed advice chain,
and its recursive applications. Finally, app/prim is necessary to
eventually perform the original function application, when all as-
pects (if any) have proceeded (see W J0KJ). Note that contrary
to AspectScheme, app/prim is not in user-visible syntax, thanks
to execution levels. Also note that in W , the pointcut and advice
functions are applied using a standard function application.

6.5 Level-capturing functions
Figure 12 extends the semantics of the language with level-
capturing funtions. There is a new syntactic form to define a level-
capturing function, λ•, and a new value form, λl, which represents
a function that is always executed at level l. The capturing of the
level is performed by the rule CAPTURE. In order to keep track of
the level shifting incurred by applying a level-capturing function,
there is an extra expression in-shift that captures the level at
which such a function is originally applied (Rule APPSHIFT). This
is necessary in order to be able to restore the original level once the
execution of the level-capturing function has finished (Rule SHIFT).

6.6 Availability
We have defined the complete semantics of our language using
PLT Redex, a domain-specific language for specifying executable
reduction semantics [12]. The full definition along with executable
test cases, as well as the automatically-generated rendering of the
language grammar, reduction relation and weaving metafunction
W , are available at: http://pleiad.cl/research/scope

We have also implemented our language as an extension of
AspectScheme (i.e. a language module extending PLT Scheme us-
ing macros), available at the same website. The language supports
both call and execution join points. Level shifting forms are imple-
mented simply as macros that handle a dynamically-scoped param-
eter. The language includes different scoping semantics for aspects
(statically and dynamically scoped) in addition to global, top-level
deployment.

In addition to these definitional artefacts, our group is ac-
tively developing the AspectScript language for expressive aspect-
oriented programming in JavaScript. AspectScript [17] takes full
advantage of the higher-order functional programming features of
JavaScript, and relies at its core on the work presented here on ex-
ecution levels, as well as reentrancy control [22] and expressive
scoping of aspects using scoping strategies [23, 24].

7. Related Work
Reflective towers. Seminal work on reflection focused on the
notion of a reflective tower. This tower is a stack of interpreters,
each one executing the one below. Reification and reflection are
level-shifting mechanisms, by which one can navigate in the tower.
This idea was first introduced by Brian Smith [20] with 2-Lisp and
3-Lisp, and different flavors of it were subsequently explored, with
languages like Brown [27] and Blond [7].

2-Lisp focuses on structural reflection, by which values can be
moved up and down. An up operation reduces its argument to a
value and returns (a representation of) the internal structure of that
value (i.e. its “upper” identity). Conversely, down returns the base-
level value that corresponds to a given internal structure. 3-Lisp
introduces procedural reflection by which computation can actually
be moved in the tower. This is done by introducing a special kind
of abstraction, a reflective procedure, which is a procedure of fixed
arity that, when applied, runs at the level above. It receives as
parameters some internal structures of the interpreter (typically the
current expression, environment, and continuation). Control can
return back to the level below by applying the evaluation function.
(Blond makes the distinction between reflective procedures that
run at the level above the level at which they are applied, and
procedures that run at the level above that at which they were
defined—a direct inspiration for the level-capturing functions we
introduced here.)

In this framework, one could describe the pointcut-advice
mechanism as follows, at least in its original form [28]. Pointcuts
are reflective procedures, that take as parameter (a representation
of) the current join point. In contrast to reflective procedures in re-
flective languages, they are not explicitly applied; rather, they are
“installed” in the interpreter, and their application is triggered by
the interpreter at each join point. A pointcut runs at the upper level
and, if it matches, returns bindings that are consequently used for
the (base-level) execution of the advice.

The level shifting operators we introduce in this work differ
from level shifting in the reflective tower in a number of ways. Most
importantly, there is no tower of interpreters at all: execution levels
are just properties of execution flows. Only aspects (more precisely,
pointcuts) are sensitive to this property of execution flows. Point-
cuts and advices are all evaluated by the very same interpreter that
evaluates the whole program. Level shifting operators just taint the
execution flow such that the produced join points are only visible
to aspects sitting at the corresponding level. This “illusion of the
tower” also explains why there is no explicit wrapping and unwrap-
ping of values between levels (as opposed to e.g. 2-Lisp).

Infinite regression. The issue of infinite regression in metalevel
architectures has long been identified [9, 15]. Chiba, Kiczales and
Lamping recognized the ad hoc nature of regression checks, iden-
tifying the more general issue of metalevel conflation [3]. In the
proposed meta-helix architecture, extensions to objects (e.g. new
fields) are layered on top of each other. Levels are reified, at runtime
if necessary, and an object has a representative at each level. An
“implemented-by” relation based on delegation keeps level clearly
separated.

In previous work, we studied similar issues with a particular
kind of aspects, which perform structural adaptations (a.k.a. inter-
type declarations or introductions). We proposed a mechanism of
visibility of structural changes introduced by aspects [21, 25]. The
visibility system, implemented in the Reflex AOP kernel, allows
one to declare which aspects see the changes made by which other
aspects, or to declare that changes made by an aspects are globally
visible or globally hidden. While more flexible that a strict layered
architecture like the meta-helix, this system is harder to reason
about and specifications can easily conflict with each other. Also,

in this proposal, it is impossible for base level code to hide certain
members so they are not visible to (some) aspects.

Stratified aspects. To the best of our knowledge, the first piece
of work directly related to the issue of infinite recursion with the
pointcut/advice mechanism is due to Bodden and colleagues. With
stratified aspects, aspects are associated with levels, and the scope
of pointcuts is restricted to join points of lower levels [2]. The
work focuses on advice-triggered reentrancy only, and does not
mention the issue related to e.g. if pointcuts. A more fundamental
issue with stratified aspects is that levels are statically declared and
determined. That is, classes live at level 0, aspects at level 1, meta-
aspects at level 2, and so forth. This means that stratified aspects
fail to recognize that levels are a property of execution flows, not
of static declared entities. As a consequence, as recognized by the
authors, it is impossible to properly handle shift downs, i.e. when
an aspect calls a method of a level 0 object.

Controlling reentrancy. We have already extensively related to
our previous on controlling aspect reentrancy [22]. The bottom line
is that reentrancy control needs to be based on execution levels in
order to avoid unfortunate conflation, in particular when around
advice is involved. Dually, allowing to lower aspect computation
implies that reentrancy control is a necessity to avoid self-caused
loops. The AspectScript language is a first example of a practical
aspect-oriented programming language that combines both [17]. Its
formalization is future work.

The meta context. Recently, Denker et al. introduced the idea
of passing an implicit “meta-context” argument to metaobjects
such that they can determine at which level they run [8]. This
generalizes the idea of the meta-helix and recognizes that levels are
a property of execution flows. In their system, metaobjects always
run at their level, and execution only shift downs when a metaobject
calls proceed on the reification of an execution event (i.e. a join
point in AO terminology). While close to ours, the work really
remains in the domain of metalevel architectures and therefore
cannot reconcile with the original AO view, according to which
advice is base level. Here, in addition, we uncouple level shifting
from the behavioral reflection/pointcut-advice mechanism. Finally,
the level of execution of activation conditions (the equivalent of
pointcut residues in that model) is left unspecified.

8. Conclusion
The issue of conflation in aspect-oriented programming has been
latent since its inception. Neither control flow patterns nor primi-
tive mechanisms like app/prim and disable represent satisfactory
solutions. This paper brings to the fore the limitations of these
approaches, and proposes a simple mechanism to address confla-
tion properly. By structuring computation in execution levels, it is
straightforward to avoid infinite regression in the most common
cases. The standard programmer need not even be aware that the
runtime system is based on execution levels. When fine-grained
control is necessary, level shifting operators make it possible to de-
ploy aspects at higher levels, or move computation up or down,
selectively.

On the conceptual side, we believe this work reconciles the
(usually unwanted or embarassing) “metaness” of aspects with the
(usually unrecognized) “baseness” of runtime metaobject proto-
cols. The key point lies in viewing metaness not as an intrin-
sic/static property of a piece of program, but as a property of exe-
cution flows, ultimately under control of the programmer.

In order to further empirically validate the usefulness of exe-
cution levels, our group is developing AspectScript [17], an ex-
pressive aspect-oriented extension JavaScript, with execution levels
built in. An AspectJ extension is also under development, in order

to study different implementation strategies for execution levels.
Finally, in addition to the benefits exposed in this paper, execution
levels seem to find application in several other areas. A particularly
interesting one is to address the many ambiguities arising from the
unwanted interplay of base code and aspects in the presence of ex-
ceptions [5].

Acknowledgments. We thank Gregor Kiczales, Paul Leger, and
Rodolfo Toledo, for discussions on this topic and proposal, as
well as the anonymous reviewers of the Scheme and Functional
Programming workshop (one of which brought the issue presented
in Section 2.5 to our attention).

References
[1] Jonathan Aldrich. Open modules: Modular reasoning about advice.

In Andrew P. Black, editor, Proceedings of the 19th European
Conference on Object-Oriented Programming (ECOOP 2005),
number 3586 in Lecture Notes in Computer Science, pages 144–
168, Glasgow, UK, July 2005. Springer-Verlag.

[2] Eric Bodden, Florian Forster, and Friedrich Steimann. Avoid-
ing infinite recursion with stratified aspects. In Proceedings of
Net.ObjectDays 2006, Lecture Notes in Informatics, pages 49–54.
GI-Edition, 2006.

[3] Shigeru Chiba, Gregor Kiczales, and John Lamping. Avoiding
confusion in metacircularity: The meta-helix. In Proceedings of the
2nd International Symposium on Object Technologies for Advanced
Software (ISOTAS’96), volume 1049 of Lecture Notes in Computer
Science, pages 157–172. Springer-Verlag, 1996.

[4] Curtis Clifton and Gary T. Leavens. MiniMAO1: An imperative
core language for studying aspect-oriented reasoning. Science of
Computer Programming, 63:312–374, 2006.

[5] Roberta Coelho, Awais Rashid, Alessandro Garcia, Nélio Cacho,
Uirá Kulesza, Arndt Staa, and Carlos Lucena. Assessing the impact
of aspects on exception flows: An exploratory study. In Jan Vitek,
editor, Proceedings of the 22nd European Conference on Object-
oriented Programming (ECOOP 2008), number 5142 in Lecture
Notes in Computer Science, pages 207–234, Paphos, Cyprus, july
2008. Springer-Verlag.

[6] Daniel S. Dantas, David Walker, Geoffrey Washburn, and Stephanie
Weirich. AspectML: A polymorphic aspect-oriented functional
programming language. ACM Transactions on Programming
Languages and Systems, 30(3):Article No. 14, May 2008.

[7] Olivier Danvy and Karoline Malmkjaer. Intensions and extensions in
a reflective tower. In Proceedings of the 1988 ACM Conference on
Lisp and Functional Programming, pages 327–341, Snowbird, Utah,
USA, July 1988. ACM Press.

[8] Marcus Denker, Mathieu Suen, and Stéphane Ducasse. The meta in
meta-object architectures. In Proceedings of TOOLS Europe, Lecture
Notes in Business and Information Processing, Zurich, Switzerland,
July 2008. Springer-Verlag. To appear.

[9] Jim des Rivières and Brian C. Smith. The implementation of
procedurally reflective languages. In Proceedings of the Annual ACM
Symposium on Lisp and Functional Programming, pages 331–347,
August 1984.

[10] Christopher Dutchyn. Dynamic Join Points: Model and Interactions.
PhD thesis, University of British Columbia, Canada, November 2006.

[11] Christopher Dutchyn, David B. Tucker, and Shriram Krishnamurthi.
Semantics and scoping of aspects in higher-order languages. Science
of Computer Programming, 63(3):207–239, December 2006.

[12] Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt.
Semantics Engineering with PLT Redex. The MIT Press, 2009.
To appear.

[13] Gregor Kiczales. Towards a new model of abstraction in software
engineering. In Proceedings of the IMSA 92 Workshop on Reflection
and Metalevel Architectures. Akinori Yonezawa and Brian C. Smith,
editors, 1992.

[14] Gregor Kiczales. Personal communication, May 2009.

[15] Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow. The Art of
the Metaobject Protocol. MIT Press, 1991.

[16] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William Griswold. An overview of AspectJ. In Jorgen L.
Knudsen, editor, Proceedings of the 15th European Conference
on Object-Oriented Programming (ECOOP 2001), number 2072
in Lecture Notes in Computer Science, pages 327–353, Budapest,
Hungary, June 2001. Springer-Verlag.

[17] Paul Leger, Rodolfo Toledo, and Éric Tanter. The AspectScript
language. http://pleiad.cl/aspectscript, 2009.

[18] Pattie Maes. Concepts and experiments in computational reflection.
In Norman Meyrowitz, editor, Proceedings of the 2nd International
Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA 87), pages 147–155, Orlando, Florida,
USA, October 1987. ACM Press. ACM SIGPLAN Notices, 22(12).

[19] Hidehiko Masuhara, Gregor Kiczales, and Christopher Dutchyn. A
compilation and optimization model for aspect-oriented programs. In
G. Hedin, editor, Proceedings of Compiler Construction (CC2003),
volume 2622 of Lecture Notes in Computer Science, pages 46–60.
Springer-Verlag, 2003.

[20] Brian C. Smith. Reflection and semantics in a procedural language.
Technical Report 272, MIT Laboratory of Computer Science, 1982.

[21] Éric Tanter. Aspects of composition in the Reflex AOP kernel.
In Welf Löwe and Mario Südholt, editors, Proceedings of the 5th
International Symposium on Software Composition (SC 2006),
volume 4089 of Lecture Notes in Computer Science, pages 98–113,
Vienna, Austria, March 2006. Springer-Verlag.

[22] Éric Tanter. Controlling aspect reentrancy. Journal of Universal
Computer Science, 14(21):3498–3516, 2008. Best Paper Award of
the Brazilian Symposium on Programming Languages (SBLP 2008).

[23] Éric Tanter. Expressive scoping of dynamically-deployed aspects. In
Proceedings of the 7th ACM International Conference on Aspect-
Oriented Software Development (AOSD 2008), pages 168–179,
Brussels, Belgium, April 2008. ACM Press.

[24] Éric Tanter. Beyond static and dynamic scope. In Proceedings of the
5th ACM Dynamic Languages Symposium (DLS 2009), Orlando, FL,
USA, October 2009. ACM Press. To appear.

[25] Éric Tanter and Johan Fabry. Supporting composition of structural
aspects in an AOP kernel. Journal of Universal Computer Science,
15(3):620–647, 2009.

[26] Éric Tanter, Johan Fabry, Rémi Douence, Jacques Noyé, and Mario
Südholt. Expressive scoping of distributed aspects. In Proceedings of
the 8th ACM International Conference on Aspect-Oriented Software
Development (AOSD 2009), pages 27–38, Charlottesville, Virginia,
USA, March 2009. ACM Press.

[27] Mitchell Wand and Daniel P. Friedman. The mystery of the tower
revealed: a non-reflective description of the reflective tower. Lisp and
Symbolic Computation, 1(1):11–37, 1988.

[28] Mitchell Wand, Gregor Kiczales, and Christopher Dutchyn. A
semantics for advice and dynamic join points in aspect-oriented
programming. ACM Transactions on Programming Languages and
Systems, 26(5):890–910, September 2004.

[29] Chris Zimmermann. Advances in Object-Oriented Metalevel
Architectures and Reflection. CRC Press, 1996.

	Introduction
	A Plethora of Issues
	Advice Loops
	Pointcut Loops
	Confusion all Around
	Visibility (of) Aspects
	Concurrency

	Preliminary Solutions
	Stepping Back: Conflation
	Execution Levels
	Aspects and Levels: Default
	Shifting Execution Levels
	Exploiting Execution Levels
	Overriding the Default Semantics
	Summary: Benefits of Execution Levels
	Perspective: Level Shifting and Information Hiding

	Semantics
	Execution Levels
	Join Points
	Aspects and Deployment
	Weaving
	Level-capturing functions
	Availability

	Related Work
	Conclusion

