
Proof of the 4/3 Conjecture for Preemptive vs.

Nonpreemptive Two-Processor Scheduling

E. G. COFFMAN, JR. AND M. R. GAREY

AT& T Bell Laboratorws, Murray Hill, New Jersey

Abstract. We consider the classical scheduling problem in which a given collection of tasks with
lengths tl. t2,...,t,,are to be run on two processors, subject to specified precedence constraints
among the tasks, so as to minimize the completion time of the last-finishing task, the so-called
makespan of the schedule. A schedule is said to be nonpreemptive if each task, once started,
is run continuously until its completion t,time units later, whereas a preemptive schedule allows
the running of a task to be temporarily suspended and resumed at a later time, that is, run in
noncontiguous pieces whose lengths merely sum to the task length t,.A long-standing conjecture
is that, for any set of tasks and precedence constraints among them, the least makcspan
achievable by a nonpreemptive schedule is no more than 4/3 the least makespan achievable when
preemptions are allowed. In this paper, we prove this conjecture.

Categories and Subject Descriptors: D.4. 1 [Operating Systems]: Process Management—
scheduling: F.2.2. [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms
and problems—sequencing and schedahng; G.2. 1 [Discrete Mathematics]: Combinatorics—
combinatorial algorithms

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Makespan scheduling, preemptive scheduling

1. Introduction

An instance of the two-processor scheduling problem consists of a directed

acyclic graph, commonly called a precedence graph, and a set of positive

running times, one for each task (vertex) in the graph. An edge from task A to

task B in the graph means that task B cannot start until task A is finished.

Either of two scheduling disciplines can be assumed: preemptive or nonpre-

emptive. In the former, a task can be interrupted, set aside, and then resumed

later. There is no limit to the number of such preemptions. In the latter, a task,

once started, must be run to completion without interruption. Given the

discipline, the problem is to find a schedule on the two processors which

minimizes the makespan, that is, the completion time of a latest finishing task.

An analysis of the complexity of these problems, along with several of their

variants and special cases, can be found in [1] and [5]. In addition to standard

Authors’ address: AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974-2070.

Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the pubhcation and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise. or to republish, requires a fee and/or
specific permission.
@ 1993 ACM 0004-5411/93/ 1100-0991$03.50

Journal of th~ Assocmtm. for Computing Mdchmery, vol. W NO 5. November 1993. PP ~yl- l~lx

http://crossmark.crossref.org/dialog/?doi=10.1145%2F174147.174148&domain=pdf&date_stamp=1993-11-01

992 E. G. COFFMAN, JR. AND M. R. GAREY

complexity issues, the following fundamental question has been posed: Com-

pared to optimal nonpreemptive scheduling, how much more efficient can

optimal preemptive scheduling be? More

a least upper bound on co~P(l)/oP(l).

preemptive and optimal nonpreemptive

proves the following 4/3 bound.

THEOREM 1. For all instances I,

ONP(I)

(iJP(I)

precisely, over all instances 1, what is

where o ~ and W~P denote optimal

makespans, respectively? This paper

4
<—.

3

In addition, there are instances achieuing the bound.

The problem of proving Theorem 1 has remained open for two decades; the

4/3 bound originated as a conjecture based on a paper by Liu [4]. However,

although a proof of the 4/3 bound seems difficult, a very simple example has

been known to achieve the 4/3 ratio. It consists of 3 equal-length, mutually

independent tasks, and is illustrated in the timing diagrams of Figure 1. This

example can be extended to one having an arbitrarily large number of tasks by

replicating this example many times, with a partial order that requires each

triplet to be completed before the next triplet can be started.

We list below various special cases for which the 4/3 bound has been

proved. (A general discussion can be found in a recent paper by Hong and

Leung [3].)

(1)

(2)

(3)
(4)

The sum of the task running times in any longest chain of the precedence

graph is at most one-third the sum of all task running times [3].

All task running times are in the set {1, k} for some integer k >1 [2].

All task running times are in the set {1,2,3,4} [3].

The precedence graph has a longest chain c such that for every task T not

in c, either T is preceded by no task in c, or T is succeeded by no task in c

[3]. (Note that tree-structured precedence graphs are included in this
special case.)

The proof below of Theorem 1 makes no use of these special cases. Indeed,

we do not see how these special cases can help streamline the proof of

Theorem 1.

2. Proof of Theorem 1

We begin with notational matters and some simple observations. The argu-

ments in the proof make frequent reference to timing diagrams such as those

in Figure 1. In these figures, the processors are called simply the upper and

lowerprocessor. Tasks are denoted by letters near the beginning of the alphabet

and sets of tasks are denoted by letters near the end of the alphabet. A task’s

name also denotes its length, or running time.

A segment of a schedule S refers to that part of S restricted to a given time

interval [t,t‘],with O s t < t‘s OJ(S),where o(S) denotes the makespan of S.

In an elementau segment, each processor either runs a piece of only a single

Preernptil)e us. Nonpreernpti[’e Two-Processor Scheduling 993

1 2

A c

B

(!.)N~

(a)

1 312

A B /
/

B c //////////

(b)

FIG. 1. An instance with unit-length tasks achieving OJ~P/OP= 4/3. (a) Nonpreemptive sched-
ule. (b) Preemptive schedule.

task, or is idle, for the duration of the segment. Processor assignments do not

change during an elementary segment; and if both processors are busy during

such a segment, they are running different tasks. For example, in Figure l(b)

two vertical lines defining an elementary segment must both be in [0, +1,[~, 11,
or [1, ~]. For a given instance, a preemptive schedule can then be defined as a

finite sequence of elementary segments over consecutive time intervals begin-

ning at time O such that (i) the constraints of the precedence graph are

respected, and (ii) each task receives a total time precisely equal to its running

time. Without loss of generality, we may restrict attention to schedules in

which one processor or the other is busy throughout the duration of the

schedule.

It is useful to note that interchanging the processor assignments over any

segment of a preemptive schedule leaves a valid preemptive schedule. We use

this fact repeatedly. Consistent with this property, no preemption is considered

to occur when the running of a task is switched instantaneously from one

processor to another. It is easy to see that all such preemptions can be

eliminated without creating other preemptions or lengthening the schedule.

We also have occasion to exploit symmetries such as the following: Let 1’

denote the instance Z with the direction of the edges in its precedence graph
reversed. Then the reverse of any schedule for 1 gives a schedule for 1’ having

the same makespan.

We now turn to a proof of Theorem 1. We show by induction on the number

of tasks that an optimal preemptive schedule can be transformed into a

nonpreemptive schedule at most 4/3 as long. The proof technique consists of

a sequence of increasingly difficult reductions of the class of preemptive

schedules that needs to be considered. As we go along, various easy cases will
be identified; these are disposed of by techniques that combine the inductive

hypothesis with a constructive argument. The proof is organized into a sequence

of ten steps that are numbered for convenient later reference. The more

difficult cases are those in Steps (8)–(10). The first step starts with two simple

994 E. G. COFFMAN, JR. AND M. R. GAREY

observations and a fundamental reduction. It concludes by eliminating a class

of easy cases.

(1) Let S be an optimal preemptive schedule for instance 1.

PROPOSITION l(a). If I l!iolotes the theorem, then S may be assumed to hale

no idle time, that is, both processors are busy throughout [0, d S)].

PROOF. Suppose that S has x >0 time units of idle time in [O, oXS)I. Add a

task ,4 to 1, which is independent of all other tasks in 1 and has length x.

Scheduling A during the idle periods of S yields a valid preemptive schedule

that has no idle time and that still violates the bound. ❑

PROPOSITION l(b). Suppose S nms a piece of a single task A on one of the

processors olwr some time interlal [t, t ‘]. Then we may assume that each task

running OH the other processor during [t, t‘] runs in a single piece. Also, }ve cun

assume that those tasks other than A that finish in [t, t‘] are scheduled first, before

atzy tasks in that segment that finish after t‘.

PROOF. Tasks that finish in [t,t‘]must either precede or be independent

of any task in [t, t‘]that finishes later than t‘.Thus, a simple interchange

argument suffices to prove the result. ❑

PROPOSITION l(c). We may assume that S begins by rumling an earliest

finishing task notlpreemptilely.

PROOF. Let A be a task finishing first at time t,on the upper processor say,

and suppose that it is scheduled in the two or more pieces shown in Figure

2(a). Consider the successive exchanges of schedule segments shown, by which

the first two pieces of A are moved left so that they run nonpreemptively

starting at time O. By the definition of A, no task starting in [0, t) can

finish there, so A and all tasks in X u Y are mutually independent. Thus, the

exchanges in Figure 2 do not violate precedence constraints, and A remains an

earliest finishing task. Extending the exchanges in Figure 2 to all pieces of A

then yields the desired result. ❑

Note that by symmet~, we also have:

PROPOSITION 1(c’). S can be transformed into a sclzedule that is at most as

long, and that j%zishes by running nonpreenzptilely a latest starting task on one of

the processors.

Note that we do not claim that S can be transformed so that the properties

in Propositions 1(c) and 1(c’) hold simultaneously.

Assume hereafter that we have an optimal preemptive schedule S with the

properties in Propositions l(a), l(b), and l(c). We prove by induction on
the number n of tasks, that S can be transformed into a nonpreemptive

schedule S* that (i) is at most 4/3 as long as S and (ii) runs the earliest

finishing task of S at the beginning of the schedule; if S has two earli-

est finishing tasks, then S* can be made to start with either one (but not

necessarily both). It is trivial to prove this result for n s 2, so n > 3 is assumed

hereafter. Thus, suppose the inductive hypothesis holds for 1,2,..., iz – 1

tasks, and consider the case of n tasks, tz >3.

We note that, by symmetry, the desired result holds if and only if for any S

there exists a nonpreemptive schedule S* at most 4/3 as long, which ends in a

latest starting task of S (either can be chosen if there are two such tasks). This

Preenzptillevs. Nonpreentptil~e Two-Processor Scheduling 995

A z~
(a) x Y . . .

z, A

\ /

(b)

(c)

t

A z?
x Y . . .

z, A

\
v

/

t
!
I
I

FIG.2. Property in Proposition l(c).

fact will be used several times when applying the inductive hypothesis; it will be

called the dual inductive hypothesis. We continue to use the star superscript to

denote nonpreemptive schedules.

As the first application of the method, we prove:

PROPOSITION l(d). The inductive step holds if S begins by running two tasks

nonpreenzptilely.

PROOF. Let S start as shown in Figure 3, where B as well as A runs

nonpreemptively. By Proposition l(b), Figure 3 is organized as shown, where

OK is a possibly empty, nonpreemptive sequence of whole tasks, and where no

task in X finishes before the end of B = BI U Bz. (Hereafter, OK, OK’, etc.

will be used generically to represent nonpreemptive sequences of whole tasks.)

We may assume n >4, for otherwise S must be nonpreemptive.

Now split the schedule at the arrow into the segments S~ and S~ shown. By

definition of OK and X, the piece Bz looked upon as a whole task is a first

finishing task in S~ (or has length O, in the degenerate case). Clearly, S~

has at least one fewer task than S, so by the inductive hypothesis there

exists a nonpreemptive schedule S: corresponding to S~ such that o(S;) <

(4/3) o(S~) and such that, if B1 >0, S: starts with Bz. Now putting S:
adjacent to and just after S~ yields a nonpreemptive schedule S* for 1 such

that

(f)(S*) @(sL) + (4/3) LJsR) 4
—< —<—,
0(s) (lJ(sL) + @(sR) 3

and such that S* starts with A. ❑

(2) By Propositions l(c) and l(d), we may confine ourselves hereafter to

optimal preemptive schedules that begin by running nonpreemptively, a unique

earliest finishing task. Throughout the remainder of the proof, we continue

996 E. G. COFFMAN, JR. AND M. R. GAREY

FI~. 3. Schedule 5’ starting with two whole tasks A and B

to call this task A and assume for convenience that it runs on the upper

processor. Also, B will always refer to an earliest finishing task independent of

A. Such a task clearly exists, since at least one task must run while A is

running (by Proposition l(a)) and all such tasks are independent of A.

In the remainder of this step, we further reduce the class of schedules that

need to be considered.

PROPOSITION 2. An optinwlpreemptilw schedule for I can bc ussurned to hal’e

the form of either Figure 4(a), where A is cot wed by a piece of B and ut least one

piece of B is run beyond A, or Figure 4(b), }vherc both A atld C are run

tlotzprc~el?zptilelv and B is preempted exact~ once,

PROOF. We first suppose that no optimal preemptive schedule for 1 has the

form in Figure 4(a), and then show by a sequence of interchange arguments

that an optimal preemptive schedule can then be transformed into a schedule

of the form in Figure 4(b’).

If S is an optimal preemptive schedule for 1 not in the form of Figure 4(a),

then there must be a task C, other than B, that runs while A is running in S.

Assume without loss of generality, that C is an earliest-starting such task, and

that if a piece of B also runs while A is running, then it runs before the piece

of C. Then S has the form shown in Figure 5, where the piece of B under

A may not exist, X may be empty, and at least one piece of B runs beyond A.

For the time being, it is convenient to assume that the pieces of B are run on

the lower processor.

The first interchange argument shows that the schedule in Figure 5 can be

further refined so as to have the form in Figure 6, where all pieces of B

beyond A are covered by pieces of C. To see this, suppose 5’ has instead the

form in Figure 7(a), where some new task D runs in an elementa~ segment of

length e >0 along with B. Then for ● sufficiently small the exchange produc-

ing Figure 7(b) can be made, thus increasing the amount of B under ,4 and
decreasing the amount of C under A. (The pieces exchanged are called

●-pieces of B and C.) Since B is an earliest finishing task independent of A,

tasks B and C are independent of each other and all tasks in X U 1’. Thus, the

exchange cannot violate any precedence constraints. Trivially, B also remains

an earliest finishing task not preceded by A. By iterating exchanges of this type

until they can no longer be applied, we must arrive at a schedule like Figure 6,

or one having the form in Figure 8, where B has increased under A by the size

of C, and C has been eliminated under A. Clearly, X cannot be empty if C is

eliminated, because if it were, the schedule would look like Figure 4(a), a

contradiction. Thus, X has an earliest starting task D as shown in Figure 8.

Nonpreemptive Two-Processor Scheduling

A
(a)

B

A B
(b)

B c

FIG.4. Normal forms.

A
FIG. 5. A schedule not in the. . .

B c x form of Figure 4(a).

A
. . .

B c x

FIG. 6. A first refinement.

(a)

(b)

A D

i Y . . .

B ;C x B

t
t &1
I t
1 1
I I

1

E

FiG.7. The first interchange argument.

A

B D x’
FL--ELI

X= X’ U(D)

FIG.8. Elimination of Cunder A.

998 E. G. COFFMAN, JR. AND M. R. GAREY

A c
(a) 1 Y . . .

B c ;D x’ B
r

I \ EI
1 I
I 1
I I
(

I
1 A c

(b) Y . . .

BI c D x’ D
,
E

FIG. 9. The second interchange argument.

But then Figure 8 has the same form as Figure 5, so the interchange argument

can be repeated. Each exchange increases the amount of B under A, so the

exchanges of Figure 7 must eventually yield a schedule like Figure 6.

The second interchange argument shows that S can be put into the form of
Figure 6 with X empty. For suppose X is nonempty and that D is the earliest

starting task in X, then a transformation of the type shown in Figure 9 must be

possible for some ● >0 sufficiently small. In analogy with the earlier argu-

ment, tasks B, C, and D are independent of each other and all tasks in

X’ u Y. Thus, no precedence constraints are violated in Figure 9(b). Since, by

assumption, B cannot be made to cover A in an optimal schedule, iterating the

transformation on all tasks in the set X of Figure 6 must eventually lead to a

schedule as in Figure 10, with B still an earliest finishing task independent of

A. It is possible that the piece of b’ under A still does not exist, but in that case

neither of the first two interchange arguments could have been applied (each

moves some of B under A), and S must have started as in Figure 10, with A

covered by a single piece of C.

The third interchange step puts Figure 10 into the form of Figure 11, where

all elementa~ segments containing both B and C are moved to the left so that

they start right after A, and B runs with at most one preemption. Without loss
of generality, we now put the piece of B beyond A on the upper processor and

all pieces of C on the lower processor. The exchanges in this transformation

are exactly analogous to those used in the proof of Proposition l(c), and

justified by the same argument.

Now suppose C is preempted at least once in Figure 11, and hence the

schedule is still not in the form of Figure 4(b). Our last interchange argument

shows that all preemptions of C can be eliminated. The exchange operation
needed to accomplish this is shown in Figure 12, where D is the first task to

run after the first piece of C on the lower processor. Clearly, C is independent

of D and all tasks in X, and in Figure 12(b), D still starts after A and B have
finished. Thus, since no task finishing time can be increased by the transfor-

mation, no precedence constraints are violated in Figure 12(b). Trivially, B

remains an earliest finishing task independent of A. The transformation

increases the amount of B under A and decreases the gap between the first

two pieces of C. Iterating the transformation must therefore eventually col-

lapse all pieces of C into a single piece as in Figure 4(b). It remains to observe

that, at the end of this transformation, there will certainly be a piece of B

PreemptiLw Lls. NonpreenlptiLle Two-Processor Sclwduling 999

A
. . .

B c

FIG. 10. After thesccond interchange step.

A B FIG. 11. The third interchange,..

B c
argument.

(a)

(b)

I
A ;B

! x . . .

B c D c
1
I <E

I I I
I ! i
I 1
1 v
1
I J

A B D
. . .

B[c
I
E

FIG. 12. The fourth andlast interchange argument.

under A; for otherwise C would have been run nonpreemptively, violating our

assumption that (by Proposition l(d)) the schedule begins by running exactly

one task nonpreemptively. Hence, we have shown that an optimal preemptive

schedule for Z can be assumed to have the form of either Figure 4(a) or

4(b). ❑

(3) This step eliminates schedules of the form of Figure 4(b) as possible

counterexamples to the theorem.

PROPOSITION 3. If there is an optimal preemptive schedLLie for I of the form in

Figure 4(b), then the indLlctiLle step holds.

PROOF. Break down the schedule in Figure 4(b) as shown in Figure 13,

where by Proposition l(b), OK denotes a sequence of all tasks other than A,

B, and C that start after the beginning of C and finish before the end of C.

Next, separate the schedule at the point indicated by the arrow into two

preemptive schedules S~ and SR. J-ook upon SL as a Preern@ve schedule of

independent tasks A, B, and C‘, where C‘ = C, + Cz + C\, and look upon SR

as a preemptive schedule for the tasks in I with A and B removed and with C

replaced by C:. By definition of OK, C: is a first finishing task in S~, so by the

inductive hypothesis there exists a nonpreemptive schedule S; for the tasks in

s~ such that dS;) s (4/3) CO(S~) and c; starts at the beginning Of s:.

1000 E. G. COFFMAN, JR. AND M. R. GAREY

*? ““

FIG. 13. Inductive argument fcx Figure 4(b).

‘“ ~ C2’+(A+B2’
FIG. 14. Ncmprecmptive schedules ,S~ with A = B, + C, and B2 = C2 as in Figure 13

We now convert S~ to a nonpreemptive schedule St ending with Cj and

OK. In Figure 13, it is clear that at least one of B,, C,, and Cz must be no

greater than 1/3 (A + Bj) = 1/3 (A + Cz). We have the following case

analysis:

(a)

(b)

B1 s (1/3) (xl + IIz). In this case, construct the schedule in Figure 14(a).

We have

@(s:) .4+ B,+ B2+C4 ~ (4/3)(A +Bz) + Cj 4— . <—.
cfJ(sL) A+ BZ+C: A+ B2+cj 3

Putting S; adjacent to and before S;, then gives a schedule S* such that

@(s*) @(s;) + W(s;) ~ (4/3) O(s,) + (4/3) @(sR) 4— ——
0(s) – O(SL) + @(sR) @(sL) + @(sR) 7’

and such that C‘ and C; are combined into the original task C, which

is run nonpreemptively. Then S* is the desired nonpreemptive schedule

starting with A.

C, s l/3(A + B,) = l/3(A + Cz). Construct the schedule in Figure 14(b)

and get

0(s:) A+c1+c2+cj (4/3)(A + c,) + Cj 4
— .

A+ C2+C< <
<—.

@(sL) A+ C2+C; 3

PreernptilJe vs. Nonpreemptille Two-Processor Scheduling 1001

(c)

possibly possibly
empty

I-”-I

empty

A Y,

z,
BO B,

- $ ‘2 $ =

FIG. 15. Breakdown of Figure 4(a).

Then proceed as above to get a nonpreemptive schedule S* starting with

A, such that w(S*)/ti(S) s 4/3.

Cz < l/3(A + Bz) = 1/3(131 + Cl + I?z). Use the schedule in Figure 14(c)

and argue as above to get

0(s:) B,+ B2+c1+c2+cj ~ (4\3)(~l + c, +%) + Cj 4
<—.

@(sL) – B,+c1+c2+cj B,+c1+B2+cj 3

As before, we obtain a nonpreemptive schedule S* starting with A, such

that o(S*)\O(S) s 4/3.

Thus, in the case of schedules with the form of Figure 4(b), we have shown

that the inductive step holds.

(4) We are left with schedules of the form in Figure 4(a). This step further

simplifies such schedules, expressed in the form shown in Figure 15.

Assume that B is as far left as possible in the sense that, for each i >2, no

rescheduling that leaves B1, Bz, ..., B1_ I fixed, will allow us to move some or

all of B, further to the left.

PROPOSITION 4(a). For each

tasks.

PROOF. We show first that a

must begin ~, 1 s i s m. This

suppose task D begins ~, but D

i, 1 < i < m, ~ U Z, consists only of whole

new task (i.e., a task not started previously)

is trivial for i = 1, so suppose i > 2, and

is not a new task. Let E be a task other than

D‘ ;hat ends Zi _ ~~ on the lower processor, say. Then since D, E, B, and

whatever runs simultaneously with E are mutually independent, an exchange

of the form shown in Figure 16 must be possible for some sufficiently small e,

thus contradicting our initial assumption that l?i was as far left as possible.

We now prove that tasks starting in ~ u Z, must end there. Suppose a task
D runs in Z, but does not end in Z,. Then, D must be independent of the new

task, say E, starting Y#+ ~. Thus, the exchange of ~-pieces, one from B,+, and

one from D, shown in Figure 17 can be made, again contradicting our initial

assumption. This proves that all tasks run in segment Z,, 1 < i < m, must

finish in that segment.

Next, suppose that ~ contains a piece of some task D that does not finish by

the end of segment Z,. Then, i < m and no part of D can start ~+ ~ (since a
new task must start at ~+,). By the previous paragraph, D does not run in Z,.

Let E be a task that starts Zi, say on the lower processor. Then, since E must

be independent of B and D, the transformation shown in Figure 18 must be

possible. Again, we get a contradiction, so all tasks in ~- end by the end of Z,.

1002 E. G. COFFMAN, JR. AND M. R. GAREY

FIG. 16. ~ starting with a previously run task

Y,

““mD
.,.

B,
—

Ax

““m ‘andB
FIri. 17. Exchange of c-pieces of

Y, z,

/-’&-N /-’”-,

W
,&

FIG. 18. Mowng an c-piece of B,+, to th~ 1
left. (I

1 w I

15!kkE”
E E

We have shown that any task run in the segment ~ U Z, must finish in that

segment. It follows by considering Y, U 21, Yj U Z2, . . . in turn that a task

runs during segment ~ U Z, if and only if it both starts and finishes there. ❑

PROPOSITION 4(b). For each i, 2 s i s m, ~ consists of whole tasks plus at

most one partial task, which fitzislles in a single piece at the beginning of Z, (and

hence runs nonpreenzptiLw(~).

Renlark. The reader should be sure to notice that this proposition does not

hold for i = 1.

PROOF. Suppose there is more than one unfinished task in ~, i > 1. Then

by our assumption on the ordering of tasks of ~ (Proposition l(b)), the two

latest starting tasks in ~, say D and E, are unfinished. Then, since i >2, there

is an ●-piece of some task F at the end of Z,. ~ (on the lower processor) such

that we can make the transformation shown in Figure 19, since F is indepen-

Preemptil’e L’S.NonpreemptiL’e Two-Processor Scheduling 1003

I I
I I
I 1
1 1
I v 1

(a)

(b)

FIG. 19. Moving B, left.

E

Y: D F
.

E B, x
I
,E w:
I
I $- possibly empty
1
1 1
I v 1
I I
I 1
1 1
1 1,

E ~ I Din.....
Bi x F

FIG. 20. Again moving B, left.

dent of B, and D is independent of E (because both are still unfinished). This

transformation moves B, further to the left, and hence contradicts our initial

assumption.

Finally, suppose segment ~ has a single unfinished task, say D, but that D

does not finish in a single piece at the start of Z,. As before we have that

~ ends with a piece of D. Then for e-pieces of two tasks E and F we have a

schedule in the form of Figure 20(a), where E is independent of B and F is

independent of D. Then, the schedule in Figure 20(a) can be transformed as

shown in Figure 20(b), where again B, is moved left. This contradiction

completes the proof of Proposition 4(b). ❑

Notationally, let C,, i > 1, denote the task, if any, that starts but does not

finish in ~. Let Cl ~ denote the piece of C’, at the end of ~ and let c’,? denote

the piece at the beginning of Z,.

(5) This step presents two key results needed in the constructive arguments
of the remaining steps. In what follows, the name of a set also denotes the
length of the segment spanned by the set. With one exception, this length is

simply the sum of the lengths of the tasks or task pieces in the set; the

exception is a set Z,, as in Figure 15, for which this length is exactly one half

the sum. For convenience we also let Y. denote the singleton {A).

1004 E. G. COFFMAN, JR. AND M. R. GAREY

(a)

FIG

(b)

Y: c,, c,?
/

/

(c)

21. A mmpreemptive schedule S,?. (a) S,. (b)S~ (c) S:.

Consider the schedule in Figure 15 with B removed entirely. In this

schedule, let S, denote the segment containing 1(u Z,, where o(S,) = ~ + Z,.

PROPOSITION 5(a). A nonpreemptiLle schedule S: conesponding to S, can be

constructed so that w(S,*) < 1(+ (4/3) 2,.

PROOF. To see this, first consider the case i > 1, where at most a single

task C, remains unfinished from I(. Figure 21(a) shows the corresponding

schedule S,. Since Z, contains fewer tasks than the original instance 1 (in

particular, it contains neither A nor B), we can apply the inductive hypothesis

to obtain a nonpreemptive schedule Z? for Z, that has length at most (4\3)Zl.

Figure 21(b) shows a new schedule S: obtained from S, by replacing Z, with

Z:. Note that o(S~) = ~ + Z: s ~ + (4/3) 2,.

Now, if C, does not exist, we are done, since S,* = S: is the required

nonpreemptive schedule. If C, does exist, then the second piece C,z of C, that

belongs to 21 now runs somewhere within Z:, not necessarily at the beginning,

but still all in one piece since Z; is nonpreemptive. Thus, all we need to do to

convert S: to a nonpreemptive schedule S,* for Y U Z, is to remove C,,, slide

all tasks in Z,* that finish before the end of C,z earlier by the length of C, ~,

and reinsert C,, in the idle space adjacent to the start of C,z. This does not

increase the length of the schedule at all, so it still satisfies the required length

bound. No precedence constraints are violated, because all the tasks moved are
independent of C,. Since S,* is now also nonpreemptive, it is our required

schedule.

If i = 1,the only difference is that there may be more than one unfinished

task remaining from ~. However, it is easy to continue performing the

transformation described in the preceding paragraph for each of these in turn,
without increasing the length of the schedule, finally obtaining, once again, the

required schedule. ❑

In what follows, it will be convenient to refer to the idle time that remains in

S: under the whole tasks in ~’, and the idle time added to Z~ during the

PreemptiL1e Lw. iVonpreemptiLle Two-Processor Scheduling 1005

insertion of uncompleted tasks from ~, as the ~ idle time in S,*. The total

amount of such idle time in S: is exactly equal to ~ = B,.

PROPOSITION 5(b). Consider an arbitra~ schedule S that keeps both processors

busy during [0, LO(S)]. Suppose S can be conLerted to a schedule S‘ in which the

amount of time, say Tz, that both processors are busy is at least the amount of

time, say Tl, that only one processor is bLlsy. Then LO(S‘)/o(S) < 4/3.

PROOF. We have

0(s’) T1+TZ =1+ T1 T, 4
<l+ —<—. U

w(s) = T1/2 + Tz T, + 2TZ 3Tl 3

In the remainder of the proof, we consider many such transformations

S ~ S‘. The proofs that T, > T1 holds will be called compensation arguments;

the amount of time Tz tha~ both processors are busy in S‘ compensates for the

idle time T1 in S‘. The argument will often involve pairing up or “matching”

equal length segments of the two types.

We conclude this step with the following simple observation. (The proof is

left to the reader.)

PROPOSITION 5(c). Consider any segment of a preemptive schedule oL1er an

interL1al of length x. The tasks or pieces of tasks in this segment can be run

nonpreemptiLlely (with all pieces of each task together) on a single processor in an

inten~al of length 2x, without Lliolating precedence constraints. MoreoLler, the

schedule can be structured to start with either of the two tasks that begin

the two-processor schedule; symmetrical~, it can be structured to end with either

of the two tasks that end the preemptiLle schedule.

(6) Roughly speaking, the method used in the remainder of the proof is as
follows: First, we remove from the schedule S (as shown in Figure 15) all pieces

of the task B. Next, we create an idle block of length at least B by converting

some set of consecutive Z, segments from two-processor schedules to one-

processor schedules, using Proposition 5(c) (the first and last such Z, segments

may be only partially converted). See Figures 22 and 23 for examples. The

schedule at this point can be viewed as consisting of three segments, S~, S~,

and S~. S~ goes from the beginning of the schedule to the rightmost point that

begins a ~ and is at or before the start of the created idle block. S~ extends to

the end of the schedule form the leftmost point that ends a Z, and is at or

after the end of the created idle block. S~ is the segment between S~ and S~.

Note that each of S~, S~, and S~ consists of only whole tasks, by their

definitions and Proposition 4(a).

Then B is reinserted into the created idle block, and the other tasks in S~

are rearranged (in ways to be described later) to form a nonpreemptive

segment Sfi. Finally, using the inductive hypothesis and Proposition 5(a),

the various ~, Z, segments in S~ and S~ are converted into nonpreemptive

segments of length at most ~ + (4/3) 2,. A compensation argument is then

used to prove that S* = S~SfiS# satisfies LIJ(S*) s (4/3)0(S), as desired.
The process of creating an idle block in an amount x > B starting or ending

at a given time is based on expanding the schedule from which B has been

removed over some time interval [t, t‘].We modify the schedule segment that

goes from t to t‘ in such a manner that an idle. period on the lower machine

1006 E. G. COFFMAN, JR. AND M. R. GAREY

FIG. 22. Creat]ng an idle block in ,S,with t + x in ZL.

FIG. 23. Creating an idle block in S’,with t m Z,

of total length x results. Figures 22 and 23 show examples where one end of

[t, t + .x] in the new schedule falls in a ~ segment, O s i < m, and the other

falls in a Z, segment, 1 s i < HZ. We always choose t‘ in the original schedule,

and hence t + x > t‘ in the new schedule, to be at most the starting time of

Z,.. This is because we insert B at the right end of the space created, and,

since some tasks in Z~l might be successors of B, a value of t + x in Z., might

lead to a precedence violation.

As shown in the figures, all of the full Z, segments in [t,t‘](in the original

schedule), plus partial segments, if any, at the ends of the interval, are

converted to nonpreemptive single-processor schedules and combined with

the ~ segments in an alternating sequence on the upper processor, with the

ordering of the new segments the same as before. By Proposition 5(c) we

assume that Z,, j < i s k – 1 in Figure 22 and Z,, j + 1 < i s k, in Figure 23

start with C,~ (j > 1, since B > B,} + B1). Then by Proposition 4(b) the

sequences ~, Z,,..., ZL _ ,, YL and ~~ ~, Z,+ ,,..., YL become nonpreemp.

tive sequences of whole tasks in Figures 22 and 23, respectively. Clearly,

precedence constraints are preserved.

It is useful to go through a simple case to illustrate the kind of argument we

will be using. Suppose there exist t and x = B such that, after B is removed,

S can be expanded into a schedule in which t and t + B fall under some ~

and Y,,, respectively, O s j < k s tn. The expansion is shown in Figure 24(a),

where OK is the nonpreemptive sequence of tasks in Z, u ~+ ~ u . . . u Zk ~.
Segment Z~ at the right end can be structured as shown in Figure 24(b), where

OK’ accumulates the tasks in Z~ that finish before CkQ, and C‘ is the piece of

CL ~ extending beyond OK’. X denotes a segment consisting of the earliest

finishing task C‘ and the whole task remaining in Z~ after C~z and those in
OK’ have been removed.

Sfi is defined as in Figure 24(c) by r~,,,,mg B in the created idle block,

leaving the segment involving OK’ unchanged, and replacing X with a nonpre-

emptive schedule X* that starts with C‘ and that is no longer than (4/3)X

(using the inductive hypothesis). Then we replace all segments S, = ~ u z,

in S~ and S~ by the corresponding segments S; given by Proposition 5(a).

Preemptive LW.NonpreemptiL1e Two-Processor Schedulitlg 1007

(a) ‘“ . . .

t I 1

(b) ““ . . .

I
I
I

S-M II
I I
!,

I I I
I t I

‘c)““E=”””
FIG. 24.

This yields the nonpreemptive

the compensation argument.

The idle periods within X*,

Sk

An expansi~n/replacement.

schedule S* = S~S~S~. It remains to supply

and within the Z,* segments from which S:

and St wer~ constructed (excluding the ~ idle time iritroduced into each Z?

when it was formed—see Figure 21(c)), are compensated within these seg-

ments themselves, since by the inductive hypothesis d X*) s (4/3) CO(X) and

aJ(Z,*) s (4\3)o(Z[). The remaining idle time is the Y/ idle time in S: and S:

and the idle time under ~ and Y~. But X;. ~,~ = B by definition, so the

remaining idle time is at most B and is compensated by the fact that both

processors are busy in S; while B is running. Thus, by Proposition 5(b), we

have o(S*) < (4/3)0(S).

(7) It remains for us to consider cases in which, in order to expand S to

make room for B, the left or right end of the space created must take the form

shown in Figures 22 or 23, respectively, that is,, it must start or end in a Z,.

Proposition 7(a) first prepares for the required constructions by verifying

certain normal forms for Figures 22 and 23. Proposition 7(b) then takes care of

another class of easy cases that follow from Proposition 7(a).

PROPOSITION 7(a). The right-end segment containing ~<, Z;, and Z; in Figure

22 can be reduced to one of the two forms shown in Figure 25, where D finishes no

later than any task in X, D is either run nonpreemptiL’ely (case (a)) or is preempted
exactly once (case (b)), and E is rurz norlpreemptiuely.

PROOF. These forms are similar to those in Figures 4(a) and (b), and a

proof of the proposition can be based on precisely the same interchange

arguments proving the latter forms. In particular, by iterating the exchange

1008 E. G. COFFMAN, JR. AND M. R. GAREY

(a)

(b)

Y~ LJ z~
A

/ \

OK D
. . . .

YL u Zk

OK D E
. . .

x
. . .

D

FIG. 25. Normal forms for Figure 22,

~ ~i

OK D F D
.

G

FIG. 26. Putting earliest finishing tasks over the idle per]od.

sketched in Figure 26, where D is the earliest finishing task past the idle

period, we successively put earliest finishing tasks over the idle period, and

accumulate them in OK, until we reach the end of the idle period, or until we

reach the form in Figure 27. In the first case, we obtain Figure 25(a) by

continuing to put the rest of D together using the exchanges in the proof of

Proposition l(c). In the second case, we proceed by using the transformations

described in Figures 9–12 until we reach Figure 25(b). Note that in Figure 27,

tasks D and E play the earlier roles of B and C, and the piece of the idle

period to the right of the arrow plays the role of A. ❑

PROPOSITION 7(a’). (THE DUAL OF PROPOSITION 7(a)). The left-end segnzent

containing Z;, Z; in FigLlre 23 can be reduced to one of the two forms in Figure

28, where the starting time of D‘ is at least as late as that of any task in X.

PROOF. This result follows easily from the symmetric counterparts of the

arguments for Proposition 7(a). Indeed, we need only consider the reverse of

the schedule for Z‘, and Z“j in Figure 23(b), with the precedence constraints

of its tasks reversed. To thn schedule, we apply the transformations of the

proof of Proposition 7(a), then reverse the new schedule to obtain one of the
forms in Figure 28. Note that the neighboring ~ segment is not restructured in

Figure 28, as it is in Figure 25. ❑

Preemptille LIS.Nonpreemptiue Two-Processor Scheduling

Y~ U .zk

1009

r

OK; D E
. . .

Pm

FIG. 27. A form leading to Figure 25(b).

Y, D’ OK’
(a) . . . x . . .

z,

Y, E’ D’ OK’
(b) . . . x . . .

D’

FIG. 28. Normal forms for Figure 23.

The normal forms in Figures 25(a) and 28(a) allow us to dispose of the

following additional easy cases:

PROPOSITION 7(b). Suppose we can create by expansion an idle block of length

B such that

—it begins under some ~, j > 0, or in some Z], 1 s j < m, such that the segment

containing Z; and Z; in Figure 23 can be put in the form of Figure 28(a), and
—it ends under some Y~, 2 < k < m, or in some Z~, 1 < k ~ m, such that tile

segment containing Y~, Z~, and Z; in Figure 22 ca?~ be put in the fo~l of

Figure 25(a).

Then we can transfom S into a nonpreemptiue schedule S* no longer than

(4/3)0(s).

PROOF. Consider first the case above where the left and right ends are in

some Z, and Z~, 1 s j < k < m. This case can be illustrated as in Figure 29,

where D and D‘ have been split into the consecutive pieces shown. D; is a
latest starting task in XL and D2 is an earliest finishing task in X~.

Comparing Figures 24(b) and 29, we see that the schedules at the right end

of the length-B idle block can be made structurally the same by taking

OK’ empty in Figure 24, and identifying C’ with Dz. Thus, as in Step (6), we

insert B into the idle block in S~, replace XR by an optimal nonPreemPtive

1010 E. G. COFFMAN, JR. AND M. R. GAREY

A A
.

\ /
v
SM

FIG. 29. An easy case based cm Figures 25(a) and 28(a).

schedule starting with Dz, and replace the segments S, to the right of X~ and

to the left of ~ by the corresponding S; from Proposition 5(a).

Using the dual inductive hypothesis we next replace XL by an optimal

nonpreemptive schedule X: ending with Dj. This may leave one or more (if

j = 1) preemptions at the end of ~: if so, the insertion operation of the proof

of Proposition 5(a) is applied to eliminate them. It is easy to verify that the

insertions leave D; as a latest finishing task of this segment, so it still matches

up with D;.

The compensation argument for S* works as before, combining the ~

idle time in St with the ~ idle time in XT. Thus, we have a nonpreemptive

schedule S* starting with A such that CO(S*) s (4/3) CO(S).

It remains to observe that if either end of the space created falls under a

~, while the other can be put in the form of Figures 25(a) or 28(a), then the

argument above can be coupled easily with that of Step (6) to again obtain

the desired nonpreernptive schedule S*. ❑

(8) We are left with the most difficult case, where any idle block of length B

created by expansion must begin or end with the form in Figures 25(b) or 28(b),

respectively. In this step, we deal with this case, handling two remaining

exceptional cases in Steps (9) and (10). The transformation involves two stages.

For the first stage, define the index h >0 by the inequality

that is, B becomes half finished in S during ~,. The first stage creates by the

usual expansion an idle block starting at the left end of Y~, and ending at a
point in some Zk, k < m. assuming that this is possible, that is, that

The case where this inequality does not hold will be covered in Step (9); the

analysis in Steps (9) and (10) (the last two steps) will also make clear why we

have chosen here to create space starting from the left end of the segment in

which B becomes half finished in S.

By Steps (6) and (7), the normalized form of the schedule at the right end of

the created idle block must be as shown in Figure 25(b). We observe that this

Preemptive LS. Nonpreemptive Two-Processor Scheduling 1o11

“) ZEzl!!z ‘1”1
D; vE; D; E; D;

(b) . . .

E; /

///z ‘; “{

FIG. 30. Structuring the normal forms in Figures 25(b) and 28(b).

form can be expressed as in Figure 30(a), where DI > El and where 11~ v Es

denotes either a third and final piece of D or a similar piece of E. (Note that,

if D ~ < El initially, we reverse the roles of D and E to obtain this form.) We

will also be using the dual of this observation, which is shown in Figure 30(b)

and applies to Figure 28(b).

With El as defined by the first stage, the second stage creates by expansion

an additional idle block of length 2 El just to the left of Y,,, assuming that this

can be done without extending to the left of A, that is, that

Step (10) concludes the proof by taking care of the case in which this inequality

does not hold.

After creating the total of B + 2E1 time units of space in the two stages

described above, we must have one of the three schedules given in Figure 31,

which use the normal forms (or their duals) from Figures 25(a), 28(a), or 30 on

the two ends. The cases in Figure 31 depend on whether the left end of the

created idle block lies in a ~ (case (a)) or a Z,, and in the latter case, on

whether it takes the normal form of Figure 28(a) (case (b)) or Figure 30(b)

(case (c)). Then DI > El and Dz = Ez in all figures, and D; > E;, Dj = Ej in
Figure 31(c). S~ is the segment having XL and X~ as its left and right end

portions, and S~ and S~ are the segments to the left and right of S~. By the

procedure given in Step (6), X~ U S~ can be replaced by a nonpreemptive

schedule Xi u S: beginning with the task D~ v Es. The dual of this pro-

cedure converts S~ u XL to a nonpreemptive schedule S: u X: ending

in Dj V ~3 (or an appropriate part of D ‘). It remains to find a nonpreemp-

tive schedule for B and the remaining parts of S~ such that S& begins and

ends with pieces of tasks matching those that begin and end the schedules

just constructed, and such that a compensation argument yields 4/3 bound,

accounting for idle time within Sfi itself as well as for the ~ idle time in X;,

S:, and S;.

We give the construction for Figure 31(c) below: we point out later how the
remaining constructions for Figures 31(a) and (b) follow as special cases. If

E; + E; > E, + Ez and X; begins with a piece of E, then we choose Figure

32(a) or Figure 32(b); the choice depends on whether or not Dz extends

beyond B. If E; + E; > El + El, but X: begins with a piece of D, then

1012 E. G. COFFMAN, JR. AND M. R. GAREY

(a)

Y,, j>O Y,, YkUZk, k<m

~r4 / A \

D’ OK’ \ OK” OK D1 El D~ D3vE3
. . . ,/ r

Ex
t

YkL)Zk, k<m

AA / A \

Y, D’ OK’ ;; OK” OK D, El Dz D3vE3
(b) ““”

E2

SL~2EI~B~ ~sR
XL XR

Y, D; vEj D; E; D; OK’ ; OK” OK D, El Dz D3VE3
(c)/

E~ Ez

FIG. 31. Possible schedules after creating an idle block of length B + 2E1 with exactly B time

umts of the idle block to the right of the start of Yll.

Al = 2E; SE1+E2

(a) . .

(b) . . .

D; D; OK D1 D2
.

E; E; B El E2

D; D; OK D, D2 El E2
. . .

E; E{ B

A{ = 2E2+2E1-2E{ 5E1+E2

FIG. 32. Replacing B when Ej + E2 > El + Ez

Preemptive LJS.NonpreemptiLe Two-Processor Scheduling 1013

(a)

(b)

A2 = 2E[<E{+E;

/
D~ D; OK D1 D2

.

E; E; B El E2

E; E{ D; D; OK D, D2
.

B El E2

A; = 2E; SE; +E;

FIG. 33. Replacing B when El + El > E: + E;.

we choose Figure 32(a) with D, and D2 right justified, or Figure 32(b) with

D, and Dx exchanged with EL and Ez; again the choice depends on whether or

not D~ (when D, and D2 are left justified) finishes beyond B. If E{ + E: <

El + Ez, then one of the symmetric choices is taken from Figure 33, with D;

and Dj left justified in the case of Figure 33(a). In all four figures, OK is the

union of OK, OK’, and OK” from Figure 31. The following observations verify

that this schedule has the necessa~ properties:

(a)

(b)

(c)

As reflected in all figures D, > El, D\ ? E;, Dz = Ez, and D; = E;.

Trivially, after right-justifying in Figure 32(a) and left-justifying in Figure

33(a), this part of the schedule begins and ends with the appropriate tasks

D; V E? and Dz V E2, respectively.

A comparison of Figure 31(c) with Figures 32 and 33 gives the expressions

for the idle times shown. Trivially, A ~, A2, and A’z are non-negative. From

Figure 31(c), we have 2E, > D\ + E; > 2E\. Then El > E{, so A’l >0

holds as well. Thus, the schedule ends in Ez in Figure 32, begins with E2 in

Figure 33, and keeps the tasks in OK over B in all figures, The upper

bounds on the idle times can be seen by inspection.

B, D, and E are given as mutually independent in Figure 31(c), as are B,

D‘, and E’. Since OK is over B, the precedence relations between {D’, E’}

and OK are respected, as are those between OK and {D, E}.

The compensation argument is straightforward. For example, if the schedule

is chosen as in Figure 32(a), then since E{ + E! > El + Ez, the idle time of at

most El + Ez in the central portion of S G is compensated by the fact that

both processors are busy while E; and E!! are running. Both processors are

also busy while B is running, so the ~ idle time in S; U X: and S; is

compensated as in Steps (6) and (7). A similar argument applies to the

remaining possibilities in Figures 32 and 33.
It remains to observe that the cases corresponding to Figures 31(a) and

(b) can be treated in the same way, with El, EL, and Dz set to O,
and with D‘ broken into D\ and Dj in the obvious way. Then the middle of

the new schedule looks like Figure 33(a), but with no idle time at all, so the

compensation argument is trivial.

1014 E. G. COFFMAN, JR. AND M. R. GAREY

(a)
Y, z;’ Y,+, OK Y.

. . . z;
/

z.

/

In the final two steps, we return to the special cases identified earlier where,

for one of two reasons, the idle block of length B + 2E1, could not be created.

(9) Suppose that, after removing B from S, we cannot create an idle block

of length B starting at the left end of Y}, (in which B becomes half finished in

S) and ending before the start of Zm,, that is, suppose

m – 1

z (~ +2ZL) +~,, <B.

In this case, we create an idle block of length B that ends at the beginning of

Z,.. Since the sum of the lengths of the ~’s is B, this must be possible without

extending to the left of A. Moreover, we may suppose that the newly created

idle block does not begin under some ~, for this would give us the easy case in

Step (6). Figure 34(a) shows an example where the idle block begins in a Z,. By

the definition of V,, we must have j < h, so that the sum of the I(>S before 21

is at most B/2 and the sum of the Y,’s that are over the length-B idle block is

at least B/2.

Using the dual of Proposition l(b), we rearrange Z; so that tasks completely

within Z; go at its end (in OK). Then we restructure the schedule as shown in

Figure 34(b), where B is divided into two parts, B‘ and B“, with B‘ = Z; – OK

inserted as shown in the figure. Note that B‘ is a latest starting task in XL.

S* is formed simply by placing B“, the remainder of B, under the tasks in
S~ in the corresponding idle block, taking care of Z,n = SR as in Step (6), and
taking care of SL U XL as in Step (7) to obtain a nonpreemptive schedule

ending in B‘.

The ~ idle time needing compensation is only in S: U X2 and is at most

B/2. Since B“ > B/2 (see Figure 34), this idle time is compensated by the fact

that both processors are busy while running B“.

(10) In this final step, we assume that

Preemptive LIS.Nottpreemptive Two-Processor Scheduling 1015

that is, in Step (8) it was not possible to extend the idle period to the left by

2EI time units with El as shown in Figure 30(a). After removing B from S, we

now create an idle block of length B starting at time O. Assuming that this does

not give us the easy case in Step (6), this space must end in a Z~. Since

m

,=lJ

we have k < m. Also, we observe that k > h and hence

because

{Z–1

and because the idle block ends in a ZL. According to Proposition 7 and the

normal form in Figure 30(a), the schedule can be put into one of the two forms

shown in Figure 35, where A = Ytl still starts at time O. Note that the D and E

tasks of Figure 35 are not those in the above inequalities, that is, those in

Figures 29 and 30 of Steps (7) and (8). This should cause no confusion; the

remainder of the proof uses D and E only to refer to the tasks identified in

Figure 35.

Figure 35(a) just specializes the easy case in Proposition 7(b) by taking S~

and XL empty. For Figure 35(b) we consider the following subcases:

(a) B > Dz +E, + Y* (Y* = X:.k+, ~ sB/2).

In this case, S~ is empty and S ~ is formed as in the schedule of Figure 36,

or this schedule with the ordering of D and E reversed (so as to match

D~ V Es). Comparing Figures 35(b) and 36 shows that the idle time in S; is

given by A = Dz + Ez. Next, to the right of Sfi, S~ is replaced by S~ as in Step

(7) to yield the desired nonpreemptive schedule S*. Since B > Dz + Ez +

Y* = A + Y*, the idle time in S; as well as the 1(idle time in S: is

compensated by the time during which both processors are busy in Sfi.

(b) OK+ D, + D, > 2E1 + Y*.

In this case, we produce the schedule for S* given in Figure 37, where the

value A = 2 El is obtained by comparing Figures 35(b) and 37, and where S: is

obtained from S~ as before. The compensation argument again succeeds,

because both processors are busy in S; for time OK + D1 + Dz > 2E1 + Y*,

and the idle time that needs to be compensated is at most 2E1 + Y*.

(C)2(E1+Ez+Y*) Z0K+D1+Dz+B.

This is the last subcase that needs to be covered, because Dz = Ez implies

that the sum of the right-hand sides of the inequalities in the three subcases is
equal to the sum of the left-hand sides. With OK, D,, Dz, El, Ez, Dj v Ej,

and Y* as defined by Figure 35(b), we now change to the construction in Step

(9). After removing B from S, we create an idle period of length B that ends
at the start of Z~. Assuming that B is small enough, it must be possible to

1016 E. G. COFFMAN, JR. AND M. R.

(a)

Y~u Y,uz, u.. uYkuzk
A

/ \

OK D
. . .

/ 2“,

Y~u Yluzlu. .uYkuzk

GAREY

(b)
OK D1 El Dz D3 VE3

. . .
{ Z,n

Ez

FIG. 35. Examples for Step (10).

OK D1 D2 El E2 D3VE3
. . .

B
FIG. 36. The case B > Dz + E: +
y.,

A = DzhEl SR
\ /

v

A = 2E}

FIG. 37. The case OK + D] + Dz > 2El +
Y’. e

s; s;

construct the (preemptive) schedule in Figure 38 where S. contains all of B,
starts with D~ V Es and has no idle time. To be precise, we need that

in order to do this.

By the inductive hypothesis S~ can be replaced by a nonpreemptive schedule

S: starting with Dq v Ej such that o(S:) s (4/3) o(S~); that is, the idle time

in S; is compensated within S;. But Y* < B/2 and 2(E1 + Ez + Y*) >

OK + D, + Dj + B imply that 2(E1 + El) > OK+ D1 + Dz. It follows that

PreemptiL’e l’s. NonpreemptiL’e Two-Processor Scheduling 1017

OK D1 D2 D3vE3

/ El E2 ‘“””la

FIG. 38. Thecase2(E[+E2+Y’)>OK+D1 +DZ+B.

/ El E2 E3 OK’
z.

OK D1 D2 B

FIG. 39. B]s large.

D, D2 D3 OK’

/
z.,

OK El E~ B

~~

s;

FIG. -!(). D] extends tothe left of OK.

the idle time in Sfi is compensated by the amount of time that both processors

are busy in S;.

Now suppose that B is too large to allow the schedule in Figure 38. If

D~ V E~ = Es, that is, if Es extends into X in Figure 35(b), then we create the

schedule in Figure 39, where OK’ contains only whole tasks, except possibly for

the portion C,,,, of a task C,. that runs nonpreemptively and finishes in Z,,l

(see Figure 21(a)). Since OK’ > Y*, the condition 2(El + Ej + Y*) > OK+

Ill + 11~ + B implies that 2(EI + E, + OK’) > OK + D] + Dz + B. Thus, the

idle time in S; is compensated within S;. The expansion of S~ and the

remainder of the argument follow as in Step (6); all idle time in S: is

compensated within S; itself.

Finally, suppose Dj v Es = Dj. Then, after exchanging D, and Dz with El
and Ez, we adopt the schedule of Figure 39, where D, may or may not extend

to the left of OK. If it does not, the same compensation argument again

applies since Dj > El and Dz = El. On the other hand, if DI does extend to

the left, as in Figure 40, then Dz = Ez and OK’ s B imply that the idle time is

at most D,. (For S* we need to left-justify OK so that A begins the schedule.)

The compensation argument within Sfi is trivial since B > D,. As before, the

argument concludes by dealing with SK = Z,. as in Step (6).

3. Concluding Remarks

It is unpleasant to have such a complex proof for such a simply stated theorem.

We hope that the existence of this first proof will stimulate and assist others

1018 E. G. COFFMAN, JR. AND M. R. GAREY

in finding a significantly shorter and simpler proof. There does not seem to be

much hope that this proof can be extended to prove the corresponding

conjecture for an arbitrary number nz of processors, that w~P(1)/~P(1) is

never more than 2rn/(m + 1) [4]. Here, also, a simplified proof of Theorem 1

is preferred as a better starting point for generalization.

ACKNOWLEDGMENT. We are indebted to Tomas Feder for carefully listening

to all the details of the proof, pointing out several gaps that needed fixing, and

preparing the first comprehensive set of notes on the proof, which served us

well in writing this paper. We are also pleased to acknowledge the careful

reading by a referee who pointed out several flaws and areas for improvement.

REFERENCES

1. GAREY, M. R., AND JOHNSON,D. S. Cornpata-s and Intractabill@: A Guule to the Theozy of

NP-Cornplete}zess. Freeman, San Francisco, Calif, 1979.

2. Go~ AL, D. K. Non-preemptive scheduhng of unequal execution time tasks on two processors.
Tech, Rep. CS-77-039. Computer Science Dept., Washington State Univ., Pullman, Wash,,
1977.

3. HONG, K. S., AND LEUNG, J. Y-T. Some results on Liu’s conjecture. SLAM J Conzput., to
appear.

4. Ltu, C. L, Optimal scheduhng on multiprocessor computer systems. In Proceedmjy of the 13th

Annual Symposnwn on SwM~i;zg and Automata TheoT. IEEE Computer Society, New York,
1972, pp. 155–160.

5. ULLMAN, J. D, Complexity of sequencing problems. In Computer and Job-Slzop Sclzeduli)zg

Theory, E. G. Coffman, Jr., ed. Wiley, New York, 1976.

RECEIVED MARCH 1991; REVISED MAY 1992; ACCEPTED MAY 1992

Journal of the Asscmat,un for CkmIpuhng Machmmy, Vol 4(1, No 5. Ncwwnber 1993.

