
On the Optimality of Strategies for Multiple Joins

Y. C. TAY

National UniLwrsi~ of Singapore, Kent Ridge, Singapore

Abstract. Relational database systems rely on the join operator to assemble data for answering

queries. Although the order of (natural) joins—here called the strategy for cmnpatwzg the

joins—does not affect the final result, it does determine to a large extent the response time of the

query. Query optimizers therefore try to pick an optimal strategy. In practice, optimizers usually
restrict their search for an optimal strategy to strategies that are linear (e g., of the form

((RI M Rz) M Rj) M R~), or that avoid Cartesian products, or both.
The purpose of this paper is to examine the conditions under which an optimizer can find an

optimal strategy, despite having restricted the scope of its search. Specifically, sufficient condi-
tions are given under which (1) a linear strategy that is optimum will not use Cartesian products,

(2) there is an optimum strategy that does not use Cartesian products, and (3) there is an
optimum strategy that is linear and that does not use Cartesian products. (Optimality is with
respect to the number of tuples generated by a strategy.) The necessity of these conditions is
illustrated through examples.

The conditions do not assume uniformity in the distribution of attribute values, nor indepen-

dence in the attributes. Instead, they are either a formalization of heurmtic assumptions, or based

on semantic constraints. For example, the conditions are satisfied if all join attributes form

superkeys. The analytic framework can be adapted for database acyclicity, losdess joins, unions,
and intersections.

Categories and Subject Descriptors: F.2.2 [Theory of Computation]: Nonnumerical Algorithms
and Problems—sequencing and scheduling; H ,2.4 [Database Management]: Systems—qaev pl’o-

Ccsslng

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Cartesian product, heuristic, intersection, join strategy, join
tree, linear strategy, lossless join, optimality, query optimizer, superkey, union.

1. Introduction

Consider the problem of evaluating the expression R ~ N R~ M Rj M RJ, where

R,, Rz, Rj, and RJ are relations. If we use parentheses to indicate the order of

the evaluation, then there are 3 orderings (after renaming the relations) of the

form (R, H Rz) Xl (RS ~ RJ) and 12 orderings of the form ((RI N R,) N Rj)
~ R1. Among these 15 possible orderings which is optimum? This question is

An abstract of this paper appears in Proceedings of the 9th ACM Sy/?yrostZu?Z O,Z Prozclplcs of

Database Systems (Nashville, Term., Apr. 2-4). ACM, New York, 1990, pp. 110-119.

Author’s address: Department of Mathematics, National University of Singapore, Kent Ridge
0511, Republic of Singapore.

Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the
Assncmtion fnr Computing Machinery. To copy otherwise, or to republish, requires a fcc and/rrr

specific permission.
01993 ACM 0004-541 1/93/1 100-1067$03.50

Jo.rmil of lhc Aw>cl.%t~on f<w Comp. ung Machinery. Vol 40, No. 5. Novcmkwr IW.3. pp 1067-I1M

http://crossmark.crossref.org/dialog/?doi=10.1145%2F174147.174151&domain=pdf&date_stamp=1993-11-01

1068 Y. C. TAY

of practical importance because evaluating the joins in the wrong order could

produce an enormous number of intermediate tuples, even if the final result is

small. The problem can be traced back to the early days of System R and

INGRES, but there is also a renewed interest in the problem recently because

of an expectation that nontraditional database systems may have to evaluate

expressions containing hundreds of joins [12, 18, 22].

One heuristic that is common in the evaluation of multiple joins is the use of

linear strategies, that is, strategies like ((RI N Rz) ~ R~) ~ Rq. Linear strate-

gies have practical appeal because they can be programmed as nested loops,

can take advantage of existing indices, and can use pipelining. Another com-

mon heuristic is to avoid Cartesian products; this is because Cartesian products

generate spurious tuples that have to be eliminated eventually. Query optimiz-

ers in many well-known systems use one or both heuristics. For example,

GAMMA [9] uses only linear strategies, INGRES [25] and Starburst [14] both

avoid Cartesian products, and System R [20] and Office-by-Example [24] both

use only linear strategies that avoid Cartesian products.

The purpose of the above heuristics is to restrict, for the sake of tractability,

the query optimizer’s search for a strategy to a small subspace of the entire

strategy space. However, this restriction may also exclude the optimum strategy

from the subspace. For example, experiments have shown [9] that for large

queries, the cheapest linear strategy could be significantly more expensive than

the cheapest possible (nonlinear) strategy.

The following question thus arises naturally: Under what conditions would

be cheapest strategy in a searched subspace be optimum among all strategies?

This is a variation of an open problem [21], and is the issue addressed by this

paper. Specifically, we give conditions under which the following are true:

(1) A linear strategy that is optimum will not use Cartesian products.

(2) There is an optimum strategy that does not use Cartesian products.

(3) There is an optimum strategy that is linear and that does not use Cartesian
products.

Phrased differently (but imprecisely), (1) says that the query optimizer can

rule out the use of Cartesian products if it is searching within the subspace of

linear strategies, while (2) says the optimizer can restrict the search for an

optimum strategy to the subspace of strategies that do not use Cartesian

products.

To the best of our knowledge, these results are the first of their kind.

Previous work on optimum strategies for evaluating multiple joins were mostly

on algorithms for finding the cheapest strategy in a selected subspace [11, 12,

20–22, 24, 25]. Our results complement such algorithms in the sense that we
identify conditions that guarantee that the algorithms can find strategies that

are optimum.

A second difference from previous work lies in the kind of assumptions

underlying the analysis. Most work in the literature assume that attribute
values are uniformly distributed for each attribute, and independently dis-

tributed for every set of attributes. These assumptions are generally believed to

be unrealistic in practice, and known to be unsatisfactory in theory [4, 11]. In

contrast, the assumptions we adopt are either a formalization of heuristic

belief, or based on semantic constraints. For example, the aforementioned

conditions are satisfied if joining attributes form superkeys of the relations.

Optimali@ of Strategies for Multiple Joins 1069

A third break with previous work lies in our choice of cost measures. Instead

of using a detailed cost model involving indices, page sizes, buffer allocation

and so on, we simply use the number of tuples generated as the cost measure.

This is partly necessitated by the analytic technique we use, partly motivated by

the lack of unifying formulas for the cost of access paths and join methods [6,

27], and partly to provide results that are robust with respect to technological

innovation. The last point refers to the fact that some previous formulas may

be irrelevant in the context of parallel machines [16], large main memories [6],

and novel seconda~ storage [5].

We begin in Section 2 (Preliminaries) with a formalization of the problem.

The main results are derived in Section 3 (Results). Section 4 (Application)

illustrates how the results are applicable in the presence of keys; we also give

examples that demonstrate the necessity of the conditions imposed in the

theorems. We conclude in Section 5 (Discussion) with an account of how the

formalism can be adapted to consider database cyclicity, lossless joins, exten-

sion joins, (set) union, and intersection.

2. Preliminaries

Let U be a nonempty finite set of symbols, called attributes. A relation scheme

is a nonempty subset of U. For each attribute A, there is a set called the

domain of A. A tuple over relation scheme R is a mapping that, for each

A ● R, associates an element of A‘s domain with A. A relation state over a

relation scheme R is a finite set of tuples over R, we usually use R to denote a

relation state over R. A relation is an ordered pair (R, R).

A database scheme is a finite nonempty set of relation schemes. A database

state over a database scheme D is a set of relation states over D’s relation

schemes; we usually use D to denote a database state over D. A database is an

ordered pair (D, D).

If t is a tuple over R and X g R, t[X] is the restriction of the mapping to X.

If R and R’ are relation states over R and R’, respectively, the natural join of

R and R’ is

R MR’ = {t :t atupleover R U R’, and t[R] cR, t[R’] =R’}.

For a quick grasp of the following terminology, one could imagine a database

scheme as a graph with its relation schemes as nodes, and an edge between two

nodes if and only if they have nonempty intersection. D ~ is linked to Dz (and

vice versa) if and only if (u D,) n (UDZ) # @, where UD = lJ~e~R. For

example, {ABC, BE, DF} is linked to {CG, GH} but {AB, BE, DF} is not linked

to {CG, GH}. (Here, A, B, C etc. are attributes, and ABC denotes the relation

scheme {A, B, C}.)

D1 and Dz are disjoint if and only if D1 n Dz = ~. Thus, {ABC, BE, III’}

and {CG, Gl?} are disjoint, but {ABC, BE, CG, D&’} and {CG, GH} are not

disjoint.

A database scheme D is unconnected if it is the union of two (disjoint)

database schemes that are not linked to each other; otherwise, it is connected.
For example, {ABC, BE, DF} is unconnected, but {ABC, BE, AF, DF} is con-

nected.

A component of D is a connected subset D’ that is not linked to D – D’.

Thus, {ABC, BE} and {DF} are the components of {ABC, BE, DF}. Note that,

1070 Y. C. TAY

although {ABC, BE, DF} is linked to {CG, GH}, their union—

{ABC, BE, DF, CG, GH}—remains unconnected.

To eualuate a database ~ is to compute the natural join of LZ’s relation

states. By the commutativity and associativity of joins, the order of the joins

does not affect the final result; however, the order determines the intermediate

relation states that are computed, and thus the cost of the evaluation.

Informally—as in examples—we can use parentheses to indicate the order

of the joins, and strings of attributes (e.g., ABC) to denote both the relation

scheme and the relation state. In the results and proofs, however, we have to

distinguish schemes from states, and keep track of the databases. This requires

extra notation, and can be done less clumsily if we use binary trees instead of

parentheses to indicate the order of the joins.

Let ~ = (D, D) be a database. Let R~ denote the relation state ~~. ~ R.

A stmte~ S to evaluate 9 (or, simply, a strategy for .s27)is a rooted binary tree

such

(s1)
(s~)
(s3)

(s4)

that

each node of S is an ordered pair [D’, Rn,], where D’ Q D;

the root of S is root(S) = [D, R~];

every internal node [D’, R~] has two children [Dl, RD, I and [Dz, RD, I

where D, and Dz are disjoint and D’ = D1 u D2 (it follows that R~, =

R~, M R~);
the leaves- are of the form [{R}, R], where R E D.

The internal nodes of S are called steps of S. If the children of a step are

[Dl, R~,] and [D2, RD,I, we usually refer to that step as [Dl, R~,] M [D,, R~,].

Intuitively, a strategy indicates the partial order for the evaluation of the joins

in NR. ~ R. It is clear from (S1)–(S4) that a subtree S’ of S is a strategy for

(D’, D’), where root(S’)= [D’, R~]; S’ is called a substmtegy of S.
Since a binary tree with n leaves has n – 1 internal nodes, a strategy for

(D, D) therefore has IDI – 1 steps. If D = {R}, there is only one strategy for &Z,

namely the one with [{R}, R] as the only node; we call this a triLial strategy.

Thus, a linear strategy is one where every step has a trivial strategy as a child.

We say a step [D,, R~,] M [Dz, R~a] uses a Cartesian product if and only if D,

and D1 are not linked to each other. ‘A strategy S uses Cartesian products if and

only if it has a step that uses a Cartesian product. For example, the strategy

(ABC ~ DF) N BCD uses a Cartesian product.
We say S evaluates ~‘s components indil’idua[(y if and only if for each

component E of D, [E, R~] is a step in S. Thus, the strategy (ABC M BE) M DF

evaluates the components of {ABC, BE, DF} individually, but the strategy

(ABC N DF) ~ BE does not.
In practice, query optimizers usually avoid Cartesian products: if D is

connected, only strategies that do not use Cartesian products are considered; if

D is unconnected, an extension of this heuristic would mean that the compo-

nents are evaluated individually, and Cartesian products are not used for each

of the components. Formally, S a~~oids Cartesian products if and only if S

evaluates Q‘s components individually and has exactly comp(D) – 1 steps that

use Cartesian products, where comp(D) is the number of components in $2’.

(Every strategy must necessarily use at least comp(D) – 1 Cartesian products.)
For example, the strategy ((ABC CUBE) M (CG cu GH)) M DF avoids carte-

sian products, but ((ABC M CG) Ml (BE M GH)) M DF does not (although the

latter evaluates components individually).

Optit?udity of Strategies for Multiple Joins 1071

We define the cost 7(S) of a strategy in terms of the number of tuples in the

intermediate and final relation states generated in the evaluation. Let t-(R) be

the number of tuples in R, for any relation state R. We extend ~ to steps by

defining T([D’, R~]) = ~(R~). Thus, if s = [Dl, R~,] H [Dz, R~,] is a step,

then ~(s) = ~(l?~, N R~,); also, ~(R~, N R~,) < dR~,)dR~) for any R~

and R~,, where equality holds if s uses a Carte-sian product. We-further exten d

T to striitegies by defining 7(S) = ~~j%(sl), where k = ID I and S1, ..., Sk_, are

the steps of S. A strategy S is ~-optimum if and only if -r(S) < 7(S‘) for all

strategies S‘ that evaluate the same database as S.

By the finiteness of databases, ~-optimum strategies always exist. Also, if S is

a ~-optimum strategy for (D, D) and S‘ is a substrategy of S, say root(S’) =

[D’, R~], then S’ must be ~-optimum for (D’, D’); otherwise, we can replace S’

by a ~-optimum strategy S“ for (D’, D‘) and thus obtain a new strategy that

contradicts the ~-optimality of S. The replacement here consists of plucking the

subtree S‘, and grafting on S“ in its place. We now formally define these two

operations.

Let S be a strategy, s = [D’, R~i] M [D”, R~i] a step of S, and S~ and S~,

the substrategies such that root(S~i) = [D’, RDI and root(SD) = [D”, R~ 1

(see Figure 1).

Transform S into a new tree T as follows:

(i) if [E, REI is an ancestor of s in S, replace it by [E – D“, R~_~];

(ii) replace the subtree rooted at s by S~.

It is easy to see that the resulting T is a strategy for (D – D“, D – D“). We

say T is obtained from S by plLlcking S~. Conversely, let S and S~ be

strategies for (D, D) and (D”, D“), respectively, where D and D“ are disjoint.

Let SD ~ be a substrategy of S (see Figure 2). Transform S into a new tree T as

follows:

(i) if [E, Rfi] is an ancestor of root(SI)) in S, replace it by [E U D“, RL ~ ~];

(ii) replace S~ by a new subtree whose root has SD ~ and S~ as subtrees.

The resulting T is a strategy for (D U D“, D U D“). We say T is obtained

from S by grafting S~ abo[’e SD.

3. Results

Strategies that avoid Cartesian products are favored by query optimizers; this is

partly based on a heuristic belief that a join on one or more attributes will not

produce more tuples than a Cartesian product. The following condition is a

formalization of this assumption:

Cl(g): Suppose 9 = (D, D). For all disjoint subsets E, El and Ez of D, if each

of them is connected and E is linked to E, but not to Ez, then

dRfi M R~,) < ~(R~ N R~,).

Although this condition is a heuristic assumption, we will see in Section 4
how it can be satisfied if the relations have keys.

It is clear that if Q satisfies Cl(~), then ~‘ = (D’, 53’) also satisfies

C’l(~‘) for any D‘ c D. Our first lemma shows that, essentially, Cl does not

require connectedness of E and Ez.

1072 Y. C. TAY

A
.93 = roOt(S)

\
al

/
81

/’\
.91

//
[D’, R~,] [D’’, RL),,]

A

LL..!ls*,

SDc,

s

+ /(
L3&= rod(l”)

\
4

/
8;

/ ‘h
T

h SD!

FIG. 1. Plucking S~.

~8~AA+~~~A

s T
SDt

SD$,

FIG. 2. Grafting ,S~ above S~.

LEMMA 1. Let ~ = (D, D) be a database satisjjing C1($2), and R~ + ~.

Then for all disjoint subsets E, E, and Ez of D, if El is connected and E is

linked to El but not to E2, we hale T(RE B1R~,) < T(RE ~ R~,).

PROOF

Case 1. Suppose Ez is connected. If E is connected, then the claim is just

Cl(g), so suppose E is unconnected. Let F be a component of E such that F is

linked to E1. By Cl(g), we have ~(R~ CUR~,) s t-(R~ ~ R~,). It follows that

~(R~ iXR~,) = 7(RF ~ R~_~ N R~,) < ~(R~ MR~,)7(R~_~)

< ~(R~ ~ R&(Rfi-~) = 7(RF WREz w R~. F),

since E – F is not linked to F U Ez. Therefore, ~(R~ N R~,) s ~(R~ C4R~a).

Case 2. Suppose Ez is unconnected. Let F be a component of Ez. Since E-is

not linked to F, we have

~(R~ M R~,) < T(RE H RF) from Case 1

< ~(R~ ~R~)~(R~,-F) since R~ # @ implies ~(R~,_~) > 1

= T(RE RR~ ~RE,-F) since Ez – F is not linked to E U F,

so ~(R~ M R~,) < ~(R~ M R~,). ❑

Optirnality of Strategies for Multiple Joins 1073

The condition Cl ensures that avoiding Cartesian products at each step of

the evaluation will always be locally optimum; however, the resulting strategy

may not be globally optimum, as the following example shows.

Example 1. Let R, = AB, Rz = BC, R~ = DE, and RJ = FG. Suppose

R, = {(p, O), (q, O), (r, O), (s,l)} and

Rz = {(O,w), ((l, x), ((), y), (l, Z)},

so T(R1) = I-(RZ) = 4 and 7(RI w Rz) = 10, and suppose ~(R~) = r(RJ) = 7.

One can verify that this database satisfies Cl.

There are three strategies that avoid Cartesian products, namely

and

(R, MR,) H (R, CUR,).

If these strategies are S1, Sz, and S~, respectively, then ~(S1) = ~(Sz) = 10 +

70 + 490 = 570 and ~(S~) = 10 + 49 + 490 = 549. They are not ~-optimum,

because if S1 is the strategy (Rl M R~) M (Rz CdRJ), then ~(SJ) = 28 + 28 +

490 = 546, which is less than the other three, so the ~-optimum strategy does

not avoid Cartesian products. ❑

However, a slight strengthening of the condition Cl is sufficient to prove that

a linear strategy that is ~-optimum must necessarily avoid Cartesian products.

The stronger version of C1 is as follows:

C{(9): Suppose &Z = (D, D). For all disjoint subsets E, El and E2 of D, if each

of them is connected and E is linked to E, but not to Ez, then

~(R~ W R~,) < ~(R~ M R~,).

This condition has a consequence analogous to Lemma 1.

LEMMA 1‘. Let 9 = (D, D) be a database satisjjing C’,(9), and R~ # ~.

Then, for all disjoint subsets E, El and Ez of D, if El is connected and E is

linked to E1 but not to Ez, we have T(RE cu R~,) < T(RE M RE,).

PROOF. The proof is similar to that for Lemma 1. ❑

THEOREM 1. Let ~ = (D, D) be a database where D is connected and

R~ # ~. If S7 satisfies C’;(~), and S is a linear strategy for 9 that is ~-optinmnz,

then S does not use Cartesian products.

PROOF. Suppose S uses Cartesian products. Let s be the last step in S to

use a Cartesian product, that is, all ancestors of s in S do not use Cartesian

products. (Note that s cannot be the root since D is connected.) Since S is

linear, let the children of s be [E, R~] and [{R ‘}, R ‘], and the parent of s be

s’ = s N [{R”}, R“] (see Figure 3).

By the definition of s, {R”} must be linked to E u {R’}, so either {R’} is

linked to {R”} or E is linked to {R”}.

Case 1. Suppose {R’} is linked to {R}. Then transform S into another

strategy TI by plucking the trivial substrategy for ({R’}, {R ‘}) and grafting it

1074 Y. C. TAY

FIG. 3. Transforming S mto T] and Tz

above the trivial substrategy for ({R}, {R”}) (see Figure 3). Since {R’} is not

linked to E (s uses a Cartesian product), we get 7(R’ N R“) < ~(R’ M R~) by

Lemma 1’. Now,

7(S) – ~(Ti) = T(R’ HR~) – 7(R’ C4R”) > 0,

so dT1) < 7(S). This contradicts the assumption that S is ~-optimum.

Case 2. Suppose E is linked to {R}. Then transform S into another

strategy TL by exchanging the positions of [{R’}, R‘] and [{R”}, R“] in S (see

Figure 3). Since E is not linked to {R’}, we have ~(R~ H R“) < ~(R~ ~ R’) by

Lemma 1‘. Thus,

T(S) – T(7’2) = ~(R~ WR’) – ~(R~ NR”) > 0,

so 7(Tz) < 7(S), again contradicting the ~-optimality of S,

We conclude that s does not exist, that is, S does not use Cartesian prod-

ucts. ❑

In other words, Theorem 1 says that under the given conditions, a linear

strategy that uses Cartesian products cannot be ~-optimum.

Note that we require D to be connected, since this is the case that is of

practical interest. Also, if R~ = ~, then the evaluation of the database can be

abandoned as soon as an intermediate relation state is null, so we require

R~ # ~. The condition C! in the theorem cannot be relaxed to Cl; this is

demonstrated in Example 3 (Section 4). We now return to condition Cl.

LEMMA 2. Let D = (D, D) be a database satisfiirzg Cl(Q) wit}z RD # cj, and

S a strategy for s7. Szlppose root(S) has children [Dl, R~,] and [DL, R~,]. where
D ~ is connected, D2 is Lulconnectecl, D, is linked to D2, arzal the szlbst+ategy for

(Dz, Dz) el’aluates its components indilidual[y. Then there is a strategy S‘ for @
s14ch that r(S’) s r(S), and root(S’) hos fivo children [D\, R,),l and [D!, R~il

such that D\ is co?z~zected, a~zd cornp(Dj) + comp(Dj) < corzzp(D,) + cornp(Dz).

PROOF. Let SD and SD be the substrategies of S for (D,, D,) and

(Dj, Dz), respectiv~ly. Since D, is linked to Dc, we may assume D{ is linked to

some component E of Dz. Since S~q evaluates its components individually,

[E, R~] is a step of S~,. Let SF be the substrategy of S rooted at [E, R~].

Optimali@ of Strategies for Multiple Joins 1075

[D,,
/8’\8,=p*,RD,

&,] = ts 2

L /\,,
SD. ,(/ /_\

al

//
to [E, RE]

s

Ly\
SE

Fm. 4. Plucking SE and

//”’\8,=[D,,RD,1
/(/\t2’

ts [E,R.B] a;

/\.A

/’/a
t~ 8; = to

SE
SD,

/’/

grafting it above SD,.

Obtain from S a strategy S‘ for 57 by plucking SE and grafting it above SD,

(see Figure 4).
Suppose the parent of [E, l?~] in S is ,sI = [E, R~] cu to. Let the parent of s,

in S be S,+i = S, M t, for i = 1,2, m – 1, where SW,= root(S) (so t,,, _l =

[Dl, RDII and s., _ ~ = [D2, RD21). Similarly, let sj in S’ be to,and the parent of
s: in S’ be s~+l for i = 1,2,m – 1 (so s~ = root(S’)). Then, s; cu [E, R~]

=s, ands~+l=s~~t, fori= 1,. ... l–Nowfori=l, l,. ... m–2,

= T([E, RE])T(S: LXt,) since E is a component of Dz

— 7(RE)T(S; +I)

so

7(s’) = 7(s) – (T(sl) + ““” +T(Sm)) + T([D1, R~,] ~ [E,REI)

1?1– 2

+ ~ (T(s:+,) – 7(s,+ 1))
1=1

Since E is linked to D,, D, is connected, and s, = [E, R~] M to uses a Cartesian

product, we have (by Lemma 1) T([E, R~] ixI [Dl, R~,]) < T([E, Rfi] M to), so

7(s’) < T(s).

Let Dj = D, U E and D~ = D? – E. Then root(S’) have [Dj, RDI] and

[Dj, R~;] as children, where D’l ‘k connected because D, and E are each

connected, and they are linked to each other. Moreover, E is a component of

Dz, so comp(Dj) = comp(D2) – 1, and

comp(D~) + comp(Dj) = 1 + contp(Dz) – 1 < comp(Dl) + comp(Dz). ❑

1076 Y. C. TAY

The above consequence of Cl is useful for transforming strategies (from S

to S‘) while maintaining ~-optimality. When Cl is augmented with the follow-

ing condition Cz, a r-optimum strategy would be drawn into the subspace of

strategies that avoid Cartesian products.

Cz(&Z): Let S7 = (D, D). For all disjoint subsets El and Ez of D, if El is

connected, Ez is connected, and El is linked to Ez, then ~(R~ N R~q)
< 7(R~,) or ~(RE, M RE,) < ~(RE,).

Exai?lple 2. Example 1 shows that Cl does not imply Cz, since 7(RI M Rl)

= 10, which is larger than r(Rl) and dR2).

Now suppose RI = AB, R’l = BC and R’~ = DE. Further, let

Rj = {(l, x), (2, y), (3, Y), (4, y), (5, y), (6, y), (7, y), (8, y)}

and

Rj = {(y, O), (u, O), (v, O)},

so t-(R~) = 8, ~(Rj) = 3, and ~(R~ N Rj) = 7, and let 7(R\) = 2. Then t-(Rj
M Rj) < 7(R;), so Cz is satisfied. However, Cl is not satisfied, since 7(Rj N

R\) >6 = ~(Rj N Rj). Thus, Cz does not imply Cl.

We conclude that C, and Cz are independent. ❑

LEMMA 3. Let ~ = (D, D) be a database satisfying Cl(g) and CZ($2), with

RD # ~, and S a strategy for S. Suppose root(S) has children [Dl, R~,] and

[Dz, Ro, 1, where D1 is unconnected, Dz is unconnected, D1 is linked to Dz, and
the subsirategies for (D ~, D,) and (Dz, Dz) eL1aluate their components individually.

Then there is a strategy S’ for &2 such that r(S’) < r(S), and root(S’) has two

children [D;, R~,] and [D>, R~~] such that comp(D\) + comp(D~) < comp(D,)

+ comp(Dz).

PROOF. Since Dl is linked to Dz, D, must have a component El that is

linked to a component Ez of Dz. By Cz(~), we may assume

If E, is a component of some F c D, then

T(RF M RE,) = T(RE, BIRE, M ‘F- E,)

s T(RE, ~ %)@F-E,)

= @J@F-~,) by (1)

= 7(R~)

since E, is a component of F. (2)

Since the substrategies for (D,, D,) and (Dz, DL) evaluate their components
individually, [El, R~,] and [E2, R~,] must be steps in S, so let S~, and S~, be

the substrategies rooted at [E,, ‘R~,] and [Ez, R&,], respectively. Obtain a

strategy S‘ for ~ from S by plucking SE, and grafting it above SE, (see Figure

5).
Let u, be the parent of [El, R~,] in S, and u,+, the parent of u, in S for

i=l ,.. .,m —l, where u,,, = root(S). Suppose the parent of [EL, R~,] in S is

Optimali~ of Strategies for Multiple Joins

.,,U4YV,

1077

/ \

s /E\ & ‘t

FIG. 5. Plucking S,, z and grafting it above S[~,.

v. = [Ez,R~,] w [E, R~]; let v,+, bethe parent of v, in S for i = 0,..., n – 1,

where u. = root(S). Now let uh = [El, R~,] M [Ez, Z?~,] and u;+ ~ be the parent

ofu~in S’fori= l,..., m – 1; let v{ be the parent of [E, RE] in S’, and U:+ ~
theparent ofu~in S’fori= l,. ... n–l.

Since El is a component of D,, and therefore of the database schemes in u,

for i s m – 1, we have, from (2),

~(u:) = ~(u, N [E2, R~2]j s T(u,) for i=l,...,l–l. (3)

On the other hand, Ez is a component of Dz, so

~(v,) = 7(u: M [Ez,R~,]) = T(v;)T(R~,) > T(u;) for i=l ,. ..,1,1,

(4)

since R~ + @ implies 7(R~a) > 1. Therefore

7(s) – 7(s’) = (T(ul) + . . . +7(um) + 7(VO) + . . . +T(vn_l))

–(T(U’0) + ““” +T(u;l) + 7(v\) + ““” +’T(V; -l))

> –T(ub) + T(vO) by (3), (4) and u~ = u~ = [D, R~]

= ~(R~, W R~) – ~(R~, ~Rz-,). (5)

Since E, is connected and Ez is linked to El but not to E (recall E2 is a

component of Dz), it follows from (5) and Lemma 1 that I-(S) – 7(S’) >0,

that is, 7(S’) < T(S).

Let Dj = D1 U Ez and Dj = Dz – Ez, so [D;, R~i] and [Dj, R~~] are chil-

dren of root(S’). Then comp(Dj) = comp(Dz) – 1 because E2 is a component

of Dz; moreover, comp(Dj) < comp(Dl), so comp(Dj) + comp(Dj) <
conzp(D,) + comp(D2). ❑

Although we are ultimately interested only in connected database schemes,

we need the following lemma for unconnected schemes in the inductive proof

for Theorem 2.

1078 Y. C. TAY

LEMMA 4. Let ~ = (D, D) be a database satisfying Cl(g) and C1(9), with

R~ # ~. There is a ~-optirnurn strategy for .@ that evaluates its components

indioidualiy.

PROOF. We prove the claim by induction on ID 1. If ID I = 1, the claim is

vacuously true, so suppose the claim is true whenever ID I < k, for some k > 2.

Consider any go = (DO, Do) satkfying C’1(S30) and C’2($3~1), R~,, + @, and

ID(,l = k. Let S be a ~-optimum strategy for 9., and [Dl, RDII and [D,, RD, I

the children of root(S). Then, the substrategies for (D1, D,) and (Dz, Dz) must

themselves be ~-optimum, and we may assume (by the induction hypothesis)

that they evaluate the components of (D,, D,) and (Dz, Dz) individually. If D,

is not linked to Dz, then S evaluates the components of 9 individually, as

claimed.

Suppose now that D, is linked to D2. If DO is connected, then S trivially

evaluates Qtl’s components (only one) individually.

If 90 is unconnected, then either D ~ or Dj must be unconnected (since D ~ is

linked to Dz), so suppose Dz is unconnected. By Lemmas 2 and 3, there is a

strategy S‘ for LZfl such that ~(S’) s 7(S), and root(S’) have children [D;, R~,]

and [Dj, R~$] such that conzp(D’l) + conzp(D~) < cmnp(D,) + comp(Dz). Since

S is r-optim-um, this S‘ is also ~-optimum. Applying the induction hypothesis

(on the children of root(S ‘)) and Lemmas 2 and 3 repeatedly in this manner,
we must eventually get a ~-optimum strategy T for &ZO such that the children

of root(T) have between them the least number of components possible,

namely conzp(D,)). That happens when El is not linked to Ez, where root(~) =

[El. RE 1 ~ [E,, R~21, so the components of D,, are also components of El and
E~. By ~he induction hypothesis, we may assume the substrategies for (El, El)

and (Ez, Ez) evaluate their components individually, so T evaluates the compo-

nents of S2T()individually. ❑

Here is the result that says, given C, and Cj, the query optimizer can restrict

the search for an optimum strategy to the subspace of strategies that do not

use Cartesian products:

THEOREM 2. Let S2 = (D, D) be o database where D is connected and

RD + ~. If Q satisfies C,(9) and C2(S?), then there is a ~-optimLan strategy for

S that does not use Cartesian products.

PROOF. The proof is by induction on ID 1. The claim is vacuously true for

ID I = 1, so suppose it is true whenever ID I < k, for some k >2. Consider any

$27(]= (D,), DO) satisfying Cl(=(,) and C2(S70), DO connected, R~,, # o, and

ID,) I = k. Let S be a ~-optimum strategy for ~,, and [Dl, R,,, 1 and [D,, RD21

the children of root(S). Since 47,] is connected, D1 must be linked to Dz.

Case 1. If D, is connected and Dz is connected, then by the induction

hypothesis and the fact that the substrategies for (D ~, DI) and (Dz, Dz) must

also be ~-optimum, we may assume these substrategies do not use Cartesian

products. It follows that S does not use Cartesian products.

Case 2. If D ~ is connected and Dz is unconnected. we may assume that the

substrategy for (Dz, Dz) evaluates its components individually, since we can

always replace it by a ~-optimum strategy that does (Lemma 4). By repeated

application of Lemma 2 and replacing (where necessary) substrategies with

Optimality of Strategies for Multiple Joins 10’79

ones that evaluate components individually, we conclude that there is a

r-optimum strategy S‘ for &70 such that both children of root(S’) have

connected database schemes. By Case 1, the desired strategy exists for go.

Case 3. If D, is unconnected and Dz is unconnected, we may again assume

the substrategies for (D1, Dl) and (Dz, Dz) evaluate their components individu-

ally. By repeated application of Lemma 3, and replacing (where necessaq)

substrategies with ones that evaluate their components individually, we get a

~-optimum strategy for &Z(, such that the root has a child with a connected

database scheme. By Cases 1 and 2, the desired strategy for $Ztl exists. ❑

It follows from Lemma 4 and Theorem 2 that, for any 9 = (D, D) satisfying

Cl(&Z), Cz(&Z) and R~ # ~, there is a ~-optimum strategy for ~ that avoids

Cartesian products.

The ~-optimum strategy in Theorem 2 may not be linear. However, we can

transform it into a linear strategy if we strengthen the condition from Cz to C3,

as follows:

Cj(&Z): Let $Z = (D, D). For all disjoint subsets El and Ez of D, if El is

connected, Ez is connected, and El is linked to Ez, then T(RE ~ R~2)

s T(R~,) and ~(R~, N R~,) < dR~,).

In contrast to Cl and Cz, C’l and C3 are not independent.

LEMMA 5. Let % = (D, D) be a database such that R~ + ~. Then C~(~)

implies C,(9).

PROOF. Let E, El, and Ez be disjoint subsets of D, each of them connected,

and E linked to El but not to Ez. Then

= T(RE~RE2) since E is not linked to Ez,

so $Z satisfies Cl(g). El

Although C~ implies Cl and Cz, Example 5 (Section 4) shows that the

converse is false.

In the next lemma, we say (for convenience) a strategy is connected if and

only if it does not use Cartesian products. Further, we say a strategy S for

database 9 is ~-optimum among connected strategies if and only if S is

connected and 7(S) s T(S’) for all connected strategies S‘ for 9.

LEMMA 6. Let &Z be a database with a connected database scheme. If ~

satisfies Cz(S), then there is a linear strategy for &Z that does not use Cartesian

products, and that is r-optimum among strategies that do not use Cartesian

products.

PROOF. The claim is that there is a linear connected strategy for &Z that is

~-optimum among connected strategies.
Let ~ = (D, D). The proof is by induction on IDI. The claim is obviously true

for ID I = 2. Suppose now that the claim is true whenever ID I < k, for some

k >3. Consider any database ~(} = (DO, DO) that satisfies C~(~()), where Do is

connected and IDOI = k.

1080

T,
(i)

-

Y. C. TAY

A

L-!!SD;
(i,)

s ---+ T,

FIG, 6, Alternates to S,

Let S be a connected strategy for S2{] that is ~-optimum among connected

strategies, and let the children of root(S’) be [Dl, l?,],] and [Dz, R~,]. Since D{)

is connected, D, must be linked to D,.

Case 1. Suppose IDII = 1 or IDZI = 1, say ID1 I = 1, and Sna is the substrat-

egy for (Dz, Dz). Since S is connected, SD, is also connected, so (by the

induction hypothesis) there is a linear connected strategy S~, for (Dj, Dz) that

is ~-optimum among connected strategies. Since SIj, must be T-optimum among

connected strategies, we have ~(S~,) = T(S~,). Replacing SD, by S~l in S, we

thus get a linear connected strategy S‘ for 9(1 that is ~--optimurn among

connected strategies.

Case 2. Suppose ID] I >1 and lD~l >1. Let the children of [Dl, R~,l in S be

[D;, R~] and [D’;, R~{], and the c~ldren of [D,, R~,] in S be [Dj, RDi] and

[D!, R~~l (see Figure 6).
Since D, is linked to Dz, we may assume D; is linked to D!. Since S is a

connected strategy, D ~, Dz, D\, and D! are each connected.
Let S~,, S~,, S~, and s~~ be the substrategies of S rooted at [D,, R*],

[D*, RDJ [D\; RD, ~ and [Dj, R~:l, respectively, and consider the followi;g
alternates to S (see Figure 6): -

(i) T, obtained from S by plucking S~, and grafting it above SD,, and
(ii) Tz obtained from S by plucking S~,, and grafting it above S~~.

Then,

T(T1) – 7(S) = T(R~,, ~ R~,) – ~(R~,) and

7(TZ) – ~(,!i) = ~(R~, ixIR~;) – ~(R~,). (6)

Both TI and Tz are connected strategies, so 7(S) s T(T1) and 7(S) < 7(T2).

It follows that

N R~,) and~(RD,) s ~(R~I, - T(R~,) s ~(RD, N RD;).

If one of these two inequalities is strict, then together with ~(R1),, ~ R~,) s

~(RD,) from CJ(Q()), we get ~(RD,) < T(R~, N RD,l), contradicting C3(~,)).

We conclude that

~(R~,) = T(RD,I IX R~,) and ~(R~,) = ‘(RD, M ‘D>),

Optimality of Strategies for Multiple Joins 1081

so 7(TI) = 7(S) = ~(T~) from (6), that is, T] and Tz are also ~-optimum

among connected strategies.

We can thus transfer a substrategy from either child of the root to the other

while maintaining ~-optimality among connected strategies. By repeatedly

transferring in one direction, we eventually get a strategy whose root has a

child with a trivial substrategy. The result now follows from Case 1. ❑

THEOREM 3. Let D = (D, D) be a dutabase where l) is connected and

R~ # ~. If ~ satisfies C3(@), then there is u r-optimum strate~ for QJ that is

linear and that does not me Cartesian products.

PROOF. Since C? implies Cl (Lemma 5) and Cz, Q therefore satisfies the

conditions of Theorem 2, so there is a ~-optimum strategy S for 91’ that does

not use Cartesian products. Moreover, from Lemma 6, there is a linear strategy

S‘ for 27 that does not use Cartesian products, and that is ~-optimum among

strategies that do not use Cartesian products. Therefore, t-(S‘) s T(S). Since S

is ~-optimum (among all strategies), we get T(S) s ~(S’), so 7(S’) = 7(S). In

other words, we have a linear strategy S‘ for S2 that does not use Cartesian

products, and that is ~-optimum. ❑

4. Application

Although condition Cl is a formal statement of a common assumption,

conditions Cl and Cj are motivated by semantic constraints on data. We now

illustrate how Cz and Cj (and hence Cl, by Lemma 5) can be satisfied in the

presence of such constraints. For the following, we adopt the standard termi-

nology [23].

Suppose the only semantic constraints are functional dependencies, and the

database $2?= (D, D) has no nontrivial lossy joins; there is a polynomial

algorithm for determining whether @ has this property [1]. Now let E, and Ez

be disjoint subsets of D, El connected, E, connected, and E ~ linked to Ez, as in

Cz($3). Then E, and Ez are lossless joins, and so is El U Ez (because El is

linked to Ez). It follows [17] that R~, n R~, is a superkey of R~, or of R~,,

where R~ = u~=~ R. We therefore have ~(R~ ix R~,) s ~(R~,) (in the first

case) or ~(Rfi, txI R;,) < 7(Rfi,) (in the second ~ase). 53 thus satisfies CZ(SZ).

As for C~, suppose ~ = (D, D) is a database such that all joins are on

superkeys, that is, if R1, RL G D and RI n R, # +, then R, n Rz is a su-

perkey of R ~ and of Rl. Observe first that ii K is a superkey of RI, and

RI n Rz # ~, then K is a superkey of R, U Rz. By induction, if E c D and E

is connected, then any superkey of a relation scheme in E is also a superkey of

R ~. Now let El and Ez be disjoint subsets of D, El connected, Ez connected,

and El linked to Ez, as in C$9). Then there are R, 6 El and Rz G Ez such

that R ~ n R ~ + @. By assumption, R ~ n Rz is a superkey of R ~ and therefore

of R~,, since El is connected. But RI n Rz c R~, n Rka, so R~, n R~, is a

superkey of R~, and thus ~(R~ M R&,) s ~(R~,). By sym-metry, dll~, ~ R&,)

< dR~), so @ satisfies Cj(~).

Are tie conditions too restrictive? We give here three examples to illustrate
the necessity of the sufficient conditions in the theorems.

Example 3 (Theorem 1). Consider a database with three relations that

record the sports or games (G) that students (S) participate in, the courses (C)

they take, and the laboratories (L) that courses use. Suppose we have a query

that requires the join of these relations (say, “Do athletes avoid courses

requiring laboratory work?”), and the database state is as follows:

Game Student Student Course Course Laboratory

Hockey Mokhtar Mokhtar PhylOl PhylOl Fermi

Tennis Lin Mokhtar Lang22 Lang22 Chomsky

Lin LltlOl

Lin Hist103

Katina Psch 123

Katma PhylOl
Sundram Phylol
Sun dram Hist 103

All three possible strategies generate the same number (4) of intermediate

tuples, so all are ~-optimum. In particular, (GS M CL) H SC’ is linear and

T-optimum, although it uses a Cartesian product. One can check that the

database violates C;, so Theorem 1 is not applicable; however, it satisfies Cl.

The sufficient condition in Theorem 1 is therefore necessary, in the sense that

C; cannot be relaxed to Cl. ❑

Example 4 (Theorem 2). Consider again the above setting, but with a

different database state, as follows:

Game Student Student Course Course Laboratory

Hockey Mokhtar Mokhtar Lang22 PhylOl Fermi

Tennis Mokhtar Mokhtar Lit104 Lang22 Chomsky
Tennis Lin Mokhtar Phyl 01

Lin PhylOl
Lin Hist 103
Lin Psch123

Katina Lang22

Katina Lit104

Katina PhylOl
Sun dram PhylOl

Sundram Lang22
Sundram Hist103

Let the three possible strategies be S1 : (GS M SC) N CL, Sz : GS N (SC M

C’L), and S~:(GS N CL) H SC. Then T(S1) = 9 + 5 = 14, ~(Sz) = 7 + 5 = 12,

and ~(S~) = 6 + 5 = 11, so S~ is ~-optimum, although it uses a Cartesian

product.’ The database satisfies Cz but not C,; thus, a query optimizer that

restricts its search to strategies that do not use Cartesian products may fail to

find a ~-optimum strategy, if Cl is violated. ❑

For any connected database of three or four relations, one can show that Cl
alone suffices to ensure that there is a ~-optimum strategy that does not use

Cartesian products. We believe that this is not so for larger databases, that is,

Cz is necessary in Theorem 2, because Example 1 (Section 3) shows that Cl

alone cannot ensure there is a ~-optimum strategy that avoids Cartesian

products in the case of unconnected databases. However, a combinatorial

explosion makes it very difficult to construct a counterexample to prove this

point.

Example 5 (Theorem 3). Consider a database with four relations specifying

the majors (&f) that students (S) are in, the courses (C) they take, the

instructors (1) of courses, and the departments (D) instructors are in. Suppose

Optirnali@ of Strategies for Multiple Joins 1083

we need to join these four relations (“How is each department serving the

needs of various majors?”), and the database state is:

Major Student Student Course Course Instructor Instructor Department

Math Mokhtar Mokhtar Phy311 Phy31 1 Newton Newton Phy
Phy Lin Mokhtar Math200 Math200 Newton Lorentz Math
Phy Katina Lin Phy311 Math5 Lorentz Turing Math

Sundram Math5 Math200 Lorentz
Sundram Art 10 Phy411 Einstein

Math200 Einstein

Note that this database violates C~ (e.g., 7(C1 M ID) > 7(Ill)). There is only

one ~-optimum strategy, namely (MS C4SC) CU(C1 N Ill), which is not linear,

although it does not use Cartesian products. Thus, a query optimizer that

considers only linear strategies that do not use Cartesian products may not find

a ~-optimum strategy, if Cj is not satisfied.

One can verify that the database satisfies C, and Cz. This shows that Cl and

Cz do not imply Cj, and that the condition C~ in Theorem 3 cannot be relaxed
to Cz, nor even to Cl and Cz. ❑

If the conditions for the three theorems seem restrictive, then it follows from

their necessity, as demonstrated by the examples, that the assumptions underly-

ing current query optimizers are correspondingly restrictive.

5. Discussion

In this section, we discuss how this work is related to database cyclicity, lossless

joins, and set operations. In the process, we illustrate how our framework for

studying strategies can be adapted in different situations, and list some open

problems. We assume here that the reader is familiar with relational theory.

A strategy S is monotone decreasing if and only if for every step [D ~, l?~,l ~

[D,, R~,l of S, ~(l?~, M RD,) < ~(R~,) and ~(11~, M R~,) s dR~l). Search-
ing for an optimal strategy from among monotone decreasing strategies is a

reasonable heuristic, since such a strategy reduces the size of intermediate

results at every step.

Clearly, a necessary condition for a monotone decreasing strategy to exist at

all is that the final result must be smaller than every relation state; this

condition is not restrictive, since it should usually be the case in practice. By

Theorem 3, if a database 9 satisfies C~(9), then there is a linear ~-optimal

strategy for 57 that is monotone decreasing. Are there more general, or

different, conditions under which there would always be a ~-optimal monotone

decreasing strategy?
Analogously, we define a strategy S to be monotone increasing if and only if

for every step [Dl, R~l] M [Dz, R~,] of S, ~(R~., N R~,) > ~(R~,), and r(R~,

CURIJ,) > ~(R~ ,). Monotone increasing strategies are of interest because any

strategy that does not generate spurious tuples (i.e., every intermediate tuple

appears in the final result) would be monotone increasing. In view of the

relationship between C~ and monotone decreasing strategies, we now consider

a new condition.

CJ(~): Let SZ = (D, D). For all disjoint subsets El and Ez of D, if El is

connected, Ez is connected, and E, is linked to Ez, then ~(R~, M R~,)

> I-(R~l) and 7(R~, N l?~,) > 7(R~,).

1084 Y. C. TAY

We first verify that Cq is satisfiable under some semantic constraint. A

database $7 = (D, D) is y-acyclic if and only if D is -y-acyclic, as defined by

Fagin [7]. (Recently, there is renewed interest in -y-acyclicity because of its

relationship to nested transactions [13].) Two relations (R, R) and (R’, R’) are

consistent [2] if and only if R[R n R’] = R’[R n R’], and S7 is pairwise consis-

tent, or senzijoin reduced [8], if and only if every pair of relations in S2 are

consistent.

Consider now a -y-acyclic, pairwise consistent database ~, and El and El as

in C4(g). Since El U En is connected, (RE , RL,) and (R~,, RI) must be

consistent [7], and ther~fore ~(R~, KI RF) ~ ~(RL,) and 7(R~-, ~ R~.) >

r(R~,). Thus, every y-acyclic, pairwise consistent database satisfies CJ. What

can one say about r-optimality under this condition? For instance, does Cq(9)

imply there is a ~-optimal monotone increasing strategy for L2 ?

As before, a necessazy condition for a monotone increasing strategy to exist

is that the final result R~ must be larger than every R in D. This is not a

restrictive condition for y-acyclic databases, since there is a polynomial algo-

rithm to semijoin reduce such databases [3], and R~ for a y-acyclic, pairwise

consistent database must contain every tuple in every relation state [8].

The condition CJ is satisfiable under a more general form of acyclicity, but

this requires a modification in the meaning of connectedness.

A database ~ = (D, D) is a-acyclic if and only if D is a-acyclic [7]. Every

a-acyclic database can be represented by a join tree [2], or qual tree [8], whose

nodes form D and whose edges connect all relations schemes containing any

given attribute. Now define a nonempty subset E of D to be connected if and

only if there is a join tree for D in which E is connected (i.e., E induces a

subtree), and subset El to be li~zked to Ez if and only if F1 U Fj is connected

for some F1 G El and F2 Q E2. Note that El and E2 may have a common

attribute even if they are not linked to each other.

Now consider an a-acyclic, pairwise consistent database 9. (Bernstein and

Chiu’s reduction algorithm works for a-acyclic databases in general.)

Yannakakis has shown that, for an a-acyclic D, the join dependency N I)

implies every connected (under the new definition) subset is a lossless join [26];

moreover, Goodman and Shmueli have shown that pairwise consistency implies

that R~[R] = R, for all relations (R, R) [8]. These, and the fact that the final

result R~ satisfies the join dependency M D, imply that @ satisfies Cq(D).

What, in the context of a-acyclic databases, can be said about ~-optimality

under CJ? For instance. Yannakakis has a linear strategy for ~—whose every

step is a lossless join—that has polynomial running time with respect to D and

RI], but it is not known if the strategy is ~-optimal.

Osborn has also proposed a strategy that uses only Iossless joins [15].

Assuming the database 57 = (D, D) satisfies a set F of functional dependen-

cies and (1) F is embedded in D, (2) for each X ~ Y in F, X is a superkey of

some R in D, and (3) some R in D is a superkey for u D, then there is a

strategy for @ such that in each step [El, RE,] M [Ez, R~,], Rfil n R~, is a

superkey of either R~ or Rr.
Honeyman has generalized- Osborn’s idea to extension joins [10], in which

R~l f’ Rfia is a superkey of some Y, where Y c R~, – R~, or Y c R~ – Rfi,,

and the jo-in is R~l[X] cu RE or R~,[X] ixI R~,, respectively: where X =’ (R~, n
R~,) U Y. He gave an algorithm to determine, given a set of functional

dependencies, a strategy (if it exists) in which every step is an extension join.

Optirnality of Strategies for Multiple Joins 1085

Whereas Honeyman was motivated by complexity issues when he defined

extension joins, Sagiv [19] used those joins to address some semantic issues: he

argued that the answer to a query, under the representative instance assump-

tion, should be the union of certain relations, each defined by a sequence of

extension joins. (Extension joins are lossless.)

Are these strategies ~-optimal? In general, if we define a lossless strategy to

be one whose every step is a lossless join, then under what conditions would a

lossless strategy be t--optimal?

Condition Cz may provide a starting point to answering this question.

Section 4 already shows that if the database satisfies a set of functional

dependencies that imply Cz, then there is a Iossless strategy that is ~-optimum.

Now observe that in each step [El, R~,) M [Ez, Rfi,] of Osborn’s strategy, we

also have ~(R~ R R~,) < ~(R~) or ~(R~l N R~,) < r(R~,). We have seen
how connected~ess can be red&fined to suit a-acyclicity; is there another

definition that can capture the semantics of extension joins?

Other than redefining connectedness, we can also redefine joins. Consider

the problem of taking the union of several relations, as in Sagiv’s work, where

the optimization centers on duplicate elimination. Here, the database scheme

is a multiset of identical relation schemes, every two of which are therefore

connected. If we define N to be U, then CJ is satisfied. What can one say

about ~-optimal strategies for taking the union of relations?

In the case of intersections, C~ and Theorem 3 are directly applicable. Again,

consider the relation schemes to be completely connected, and define Kl to be

n. Then C~ is satisfied, so by Theorem 3, there is a ~-optimal linear strategy.

In other words, to minimize the number of elements generated in computing

the intersection of sets Xl,. . . . X,l (where (1 ~., X~ # ~), it suffices to con-

sider an evaluation of the form (.. ” ((X@(l) n XH(Z)) n Xe(J n “””) n Xo(,,),

where d is a permutation of 1, ..., n.

ACKNOWLEDGMENT. Long, long ago, in a galaxy far, far away, Nat Goodman

gave me the idea that led to these results. Many thanks to the referees, whose

helpful comments led to a clarification, the introduction of the examples in

Section 4, and the inclusion of Section 5.

REFERENCES

1. AHO, A. V., BEERI,C., AND ULLMAN, J. D. The theory of joins in relational databases. ACM

Trans. Datab. Syst. 4, 3 (Sept. 1979), 297-314.
2. BEERI, C., FAGIN, R., MAIER, D., AND YANNAKAKIS, M. On the desirability of acyclic

database schemes. J. ACM 30, 3 (July 1983), 479-513.
3. BERNQTEIN, P. A., AND CHILI, D.-M. W. Using semi-joins to solve relational queries. J. ACM

28, 1 (Jan. 1981), 25-40.
4. CHRISTODOULAKIS,S. Implications of certain assumptions in database performance evalua-

tion. ACM Trans. Datab. Syst. 9, 2 (June 1984), 163– 186.
5. CHRISTODOULAKIS,S., AND FORD, D. A. Retrieval performance versus disc space utilization

on WORM optical discs. In Proceedings of the 1989 ACM-SIGMOD Itzternational Conference

on Ma?zagernent of Data (Portland, Or., June). ACM, New York, 1989, pp. 306–314.

6. DEWITT, D. J., KATZ, R. H., OLKEN,F., SHAPIRO,L. D., STONEBRAKER,M. R., ANDWOOD,D.
Implementation techniques for main memory database systems. In Proceedings of the 1984

ACM-SIGMOD International Conference on Management of Data (Boston, Mass., June 18-21).
ACM, New York, 1984, pp. 1-8.

7. FAGIN, R. Degrees of acyclicity for hypergraphs and relational database schemes. J. ACM
30, 3 (July 1983), 514-550.

1086 ~. C. TAY

& GOOLJMAN.N., AND SIIMUELI, O. Tree queries. A simple class of relational queries. .4ClIf
Trans. Datab. Syst. 7, 4 (Dec. 19S2), 653–677.

9, GRAEFE. G. Rule-based query optimization in extensible database systems. Ph. D disserta-

tion, Department of Computer Science, Univ of W1sconsm-Madiscm, Madison, Wise.. Nov.
19s7.

10. HONEYW.N,P. Extension lores. In Proccedmg~ of the [ntetmationul Conference on Very Large

Data Bases (Montreal, Canada, Ott). ACM, New York, 1980, pp. 239-244

11. IB,ARAKI, T., ANLJ KAMEDA, T. On the optimtil nesting order for computing N-relational

joins. /lCM Tram Database Syst. 9, 3 (Sept. 1984). 483–502.
12. KRMHN~MURTfW, R., BOR.AL, H., ANDZANIOLO.C. Optlmizatlon of nonrecurswe qucrles. In

Proceedings of the International Conference on Ve~ Large Data Bases (Kyoto, .fapmr. Aug.),

1986, pp. 128–137.

13. LEWNE, M., ANDLOIZOU.G. y-acyclic database schemes and nested transactions. In Nested

Relatlons and Complc~ Olyects w Databases, S. Abiteboul, P. C. Fischer, and H.-J. Scbek. eds.,

Sprmger-Verlag. Berlin, 1989, pp. 313-323.
14. ONO, K., ~N~ LOHMAN, G. M. Measuring the complexity of join cnumeratmr m query

optimlzat]on. In Proceedings of the [nternafm-zal Co?zfererzc e on P’ev Large Data Bases (Bris-
bane, Australia, Aug.). 1990. pp. 314–325.

15. OSBORN, S, L. Normal forms for relational databases Res. Rep, CS-78-06, Dept. of Com-

puter Scicncc, Umv Waterloo, Waterloo, Ont., Canada, 1978.
16. RICHAREISON,J. P., Lu, H., \ND MIKFJLINENLK. Design and evaluation of partillel pipelined

join algorithms. In Proceedings of the 1987 .4 CM-SIGII{OD Itzternatlonal Cotzference on

Management of’ Data (San Francisco, Calif., May 27-29) ACM, New York. 1987, pp. 399-409.
17, RISSANEN,J Independent components of relatmns. ACJf 7%UZS.Dutab Jv.st 2, 4 (Dec.

1977), 31 7–325,

18. ROSENIH.AL,A., DAYAL, U., AND REINER. D. Speeding a query optimlzcr: The pilot pass

approach. Manuscript, 1990.
19. SAGIV, Y. Can we use the universal instance wsumption without using nulls? In Proceedvzgs

of tlze 1981 A CWSIGA{OD International Conference on Manager nerztof Data (Ann Artmr,
Mich., Apr. 29-May 1). ACM. New York, 1981, pp. 108-120.

x), SEIJNGER, P. G., ASTR~H~N, M. M., CH~MBERUN, D. D., LORIE, P. A.. ~NCIf’RICE, T. G.
Access path selection in a relational databme system. In Procceduz~s of tlze 1979 ACM-

SIGMOD Itzternatlotzal Conference on ~lanage~?zenf oj Data (Boston, Mass., May 30-June 1).
ACM, New York, 1979, pp. 23-34.

21. SWAMI, A. Optimization of large join queries: Combmmg heuristics and combinatorial

techniques. In Proceeduzgs of the 1989 A CM-SIGMOD international Conference on Manage-

ment of Data (Portland, Ore., June). ACM, New York, 1989, pp. 367–376.
22, SWAMI, .&, AND GUPT.A., A. Optimizing large join queries. In Proceeding.s of the 1988

,4 CM-,$IGMOD f}zternat~ona[Conference on Managenzenf of Data (Chicago, Ill., June 1-.3).
ACM, New York, 1988. pp. 8-17.

23. ULL~IAN,J. D. Principles of Database and IGa~wledge-Base ,$Ystenzs, vol. 1. Computer Science
Press, Rockvillc, Md., 1988.

24. WE[~NG,K. Y. Query optimization m Office-by-Example. IBM Rcs. Rep. RC1 1571. IBM
T J. Watson Research Center. Yorktown He]ghts, N.Y. 1985.

25, WONG, E , AND YOLISSEFI, K. Decomposition—A strategy for query processing, ACM Trans.

Datab. $vst. 1, 3 (Sept. 1976). 223–241.

26. YANNAKAMS,M. Algorithms for acyclic database schemes. In Proceedings of the lnternattorzal

Confezwlce on Very Large Datu Bases (Cannes, France, Sept.). 1982. pp. 82-94
27. YAO, S. B. Optimization of query evaluation algorithms. ACM Trans Datab. Svst. 4, 2 (June

1979). 133-155.

RECEIVEDNIARCH1990; REVISEDNOVEMBER1990; ACCEPTEDNOVEhlBER1991

Jnurndl of lk A%wml,on fm Vompulrng Machinery. Vol W, No 5, N<wemher IW3

