Incremental Learning of System Log Formats

Kathleen Fisher David Walker Kenny Q. Zhu
AT&T Labs Research Princeton University Princeton University
kfi sher @esearch. att.com dpw@s. Pri ncet on. EDU kzhu@CsS. Pri ncet on. EDU
Abstract scription, use this description to parse the data, flag satgne

of the data that do not match the description, refine the de-
System logs come in a large and evolving variety of formatsscription to cover these cases, and repeat. This process is
many of which are semi-structured and/or non-standard. As ime-consuming, often requiring days for complex formats.
consequence, off-the-shelf tools for processing suchdbgs  As a first step towards addressing this problem, we devel-
ten do not exist, forcing analysts to develop their own tpols oped the.EARNPADS! system [3, 5], which automatically in-
which is costly and time-consuming. In this paper, we presenfers aPADS description from sample data, and thus eliminates
an incremental algorithm that automatically infers thenfat ~ the need for hand-written descriptions. THEARNPADS Sys-
of system log files. From the resulting format descriptions,tem successfully produces correct descriptions for a rafige
we can generate a suite of data processing tools automagmall data sources, but it cannot handle larger ones because
cally. The system can handle large-scale data sources who#e system includes a memory-intensive algorithm designed
formats evolve over time. Furthermore, it allows analyststo process the entire data source at once.
to modify inferred descriptions as desired and incorparate In this paper, we take the next step towards automatically
those changes in future revisions. inferring descriptions of system log files by adaptirepRN-
PADSto workincrementally With this modification, the sys-
tem takes as input an initial description and a new batch of
1 Introduction data. It returns a modified description that extends théinit
description and covers the new data as well. The initial de-
System implementers and administrators manipulate a widecription can be supplied by the user or the system can use the
variety of system logs on a daily basis. Common tasks inoriginal LEARNPADS system to infer it. This iterative archi-
clude data mining, querying, performing statistical asaly tecture also allows the user to take the output of the system,
detecting errors, and transforming the data to standard formake revisions such as replacing generated field names like
mats. Because many of these logs are in non-standard for-P_1 with more meaningful names liker ¢, and then use
mats, there are often no ready-made tools to help procedbe refined description as the basis for the next round of au-
these logs. As a result, system engineers have to resort tomatic revision.
writing one-off parsers, typically in Perl or Python, to &xj In the rest of the paper, we give a brief overviewraiDs
these data sources, a tedious, error-prone and costlygmoce and the original inference system (Section 2). We then de-
To facilitate working with such log files, we developed scribe the incremental inference algorithm (Section 33; di
PADS[2], a high-level declarative specification language forcuss its implementation (Section 4), give some experinienta
describing the physical formats of ad hoc datap#psde-  results (Section 5), and finally conclude (Section 6). Space
scription for a data source precisely documents the formagonsiderations preclude discussion of related work; hewev
of the data, and theaDs system compiles such descriptions our earlier paper [3] contains an extensive discussionfaiot
into a suite of useful processing tools including an XML- grammar induction systems.
translator, a query engine, a statistical analyzer, angraro-
matic libraries and interfaces. Analysts can then either us ..
these generated tools to manage the logs or write custos too? PADS and the Ori g nal LEARNPADS
using the generated libraries.

A significant impediment to usingADS is the time and We use a simple web server log format, which we 4l to

; . . L illustrate the principal features of ttmaDs data description
expertise required to write @ADS description for a new data . o
language. Figure 1 shows a fragment of such data, which is

source. If such a source is well-documented, writirepas . .
description is straightforward and requires time proporsi comprised of a sequence of records, separated by newlines.
: Each record contains a number of fields delimited by white

to the existing documentation. Often, however, such data ' .
space. For example, the first record starts with an IP address
sources are not well documented and the user must adopt a

iterative process to produce a description: write a padial 1A demo is available from theapswebsitevwwy. padspr oj . or g.




207.136.97.49 - - [05/May/2009: 16: 37: 20 -0400] "GET /README. txt HTTP/1.1" 404 216
ks38. kns. com - ki m [ 10/ May/ 2009: 18: 38: 35 -0400] "GET /doc/prev.gif HITP/1.1" 304 576

Figure 1: A fragment from a web server logwh format

Punion client_t { with C unions. In particular, al i ent _t is either an IP ad-
Pi p ip; /1" 207.136. 97. 49 dress Pi p) or a host nameRhost nane), wherePi p and
Phost nane host; /] ks38. kns. com

Phost nanme arePADS/C base typeslescribing IP addresses

} )
Puni on auth_id t { and hostnames, respectively. . o
Pchar unaut horized : unauthorized == '-': In general, base types describe atomic pieces of data such
Pstring(:’ ’:) id; asintegersii nt ) and floatsPf | oat ), characterschar)
I and stringsPstring(:’ ':)),datesPdat e) and times
Pstruct request _t { (Ptine), paths Ppat h), etc. Strings represent an in-
"GET Ppat h pat h; teresting case because in theory they could go on forever,
" HTTP/™; Pfloat  http_ver; so Pst ri ng takes a parameter which specifies when the

1

' string stops: in this case, when it reaches a space. To ac-

3 count for more general stopping conditions, the base type
Precord Pstruct entry_t { : Pstri ng_ME takes as a parameter a regular expression.
client t client; . . . L
. authidt r emot el D With this type, the corresponding string is the longest that
- auth id t aut h: ' matches the regular expression. The first branch of the
[": Pdate dat e: Puni onaut h_i d_t illustrates the use of eonstraint It
S Ptime time: specifies that thenaut hor i zed character must be equal
"] "; request_t request; to’ -’ . If the constraint fails to hold, the next branch of the
'y Pint response; union will be considered.
"'y Pint I'engt h; In addition to the features illustrated in FigureP2ps pro-
b vides arrays, which describe sequences of data all of the sam
Figure 2:pADS/C description for then format type; options, which describe data that may be present; and

switched unions, which describe unions where a value earlie
in the data determines which branch to take. Such unions il-
then has two dashes, a time stamp enclosed in square bradkstrate thaPADS supportsdependenciesarlier portions of
ets, a quoted HTTP message, and finally two integers. Ththe data can determine how to parse later portions.
second record shows some variation: the IP address becomesThe goal of the.EARNPADS format inference engine is to
a hostname and the second dash becomes an identifier.  infer a PADS description like the one in Figure 2 from raw
PADS uses a type-based metaphor to describe ad hoc datdata. From such a description, theDs compiler can pro-
EachpraDs type plays a dual role: it specifies a grammar byduce end-to-end processing tools fully automatically. A fu
which to parse the data and a data-specific data structure iescription of the.EARNPADS algorithm appears in an ear-
which to store the results of the parsabps/c is the variant  lier paper [3]. We give only a brief summary here.

of PADs that uses C as its host language. Hermeps/c LEARNPADS assumes that the input data is a sequence
types are drawn by analogy from C, and the generated datgf newline-terminated records and that each record is an
structures and parsing code are in C. instance of the desired description. From such an input,

Figure 2 shows @ADS/C specification that describes each it uses a a three-phase algorithm to produce a description.
of the records in Figure 1. The specification consists of a seln the tokenizationphase LEARNPADS converts each input
ries of declarations. Types must be declared before they aline into a sequences of tokens, where each token type is
used, so the last declaratient ry_t describes the entirety defined by a regular expression. Intuitively, these tokens
of a record, while the earlier declarations describe datg-fr correspond taPADS base types. In thetructure discovery
ments. Typentry_t isaPr ecor d, meaningit comprises phase,LEARNPADS computes a frequency distribution for
a full line in the input, and is #st r uct, meaning it con- each token type and then uses that information to determine
sists of a sequence of named fields, each with its own typef the top-level structure of the data source is a base type,
For conveniencelst r ucts can also contain anonymouslit- Pst ruct, Parr ay, or Puni on. Based on that determi-
eral fields, such ds [ ", which denote constants in the input nation, the algorithm partitions the data into new contexts
source. The generated representationgfiot ry _t will be  and recursively analyzes each of those contexts, construct
a C struct with one field for each of the named fields in theing the corresponding description as it recurses. This¢has
declaration. The typel i ent _t is aPuni on, meaning terminates with a candidate description. In floemat re-
the described data matcheseof its branches, by analogy finementphase, the algorithm uses an information-theoretic



scoring function to guide the application of rewriting rsile
These rules seek to minimize the size of the descriptionewhil
improving its precision by performing structural trangfoa-
tions (such as merging adjacd?gt r ucts), adding data de-

pendencies, and constraining the range of various bass,type

e.g, converting a general integer to a 32-bit integer.
The scoring function, which is based on timnimum de-
scription length principlg4], measures how well a descrip-

Descri pti ons
Base ::= Pint |
D .

PstringMVE(re)
Base

| Sync s

| Pair (D1, D 2)
| Union (D_1, D_2)
| Array(D, s, t)

| Option D

(Base token)
(Synchroni zi ng t oken)
(Pair)
('Uni on)
(Array)
(Option)

tion describes data by calculating the number of bits neces- Data representati on

sary to transmit both the description and the dgiteen the
description We use the termgype and data complexityto

refer to the number of bits necessary to encode the descrip- R

tion and to encode the data given the description, respgtiv
This function penalizes overly general descriptions, sash
Pst r i ng, which have an extremely low type complexity but
a very high data complexity. It also penalizes overly specifi
descriptions that painstakingly describe each charactibre

BaseR ::
SyncR ::

= Str s |
= Good |

Int i | Error
Fail | Recovered s
BaseR

| SyncR

| PairR (R_1, R 2)

| UnionlR R | Union2R R

| ArrayR (R Ilist, SyncR Iist,
OptionR R

SyncR)

data. Such descriptions have a low data complexity, but a Aggr egat ion structure

high type complexity.

This algorithm produces good results for the small log files

that we have experimented with, but it has two limitations:

performance and adaptability. In terms of performance, the |
algorithm requires space quadratic in the input file size to |
perform the data dependency analysis, so it cannot be used onl
log files larger than the square of the size of usable memory. |

In terms of adaptability, the algorithm only considersitgut
data in constructing a description. Hence if tomorrow’s log
file has a new kind of record, the algorithm cannot modify
the existing description; it must start from scratch.

3 Thelncremental Algorithm

To address these problems, we extendesRNPADStO work
incrementally. Given a candidate descriptionthe new al-

A=
BaseA Base

| SyncA s

PairA(A_ 1, A 2)
UnionA(A l, Ar)
ArrayA (A elem A sep,
Opti onA A

| Opt A

| Learn [s]

Aterm

Figure 3: Data structures used in incremental inference

be detected at a particular node in the descripboift col-
lects these failed portions in an aggregation data stractur
A that mirrors the structure db. After thus aggregating all
the failures in thel/ records, the algorithm transfornisto
accommodate the places where differences were fouad (

gorithm use® to parse the records in the data source. It dis-by introducing options where a piece of data was missing or

cards records that parse successfully, since these reamds
already covered b, but it collects records that fail to parse.
When the algorithm accumulat@$ such records, wher&/

is a parameter of the algorithm, it invokes the incremental

unions where a new type of data was discovered). It then
uses the originalEARNPADS algorithm to infer descriptions
for the aggregated portions of bad data.

Figure 3 defines the data structures for descriptrdata

learning step, described below, to produce a refined descripepresentationR, and aggregate structurés In these defi-

tion D' . This refined description subsumBsand describes
the M new records. In addition, the algorithm attempts to
preserve as much of the structure®fs possible, so users
supplying initial descriptions can recognize the resgliie-
scriptions. The algorithm then tak&s to be the new candi-
date description and repeats the process until it has cagum
all the input data. The initial descriptiddcan either be sup-

plied by a user or it can be inferred automatically by apply-

ing the original algorithm taV records selected from the data
source, wheréV is another parameter.

Intuitively, the incremental learning step works by atteémp
ing to parse each of th&f records according to the current
descriptionD. It discards the portions of each record that
parse correctly. If a portion fails to parse, that failurdlwi

nitions, variable e ranges over regular expressioasandt

over strings, and over integers. A value with typB is the
abstract syntax tree @#faDs description: it is what we want

to learn. For simplicity of presentation, we assume just two
base types: integers and strings that match a regular expres
sion. Synchronizing tokens, sync tokengor short, corre-
spond to string literals ifPADS descriptions. Such tokens,
which are often white space or punctuation, serve as delim-
iters in the data and are useful for detecting errors. We use
binary pairs and unions to account for tRet r ucts and
Puni ons in PADS/C descriptions. An array has an element
type described bip, a separator stringthat appears between
array elements, and a terminator stringOpt i on D indi-
catesDis optional.



increnental _step(d, xs) = Pair PairR

as = [init_aggregatgd)]; / \ input; "5*" / \
foreach x in xs { %parse

rs = parse(d, x); Pint Sync "*" Int5 Good
as’ =1[]; (d) (r1)
foreach r inrs {
foreach a in as { Pair N PairR
a’ = aggregate(a, r); / nput- “abe / \
as’ = a :: as’ parse>
} Pint Sync "** Error Recovered("abc")
} (d) (r2)
as = as’ ) .
Pair . PairR
} input: "8%"
best _a = sel ect _best(as); / \ —_— / \
P . parse
d t - Upg,at e_desc( d, best _a) ’ Pint Sync "*" Int 8 Fail
return @ )
Figure 4: Pseudo-code for the incremental learning step Figure 5: Result of parsing three input lines

A term with typeR is a parse tree obtained from parsing
data using a descriptidh Parsing a base type canresultina To illustrate the parsing and aggregation phases of the al-
string, an integer or an error. Parsing a sync tognc s  gorithm, we introduce a simple example. Suppose we have
can give three different result<Sood, meaning the parser a descriptioni, comprised of a pair of an integer and a sync
founds at the beginning of the inpuEai | , meanings isnot ~ token *”, and we are given the following three lines of new
a substring of the current input; ®cover ed s’ , mean- input:
ing s is not found at the beginning of the input, but can be
recoveredafter “skipping” strings’ . The parse of a pair is a 5*
pair of representations, and the parse of a union is eitteer thabex
parse of the first branch or the parse of the second brancF?.$

The parse of an array includes a list of parses for the elemerrigure 5 shows the three data representations that resmit fr
type, a list of parses for the separator and a parse for the teparsing the lines, which we cath, r, andrs, respectively.
minator which appears at the end of the array. Notice the first line parsed without errors, the second line
An aggregate structure is tlEecumulatiorof parse trees; contains an error foPi nt and some unparsable dattic”,
it collects the data that cannot be parsed and therefore muahd the third containsiai | node because the sync token
be re-learned. The aggregation structure mirrors the struovas missing. Figure 6 shows the aggregatiomdb r; start-
ture of the descriptio with two additional nodes: a@pt ing from an empty aggregate. In geneital,r or andFai |
node, and dear n node. An invariant is that a@pt node nodes in the data representation trigger the creatiofpaf
always wraps @aseA or aSyncAnode, where it indicates nodes in the aggregate, while unparsable data is collested i
that the underlying base or sync token is missing in some of ear n nodes.
the parses being aggregated, and therefore that the wrapped
token should be made optional. Thear n node accumu- .
lates the bad portions of the data that need to be learned. THe | mplementation
newly learned sub-descriptions will be spliced into thebri
nal description to get the new description. The algorithm presented so far is idealized and unoptimized
Figure 4 gives pseudo-code for the incremental learningn this section, we discuss refinements that improve the-qual
step. The ni t _aggr egat e function initializes an empty ity of the inferred descriptions and/or improve performanc
aggregate according to descriptidn Then for each data
recordx, we use thepar se function to produce a list s
of possible parses. We then call thggr egat e function
to merge each pargein the current list of parses with each So far, parsing é8ync token yields one of three results:
aggregata in the current list of aggregates. We use ' to Good, Fai | orRecover ed. In the actual implementation,
denote consing an element onto the front of a list. When we Sync token can be not only a constant string, but also a
finish parsing all the data lines and obtain a final list of ag-constant integer, an integer range or a combination thereof
gregatesas, we select the best aggregate according to som€onsider parsing the tokeS8ync (Str "GET") when
criterion, and finally update the previous descriptibto pro-  the current input starts with “POST.” Thear se_base
duce the new descriptiai using the best aggregate. function indicates the result should Ib&i | . In reality,

41 Token families



. PairA
PairA

PairA PairA / \ / \
rl r2 . r3 Opt PairA
% % Opt PairA %
aggregate aggregate / \ aggregate / \
Base

BaseA Pint SyncA "*" BaseA Pint SyncA "*"
(Initial aggregate for d) A Pint  Learn ["abc'] Opt

BaseA Pint Learn ['abc"] SyncA ™"

(Final aggregate for d) ~ SYNCA ™

Figure 6: Aggregation of three parses

the input “POST” is in the saméamily as “GET,” i.e,

a word, and it may very well be that thiSync token
should have been an enumeration of words rather than } —= ——
single word. To handle such cases, we created a fourth e e aggregate @ @ @ MergeOpts e

type of parse nodeParti al , to indicate that the input }
belongs to the same family as the expected token but e e e G G G
does not match exactly,e., it is partially correct. During

aggregation, partial nodes cause the description to be Figure 7: MergeOpts rewriting rule

specialized to include the additional values. In the above
example, the aggregate function will change the descriptio

to Sync (Enum[Word "GET", Word "POST"]). (g aggregate. Clearly, this algorithm will not scale unless
Such partial nodes reduce the number of parsing errors angl, 4,, are bounded.

produce more compact and meaningful descriptions. We have implemented several optimizations to limit the
number of parses and aggregates. First, we do not return
4.2 Rewritingrules all possible parses when parsing a description compddent

Instead, we rank the parses by a metric that measures their
When the incremental learning algorithm produces a refineguality and return only the tog. The metric is a triple:
description from an aggregate, the algorithm applies ftewri ;, — (¢, s, ¢), wheree is the number of errorss is the
ing rules to the new description to improve its quality andnumber of characters skipped duriSgnc token recovery,

readability. Most of the rules are data-independentanelrinh  andc is the number of characters correctly parsed. The met-
ited fromLEARNPADS, such as removing degenerate lists andyic js consideregperfectif ¢ = 0. Metric m; is better than

flattening nested structs and unions. We introduce one new,, if y, is perfect andns is not, or if
data dependentile calledMergeOptdo optimize a type pat-
tern that occurs frequently during incremental learning- R
call that the aggregate function introduc@st nodes above
aBaseAor SyncAnode whenever the correspondidgs e In practice par se returns a list oparse tripleqr, m, j),

or Sync token in the description failed to parse. When facedwherer is the data representation of the parsds the metric

with an entirely new form of data, the algorithm is likely to associated with, and; is the position in the input after the
introduce a series dpt nodes as each type in the original parse. We define al ean function that first partitions the
description fails in succession. TiMergeOptsule collapses triples into groups that share the saspan i.e., the substring
these consecutiv@ot nodes if they are correlateide., either  of the input consumed by the parse. For each groljgan

they are all always present or all always absent. To verifytetains all perfect parses. If none exists, it retains thet be
this correlation, the algorithm maintains a table that rdso  parse in the group. We justify discarding the other triples
the branching decisions when parsing each data line. It usasecause given a descriptiahand a fixed span, we always
this table to determine whether to merge adjac®it nodes  prefer the parse with the best metric. This idea is similar to
during rewriting. Figure 7 illustrates the effect of thiseuln  the dynamic programming techniques used in Earley Parsers
the figure,S denotes a struct anl a base token. [1]. Finally cl ean returns all the perfect triples plus up to
the topk non-perfect triples. Thel ean function reduces

the number of bad parses to a constamthile guaranteeing
that if there is a perfect parse, it will be returned.

The pseudo-code in Figure 4 suggests the number of aggre- A second optimization, which we cglarse cut-offtermi-
gates is of the ordeD(m™), wherem is the maximum num- nates a candidate parse when parsing a struct with multiple
ber of parses for a line of input andis the number of lines fields f1, fo, ..., f, if the algorithm encounters a threshold

C1 C2
> .
s1+c1 S2 + C2

4.3 Performance



original incremental 500 o T Tor e web Toe =
Time | TC | Time | TC
interface 1.2/185 485 | 0.7| 2.9 1.1
asl.log 1.5/552 319 | 09| 135 | 15
errorlog 4.5/409 93.1 /01| 09 | 012
accesdog 8.2/551 1305/ 03| 2.8 | 0.3

Formats | K Lines/KB

Total Exec Time (secs)

coblitz 9.4/2561 - - 319 | 2.9

pws 17.4/3432 - - 133 | 5.7 s ‘ ‘ ‘ ‘ ‘ ‘ ‘
ai.big 57.4/5608 - - 1262 05 T ety
exlog 260.8/76720 - - 610 | 3.0

redirect | 302.6/102404 - N 1852 | 17.1 Figure 8: Scaling of increment algorithm
getbig 550.4/92192 - - 668 | 8.8

private to AT&T, so we ran the experiments on an AT&T in-
ternal server which runs GNU/Linux and has a 1.60GHz Intel
Xeon CPU with 8GB of memory. Figure 8 suggests the in-

number of errors in succession. This technique may resuﬁremental algorithm Sca|eS “nearly W|th the number 0f$i.ne
in no possible parses for the top-level description. In thisln particular, the algorithm learns a description for a roii-
case, we restart the process with the parse cut-off Opti.rnizdine web |Og in under 10 minutes. The inferred description
tion turned off. A third optimization is memoization. The Yields a parser that correctly parses all lines in the log.
program keeps a global memo table indexed by the pair of a

descriptiorD and the beginning position for parsiigwvhich :

stores the result for parsing at the specific position. Fi- 6 Conclusion
nally, we bound the total number of aggregates the algorith
can produce by selecting the tb@ggregates with the fewest
number ofOpt andLear n nodes.

Table 1: Exec. times (secs) and Type Complexities (KB)

"We have presented an incremental algorithm for inferring
system log formats. We experimentally verified that this
algorithm can produce quality descriptions within minutes
when run on files with hundreds of thousands of lines. Our
5 Evaluation experience suggests that the quality of the final descripsio
very sensitive to the quality of the initial description. hbe,

To evaluate the incremental algorithm, we ran it and the-orig W& inténd to work in the future on improving the original al-
inal LEARNPADS system on 10 different kinds of system logs 901thm to produce better initial descriptions.
of various sizes. We conducted the experiments on a Power-
Book G4 with a 1.67GHz PowerPC CPU and 2GB memoryACknOW|edgmentS
running Mac OS X 10.4. Table 1 summarizes the results. The
second column lists the number of lines and the size of eaciihis material is based upon work supported by the NSF undeitgr
log. The time columns give the total running time in sec-0612147 and 0615062, and a gift from Google. Any opiniongl-fin
onds, and thg@'C columns give the type complexity of the ings, and conclusions or recommendations expressed im#terial
final description. In general, a lower type complexity means2'e those of the authors and do not necessarily reflect thes\oé
a more compact description. For all benchmarks, the initiaf® NSF or Google.
learn sizeN is 500 lines and the incremental learn si¥e
is 100 lines. A “-" indicates the original system failed to References
produce a description within thirty minutes. Table 1 shows
the incremental algorithm learns descriptions that aghdly ~ [1] J. Earley. An efficient context-free parsing algorith@ommu-
less compact than the original but in a much shorter time. nications of the ACM13(2):94-102, 1970.

To measure the correctness of the inferred descriptions, W] K. Fisher and R. Gruber. PADS: A domain specific language f
generated parsers from each description and used them to processing ad hoc data. RLDI, pages 295-304, June 2005.

parse the data. All formats parsed with zero errors excep[t3] K. Fisher. D. Walker. K. Zhu. and P. White. Erom dirt to sho

fo_r thepws format, a form of Apache server.log, which con- els: Fully automatic tool generation from ad hoc datP@PL,
tains a number of errors. These errors arise becauss January 2008.

uses greedy mgtchmg to parse unions. We_ are developmg[g] P. D. Grunwald. The Minimum Description Length Principle
smarter parser implementation to resolve this problem. MIT Press, May 2007.

The second experiment measures the execution time
learning descriptions for a series of web server logs ramgin
in size from 200k to one million lines. This data source is

?g] Q. Xi, K. Fisher, D. Walker, and K. Q. Zhu. Ad hoc data and
the token ambiguity problem. IRADL’09, 2009.



