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ABSTRACT

Distributed processing frameworks, such as Yahoo!’s Hadoop and
Google’s MapReduce, have been successful at harnessing expansive
datacenter resources for large-scale data analysis. However, their ef-
fect on datacenter energy efficiency has not been scrutinized. More-
over, the filesystem component of these frameworks effectively pre-
cludes scale-down of clusters deploying these frameworks (i.e. op-
erating at reduced capacity). This paper presents our early work on
modifying Hadoop to allow scale-down of operational clusters. We
find that running Hadoop clusters in fractional configurations can save
between 9% and 50% of energy consumption, and that there is a trade-
off between performance energy consumption. We also outline further
research into the energy-efficiency of these frameworks.

1. INTRODUCTION

Energy consumption and cooling are now large com-
ponents of the operational cost of datacenters and pose
significant limitations in terms of scalability and reli-
ability [3]. A growing segment of datacenter work-
loads is managed with MapReduce-style frameworks,
whether by privately managed instances of Yahoo!’s
Hadoop [2]], by Amazon’s Elastic MapReduce [12], or
ubiquitously at Google by their archetypal implemen-
tation []5]] Therefore, it is important to understand the
energy efficiency of this emerging workload.

The energy efficiency of a cluster can be improved in
two ways: by matching the number of active nodes to
the current needs of the workload, placing the remain-
ing nodes in low-power standby modes; by engineering
the compute and storage features of each node to match
its workload and avoid energy waste on oversized com-
ponents. Unfortunately, MapReduce frameworks have
many characteristics that complicate both options.

First, MapReduce frameworks implement a dis-
tributed data-store comprised of the disks in each node,
which enables affordable storage for multi-petabyte
datasets with good performance and reliability. Asso-
ciating each node with such a large amount of state ren-
ders state-of-the-art techniques that manage the number
of active nodes, such as VMWare’s VMotion [13]], im-
practical. Even idle nodes remain powered on to ensure
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(a) Distribution of the lengths of system inactivity
periods across a cluster during a multi-job batch
workload, comprised of several scans and sorts of
32GB of data. A value of .38 at x = 40 seconds
means that 38% of the time, a node was idle for 40
seconds or longer.
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(b) Average CPU utilization across the cluster when
sorting 128GB of data.

Figure 1: Opportunities for improved efficiency.

data availability [3]. To illustrate the waste, Figure [T(a)]
depicts the distribution of the lengths of system inactiv-
ity periods across a cluster during a multi-job Hadoop
workload, comprised of several scans and sorts of 32GB
of data. We define inactivity as the absence of activity in
all of the CPU, disk, and network. While significant pe-
riods of inactivity are observed, the need for data avail-
ability prohibits the shutting down of idle nodes.
Second, MapReduce frameworks are typically de-
ployed on thousands of commodity nodes, such as low-
cost 1U servers. The node configuration is a compro-
mise between the compute/data-storage requirements of
MapReduce, as well as the requirements of other work-
loads hosted on the same cluster (e.g., front-end web



serving). This implies a mismatch between the hardware
and any workload, leading to energy waste on idling
components. For instance, Figure[I(b)|shows that for an
I/O limited workload, the CPU utilization is quite low
and most of the energy consumed by the CPU is wasted.

Finally, given the (un)reliability of commodity hard-
ware, MapReduce frameworks incorporate mechanisms
to mitigate hardware and software failures and load im-
balance [5]. Such mechanisms may negatively impact
energy efficiency.

This paper makes a first effort towards improving
the energy efficiency of MapReduce frameworks like
Hadoop. First, we argue that Hadoop has the global
knowledge necessary to manage the transition of nodes
to and from low-power modes. Hence, Hadoop should
be, or cooperate with, the energy controller for a clus-
ter. Second, we show it is possible to recast the data
layout and task distribution of Hadoop to enable signifi-
cant portions of a cluster to be powered down while still
fully operational. We report our initial findings pertain-
ing to the performance and energy efficiency trade-offs
of such techniques. Our results show that energy can be
conserved at the expense of performance, such that there
is a trade-off between the two. Finally, we establish a re-
search agenda for a broad energy efficient Hadoop, de-
tailing node architecture, data layout, availability, relia-
bility, scheduling, and applications.

2. IMPROVING HADOOP’S ENERGY-
EFFICIENCY

Our first efforts focus on the impact of data layout.
While this discussion is specifically targeted at Hadoop,
many of our observations apply to the Google Filesys-
tem [8] and similar cluster filesystems [/1]].

2.1 Data Layout Overview

Hadoop’s filesystem (HDFS) spreads data across the
disks of a cluster to take advantage of the aggregate 1/O,
and improve the data-locality of computation. While
beneficial in terms of performance, this design principle
complicates power-management. With data distributed
across all nodes, any node may be participating in the
reading, writing, or computation of a data-block at any
time. This makes it difficult to determine when it is safe
to turn a node or component (e.g. disk) off.

Tangentially, Hadoop must also handle the case of
node failures, which can be frequent in large clusters. To
address this problem, it implements a data-block repli-
cation and placement strategy to mitigate the effect of
certain classes of common failures; namely, single-node
failures and whole-rack failures. When data is stored
in a HDFS, the user specifies a block replication factor.
A replication factor of n instructs HDFS to ensure that
n identical copies of any data-block are stored across a

cluster (by default n = 3). Whilst replicating blocks,
Hadoop maintains two invariants: (1) no two replicas of
a data-block are stored on any one node, and (2) replicas
of a data-block must be found on at least two racks.

2.2 A Replication Invariant for Energy

The fact that Hadoop maintains replicas of all data af-
fords an opportunity to save energy on inactive nodes.
That is, there is an expectation that if an inactive node
is turned off, the data it stores will be found somewhere
else on the cluster. However, this is only true up to a
point. Should the n nodes that hold the n replicas of
a single block be selected for deactivation, that piece of
data is no longer available to the cluster. In fact, we have
found through examination of our own Hadoop cluster
that when configured as a single rack, removing any n
nodes from the cluster (where n is the replication fac-
tor) will render some data unavailable. Thus the largest
number of nodes we could disable without impacting
data availability is n — 1, or merely two nodes when
n = 3. While Hadoop’s autonomous re-replication fea-
ture can, over time, allow additional nodes to be dis-
abled, this comes with severe storage capacity and re-
source penalties (i.e. significant amounts of data must
be transferred over the network and condensed onto the
disks of the remaining nodes). Hadoop’s rack-aware
replication strategy mitigates this effect only moder-
ately; at best a single rack can be disabled before data
begins to become unavailable.

To address this short-fall in Hadoop’s data-layout
strategy, we propose a new invariant for use during
block replication: at least one replica of a data-block
must be stored in a subset of nodes we refer to as a cov-
ering subset. The premise behind a covering subset is
that it contains a sufficient set of nodes to ensure the im-
mediate availability of data, even were all nodes not in
the covering subset to be disabled.

This invariant leaves the specific designation of the
covering subset as a matter of policy. The purpose in
establishing a covering subset and utilizing this storage
invariant is so that large numbers of nodes can be grace-
fully removed from a cluster (i.e. turned off) without
affecting the availability of data or interrupting the nor-
mal operation of the cluster; thus, it should be a minor-
ity portion of the cluster. On the other hand, it cannot
be too small, or else it would limit storage capacity or
even become an I/O bottleneck. As such, a covering
subset would best be sized as a moderate fraction (10%
to 30%) of a whole cluster, to balance these concerns

Just as replication factors can be specified by users
on a file by file basis, covering subsets should be estab-
lished and specified for files by users (or cluster admin-

'This discussion is limited to simply “turning off” a node in
order to save power. In Section we revisit this assumption.



istrators). In large clusters (thousands of nodes), this
allows covering subsets to be intelligently managed as
current activity dictates, rather than as a compromise
between several potentially active users or applications.
Thus, if a particular user or application vacates a clus-
ter for some period of time, the nodes of its associated
covering subset can be turned off without affecting the
availability of resident users and applications.

Implementation — We made the following changes
to Hadoop 0.20.0 to incorporate the covering subset
invariant. HDFS’s ReplicationTargetChooser
was modified to first allocate a replica on the local node
generating the data, then allocate a replica in the cov-
ering subset, and finally allocate a replica in any node
not in the first node’s rack. We changed Hadoop’s strat-
egy in choosing “excess” replicas for invalidation (for
instance, when temporarily faulty nodes rejoin a cluster)
to refrain from deleting replicas from a covering subset
unless there is at least one other replica in the subset.
To prevent Hadoop from autonomously re-replicating
blocks for nodes which have been intentionally disabled,
we have added a hook to Hadoop’s HDFS NameNode
(i.e. master node) which behaves similarly to Hadoop’s
decommissioning of a live node. For each block a node
stores, our routine removes the node from Hadoop’s in-
ternal list of storage locations for that block and stores it
in a separate list of offline storage locations. In contrast
to node decommissioning, replications are not sched-
uled for each block that goes offline. Furthermore, we
adjust all queries regarding the number of live repli-
cas of a block to account for offline replicas, so that
extraneous activity does not trigger superfluous block
replications (e.g. should a separate node legitimately
fail, Hadoop will globally evaluate how many replicas it
should generate for each block on that failed node).

Disabled nodes can gracefully rejoin a cluster after
either a short period of stand-by, or even after a complete
operating system reboot, by sending a heartbeat or node
registration request to the NameNode.

At present, nodes are disabled and enabled manually.
Data serving and task execution are disabled/enabled in
unison. The implementation of a dynamic power man-
ager is ongoing work. We have also added hooks to
Hadoop to manage on-demand enabling of nodes and
to take arbitrary action to revive nodes (i.e. IPMI [9]
commands), but we do not evaluate this capability here.

3. EVALUATION

Methodology — We evaluate our changes to Hadoop
through experiments on a 36-node cluster coupled with
an energy model based linearly on CPU utilization.
Each node is an HP ProLiant DL140G3 with 8 cores (2
sockets), 32GB of RAM, a gigabit NIC, and two disks.
The nodes are connected by a 48-port HP ProCurve

2810-48G switch (48 Gbps bisection bandwidth). This
cluster was also used for the results in Section [[I We
made every effort to optimize the raw performance of
all workloads we executed and our Hadoop environment
before experimenting with energy-efficiency. To more
accurately model Hadoop’s rack-based data layout and
task assignment, we arbitrarily divided the cluster into 4
“racks” of 9 nodes each. We selected one of these racks
to be the covering subset for our input datasets.

In our experiments, we statically disable a number of
nodes before running a Hadoop job and observe the im-
pact on performance, energy, power consumption, and
system inactivity. We assume the power consumption of
a disabled node to be nil, and it contributes neither to the
energy consumption nor performance of an experiment.
Since the covering set for our input dataset is comprised
of 9 nodes, we can gracefully disable up to 27 nodes.

Power models based on a linear interpolation of
CPU utilization have been shown to be accurate with
I/0 workloads (< 5% mean error) for this class of
server [[11f], since network and disk activity contribute
negligibly to dynamic power consumption. Our nodes
consume 223 W at idle and 368 W at peak utilization.
Future evaluation will include large-scale experiments
deployed on Amazon’s EC2 service [12], for which we
will develop a similar power model. Moreover, the use
of a power model enables us to evaluate hypothetical
hardware characteristics or capabilities.

Our primary workloads are webdata_sort and web-
data_scan from Hadoop’s own “gridmix” batch-
throughput benchmark. We generate several datasets
(from 16GB to 128GB) using the same methodology as
gridmix. We additionally generate batch-compute traces
of several sorts and scans issued randomly over a 30
minute period (also seen in Section [I). We schedule
enough jobs to occupy 75% of the 30 minute period,
had the jobs been issued sequentially. This workload is
loosely inspired by SPECpower_jbb2008 [4]]. Note that
this workload more closely mimics a multi-user/tenant
throughput-sensitive environment, rather than a single-
user/tenant latency-sensitive environment.

Results — Figure 2] depicts performance, energy con-
sumption, and power consumption over the duration of
a Sort and Scan of a 32GB dataset, given different static
configurations of the cluster. “O sleeping nodes” is a
baseline result, where all nodes are active. The other
configurations show the effect of disabling an increasing
number of nodes. We first observe that our mechanism
works, and that a significant fraction of the cluster can
be disabled with no impact on data availability, contrary
to the position of [3]].

Quantitatively, we find that disabling nodes in all
cases leads to energy savings, from 9% with Sort to
51% with Scan. On the other hand, with the exception
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Figure 2: Runtime, Energy Consumption, and Average Power Consumption for the 32GB Sort and 32GB Scan
workloads as nodes are disabled. Runtime and Energy are normalized to when all nodes are active.
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of disabling 9 nodes during the Scan, there is deleteri-
ous impact to performance as nodes are disabled (up to
71% when 27 nodes are disabled with Sort). Although
in some cases severe, the penalty does not show a perfect
slowdown. Overall, nodes tend to contribute less to per-
formance than they do to energy consumption. Dramatic
reduction is seen in the aggregate power consumption of
the cluster as nodes are disabled. This clearly demon-
strates that this mechanism can be used to implement
cluster-level power-capping [7] (with a commensurate
reduction in service-level).

A similar large-scale experiment would process per-
haps 1 TB of data, occupying a thousand node clus-
ter. However, it would exhibit the same result as our
small-scale experiment: at some point, nodes contribute
less to performance than they do to energy consump-
tion. Moreover, we would expect to observe bottlenecks
in such a large-scale experiment that we don’t observe
in our cluster, such as contention at the network’s root-
switch/router or individual rack uplinks. Such bottle-
necks would further soften the performance penalty of
disabling nodes and further improve energy-efficiency.

To study the impact of disabling nodes on fractional-
utilization workloads, we performed experiments with
batches of Hadoop jobs, described earlier. Figure 3] de-

picts the distribution of system inactivity periods of the
job trace when 18 nodes are disabled, and the distri-
bution when all nodes are active is overlaid for com-
parison. Disabling 18 nodes significantly increases the
length of time spent idle for more than 82 seconds (by
154%), and moderately increases the length of time
spent idle for more than 10 seconds (18%). The in-
crease at 82 seconds represents more opportunity to uti-
lize brute-force energy management knobs, such as fully
shutting a machine down, to reduce energy consump-
tion. This is in contrast to the improvement at 10 sec-
onds, which represents time potentially available to use
less aggressive modes, such as spinning down disks and
putting the platform and power supply into a standby
mode. Note that while the increase at 10 seconds is
modest, a significant fraction of the total time spent
there is now contributed by intentionally inactive nodes,
and it is trivially permissible to disable them. This is
not the case for the run where all nodes are enabled, as
most of this inactive time is due to spontaneously inac-
tive nodes, for whom it is harder to determine whether
or not it is permissible to disable. Note that since this is
a job trace over 30 minutes, both experiments complete
in the same amount of time, even though the constituent
jobs may run for different lengths of time. The run with
18 nodes disabled consumes 44% less energy than the
run with no nodes disabled.

4. TOWARDS AN
EFFICIENCY HADOOP

This work to date has just scratched the surface of re-
search into optimizing the energy-efficiency of Hadoop
and similar distributed processing frameworks. Our fu-
ture work is focused on large-scale systems and address-
ing the issues we present below.

Data Layout — Section [2] described our implemen-
tation of an energy-aware replication invariant, but it
is easy to imagine a multitude of alternatives. Certain
types of data may exhibit temporal locality, which could
be taken into account in choosing whether or not to keep
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those data in a covering subset. Next, the covering sub-
set of a cluster should rotate among datanodes to man-
age durability, about which we discuss below. Finally,
should a covering subset become a write bottleneck, a
lazy replication strategy could be adopted (first create
a replica wherever convenient or performant, and later
move it to the covering subset).

Data Availability — We have assumed that it is not
permissible for requested data to only reside on disabled
nodes. The concept of a covering subset and the de-
sign of our proposed replication invariant ensure some
minimum availability of all requested data. However,
it is reasonable to imagine that nodes could be enabled
on-demand to satisfy availability. The efficacy of this
approach would depend on how quickly a node can be
enabled, or how well the task scheduler copes with an
unruly delay. Such a solution may permit an energy-
efficient Hadoop with no changes to data layout.

In addition, we currently handle the failure of a cover-
ing subset node by enabling all nodes and reconstituting
replicas of the data. A less dramatic solution should be
sought, or else a very minor equipment failure can turn
into a very major power spike.

Reliability and Durability — A supposition of this
work is that the data stored on intentionally inactive
nodes are indelible. The degree to which this is true
should be bounded, or the degree on which this property
is depended should be limited. At a minimum, it is pru-
dent for sleeping nodes to be woken periodically so that
the integrity of the data they contain can be verified.

Second, the fact that HDFS (and the Google Filesys-
tem) materializes n replicas of all data is blindly ac-
cepted as the cost of reliability. However, spraying repli-
cas throughout a cluster during a computation reduces
the performance of the computation (by consuming disk
and network bandwidth), which ultimately translates to
wasted energy (by not spending energy on useful work).
Design principles regarding reliability should be revis-
ited, and the incorporation of some other data durabil-
ity mechanism could be considered (e.g. an enterprise
SAN). We seek to quantify the trade-off between relia-
bility and energy consumption, such that users can make
informed decisions.

Dynamic Scheduling Policies — A full implemen-
tation of an energy-efficient Hadoop should contain a
dynamic power controller which is able to intelligently
respond to changes in utilization of a Hadoop cluster.
Different jobs may have disparate service levels require-
ment. Moreover, we must identify the best real-time
signals to use for actuating power management activi-
ties, and how these impact job execution. As a most ba-
sic (but fundamental) example, inactive nodes that pre-
viously participated in a currently running job should
not necessarily be disabled until after the job is com-

plete; these nodes may contain transient output from
Map tasks that will later be consumed by some sepa-
rate Reduce task. There should be some intelligent co-
operation between Hadoop’s job scheduler and a power
controller. Furthermore, the job scheduler has informa-
tion that can improve the decisions made by the power
controller. For example, all of the data blocks that a job
will access are determined a priori, and this knowledge
can be used to preemptively wake nodes or to hoist tasks
with data on active nodes to the front of the task queue.

Node Architecture — Future technology, such as
PowerNap [10] and PCRAM, may make short inactiv-
ity periods as useful as long inactivity periods in reduc-
ing energy consumption. In either case, this work is
grounded in increasing the total inactive time available.
Moreover, PCRAM and solid-state disks may not soon
be economical for capacity-maximizing, cost-sensitive
MapReduce clusters.

Workloads and Applications — While this paper con-
sidered Hadoop’s MapReduce, note that HBase [2] and
BigTable [|6] build upon the same filesystem infrastruc-
ture as their sibling MapReduce frameworks. While
they have similar requirements of the storage layer as
MapReduce (massively scalable, distributed, robust),
the nature of their workload and activity is far removed.
MapReduce computations are characterized by long,
predictable, streaming I/O, massive parallelization, and
non-interactive performance. On the other hand, the
aforementioned structured data services are often used
in real-time data serving scenarios [[6]. As such, quality-
of-service and throughput become more important than
job runtime. The energy management strategies dis-
cussed in this paper should be evaluated for these struc-
tured data services.
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