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Abstract. Unification in acommunitativc theory Emaybereduced tosolving linear equations in
the corresponding semiring S(E) [37]. The unification type of E can thus be characterized by

algebraic properties of S(E). The theory of Abelian groups with n commuting homomorphisms

corresponds to the semiring ZIXI, ..., x,,]. Thus, Hilbert’s Basis Theorem can bc used to show

that this theory is unitary. But this argument does not yield a unification algorithm. Linear

equations in ZIXI, . . . . x,, ] can be solved with the help of Griibner Base methods, which thus
prowdethe desired algorithm. The theory of Abelian monoids with a homomorphism is of type
zero [4]. This can also be proved by using the Pact that the corresponding semiring, namely N[ x],
is not Noetherian. Another example of a semiring (even ring) that is not Noctherian is the ring

Z(x, . . . . . X,,), where X,, . . .. X.. (n > 1) are noncommuting indeterminatcs. This semirmg
corresponds tothetheory of Abelian groups with n noncommuting homomorphisms. Surprisingly,
by construction of a Grobner Base algorithm for right ideals in Z(X1, . . .. X..), it can be shown

that this theory N unitary unifying.

Categories and Subject Descriptors: F.2. 1 [Analysis of Algorithms and Problem Complexity]:
Numerical Algorithms and Problems—co~npt~tattons on polymmuak; F.2.2 [Analysis of Algorithms

and Problem Complexity]: Nonnumerical Algorithms and Problems—computati~]/l.s on discrete
structures; pattern matching; F.4. 1 [Mathematical Logic and Formal Languages]: Mathematical
Logic—mechanical theorem pro~,ing; I. 1.2 [Algebraic Manipulation]: Algorithms—algebratc algo-

nthrns; 1.2.3 [Artificial Intelligence]: Deduction and Theorem Proving—resolution

General Terms: Algorithms, Theory
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1. Introduction

E-unification is concerned with solving term equations modulo an equational

theory E. More formally, let E be an equational theory and =~ be the

equality of terms, induced by E. An E-unification problem r is a finite set of

equations (s, = t,;1 s i s n )E where s, and t,are terms. A substitution 0 is

called an E-unifier of r iff s, 6 =~ fi 8 for each i, i = 1, ..., n. The set of all
E-unifiers of r is denoted by 11~(r).
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In general, we do not need the set of all E-unifiers. A complete set of

E-unifiers, that is, a set of E-unifiers from which all E-unifiers may be

generated by E-instantiation, is sufficient. More precisely, we extend =~ to

UF(r), and define a quasi-ordering <~ on U~(17) by

U=E$ iff x m =~ x d for all variables x occurring in s, or t, for

sornei, i=l, . . ..n.

(T<Eo iff there exists a substitution A such that u =F O 0 A.

If u <~ /3, then u is called an E-instance of 0.

A complete set cU~(I’) of E-un$iers of r is defined as

(1) c~,(r) G uE(r),
(2) For all 6’ G U~(r), there exists u G cU~(r) such that 6 <~ m.

For reasons of efficiency, this set should be as small as possible. Thus, we are

interested in minimal complete sets of E-unifiers, that means complete

sets where two different elements are not comparable with respect to

E-instantiation. The unification type of a theory E is defined with reference to

the cardinality and existence of minimal complete sets. The theory E is unitay

(finita~y, infinitary) iff minimal complete sets of E-unifiers always exist and

their cardinality is at most one (always finite, at least once infinite). E has

unification type zero iff there is an E-unification problem without minimal

complete set of E-unifiers. Please note that the signature over which the terms

of the unification problems may be built is important for the definition of the

unification type of a theory. If the terms of the problems may only contain

symbols that occur in an identity of E, then one talks about elementa~~

E-unification. If the terms of the problems may contain additional “free”

constants, one talks about E-unification with constants, and if they may contain

additional “free” function symbols of arbitrary arity, one talks about general

E-unification. These additional symbols may, for example, arise as Skolem

constants or Skolem functions in the context of automated theorem proving. In

the present paper, we shall restrict our attention to elementary unification and

unification with constants. If nothing else is specified, “unification” will mean

“elementary unification. ” Sometimes, we shall also use the notion “unification

without constants” to distinguish elementary unification from unification with

constants. For more information about unification theory and the unification

hierarchy, consult Siekmann [43].

Unification in the empty theory (which is unitary with respect to general

unification) plays an important role in automated theorem proving, term

rewriting and logic programming. Generalizations to E-unification usually
require that E is finita~ (see e.g., Stickel [45], Jouannaud and Kirchner [26],

Huet [23], and Jaffar et al. [25]). A finitary theory most used in this context is

the theory of Abelian semigroups (monoids), that is, the theory of an associa-

tive, commutative binary operation (with a neutral element). Unification algo-

rithms for this theory (see, e.g., Livesey and Siekmann [34], Stickel [44], Fages

[15], Fortenbacher [17], Biittner [10], and Herold [21]) make use of the fact that

unifiers correspond to solutions of systems of linear equations in the semi-

ring N of nonnegative integers (see Eilenberg [14] or Kuich and Salomaa [31]

for the definition and properties of semirings). The same phenomenon

occurs for the theory of Abelian groups where the semiring is the ring 2? of



Commutative Theories, Hilbert’s Basis Theorem, and Grobner Bases 479

integers (Lankford et al. [32]) and for the theory of idempotent Abelian
monoids where the 2-element Boolean semiring Q7 is used (Livesey and
Siekmann [34], Baader and Buttner [6]).

These three theories belong to the class of commutative theories (roughly
speaking, theories where the finitely generated free objects are direct products
of the free objects in one generator), which were defined in Baader [4]. In that
paper, it is shown that constant-free unification in commutative theories is
either unitary or of type zero, and there are given sufficient conditions for a
commutative theory to be unitary (respectively, finita~ with respect to unifica-
tion with constants). The above-mentioned results for Abelian monoids, Abelian
groups, and idempotent Abelian monoids and some new results (for Abelian
monoids with an involution, idempotent Abelian monoids with an involution,
Abelian groups with an involution, Abelian groups of exponent m) could thus
be obtained as corollaries to a general theorem. In Baader [5], these conditions
were modified to algebraic characterizations of unification type unitary for
unification without constants, and type finitag for unification with constants in
commutative theories. An interesting consequence of these characterizations is
the fact that commutative theories are always unitary (finita~ with respect to
unification with constants), if the finitely generated free objects are finite [4].

Werner Nutt [37, 38] observed that commutative theories are (modulo a
translation of the signature) what he calls rnonoidal theories, and that unifica-
tion in these theories may always be reduced to solving linear equations in
certain semirings. He pointed out that the theory of Abelian groups with
a homomorphism corresponds to the semiring Z[ X ]. Thus, Hilbert’s Basis
Theorem can be used to prove that the theory of Abelian groups with a
homomorphism is unitary. But this argument does not yield a unification
algorithm. Linear equations in Z[ X] can be solved with the help of Grobner
Base methods (see Buchberger [9] and Section 6 of this paper), which thus
provide the desired algorithm.

The theory of Abelian monoids with a homomorphism is of type zero. This
was shown in Baader [4] using purely combinatorial arguments. In Section 4 of
the present paper, we shall see that this can also be proved algebraically,
by using the fact that the corresponding semiring, namely M X], is not
Noetherian.

Another example of a semiring that is not Noetherian is the ring Z( X, Y ),
where X, Y are noncommuting indeterminates. This semiring corresponds to
the theory of Abelian groups with two (noncommuting) homomorphisms.
Surprisingly, by construction of a Grobner Base algorithm for right ideals in
Z!( X, Y ), I was able to show that this theory is unitary unifying. Of course,
this result can be extended to an arbitrary, finite number of noncommuting
indeterminates (Section 8 and 9).

2. Commutative Theories

In this section, we give a definition of commutative theories, recall some of the
properties derived in Baader [5], and show how the corresponding semirings
may be obtained within this framework.

An equational theory E defines a zlariety V(E), that is, the class of all
algebras (of the given signature Q) that satisfy each identity of E. For any set
X of generators, V(E) contains a flee algebra cmer V(E) with generators X, which
will be denoted by FE(X).
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Let F(E) be the class of all free algebras FE(X) with finite sets X, and let
C(E) be the category which has the elements of F(E) as objects and the
homomorphisms between these elements as morphisms. Note that the coprod-
uct of FE(X) and FE(Y) in C(E) is given by FE(X U Y) (where U means
disjoint union). If IXl = lY\, the algebras FE(X) and FE(Y) are isomorphic.
Thus, FE(X) is the coproduct of the isomorphic objects FJx) for x ● X,
where x is used as abbreviation for the singleton set {x}.

Let r = (,s, = t,; 1 s i s n ~ be an E-unification problem and X be

the (finite) set of variables x occurring in some s, or t,. Evidently, we can con-
sider the terms Si and t, as elements of FE(X). Since we do not distinguish
between =~-equivalent unifiers, any E-unifier of r can be regarded as a
homomorphism of FE(X) into FF(Y) for some finite set Y (of variables). Let
I= {xl,..., x,,} be a set of cardinality n. We define homomorphisms

m,r: F~(l) +F~(X)by.x, m:=sz and x,~:=t, (i = 1,. ... n).

Now 8: FE(X) + FE(Y) is an E-unifier of r iff x, d = s, 8 = t, 8 = x,78 for
i= l,..., n, that is, iff d = -rd. Thus, an E-unification problem can be written
as a pair ( o = ~ h of morphisms m, r: F~(l) + FE(X) in the categozy C(E).
An E-unifiers of the unification problem ( m = ~ ~ is a morphism 8 such that
U8 = Ti3.

Motivated by this categorical reformulation of E-unification (due to
Rydeheard and Burstall [41]), the class of commutative tlzeories is defined by
properties of the categozy C(E) of finitely generated E-free objects as follows:
An equational theory E is commutative iff the corresponding category C(E)

is a semiadditti]e catego~ (see Herrlich and Strecker [22], Freyd [18], and
Baader [4] for the definition of semiadditive categories). In order to give a
more algebraic definition of commutative theories, we need some additional
notation from universal algebra [11, 20].

A constant symbol (i.e., a nullary function symbol) e G Q is called iderrzpo-
tent in E iff for any ~ e Q we have ~(e, . . . . e) =~ e, that is, in any algebra
A = V(E), ~(e,..., e) = e holds. Note that for nullary ~ this means f =E e.

Let K be a class of algebras (of signature Q). An /z-ary implicit operation in
K is a family o = {oA; A = K} of mappings o~: A“ + A that is compatible
with all homomorphisms, that is, for any homomorphism ~: A + B with
A, B E K and all al,..., a~ =A, oA(al,..., a,, )~ = o~(al +,..., a~~) holds. In
the following, we shall omit the index and just write o for any o~. Obviously, an
Q-term induces an implicit operation on any class of Q-algebras.

Definition 2.1. An equational theory E is called commutative iff the follow-
ing holds:

(1) Q contains a constant symbol e which is idempotent in E.
(2) There is a binary implicit operation * in F’(E) such that

(a) The constant e is a neutral element for * in any algebra A = F(E).
(b) For any zz-ary function symbol f G Q, any algebra A ● F(E), and

any Sl, . . ..s.l, tl, ..., tn G A, we have f(sl * tl, . . . , s,, *t,l) =

f@>..., h)* f(t,,tn), tn).

In Baader [4], the following properties of commutative theories E are shown
within a categorical framework, using well-known results for semiadditive
categories.
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Proper@ 2.2. lF~(0)\= land FJ@)isthe zero object of C(E).

Property 2.3. The implicit operation * of Definition 2.1 is associative

and commutative. It induces a binary operation + on any morphism set
hom(F~(X), FJY)) as follows: Let u, t-: F’JX) -+ FJY) and s ~ FE(X).
Then, S(U + ~) = (sa)*(s~).

This operation is also associative and commutative, and it distributes with
the composition of morphisms. Let e be the idempotent constant required in
the definition of commutative theories. Then, the morphism O: FE(X) ~ FE(Y)
defined by x ~ e for all x = X is the zero morphism in hom(F~(X), FE(Y)),
and it is a neutral element for + on hom(F.JX), FE(Y)).

Property 2.4. The coproduct FE(X U Y) of FE(X) and FE(Y) is also the
product of these objects, that is, FE(X u Y) G FE(X) X F’~(Y).

Proper@ 2.5. Consider o: FJX) ~ F-J Y). Let u.. for x G X (py for
y ● Y) be the injections of the coproduct FE(X) (projections of the product
FJY)). Then, u is uniquely determined by the matrix Mm = (UX@pY)Z. ~, ~ ~ ~.

For o, ~: FE(X) ~ FE(Y) and 8: FE(Y) - FJZ), we have Mm+, = Mm + MT
and MVb =MQ” M8.

Nutt [37, 38] observed that commutative theories are, modulo a translation
of the signature, what he calls monoidal theories (see Baader and Nutt [7] for a
proof), and that unification in a monoidal theory E may be reduced to solving
linear equations in a certain semiring S(E).

In our framework, this semiring can be obtained as follows: Let 1 be an
arbitrary set of cardinality 1. Property (2.3) yields that hom(F~(l), FE(l)) with
addition “+” and composition as multiplication is a semiring, which shall be
denoted by S(E). Any FE(x) is isomorphic to FE(l) and for IXl = n, FE(X) is
thus nth power and copower of FE(l). That means that, for m: FJX) ~ FE(Y),
the entries u, UpY of the IXl X IY l-matrix Mm may all be considered as
elements of S(E). Hence, all morphisms of C(E) can be written as matrices
over the semiring S(E). Addition and composition of morphisms correspond to
addition and multiplication of matrices over S(E) as stated in (2.5).

Now we shall give some examples of commutative theories in which the
unification properties will be considered in subsequent sections of this paper.
In all these examples, the implicit operation is given by a function symbol of
the signature that is associative and commutative in the corresponding theory.
Additional examples of commutative theories can be found in Baader [4].

Example 2.6. We consider the following signatures: 2 ‘= {”, 1, h}, where “ is
binary, 1 is nullary, and h is unary:land for n >0, ~. t= {“,1, ‘1, hl,..., h.},

where “ is binary, 1 is nullary, and and the h, are unary.

(1) The theory AMH of Abelian monoids with a homomo~hisrn. The signature
is Z and AMH:={x ”l=x, x-(y”z) =(x “y). z,x”y=y”x, h(x”y)=

h(x) “ h(y), h(1) = 1}.
(2) The theory of AIMH of idempotent Abelian monoids with a homomorphism.

The signature is X and AIMH := AMH U {x” x = x}.
(3) The theory AGnH of Abelian groups with n (noncommuting) homomor-

phisms. We take signature fl and define AGnH ‘= {x” 1 =x,x. (y “z) =

1 : 1} u {hl(x “y) = h,(x) “ h,(y); 1 < i s n.}.(X”y)”z, x”y=y”x, x”x- –
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(4) The theory AGnHC of Abelian groups with n commuting homomophisrns.
The signature is Q. and AGnHC = AGnH U {hl(hj(x)) = k,(h,(x)); 1<
i<j <n}.

It is easy to see that these theories are commutative. Note that the implicit
operation induced by the term x “y (for a binary function symbol “””) satisfies
(2)(b) of Definition 2.1 for ~ = “ iff (a “b). (c “ d) = (a “c) “ (b “ d) holds in any
algebra A ● F(E), and for ~ = h (for a unary function symbol h) iff h(x “y) =
h(x) “ h(y) holds.

3. Unification in Commutative Theories

In this section, we recall the characterizations of unification type unitary
(finitary for unification with constants) for commutative theories given in
Baader [5] within the categorical framework. As a consequence, we derive that
unification in a commutative theory E means solving systems of linear equa-
tions in the semiring S(E). This yields algebraic characterizations of the
unification types that are similar to those given in Nutt [38] and Baader and
Nutt [7].

THEOREM 3.1. A commutative theory E is unita~ with respect to unij7cation

without constants if it satisfies the following condition:

Let y be an arbitra~ Lariable. For any E-unification problem ( ~ = T )E (where

o-, ~: F~(I) + FJ X)) there are jinitely many E-unifiers al, ..., cq: FE(X) +

FE(y) such that a?zy E-unifier 8: FE(X) + FE(y) can be represented as

where Al: FJ y) + FE(y) are rnorphisms of Cl E).

If we translate morphisms into matrices over S(E), we obtain the following
reformulation of Theorem 3.1:

COROLLARY 3.2. A contmutatiue theoy E is unitary with respect to unification

without constants iff the conesponding semiring S(E) satisfies the following

condition; For any n, m > 1 and any pair MO, M, of m ~ n-matrices ouer S(E)

the set

is a finitely generated right S( E )-semimodule, that is, there are finitely many
q, ,x, E S(E)” szLch that U(Ma, MT) = {~lsl + . . . +Z, Sr; Si, . . . . s, G S(E)}.

THEOREM 3.3. Let E be a conwnutatile theoy that is qnitmy with respect to

unification without constants. Then E is finita~y with respect to lmification with

constants iff the following condition holds:

For any motphism (of C(E)) S: F~( X) + FE(Y), there exist finite sets M, N

such that:

(1) The elements of M are morphisms p: FE(Y) + F.( X) satisfying 6P = 1.
(2) The elements of N = {VI,.. ., VI} are morphisms v,: FE(Y) + FE( Z, ) with

avt = o.
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(3) For any A: FJY) + FE(X) with 8A = 1, there are p ● M and morphisrns
A17..., A, (where Ai: F~(Z,) + FE(X)) satisjjing

The translation of morphisms into matrices over S(E) yields a sufficient
condition for E to be finitary with respect to unification with constants.

COROLLARY 3.4. Let E be a unita~ commutative theo~. Then E is jinita?y

with respect to unification with constants, if the following condition holds in S(E):

Let A be any m X n-matrix oler S(E) and let ~ be any element of S(E)”’. Then

the set M Z= {Z e S(E) ’z; & = ~} is a finite union of cosets of the (finitely

generated) right S(E) -seminzodule N := {~ = S(E)”; ~ = O}, that is, there exist

finitelymany~,,..., _m~ G S(E)” such that M = {nz, + ~; ~ = Nand 1 < i < k}.

Note that the semimodule N is finitely generated since E is unitary
and N = U(A, O), where O is the m x n zero matrix. From Theorem 3.3,
we can only deduce that the condition of the corollary is sufficient since in
Theorem 3.3 we talk about specific inhomogeneous equations AX = E, while
in Corollary 3.4 the right-hand side of the equation is an arbitra~ vector ~.
Nutt [37] and Baader and Nutt [7] consider a different condition for unification
with constants, which turns out to be a characterization of type finita~. The
difference between the two conditions stems from the different treatment of
unification with constants. Baader [4, 5] generalizes Stickel’s approach to
AC-unification with constants (Stickel [44]), whereas Nutt [37] builds up on the
approach as, for example, by Herold [21].

Assume that S(E) is a ring and let ~. be an arbitrary solution of
the inhomogeneous equation ~ = ~. Then any solution y of Ay = ~ is

of the form y = Z. + ~, where ~ := y – Z. is a solution of tie homogeneous

equation &‘= O. This proves -

COROLLARY 3.5. Let E be a unita~ commutative theo~ such that S(E) is a

ring. Then E is unitary with respect to unification with constants.

4. A ComnuLtatil~e Theoy of Unification Type Zero

In 1972, Plotkin [33] conjectured that there exists an equational theory E that
is of unification type zero. But it wasn’t until 1983 that Fages and Huet [16]
constructed the first example of an equational theory of this type. Schmidt-
Schaut3 [42] and the present author [2] showed that the theory of idempotent
semigroups is of unification type zero, and in Baader [3], it is proved that
almost all varieties of idempotent semigroups are defined by type zero theories.
This provides us with countably many examples of type zero theories that are
more natural than the original example of Fages and Huet.

In Baader [4], it is shown with the help of purely combinatorial arguments
that the theory AIMH of idempotent Abelian monoids with a homomorphism
is of type zero. The same proof can be used for AMH, the theory of Abelian
monoids with a homomorphism, in place of AIMH. This section contains a
more algebraic proof of the fact that AMH is of type zero. This algebraic proof
is easier and better comprehensible than the original one. Since commutative
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theories are either unitary or of unification type zero (Baader [4, Theorem
6.1]), it is sufficient to show that the semiring S(AMH) does not satisfy the
condition of Corollary 3.2.

Let m: F*~~(x) ~ FA~~I(x) be a morphism of C(AMH). Then there are
k> OandaO,..., a~ ● N such that XU =AMH XaOIZ(Xa I) . . . Ak(X”L’). we associ.

ate with the morphism o- the polynomial pc = a. + alX + “”” + aLXk ● N[X].

It is easy to see that p~a = pc “pa and pn, ~ = pv + p~, which shows that
S(AMH) = N[X].

We consider the linear equation ( * ) Xxl + ~, = x, + X2X3, which has to
be solved by a vector p = (p-l, pz, p,) in (N[X])~.

vector p(n’ = (p~”), p~), p~)) = (1, X + XZ + . . .
(*). -

LEMMA 4.1. There does not exist a solution p

p1+p3=l.
—

Obvi&sly, for-any n >0, the

+X”+l , x“) is a solution of

of ( * ) in (RJ[X])3 such that

PROOF. For pl = O and p~ = 1 we get Xpz = pz + X2, which yields (X –
I)pl = Xz in Z[X]. But X – 1 is not a divisor of Xz. The case pl = 1 and

pj = O leads to a similar contradiction. ❑

Similarly to ideals in rings one can define semiideals in semirings. A subset 1
of N[ X] is a semiideal iff it is closed under addition (i.e., ~, g = 1 implies
~ + g =1) and multiplication with elements of N[XJ (i.e., ~ = 1 and g ● N[X]
imply ~g = 1). The semiideal 1 is finitely generated iff there exist fl, . . . . f. E I
such that 1 = {flgl + ““” +f,lg~; gl, . . ..g.l G iN[X])}.

It is easy to see that Il+q I= {pl + pj; there exists pz such that (PI, p2, p3)

solves ( *)} is a semiideal in N[X]. We know that 1 + X“ ● 11+~ for any n > 0
and 1 Gll+j.

LEMMA 4.2. A semiideal I c NJ[X] such that 1 + X’z G I for any n >0 and

1 E I is not finitely generated.

PROOF. Evidently 1 + X“ = f g for f, g G N[X] or 1 + X“ = f + g
for f, g G NJ[X] \ {O} implies f = 1 or g = 1. Since 1 G 1, this means that
a sum 1 + X“ = f + g with f, g E I \ {O} is impossible, and that a factorization
1 + Xn = f” g with f G N[X], g ● I cannot be a real factorization of 1 + Xn,
that is, g has to be 1 + X“ itself. This shows that 1 + X’z cannot be generated
by other elements of 1. ❑

PROPOSITION 4.3. The theory AA4H is of unification type zero.

PROOF. Assume that AMH is not of type zero. Then AMH is unitary and,
by Corollary 3.2, ~ := {p e (N[x])3; p is a solution of ( *)} is a finitely
generated right N[X]-se7nimodule. BuE then the semiideal II, s = {pl + p~;

there exists pz such that (p ~, pz, pj) - ~} would also be finitely generated,
which contradicts Lemma 4.2. ❑

The fact that the set of solutions of the equation ( * ) is not a finitely
generated right semimodule is not specific for the semiring N[ X]. More
general, let S be a semiring that is not a ring (that means that there exists
s 6 S such that for all t c S, s + t # O). Then the right S[ X]-semimodule
1 := {p = (S[ X])3; p is a solution of(*)} is not finitely generated (Baader and—
Nutt ~71).
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5. AGnHC-Unification and Hilbert’s Basis Theorem

It is easy to see that S(AGnHC) is isomorphic to the ring ZIX1,..., x.], that
is, the polynomial ring over 2? in the (commuting) indeterminates Xl, ..., Xn.
To establish the condition of Corollary 3.2, we have to consider systems
of homogeneous linear equations in Z?[Xl, ..., X.1, that is, systems ~11x 1 +
“.”+~~, x~=O(i= l,..., s), where the coefficients ~lj and the desired solu-

tions are elements of iZIXl,..., X,,]. The set of solutions J g (ZIXI,..., X.])~
is a ZIX1, ..., X. ]-module, which is finitely generated by Hilbert’s Basis
Theorem and the fact that Z is a Noetherian ring (see, e.g., Jacobson [24]).
Thus, AGnHC is unitary with respect to unification without constants. Since
Z[xl,..., X,, ] is a ring, Corollary 3.5 applies and we have proved the following:

PROPOSITION 5.1 [38]. For any n >0, the theoy AGnHC is unita~ with

respect to unification without constants, and it is also unitary with respect to

unification with constants.

This proof of Proposition 5.1 does not yield an AGnHC-unification algorithm
because we still do not know how to solve linear equations in ZIXI,..., X,, 1
effectively. The next section describes one possible answer to this problem.

6. Sol[~ing Linear Equations in Z[ Xl,..., X,, 1 Using Weak Grobner Bases

Buchberger [9] describes an effective method which constructs finitely many
generators of the solutions of a single equation f ~xl + .”0 + fk Xk = Owhere the
f and the desired solutions are elements of KIXI,..., X,,] for a field K. This
method may also be used for Z[ Xl, ..., X.], but one has to be very careful in
the details, and thus the proof of correctness becomes more involved. Systems
of equations can then be solved by successive substitution. A more efficient
approach to solving systems of equations is described in Furukawa et al.
[19] where Grobner base theory is extended to modules over KIXI,..., x,,].
Furukawa et al. also mention that their approach can be extended to
Z[xl,..., X,,], but they do not give any details or proofs.

Grobner bases for polynomials over Z have been considered in for example,
Buchberger [9], and more general for polynomials over Euclidean rings in
Kandri-Rody and Kapur [27–29]. However, in the present paper, we shall
consider a rewrite relation on polynomials (see 6.2), that is different from those
used by Buchberger and Kandri-Rody and Kapur. As a consequence, we shall
not get Grobner bases (in the sense of Buchberger and Kandri-Rody and
Kapur), but only “weak” Grobner bases (see 6.3). But it turns out that weak
Grobner bases are sufficient for the purpose of equation solving. An advantage
of our rewrite relation, as compared to the relation used by Kandri-Rody and
Kapur, is that the proof of Lemma 6.4—which is crucial for the proof of
correctness of this method of equation solving—becomes more obvious. In
addition, we thus get a presentation that is very similar to the one used in
Sections 8 and 9 for the noncommutative case. Finally, though we cannot just
refer to known results on Grobner bases [8] (e.g., to get Proposition 6.5), we do
not have to invest more work. Lemma 6.4 and the arguments used in the proof
of Proposition 6..5 are needed anyway for the proof of Proposition 6.8.

First we recall some facts and notations concerning Grobner bases:

Fact 6.1. Admissible term orderings. Let ~, ‘= {X~l “.” X~n; kl,..., k,, ~
N} be the set of all terms (i.e., monomials with coefficient 1) in iZIXl,..., X,l].
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With respect to multiplication of polynomials, T. is a commutative monoid
(with neutral element 1 =X! .”. X~O), which is isomorphic to the additive
monoid N“.

A linear ordering < on T. is called compatible iff for all r,s, t G T., r < s

implies rt < st, and it is called admissible iff it is compatible and satisfies 1 <
s for all s E T,,. It is easy to see that a compatible linear ordering on T,, is

admissible iff it is Noetherian.
Complete descriptions of all compatible linear orderings have been given by

Trevisan [46], Zaiceva [47] and more recently by Robbiano [40] and Martin [35]:
Any compatible linear ordering < on T. is completely determined by a n X s

matrix U< of s s n orthogonal vectors u,, ..., u, = R” of Q-dimension n as
follows: x:’ ““” x,:” < X!’ ““” X;” iff the first nonzero element of (h ~ –
k 1> ...> h,, – k.) “ U< is greater than zero.

It is easy to see that the compatible linear ordering < is admissible iff in
any row of Uc , the first nonzero entry is greater than zero.

An admissible ordering < on terms can be extended to monomials and
polynomials as follows: Let a, b e Z and s, t G ~,.Then, m < bt iff (i) s < t
or (ii) s = t and /al < Ibl or (iii) s = t and Ial = Ibl and a < b. This defines a
well-ordering on the monomials of 7?[X1, ..., X,l ].

Let ~ = XaIs, and g = Xb, t, be two polynomials, that is, elements
of ZIX1, ..., X~]. Then, we define ~<g iff {“” a,si, ””} << {“” b,t,, ”””},

where << denotes the multiset ordering (see Dershowitz and Manna [12])
induced by the ordering < on monomials. This ordering on polynomials is
also Noetherian.

Fact 6.2. Rewriting with Poijmomials. For a polynomial f and a term t that
occurs in f, coeff(t, f ) denotes the coefficient of t in f. If t does not occur
in f, we define coeff(t, f) := O. Let < be an admissible ordering and let

f = a “t +g be a polynomial in ZIX1,.. .,X. ] such that t E T. is the greatest
term in f with respect to < and coeff(t, f ) = a E Z \ {O} is the coefficient of
t in f. Then, t is called head-term of f (HT(f)), a is called head-coefficient of f

(HC( f )), a “ t is called head-monomial of f (HM( f )) and g = f – HM( f ) is
called rest of f (R(f)).

A set F of polynomials induces the following rewrite relation on
Z[xl,..., xn]:

f ~F g iff (1) f contains a term t with coefficient a,

(2) F contains a polynomial h such that t = HT(Iz) “s (for some
s ● 7“) and lHC(h)l < /al,

(3)g=~–/zb-s,w here a= b- HC(h)+c for O<c<lHC(h)l,
b,c= Z’.

Let ~~ (respectively, ~~) denote the reflexive, transitive (respectively,
transitive) closure of -~. It is easy to see that f ~F g implies f > g, and
thus ~~ is Noetherian. The set F generates an ideal (F) in Z?[Xl, . . . . X.],
and this ideal induces a congruence =(F ~, namely f =<~) g iff f – g = {F).

Obviously, the reflexive, transitive, and symmetric closure of ~~ is contained
in this congruence. However, = ~~~ can be larger than this reflexive, transitive,
and symmetric closure since the rewrite relation defined above does not satisfy
the “unique remainder property” required in Kandri-Rody and Kapur [28].
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Fact 6.3. Weak Grobner Bases and S-Polynomials. Let I be an ideal in

Z[xl, . . . . X,,], and let B be a finite set of polynomials. B is a weak Grdmer

base for 1 iff (B) = I and any element of 1 can be reduced to O with respect
to ~~. This is weaker than the definition of Grobner base where it is required

that each =1-class has a unique ~ ~-irreducible element. For weak GrObner

bases, we only require that the class of O, namely 1, has the unique irreducible
element O. But as for Grobner bases, the property of being a weak Grobner
base can be localized with the help of so-called S-polynomials.

Let gl = c1 -tl+ R(gl) and gz = Cz “ t2+ R(g2 ) be elements of B such that
c1 > C2 > () (without 10SS of generality, we assume that the head coefficients of

the polynomials in B are positive). The S-polynomial S(gl, gz) of g] and gz is
defined as follows: Let SI . tl = Sz . tz = lcm(tl, t2)and c1 = a “ Cz + b, O s b <

Cz < cl, a > 1. Then

Now B is a weak Grobner base iff for every pair of polynomials in B the
S-polynomial reduces to Owith respect to ~~. The proof of this fact requires
the following technical lemma (which has an easy, but somewhat tedious
proof).

LEMMA 6.4. Let O # f = at + g be a polynomial such that a >0 and g

contains only terms smaller than t. Let G = {gl, . . . . g,,} be a set of polynomials
such that f ~G O. Then there exist polynomials Wl,. ... w, such that

k=s

f= ‘% Wk”gk>
k=l

and

(1) for a = O: max{HT(wlgl),..., HT(w$g,,)} < t,
(2) for a >0: max{HT(wlgl), . . . . HT(w,g,)} = t, coejjlt, wlgl) >0, ...,

coeff(t, w,g$) >0, and a = coejjlt, wlgl) + ““” +coefl(t, W,g,).

PROOF. By Noetherian induction with respect to -+~, applied to f,

Case 1. a = O.

Then, g # O and there exists g‘ with f = g ~G g‘ ~G O. Assume that
the first reduction is done by the polynomial g, = G. Then g‘ = g – qs,g,
where HT(g) = s,HT(gl) and HC(g) = qHC(g,) + b, O s b < lHC(g)l.
Obviously, HT(qs,g,) = HT(g) < t.

Case 1.1. If g’ = O, then g = qsigl, and thus we can take w,, I= O for v # i
and w, := qs,.

Case 1.2. If g‘ >0, then induction yields polynomials u ~, ..., u, such that
at+ g’= g’ =Ulgl + ...+u, g,, and HT(uUgU) < t for v = 1,...,s. Thus, we
can take WV:= Uv for v # i and W, := u, + qsl.

Case 2. a >0.

Case 2.1. Assume that the first reduction step of f 4G O is applied inside
ofg, that is, f=at +g-~ at+g’ 4G Oandfor someg, in G,g’ ‘g–qstg,

where HT(g) = s,HT(g, ) and HC(g) = qHC(gi) + b, O < b < lHC(g)l. we



488 FRANZ BAADER

can now apply the induction hypothesis to at + g‘, and thus we get u ~, . . . . u,

such that at + g’ = ulgl + . . . +u, g,, coeff(t, ulgl) >O,. . . ,coeff(t, u,g,,) 20,
and a = coeff(t, ulgl) + ““. +coeff(t, u$g, ).

Hence, we can take WV:= Uv for v # i and w, == u, + qsl. Please note that,
since HT(qsl g,) < t,coeff(t, w,,gV) = coeff(t, Uug=) for all v.

Case 2.2. Assume that the first reduction step of f LG O is applied to at.

Thus, there exists a polynomial g, = c1t, + R(gl ) in G, a term S,, and integers
b,c such that t =sZt,, a = Ial > Ic, I, a = c,b + c, O s c < It,\.

Case 2.2.1. c = O, that is, a = c,b.

Then, f ~G g’ = g – bR(g, ) ‘G Q and HTfg’) < t. BY induction we
get polynomials u,, . . . . u, such that Ot + g’ =g’ = ulgl + ““” +u, g,,
and HT(uUgU) < t for v = 1, . . . . s. Thus, we can take w. := Uv for
v # i and w, := u, + bs,. We have coeff(t, w,,gu) == O for v + i, and
coeff(t, w[g, ) = coeff(t, bslgl) = c,b = a > 0.

Case 2.2.2. c >0 (this is the most interesting case because here the exact
definition of our rewrite relation on polynomials becomes important).

Then, f -G d + g’ = d + g – bs,ll(g,) ~~ O, and HT(g’) < t.By induc-
tion, we get polynomials Ul, . . . . u, such that ct + g’ = ulgl + ““” +u, g,,

max{HT(ulgl), . . . . HT(u~g,)} = t, coeff(t, ulgl) >0, . . . . coeff(t, u,g,,) >0,
and c = coeff(t, ulgl) + ““” +coeff(t, u,g,). We define WV:= UV for v + i and
w, := u, + bs,. Then we have coeff(t, wvgv) = coeff(t, u,, g,,) > 0 for v # i,

and coeff(t, wig,) = coeff(t, utg, ) + coeff(t, bs, g,) = coeff(t, uzg, ) + c,b.

Consequently, coeff(t, wl gl ) + ““” +coeff(t, w,g, ) = c + clb = a.

It remains to be shown that coeff(t, w,g, ) = coeff(t, a,g, ) + c,b >0. Assume
that c,b <0. Because of O < c < Icll s lcibl and a = c,b + c, this would imply
a <0, which contradicts the assumptions of the lemma. This completes the
proof of Lemma 6.4. ❑

In the sequel, the following notations will be convenient:

(1) Let JZ1,..., h,, be elements of iZIXl, . . . . X.]. We denote the 1 x m-matrix
(h,,..., hti,) by ~, and the m X 1 matrix (hi,...,h~)T (here T denotes the
transpose of matrices) by Ih.

(2) For a sequence ql, . . . . q, of polynomials, the complexity measure
BS(ql, . . . . q,) is defined as follows: If all the q,’s are zero, then BS
(q,,..., q,) ’=o”l =O”x: ““”x,:.

Otherwise, let t := max{HT(ql),..., HT(q,)}, and for all i, 1< i < s, let

a, ;= coeff(t, qt) (Note that al = O for HT(q, ) < t).Then BS(ql, ..., q,) :=
(lall + ““” +\a,l). t.

NOW t is called the term and Ial / + . . . + Ia,l the coefficient of
BS(ql,. ... q.). We define at = BS(ql,..., q,) < BS(qj,. ... q~) =a’. t’
ifft<t’ ort=t’anda <a’.

(3) Let B = {g,,.. ., g,,} be a set of polynomials, and let S(g,, g]) = s, . g, – a .

s,. gJ=b”s, ”t, +st. R(g, )–a. s, “ R(gl ) be the S-polynomial of g, and g,

(see 6.3). If we assume that S(g,, g] ) ~~ O, then the assumptions of Lemma
6.4 are satisfied. Thus, we get polynomials w ~,. . . . w, such that S(gl, g,) =
g“ Iw, and BS(WI “gI,. ... w,, ”g, )=c. t’ for some t’<s, .t,, if b= O,or

BS(wl. gl, . . ..wg. )= b=s, st, ,,, if b#O.
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NOW S,”g, –a”sjogj=s(gi, gj ) = W, “g, + “.. +~,”g. implies WI “
gl + ““” +(W, –Si)”gi + “SO+(wj +a. s,)”gl + ““” +w, .g, = O, and thus

Iw[, := (Wl ,.. .,wsi,i, wJ+a”s J,”sJ, . . ..w~)T satisfies g.lwlJ=O.

PROPOSITION6.5. B is a weak Grobner base iff for every pair of polynomials in

B the S-polynomial reduces to O with respect to ~~.

PROOF

(1) Let B be a weak Grobner base. It is easy to see that, for polynomials

g,, g] = B, the S-polynomial S(g,, g,) is in (B), and thus reduces to Oby the
definition of weak Grobner base.

(2) Let fO be an element of (B). That means that there exist polynomials

PI,. ..> P, SUChthat g” IP = fu. The if-part Of the proposition iS now PrOVed
by nested inductio~ on +~ and BS(gl pl,..., g,,p,$). If fO = O, there
is nothing to prove. Otherwise, BS(gl pl, . . . , g$p,, ) = a . t for a positive
integer a and a term t.

Case 1. Assume that for v = 1,..., s, the coefficients coeff(t, gup,, ) are
of the same sign. Consequently, HT(~O) = t and lFIC(fo )1= a. Let i be an
index such that HT(g, p,) = t. Then we have lHC(g, )l s lHC(gl p,)l s a, and
HT(gl)HT(p, ) = t = HT( f{)). This shows that f{) can re reduced by g,, that is,

there exists a polynomial fl with ~0 ~~ fl. Since fl is also an element of (B),
we get f ~ ~ ~ O by induction.

Case 2. Assume that there exist i, j such that HT(g,pl) = t = HT(gJp,),

and HC(g, p, ) and HC(gl pj ) have different sign.

Without loss of generality, we assume that c, := HC(gL) > HC(gJ) =: c, >

0. Obviously, t,:= HT(gz ) and t]:= HT(g,) are divisors of t,and thus lcm

(t,, t]) = s, t, = sJtJ divides t,that is, there exists r c T,l with rs,t, = rs,tl = t.

We consider the case HC(g, pi) >0 and HC(gJpJ) <0 (the other case is
similar, we just add ( – r) “ Iw,~ instead of r. Iw,] in the definition of Iq below).

The vector Iq = (ql,. ... q,)T ‘= Ip + r. Iw,j satisfies g“ Iq = g. Ip + r- (g”

IWIJ) =g” Iq =fo, and we have glq, = glpl + gl~l,...g,q,q, = i,P, + g,~, -–

glrsl>...> gjql = gjP] + f?]w] + gjars]~ “ “ “ ~gsli’, = gsPs + gsws”
If max{HT(glql),..., HT(g,qJ )} < t, the lemma is proved by induction since

the term of BS has decreased. Otherwise, max{HT(glql ),. ... HT(g,q.,)} = t,

and we have to calculate the coefficient of BS(glql, ..., g,q,). The triangle

inequality yields

BS(glql, . . . >gS!i’.Y)s ‘s(glpt>...>gZpl – f?lrst>..->g]pJ + g]arsj>.. .>gsps)

+b”t,

since BS(glrwl, ..., g,rw,)=r-b”sl” t,=b”t (for b>O) or BS(glrwl, ...,

gd’ws) has a term that is smaller than t (for b = 0)”
We have Icoeff(t, g, p, – g,rs,)l = Icoeff(t, g,pi)l – c, (since coeff(t, g, p,) =

HC(g, p, ) > c1 > O) and Icoeff(t, gJpl + g] arsl)l < Icoeff(t, glpj)l + acl (since

coeff(t, glpl) = HC(gJpl) <0 and coeff(t, g~arsj) = ac, > O).
Thus BS(gl Pl, . . ..giPi – glrsi, . . ..g~p. + gjars~, . . ..g. p,) < BS(glPl,...>

g$p,) + (acl – Ci) “ t and, since Ci = a “ cj + b, BS(glql, . . . , g,q, ) <

BS(glpl, ..., g,p,). This completes the proof of Proposition 6.5 by induction
on BS. ❑
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The proposition shows how to decide whether a given set of polynomials is a
weak Grobner base: Just calculate the finitely many S-polynomials and try to
reduce them to O. Once we have a weak Grobner base for 1, we can decide
ideal membership for 1: For a given polynomial ~, we apply reductions until we
reach an irreducible element g (this happens because the rewrite relation is
Noetherian). If f is in 1, g is also in 1, and thus has to reduce to O by the
definition of weak Grobner bases. Since g is irreducible, this means that g has
to be O. Thus, f G I iff g = O (where g is an arbitrary irreducible element
obtained by reducing f).

But a weak Grobner base can always be constructed, if a finite set of
generators of 1 (which always exists by Hilbert’s Basis Theorem) is given.

Fact 6.6. Buchberger>s algorithm. Let 1 be an ideal in 2![ Xl,. . . . X.], and
let F be a finite set of polynomials such that (F) = 1. As described above, we
can effectively test whether F is a weak Grobner base for 1. If F is not a weak
Grobner base, we can extend F by the a~-irreducibles of those S-polynomials
that do not reduce to O, and test again. This completion procedure always
terminates with a finite weak Grobner base for 1. The termination proof is
identical to the one given for example, by Kandri-Rody and Kapur [28] for the
termination of their Grobner base construction. Please note that this termina-
tion property is a consequence of Dickson’s Lemma [13], which holds for free
commutative monoids, but not for free monoids (see for example, [361).

Now we are ready to describe the method for solving linear equations over
Z[xl,..., Xn]. Let (*) flxl + . . . +f, x, = fO be an (inhomogeneous) linear
equation in Z[ X,, . . . . X.]. According to Section 3 we have to find one solution
for ( * ) and finitely many generators of the solutions of the homogeneous
equation (* *) flxl + . . . +f, x, = O.

First, we construct a weak Grobner base B = {gl, . . . . g~} for I :=

~f;lth entries m Z[X
,:.., ~}). Sinse (B) = ~, there exist an r x s-matrix P and an s x r matrix

], ...> X.] such that f“P =g and g.Q =f. These

matrices can easily be obtained as by-produ~ts of ~he weak Grob;er base
construction.

Obviously, ( * ) has a solution iff fO G 1. Hence, if(*) has a solution, then ~.
reduces to Owith respect to -~. By keeping track of how the polynomials of B
are used in this reduction process, we get polynomials pl, . . . . p, G
.ZIX1, ..., Xn] such that g. Ip = fO. But then P. Ip is a solution of(*).

Now we assume that wl already have finitely many generators /z(l),..., lz(~)
of the solutions of the equation ( + + ) glxl + . . . +g, x, = O. Then P.
Iz(l) ,..., P” Iz(~) are solutions of ( * *), but in general they do not generate all
solutions. Let E, be the r x r identity matrix and let It(l), . . . . It(r) be the
columns of the matrix PQ – E,. Since f. (PQ – E,) = f .PQ – f E, = g.

Q – f = C!,these columns are solutions of{* *).

LEMMA 6.7. The finitely many Z]ectors P . lz(l~, . . . . P . lz(~), It(l), . . . . It(r) are

solutions of ( * *), and they generate all solutions of this equation.

PROOF. Let Iq = (q,, ..., q,)T be an arbitra~ solution of ( * *). Then Q ./q
is a solution of ( + + ) and thus there are al, . . . . aL e Z![Xl, . . . . X.] such that

f2-lq=al”lz(l)+ .. . +a~lz(~). Now Iq =PQ. lq – (PQ –E, ).lq =al “(P.
Iz(l)) + ““” +aL “(P.IZIL)) + ql It(’) + . . . +qr. it(’). ❑
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Now we show how to solve the equation ( + + ) glxl + “”” +g,,x, = O, if
B={gI,..., g,} is a weak Grobner base. In fact, we already have defined the
finitely many generators of all solutions of ( + + ). In the paragraph preceding
Proposition 6.5, we have seen that an S-polynomial S(g,, g,) which reduces to
O yields a solution Iw,, ~ of ( + + ). Since B is a weak Grobner base, all
S-polynomials reduce to zero, and thus yield such a solution.

PROPOSITION 6.8. The finitely many tectors Iw,, generate all solutions of
(++).

PROOF. Let Ip = (PI,..., p,)T be a nontrivial solution of ( + + ), and let
t = max{HT(glpl), ..., HT( g,p,)}. We prove the lemma by induction on
BS(glpl, . . . , g,p,). Since g -1P = O, there exist i, j such that HT(g, pl) = t =
HT(g~p~), and HC(g, p,) aiid HC(g~p, ) have different sign. Thus, the assump-
tions of Case 2 in the proof of Proposition 6.5 are satisfied (where f[~ = O). In
that proof, we have shown that one gets a new solution [q from Ip by adding or
subtracting r” IWJ,J,and that this new solution is smaller with respect to the
complexity measure BS. Thus, the proposition is proved by induction. ❑

Now we have completely described a method to solve linear equations
in 2![X1, ..., X.]. In the remainder of this section, the method will be
demonstrated by two examples.

Example 6.9. As an example, consider the equation flxl + f2 X2 + f3x3 = fO

for f. = X3YZZ – X3Y3Z2 , f, =X3YZ -XZ2, f2 =XY2Z -XYZ and f, =

X2Y2 – z.

First, we have to calculate a weak Grobner base for the Ideal 1, generated by

fl> fz, and fs. Let < be the admissible ordering defined bY the matrix

[i

1 0 0 (that means: first order by total degree and, within

M<=lol a given degree, order lexicographically
110 with X< Y< Z).

With respect to this ordering, the Buchberger algorithm yields the weak
Grobner base B = {gl, gz, g3, g4, g5}, where gl = f2, gz = f3, g~ = XZYZ – Z*,
g4 = YZ2 – Z2 and g5 = X2Z z – Z3. By keeping track of how the g, are

generated in this process, we obtain the transformation matrix P such that
f oP = K and, by reduction of the f, with respect to ~., we get the matrix Q
iwch th=t g” Q = f. In our exampl~

[

00 0 0 0

P=1O–XXY –Zx – X3Y

o 1 z –Yz+z Z2 + X2YZ – X2Z

and

Q=

010
001
Xoo
000
000
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We now determine whether ~. = 1 = (B), that is, whether ~. reduces to O

with respect to ‘B: f,) *B ffl ‘g5”m=mz3 ‘x’y’z’ ‘B fO ‘g5”
xY+g, ”xY~z=xYz3-xY~z3+B f“ – g5”xY+g3”xY2z +g4”xYz
= XYZ3 – XYZ3 = o.

Thus, ft, = gl .o+g2”o +g3”(–xY2z)+g4 “(–XYz)+g5”xY=
(B) = 1, and we can use the transformation matrix P to obtain a solution of
the equation flxl + fzx~ + fjx~ = fo:

P. (0,0, –XY2Z, –XYz, XY)T = (o, –X2YZ – X4Y2, X3Y2Z – X’YZ)T.

The next step is to determine the solutions Iwl, of the equation g, xl +
. . . +g~x~ = O. S(g,, g2) =gl .X–g2. Z = –X2YZ + Z2 = –g3, and thus

gl”(–X) +gz” Z+g3”(–l)+g4 “O+g5” O=0. That means Iwl,l=
(–x, z, – 1,0, O)T.

We have S(gl, g3) = g, “X – g3 “Y=–x~Yz +Yz~=–g3–z~ +
YZ2 = –g, + g4, and thus we get lwl,~ = (–X, O,Y– 1, l, O)T.

Similar computations yield the other vectors Iw,,:

Iw,,, = (-Z, O,O,XY,O)T, IW,,5 = (-XY, O, -Z, YZ +Z, Y’)T,

IW2,3= (o, -Z, Y,l, O)T, Iw,,, = (o, -Z’, z, X’Y, O)T,

Iw,,, = (o, -Z’, O,YZ + Z, Y’)T, IW’3,,= (0,0, -Z, X2,1)T,

IW3,5 = (0,0, –Z, Z, Y)T, Iw,,, = (0,0,0, -X2 + Z, Y- l)T.
Now we use the transformation matrix P to obtain solutions of the homoge-

neous equation flxl + f2x2 + f3x3 = O:

P“IW,,2 = (O, O, O)T, P“IW1,3 = (O, O, O)T,

P“IW1,4 = (0, X2Y2 –z,

–XY2Z + XYZ)T, P. IW1,5 = (–XY)” P” IW,,4,

P“ IW2,3 = (O, O, O)T, P“IW2,4 =X” P” IW1,4,

P“IW2,5 = P“IW,,5

=(–XY)” P” IW,,4, P“ IW3,4 = (O, O, O)T,

P“IW3,5 = –P” IW2,4 P“IW4,5 = P“IW3,5

=(–x)”p”lw~, ~> = (–x) “P”lw1,4.

The solution P“ Iwl a = (O, X*Y2 – Z, –XY~Z + XYZ)T thus obtained does
not generate all solutions of f ~xl + f2 X2 + f3 X3 = O. In addition, we need the
columns of the matrix

H
–loo

P. Q–E3= –X200.

Xzoo

Thus, all solutions of the homogeneous equation fl xl + f2 Xz + f3 X3 = O
are generated by the two solutions (O, X2YZ – Z, –XYZZ + XYZ)T and
(–1, –X2, XZ)T.



Commutative Theories, Hilbert’s Basis Theorem, and Grobner Bases 493

Example 6.10. As a second example, we consider the equation Xxl +
Xiz = Xz + X2X3 of Section 4, but now we want to solve it in ZIXI. Hence, we
have to solve the homogeneous equation ~lxl + ~2X2 + ~~xj = O for ~1 =X,

f’? = X -1 and ~~ = -X2. It is easy to see that ({~1, f?, f,}) = ~[xl, and that
B = {gl} for gl = 1 is the corresponding weak Grobner base. The transforma-
tion matrices are P = (1, – 1, O)T and Q = (X, X – 1, –Xz).

Obviously, the equation gl xl = O has only the trivial solution xl = O. Thus,
the columns of

[

x–1 x–1 –X2
P. Q–E~= –X –X

)

X2 >

0 0 –1

that is, (X – 1, –X, O)T and (–Xz, Xz, – l)T, generate all solutions of Xxl +
Xxz = Xz + Xzx~ in (Z[X])3.

7. AGnH-Unification

It is easy to see that S(AGnH) is isomorphic to the ring Z{ Xl,..., X,t ), that is,
the polynomial ring over Z in the noncommuting indeterminates Xl, ..., X..
Unfortunately, for n >2, this ring is not Noetherian (see Mora [36]), and the
membership problem for finitely generated two-sided ideals is undecidable
(Kandri-Rody and Weispfenning [30]). Fortunately, we are not interested in
two-sided ideals, but only in right ideals. The solutions of a homogeneous
equation fl xl + “”” +fi x, = O are only closed under right multiplication, and
the inhomogeneous equation flxl + “”” +f x, = fO has a solution iff fO
is a member of the right ideal generated by f 1, ..., f,. Though, for 71z 2,
Z( Xl,..., X. ) is not even right Noetherian (i.e., there are right ideals
in Z( Xl, ..., X.) that are not finitely generated), the set of solutions of a
homogeneous equation flxl + “”” +frxr = O is a finitely generated right
Z(xl,..., X,, ) -semimodule, and the membership problem for finitely gener-
ated right ideals is decidable in Z{ Xl, ..., X.) (see Section 8 and 9). This
yields;

PROPOSITION 7.1. For any n >0, the theoy AGnH is unita~ with respect to

unification without constants, and it is also unita~ with respect to unification with

constants.

8. Weak Grobner Bases for Finitely Generated Right Ideals in Z( Xl,..., X.)

The construction of Grobner bases for finitely generated right ideals in
K(xl,..., X.), where K is a field, is very easy (Mora [36], see also Apel and
Lassner [1]). For Z( Xl,.. .,X. ), one has to be more careful.

The role of terms in the commutative case is now played by words over the
alphabet ~. ‘= {Xl, -.. , X,t}. Let W. be the set of these words, i.e., the free
monoid generated by ~~, and let 1 denote the empty word. For W., the
definition of admissible term orderings as given in 6.1 is not sufficient to
ensure termination of the algorithm (see 8.3). A total ordering < on W,l
is called (1) right compatible iff for all s, t, r = W., s < t implies sr < tr, and
it is called (2) bounded iff for all s = W. the set {tG W,l; t < s} is finite. The
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role of the admissible orderings in the commutative case is now played by
bounded, right compatible orderings.

LEMMA 8.1. Let < be a bounded, right compatible ordering on W..

(1) < is order-isomorphic to w, and thus Noetherian.

(2) 1< tforallt G ~1 \{l}.
(3) s = trfor r + 1 impliess > t.

Examples of bounded, right compatible orderings are graded lexicographical
orderings, and more general, all shuffle-compatible total orders (see Leeb and
Pirillo [33]). The complete characterization of all concatenation-compatible
(respectively, right concatenation-compatible) linear orderings is still an open
problem.

Definition 8.2. Let < be a bounded, right compatible ordering on W..

(1) As described in 6.1 for admissible orderings on T., one can also extend
bounded, right compatible orderings on W. to monomials and polynomials
in Z(Xl, . . .. X~).

(2) Let f be a polynomial. We write f = at + R(f) if t is the maximal (with
respect to < ) word in f (t = HW( f )) and a is the coefficient of t in f

(a = HC(f)).

(3) For a set F of polynomials in Z{ X,,..., X,,), the reduction relation ~~
is defined as in Section 6.2.

For K( X1,..., X. ), Mora [36] has described a very easy algorithm that
transforms a finite set F of polynomials into a “Grobner base” (see Mora [36]
for the definition of Grobner bases in this case).

Start with FO := F. As long as there are polynomials f, g in Fk, such that
HW( f ) is a prefix of HW(g), g can be reduced by f to a smaller polynomial
g‘. Define F~+ ~ ‘= (FL\ {g} u {g’} and continue with F~+ ~ in place of F~.

This process terminates after finitely many steps, and yields a finite set G of
polynomials that generates the same right ideal as F and has the following
property:

For two different elements f and g of G, HW(f), and HW(g) are not
comparable with respect to the prefix-ordering (i.e., for any word r, HW( f ) .

r # HW(g) and HW(g) “ r # HW(f )).
For Z(X1,. ... X.), we encounter the following problem: For f = a . t + R(f)

and g = b “t”r + R(g) with t,r G W., a,b 6 Z and Ial > Ibl, HW(f) is prefix
of HW(g ), but the head monomial of g cannot be reduced by f. If, in addition,
b divides a, it may become necessary to increase the actual set of polynomials

(see Case 4 below). Since Dickson’s Lemma does not hold for free monoids, we
have to be very careful, if we want to obtain a terminating algorithm.

Algorithm 8.3. This is the informal description of an algorithm which
transforms a finite set of polynomials {p ~,. . . . pn} G Z( Xl,. ... X.) into a
weak Grobner base that defines the same right ideal.

In the beginning, FO t= {pl,. . . . pm} and all pairs of indices are unmarked.
Assume that FL (k > O) is already defined. If there is the zero polynomial O

in F~, we erase it. As long as there are f Z=p, and g := p] in F~ such that
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(1) (i, j) is not marked and
(2)~=a” t+ R(~) andg=bt r+ R(g) forsome a, b~Zandt, r= W., we

do the following:

Case 1. r = 1.

Without loss of generality, we may assume that Ial > Ibl. Let a = bc + d for
some c, d such that O s d < Ibl s Ial.

Define ~l:=~–g .c=d. t+ R(~) –R(g). c and F~+l’=(F~\{~})U

{~j }. We do not have to mark (i, j) since ~ = p, is removed.
Obviously, ~1 < ~ and f = fl + g” c. Hence, F~+ * generates the same right

ideal as Fk, but f is replaced by the smaller polynomial fl.

Case 2. r # 1 and Ial s Ibl,

Let b = ac + d for some c,d such that O < d < Ial < Ibl. Define gl f= g –
f.cr = d“tr + R(g) – R(f) *CY and F~+l = (FA\{g}) U {gl}.

Obviously, g, < g and g = gl + f ocr. Hence, F~+ ~ generates the same right
ideal as Fk, but g is replaced by the smaller polynomial g,.

Case 3. r # 1, Ial > Ibl and Ibl does not divide Ial,

Let a = bc + d for some c, d such that O < d < Ibl < Ial. We define gl ‘=
f” r - g. c = d otr + R(f). r - R(g) “ c. Since the words occurring in R(f).
r and R(g) oc are smaller than tr, we have HW(gl) = tr, HC(gl) = d

and R(gl) = R(f) or – R(g) . c. Obviously, gl < g, g, ● (F~) and the pair
gl, g satisfies Case 1. Hence, we define gz := g – gl oc1 (where b = dcl +
dl, O s dl < d) and F~+l := (F~ \ {g}) U {gl, gz}. Since gl, gz < g and g =
gz + gl oc, Fk+ ~ generates the same right ideal as FL, but g is replaced by the
two smaller polynomials gl and gz.

Case 4. r # 1, Ial > Ibl and Ibl divides Ial, that is, there exists c such that
a = be.

Define gl := f r – g“c = R(f) “r – R(g) “c. Nowgl <g, but since IcI + 1,
g cannot be represented using gl and f. Thus, the problem is that we should
like to add gl, but we are not allowed to remove the larger polynomial g since
this would possibly change the generated right ideal. We distinguish the
following cases:

Case 4.1. There is h ● U ,~~ F, with the property HW(gl) = HW(h).

We choose h such that lHC(h)l is minimal,

Case 4.1.1. h E Fk and lHC(gl)l < lHC(h)l.

We have gl < h and h may be reduced by gl to some hl < h (see Case 1).
Define F~h ~ := (F~ \ {h}) u {gl, hl} and mark (i, j). FL+ ~ generates the same
right ideal as F~, but h is replaced by the two smaller polynomials gl and hl.

Case 4.1.2. h e F~ and lHC(gl )1 > lHC(h)I.

Then gl may be reduced by h to a smaller polynomial gz (see Case 1). If
gz = O, F~ + ~ ‘= F~ and we mark (i, j). Otherwise we continue with gz in place
of g,.
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Case 4.1.3. h @ FL.

That means that h = F, for some i < k, but h has been removed in some
iteration of the algorithm between step i and step k.

First, assume that lHC(gl)l > lHC(h)l. Then, the head monomial HC

(gl )HW(gl ) of g, can be reduced by h, and thus is ~~t-reducible. We want to
show that HC(gl )HW(gl ) can also be reduced by ~~~.

To that purpose, assume that the monomial a . r is reducible by some
polynomial p = b .s + R(p) = ~, that is, r = SS’ for some words s’ and
/al > Ibl. If p is in ~+ ~, then a . r is also reducible with respect to -~,+,.

Assume that p @ ~, ~. By considering the cases where a polynomial is removed,
one finds that ~+, contains a polynomial q = c “ t + R(q) that reduces the
head monomial of p, that is, s = tt’ for some word t‘ and Ibl > Ic 1.But then
r = m’ = t(t’s’) and Ial > Ibl > [cl yield that q reduces a r.

Thus, if HC(gl )HW(gl ) can be reduced with respect to -~1, it can also be
reduced with respect to ~~1,,, . . . . ~~ .

To sum up, we know that for lHC(gl j > lHC(h )1,gl can be reduced by ~~,.
Thus, we can proceed as in Case 4.1.2.

Otherwise, that is, if lHC(gl )1 < lHC(h)l, we define F~+ ~ ‘= F~ U {gl} and
mark (i, j).

Case 4.2. There is no h e U , ~ ~ ~ with the property HW(gl ) = HW(h ).

In this case, we also define F~+, := F~ U {gl} and mark (i, j).

This completes the description of Algorithm 8.3. We shall soon show that
this algorithm always terminates with a finite set of polynomials G whose
properties justify the name weak Grobner base. But first, we consider an
example.

Example 8.4. Let fl = 2abc – bc, fz = 3ab – 2b, f~ = 5abd – bc and
f, = bc – 5bd be polynomials in Z{ a, b, c, d). We take the graded lexicograph-
ical ordering with a > b > c > d as bounded, right compatible ordering (i.e.,
u < u iff Iul < [vI or Iul = Ivl and u <l,X v), and run Algorithm 8.3 with input

Fo := {fl>fz,fs>fd}.

(1) For fl and f,, we have Case 3.
Define f5 := f2 “ c – fl = abc – bc and f6 := fl – f5 “ 2 = bc. Now f, is

replaced by f5, f6, which yields FI = { fz, ft, fb, f~, fb}. We have f ~ = f5 “
2 +f6.

(2) For f, and f,, we have Case 2.
Define f~ := f~ – f2 “ d = 2 abd – bc + 2bd and replace f~ by f7, which
yields F2 = {f2, fJ, f5, f6, f7}. We have f~ = f7 + f2 . d.

(3) For f2 and f~, we have Case 4.
Define fg = f2 . c – f5 .3 = bc = fb. Hence, we have Case 4.1.2, and since

f, reduces f~ to O, F, = F, = {f2, f4, f,, f,, f,}, and the index pair (2,5) is
marked.

(4) For f2 and f,, we have Case 3.
De fine fg:=fz. d–fT=abd –4bd+bc and f10=f7–f, .2= –3bc+

10bd. Now f7 is replaced by f9 and flO, which yields Fb = { f2, fJ, f~,

f6, fgj flo}. We have f7 = f10 + fg” ~.
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(5) For f2 and ~g, we have Case 4.
Define ~11 := ~z “ d – fg “ 3 = –3bc + 10bd. Now HW(~ll) = HW(~q) and
~, reduces ~11 to the polynomial ~1, = ~,, + f, “ 3 = - 5bd (Case 4.1.2).
We continue with f12 in place of fll, and have Case 4.2 since bd has not
yet occurred as head word. Hence, F~ := FJ U {f12} and (2,5) and (2,9) are
already marked.

(6) For f4 and f6, we have Case 1.
Define fl~ ;= f4 – f6 = flz and F6 ‘= F5 \ {fd} = {fz, fs, f6> fg, fit], fu}.

(7) For fb and flO, we have Case 1.
Define f14 := f10 + f6 “ 3 = 10bd and Fv ‘= {fz, fs, ffj, fg, fn, fl~}.

(8) For f,2 and flq, we have Case 1.
Since fl~ = f12 “ ( – 2), fll can be eliminated and we get Fa = {f?, f5, f(j,

fg, f~z}, where (2,5) and (2,9) are marked.

Hence, Algorithm 8.3 terminates with G := F8 = { f2, f5, f6, f9, f12}. The ele-
ments of G are gl := f2 = 3ab – 2b, g2 Z= f5 = abc – be, gj Z= f~ = bc, gb ;=

fg = abd – 4bd + bc, and gz ‘= fl~ = –5bd.

LEMMA 8.5. For any finite input set FO = {fl,..., fn,} of pohnomiak,

Algotithm 8.3 always terminates.

PROOF. We consider the F~’s as multisets of polynomials which are ordered
by the multiset ordering << induced by the ordering < on polynomials (see
Definition 8.2). Since < is well-founded, the multiset extension << is also
well-founded.

For the Cases 1, 2, 3, and 4.1.1, F~ >> F~+ ~. Case 4.1.2 and the corresponding
subcase of 4.1.3 cannot occur infinitely often in successive steps because then
g1>g2>g3> “”” would be an infinite descending < -chain. That means that
after finitely many steps g, = O or Case 4.1.1, the other subcase of 4.1.3 or
Case 4.2 occur.

For the Cases 4.1.3 and 4.2, F~ + ~ is larger than F~. But these cases can
only occur finitely often during the whole run of the algorithm. First note
that all words t occurring in some polynomial of some F~ satisfy t s max

{HW(fl), . . . . HW( f.,)}. Since < is bounded, there are only finitely many
words with this property. Hence, Case 4.2 can only occur finitely often. Case
4.1.3—where a head word which has disappeared in some former step appears
again—can only occur finitely often for a certain word because the absolute
value of the head coefficient gets smaller each time. ❑

Before we can state the next lemma, we have to introduce a new notation (or
rather an abuse of the usual notation). Let F be a finite set of polynomials.
The expression

f= ~hl. al,
h,e F

should be interpreted as follows: the al are monomials in Z( Xl, ..., X,,), f is a
finite sum of the polynomials h, . a,, but an element of F may occur more than

once in this sum, and each occurrence may have a different coefficient a~.

LEMMA 8.6. Let t ● W. be a word, and F~ be the set of polynomials obtained

afler some iterations of Algorithm 8.3. Assume that h is a polynomial, and

that h = Z{,, ● ~, h, “ al for monomials a, with HW(hl “ al) < t. Then h =
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xh! ● F,,, h; -b, for monomials b, with HW(h’, “ b,) < t.

PROOF. For the Cases 4.1.3 and 4.2, we have F~ c F~+ ~, and thus we can
use the given sum. In Case 1, F~+ ~ := (F~\{f}) U {fl} and f =fl +g-c. In
addition, we have g @ F~+ ~ and HW( g) = HW( f ) > HW( fl ). Thus a term
f“a, in the sum h = zll,=~,h,. a, can be replaced by fl “ aj + g . caj. The

other cases can be treated similarly. ❑

The next lemma will play a role that is similar to the one played by Lemma
6.4 in the commutative case.

LEMMA 8.7. Let G be the output of Algorithm 8.3 (i. e., the actual set F~ when

the algorithm terminates) and let f = a “ t + R(f) and g = b “ tr + R(g) be

elements of G. Then the following holds:

(1) a= bcforsome c~Z’, lcl+landr #l.

(2) The S-polynomial gl = f. r – g” c = R(f) - r – R(g) . c can be obtained as
a finite sum

where the a, are monomials in Z< Xl,..., X.) and HW(hl “ al) < HW(gl) <

HW(g) = HW(f. r).

PROOF. Since Algorithm 8.3 has terminated, the index pair corresponding
to f and g is marked. Thus, for some k, f and g are in F~ and they are
selected by the algorithm.

(1) Property (1) of the lemma is satisfied, since, only in Case 4, both f and g
remain in F~ +,.

(2) ln Case 4 we have gl ‘= f ~r – g” c = R(f) “ r – R(g) ~c, and thus
HW(gl) < HW(g) = HW(f. r) = tr. There is some g, such that gl ~~, g,
(see Case 4.1.2 and the first subcase of 4.1.3) and g, ● F~+, or g, = O.
Hence, HW(gl) < HW(gl ) and g, = g, + Z~t. ~, h, . a, for monomials a,

with HW(h I . at) s HW(gl). Lemma 8.6 yields gl = g, + ZJ,; ~ ~k+l h; . bl

for monomials b, with HW(h~ . b,) s HW(g, ), and since g, G F~, * or
g, = o we have g, = ~AEF,+, hj . c1 for monomials c, with HW(h’~ . c,) <

HW(gl). By Lemma 8.6, gl can be represented by such a sum for all ~,,
with m z k + 1. Thus, we have proved the lemma. ❑

Let FcZ(XI,... , X,, ) be a set of polynomials. In the following, (F)
denotes the right ideal generated by F.

LEMMA 8.8. Let G be the output of Algorithm 8.3 if started with input FO.

Then (G) = {F,)).

PROOF. It has already been pointed out during the description of the
algorithm that in any case ( F~ ) = (FL+,). ❑

This lemma and the next proposition shows that it is reasonable to call the
result of Algorithm 8.3 a weak Grobner base.

PROPOSITION 8.9. Let G be the output of Algorithm 8.3. The~~ atly f = (G)

can be reduced to O with respect to -~.

PROOF. The proof is similar to the proof of Lemma 2.4 in Mora [36], and
the proof of Proposition 6.5 above. Obviously, f ● (G) means f = ~~1~ ~ g, . a,
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for some monomials al. If ~ = O, then there is nothing to prove. Otherwise, let

t := max{ ..” HW(g, “a.,) ““. } and 1:= {i; HW(gl “a,) = t}.

Case 1. Ill = 1. Then HW(f’) = t and (for 1 = {j} and a, = c, “rJ (cJ = Z,

r, E W,,)) HW(~) = t = HW(g, ) . r] and HC(~) = HC(gl) . cl. Hence, ~ can be

reduced by g] to the smaller polynomial ~1 := ~ – g] . a, G (G). By induction

we get ~1 ~~ O and thus f ~G f, <G O.

Case 2. III > 1. Let i, j be two different elements of 1, and let a, = c, “ r,,

a, = Cj orj (c,, Cj G Z, r,, r, E W,l). Since HW(gl) . r, = t = HW(g, ) “ r,, either

HW(g, ) is a prefix of HW( gJ) or vice versa. Without loss of generality we
assume HW(g, ) = HW(gj ) “ r for some r G ~z. By Lemma 8.7, HC(g, ) =

HC(g, ) “ c for some c E Z, and gj “ r – g, . c = XjzkG~ hk “ bk where HW(/z~ “

bk) < HW(g, ) = HW(gl “ r). Hence, gj . r, – gi “ ric = (gj . r – g, “ c) “ r, =

x ,,LEG hk “ (bkr,), where HW(h~ “ (bkrl)) < HW(g,) “ r, = t.

Now,

f=(gJ”r, -glrlc)” cl+g,”(cl+cc,)rz+ ~ gu”a,,
1,+ 1,]

yields a representation of f as a sum where 111is smaller. ❑

COROLLARY 8.10. The rnembershipproblern for finitely generated right ideals in

Z(xl,..., X,, ) is decidable.

PROOF. Let 1 = ({pi, . . . ,P,n }) be a finitely generated right ideal in

Z(xl,..., Xn). We apply Algorithm 8.3 to F. = {pl,..., p.,}, and get a set G

of polynomials. Now f G I iff f can be reduced to O with respect to +~. If f is
-G-irreducible, then f G I iff f = (). Otherwise, we can effectively find some g

such that f eG g and f G I iff g ● 1. Thus, Corollary 8.10 is proved by

induction. ❑

9. Soil’ing Linear Equations in Z( X1,..., X.)

In the previous section, we have shown how to compute weak Grobner bases

for finitely generated right ideals in Z( Xl,..., X. ). In this section, these

bases are used to solve linear equations in Z?( Xl,..., X,,). The method is very

similar to the one described in Section 6.

Let (*) flxl + ““” +f,. x,. = f,, be an (inhomogeneous) linear equation in
Z( Xl,..., X,l ). We have to find one solution for ( * ) and finitely many

generators of the solutions of the homogeneous equation ( * * ) f ~xl + o.” +

ffl,xm = o.

Let G = {g, ,. ... g,,}. be the output of Algorithm 8.3 when started with input

L?t’;l&’m ;( X
. .fi.} There exist an m X s-matrix P and an s x m-matrix Q with

. . . . X,, ) such that f oP = g and g . Q = f. These matrices can

be obtained as ‘by-products of Algorithm 83. -

Obviously, ( * ) has a solution iff f~ G ({ f,,..., f~}) = (G). Hence, if (*)

has a solution, Proposition 8.9 implies that f(~ reduces to O with respect
to +~. By keeping track of how the polynomials of B are used in this reduc-
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tion process, we get pl, . . . ,p, E ZIX1, ..., X,, ] such that g. Ip =fO. But then

P. Ip is a solution of(*).
—

We now assume that we already have finitely many generators IZ(l), . . . . Iz(~)

of the set of solutions of the equation

(++)glxl + ““” +g, x, = 0,

As in Section 6, one can show

LEMMA 9.1. The Llectors P. lz~l) ,. ... P. ~ZCL~ and the columns of the matrix

PQ – Em are solutions of ( * *), and they generate all solutions of this equation.

We now show how to compute the finitely many generators of the solutions

of ( + + ). If there do not exist i, j (i + j) such that HW(gI) = HW(gJ) . r for

some r = W., the equation ( + + ) has no nontrivial solutions. Otherwise, let

i, j (i #j) be indices such that HW(g, ) = HW(gJ) “ r for some r = W,l.
By Lemma 8.7, HC(g, ) = HC(gl) . c for some c e Z, r # 1, and gJ . r – g, .

c = ~j:~ g~ “ h~ for polynomials hk G Z< Xl,..., X,l) with HW(g~ “ h~) <

HW(g[). Obviously, h, has to be O. If we define q~ := /z~ for k # i, j, q, := h, +

c = c, and q, := h, – r, then Iq,j := (ql, ..., q,,)T is a solution of (++ ).

LEMMA 9.2. The jinitely many uectors IqlJ generate all solutions of ( + + ).

PROOF. Let Ip = (pl,... ,p,,)T be a nontrivial solution of (++ ). The

complexity of such a solution is given by (t, a) where t ‘= max{HW(g, p, );

1 s i <s} and a := I{i; 1< i < s and HW(g,p,) = t}l.

Since g” Ip = O and Ip is not trivial, a has to be greater than 1. Hence

there exit i, j (i #j) such that HW(g, )HW(p, ) = t = HW(g, )HW(pJ). With-

out loss of generality, we assume that HW( g,) is a prefix of HW(g, ). Thus,

HW(g,) = HW(g, ) . r and HC(gJ) = HC(gi) oc for some r ● W. and c E Z,

and HW(p, ) = r” HW(pI). Let c1 := HC(p,) and Cj ‘= HC(pJ).

The vector Iq,, that was defined above is a solution of ( + + ). We define a

new solution (p\, ..., pj)T = 1P’ ‘= 1P + Iqll “ Cj HW(p, ), and show that it has
smaller complexity than Ip. To that purpose, we have to consider the words

Hw(gkpj) for all k, 1 s k s s.

Case 1. k # i, j. We have g~p~ = g~p~ + g~h~cl HW(p,) and HW

(gk “ h~) < HW(gI). This implies that HW(g~h~cl HW(p, )) < HW(g, )

HW(p,) = t.Thus, HW(g~p;) = t iff HW(g~p~) = t.

Case 2. k = i. We have g, p: = glp, -t- g, CCJHW(pl ). Hence, HW( g,p~] = t

if c, + ccl # O, and HW(glpJ) < t if c, + cc, = O.

Case 3. k = j.

= HC(g, )cJt + R(g,p, ) + gJh, cJ HW(P, )

– HC(g, )cJ HW(g, )rHW(pl) – R(g, )~c, Hw(p, )

= R(glp,) + glhlcl HW(p, ) – R(gJ)rc, HW( p,)

since rHW(pl ) = HW(g, ).

This shows that HW( g, p; ) < t.
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Thus, we have seen that the complexity of the solution ]p‘ is smaller than

the complexity of Ip, and the lemma is proved by induction. ❑

Example 9.3. As an example, we consider the homogeneous linear equation

f,x, + .“” +f4x4 = O in Z(a, b, c, d) for the polynomials fl = 2abc – bc, fz =

3ab – 2b, fj = 5abd – bc and f4 = bc – 5bd of Example 8.4.

We have seen that Algorithm 8.3 terminates with G = {gl, gz, g~, g4, g5}

where gl = 3ab – 2b, gz = abc – bc, g~ = bc, g~ = abd – 4bd + bc,

and g~ = – 5bd. The transformation matrices P, Q such that f. P = g and

~“Q=f are

Q=

‘Oldo

2000

10 –3 1

0020

,0 0 –2 1

and

/0 -1 3 0 0
\

2d – 5d

–1 3 “

o 3 /

All solutions of the equation gl xl + “”” +g~ X5 = O are generated by Iql, ~

and lql,4:

(1) gl “c – gz “ 3 =g~, and thus Iql,z = (–c,3,1,0,0)T.

(2)g1. d–g4”3=f11 = flz–f4”3 = flz–(f6+ f1z)”3=f1z”(–2)
+f6(–3) =g5 “(–2) +g~(– 3), and thus lql,4 = (–d, O, –3,3, –2)T.

The matrix PQ – EJ is

‘o o –9 3

0 0 6c+15d –2c–5d

00–9

)

3“

,0 0 –6 2

This yields the new solution (3, – 2C – 5d, 3, 2)T and since Iql, i = (3, – 2C –

5d, 3, 2)T “ ( – 3), the solution (3, – 2C – 5d, 3, 2)T generates all solutions of

fix, + ““” +f4x4 = O in Z(a., b,c, d).

10. Conclusion

The categorical reformulation of E-unification allows to characterize the class

of commutative theories by properties of the category C(E) of finitely gener-

ated E-free objects: C(E) has to be a semiadditive catego~. The definition of

semiadditive categories provides an algebraic structure on the morphism sets

that can be used to obtain algebraic characterizations of the unification types.

This shows the connection between unification in commutative theories and

equation solving in linear algebra. The very common syntactical approach

to equational unification, which only uses the defining axioms, is thus replaced

by a more semantic approach, which works with algebraic properties of the

defined algebras.
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Hence, unification algorithms for the commutative theory AGnHC, that is,

the theory of Abelian groups with ?Z commuting homomorphisms, can be

derived by applying well-known algebraic methods (e.g., Grobner Base algo-

rithms) to solve linear equations in ,Z[ Xl, . . . . X,l ]. In order to obtain a

unification algorithm for the theory AGnH of Abelian groups with n noncom-

muting homomorphisms, we have developed a Grobner base algorithm for the

ring .Z(Xl, ..., X,l ) of polynomials over Z in n noncommuting indeterminates.

Since Dickson’s Lemma (Dickson [13]), which is used for 2?[Xl,..., X,, ]

to prove termination of the Grobner Base algorithm, does not hold for

Z(xl,..., X.), we had to be very careful to obtain a terminating algorithm. As

in the commutative case, the performance of the algorithm depends on the

choice of the ordering. Hence, it would be very interesting to have a complete

characterization of all bounded, right compatible orderings for W..
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