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ABSTRACT
The problem of localizing in-band wormhole tunnels in MAN-
ETs is considered. In an in-band wormhole attack, colluding
attackers use a covert tunnel to create the illusion that two
remote network regions are directly connected. This ap-
parent shortcut in the topology attracts traffic which the
attackers can then control.

To identify the nodes participating in the attack, it is nec-
essary to determine the path through which victims’ traffic
is covertly tunneled. This paper begins with binary hypoth-
esis testing, which tests whether a suspected path is carrying
tunneled traffic. The detection algorithm is presented and
evaluated using synthetic voice over IP (VoIP) traffic gener-
ated in a network testbed. After that, we consider multiple
hypothesis testing to find the most likely tunnel path among
a large number of candidates. We present a tunnel path esti-
mation algorithm and its numerical evaluation using Poisson
traffic. A main feature of the proposed algorithms is their
robustness against the presence of chaff packets (possibly
introduced to avoid detection), packet loss caused by unre-
liable wireless links, and clock skew at different nodes.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection (e.g., firewalls)

General Terms
Security
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1. INTRODUCTION
Mobile ad hoc networks (MANETs) rely on cooperative

routing protocols in which ordinary nodes work together
to form appropriate routes and forward traffic along them.
The dynamic nature of the network topology mandates that
routes be discovered and maintained continuously. A funda-
mental security issue is that a small number of compromised
nodes may be able to manipulate these protocols to disrupt
traffic throughout the network.

An example is the in-band wormhole attack [19], in which
colluding nodes create the illusion that two remote regions
are directly connected via a single-hop shortcut referred to
as the wormhole link. The apparent shortcut undermines
routing calculations and allows the attackers to attract and
control traffic that would not flow through them otherwise.
If optimally positioned, the attackers may be able to attract
and control a large fraction of the network’s traffic.

The wormhole attack requires two attacking nodes to serve
as a pair of endpoints of the wormhole tunnel, and they
covertly tunnel traffic between the regions by exploiting other
unsuspecting nodes as traffic forwarders. The attack typ-
ically requires one or more colluding attackers that serve
as application-layer waypoints along the tunnel path [19].
These waypoints stabilize the tunnel by breaking the tunnel
path into segments each having a route that is short enough
to be unaffected by the presence of the wormhole link. See
Section 2.1 for the discussion of a specific example.

In this paper, we consider the problem of localizing (i.e.,
identifying) the covert tunnel path based on packet timing
information as a means of identifying the attacking nodes,
especially those that serve as tunnel waypoints. We assume
that one or more of the victim nodes suspect the presence
of a wormhole, and thus initiate a sequence of tests to lo-
calize the tunnel. This process, described below, is based
on the premise that if the forwarded traffic has delay con-
straints (e.g., VoIP and other time sensitive applications),
then transmission times at nodes along the tunnel path ex-
hibit strong temporal correlations, which allow the detection
of the presence of tunneled traffic.

The use of timing information does not need to be ex-
clusive in practice; there may be other sources of evidence
(e.g., the knowledge of packet headers) that can be incor-
porated to enhance the localization performance. In this
paper, however, we will focus entirely on a timing based ap-
proach, motivated by the need to understand the value of
timing in detection and the fact that packet headers and
other auxiliary information may be unavailable due to the
encryption of forwarded traffic.



1.1 Summary of Contribution and Limitations
This paper presents timing-based algorithms for localizing

in-band wormhole tunnels in MANETs. To our best knowl-
edge, the proposed approach is the first directed at identify-
ing covert tunnels in their entirety, including the colluding
relay nodes that are required to prevent wormhole tunnels
from collapsing [19]. Furthermore, it is applicable to both
the self-contained and extended in-band wormholes [19].

As the simplest case, we first present a detection algo-
rithm aimed at determining whether a suspected path is the
true tunnel path. This detector has its origin in [15] but in-
cludes a nontrivial extension to deal with clock skew present
in MANETs. Then, we present a path estimation algorithm
aimed to find the most likely tunnel path among a large num-
ber of candidates. The proposed algorithms are intended to
be used in conjunction with other existing techniques that
detect the likely presence of a wormhole attack and identify
the endpoints of the suspected wormhole link. Our algo-
rithms are intended to validate such suspicion and identify
the correct tunnel path if an attack is present. We describe
a simple conceptual model of how these components can be
integrated into a tunnel localization system. The proposed
algorithms are evaluated using synthetic VoIP traffic gener-
ated in a network testbed and Poisson traffic, and the results
are quite promising. Both algorithms have linear complexity
with respect to the number of samples used.

The proposed algorithms are robust against various prac-
tical networking uncertainties, especially the presence of tim-
ing jitter and chaff packet transmissions. The algorithms
are non-parametric in the sense that they do not require the
knowledge of probability distributions of the timing obser-
vations although some of the analytical results (Theorem 1)
and the numerical results are obtained under specific prob-
abilistic models. Indeed, the synthetic VoIP traffic, used for
evaluation, is generated from a practical emulation system
that implements a suite of realistic networking protocols.

The main limitation of the proposed algorithms is the re-
quirement of persistent measurements and the timing con-
straints. In particular, our algorithms apply to those scenar-
ios in which a relatively long sequence (from 100s to 1000s)
of packets is passed through a wormhole tunnel, and each
packet is subject to a delay constraint at forwarding nodes.
Such limitations make the technique appropriate for time
sensitive applications such as VoIP, but may not be appli-
cable for the detection of tunneling of individual packets.

The use of timing alone also limits the localization per-
formance, which was discussed in [15]. Specifically, the flow
tunneled through the wormhole has to be sufficiently strong.
In other words, a timing-based localization scheme can be
defeated if the attacker artificially inserts a large enough
number of dummy (chaff) transmissions. However, this may
not be a severe limitation because the attacker may not have
control of all nodes in the tunnel, and the transmission of a
large number of dummy packets may reveal the presence of
an attack.

1.2 Related Work
Most existing techniques for detecting wormhole attacks

in MANETs concern out-of-band wormholes, in which at-
tackers connect the purported neighbors via an extra RF
channel or wireline network not accessible to other nodes.
These attacks do not utilize covert tunnels. The concept
of an out-of-band wormhole in ad hoc networks was intro-

duced by Hu [17], who outlines temporal and geographic
countermeasures designed to detect the remote forwarding
of packets. Hu describes packet leashes, which attempt to
restrict the maximum transmission distance of a packet. In
this scheme, packets that arrive through wormhole paths
will be received outside a tightly synchronized time window
and can be treated by the recipient as invalid. Other dis-
tance bounding approaches for out-of-band wormholes are
described by Lazos [20], Khalil [18], and Adjih [5]. Buttyán
[9] proposes techniques for detecting out-of-band wormholes
based on statistical changes to neighbor hop counts and path
lengths. Gorlatova [13] describes the detection of out-of-
band wormholes in an OLSR network [10] by analyzing the
power spectral density of periodic HELLO messages received
from neighboring nodes. If the HELLOs have arrived via a
wormhole, the associated delay, even if quite small, is said
to smear the HELLO message time series. Awerbuch [6, 7]
proposes the On-Demand Secure Byzantine Routing proto-
col (ODSBR), and describes its ability to defend against
various attacks, including out-of-band wormholes. ODSBR
mechanisms do not detect wormholes per se; instead they
detect packet dropping that has been applied to traffic trav-
eling through wormholes.

Research concerning in-band wormholes has focused on
identifying attacking nodes at tunnel endpoints. In-band
wormhole attacks were first described in detail by Kruus
[19]. Kruus proposes detecting these attacks and identi-
fying attackers at wormhole tunnel endpoints by collect-
ing roundtrip packet loss and delay measurements for short
paths throughout the network and regionally correlating those
measurements that are unexpectedly high. Sterne [22] ex-
tends this approach by using opportunistic voting to counter
the threat that Byzantine nodes may deliberately introduce
path measurement errors that act as false accusations against
honest nodes. Zheng [25] also examines the detection of
in-band wormholes by collection of round trip delay mea-
surements but applies more elaborate statistical analysis
techniques to these measurements to distinguish wormhole-
induced delays from network congestion. Unlike our tech-
niques, none of these identifies colluding relay nodes. Fur-
thermore, these techniques are primarily applicable to the
self-contained form of in-band wormhole (see Section 2.1).

The mathematical techniques adopted in this paper be-
long to the family of traffic analysis [12] aimed at draw-
ing inference from timing patterns. The genesis of our ap-
proach may be traced to the seminal work by Donoho et.
al. [11] where the authors provided insights into the use of
timing information to detect stepping stone attacks. It is
Blum, Song, and Venkataraman [8] who provided a mathe-
matically rigorous approach to the detection of a sequence
of packets subject to delay constraints. Their approach is
later generalized by He and Tong [14–16] to deal with the
presence of chaff in the timing measurements. The mathe-
matical theory behind the detection of information flow was
presented in [15] where the fundamental limits of flow detec-
tion using timing measurements and the forms of detectors
are presented. Motivated by [15], this paper provides spe-
cific implementations for the wormhole tunnel localization
in practical MANETs, including a new technique to deal
with synchronization and the tunnel path estimation algo-
rithm. Another relevant technique is the use of the concept
of water marking by Wang and Reeves. See [23] and ref-
erences therein. Such techniques are vulnerable when the



Figure 1: Self-contained In-Band Wormhole

adversary can significantly perturb the timing information,
as it is possible in this case.

1.3 Organization
This paper is organized as follows. In Section 2, we in-

troduce the attack model, the main assumptions adopted
in this paper, the wormhole tunnel localization system, and
the mathematical model of a wormhole attack. In Section 3,
we introduce the algorithm aimed at determining whether a
suspected path is the true tunnel path, and present analyti-
cal and experimental results. Section 4 proposes the tunnel
path estimation algorithm, which finds the most likely tun-
nel path among a large number of candidates, and presents
its numerical evaluation. Section 5 contains discussion about
the results and possible future work. Section 6 concludes the
paper with remarks on its contributions.

2. WORMHOLE ATTACK AND
LOCALIZATION SYSTEM

2.1 An Example of a Wormhole Attack
An example of a self-contained in-band wormhole in a

48-node MANET that uses the OLSR routing protocol is
shown in Fig. 1. This attack involves four attacking nodes
positioned in a roughly rectangular arrangement around the
periphery of the network. These nodes, 101, 102, 103, and
105, are highlighted in the figure by four small surround-
ing squares. The wormhole link created by the attack (the
illusory shortcut) is shown as a dashed blue straight line
between attacking nodes 102 and 105 near the top of the
figure. The wormhole tunnel path is shown in the figure as
a dotted red line connecting four attacking nodes. To make
it appear that nodes 102 and 105 are directly connected,
102 covertly sends into the tunnel copies of all of its out-
going one-hop packets, including OLSR HELLO (neighbor
sensing) messages, other broadcast packets, and forwarded
packets sent to 102’s layer 2 address. This allows such pack-
ets to reach node 105 despite the fact that 105 is more than
one hop from 102. Node 105 similarly copies into the tun-
nel outbound one-hop packets that would reach 102 if these
two nodes were directly connected. This creates the illusion
that nodes 102 and 105 are directly connected and causes
many nodes on the left and right sides of the figure to believe
that the shortest path to the opposite side of the network
is via nodes 102 and 105, and to route their traffic to those
attacking nodes for forwarding.

Attacker nodes 101 and 103, at the bottom left and bot-
tom right, serve as the application-layer waypoints needed
to stabilize routing through the tunnel, as mentioned above.
When node 102 sends a packet into the tunnel, it encap-
sulates the packet and sends it through a tunnel segment
that terminates at node 101, the closest waypoint. Packets
sent into this tunnel segment are addressed at the network
layer to node 101. After a packet emerges from the seg-
ment tunnel at node 101 and is de-encapsulated, node 101
re-encapsulates it and copies into another segment tunnel
that terminates at the next way point, node 103. Similarly,
node 103 pushes the packet through the final tunnel seg-
ment to node 105. Note that nodes along the tunnel path,
other than the colluding waypoints, have no knowledge of
the fact that they are supporting this covert tunnel. For ex-
ample, because of encapsulation, packets forwarded by node
133 (near the bottom of the figure) appear to be ordinary
packets sent by node 101 to 103.

In the extended in-band wormhole attack [19], rather than
copying their own one-hop packets into the tunnel, nodes
102 and 105 copy into the tunnel one-hop packets promis-
cuously overhead emanating from one or more of their real
neighbors. When these packets emerge from the far end of
the tunnel, the receiving attacker rebroadcasts them. This
creates the illusion that the attackers’ own neighbors are
directly connected. For example, nodes 106 (a neighbor of
102) and 109 (a neighbor of 105) will hear each other’s trans-
missions and believe they are directly connected. This form
of wormhole can be used to create a mesh of wormhole links
between their respective sets of neighbors.

2.2 Practical Assumptions
We envision our tunnel localization algorithms as being in-

corporated into a cooperative intrusion detection system [24].
In such a system, nodes throughout a MANET are recruited
to serve as intrusion detection sensors. To support tunnel lo-
calization, we require that each recruited node keeps logs of
recent packet transmission times and destination addresses
and transfer excerpts from these logs on demand to a desig-
nated correlation node when a wormhole attack is suspected.
We also assume that all packet transmission logs, including
those submitted by attacking nodes, are correct. Although a
cooperative intrusion detection system that is deployed op-
erationally must account for the possibility that attacking
nodes may deliberately report erroneous transmission logs,
addressing that threat is beyond the scope of this paper.

To an attacker, the primary value of a wormhole attack is
that it attracts traffic, which the attacker can control at an
opportune time in the future, e.g., by discarding, delaying,
or damaging packets before forwarding them. Consequently,
a wormhole that persists is of greater threat than a wormhole
that exists momentarily or intermittently, because it allows
the adversary to lie in wait. As a result, for the defender, de-
tecting the onset of a wormhole attack immediately is much
less important than detecting continuing wormhole activ-
ity reliably and accurately. In this regard, wormholes and
other attacks on routing protocols pose a different kind of
threat than host-penetration attacks in which a single ma-
licious packet may cause substantial damage and must be
detected immediately. In this vein, we make the simplifying
assumption that a wormhole that poses a significant threat
will persist and that its covert tunnel path will remain sta-
ble for at least one period of sufficient duration to log the
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Figure 2: In-band Wormhole Tunnel Localization System: If attack
is detected, the Attack Alarm block produces suspected tunnel end-
points T1 and T2. Then, the Path Estimation block gives the most
likely tunnel path Pe, and the Validation block checks whether Pe is
being used as a tunnel path and makes a decision.

number of packet transmission events required by our tunnel
localization algorithm.

2.3 Tunnel Localization System
Our conceptual model for an in-band wormhole tunnel lo-

calization system combines our localization algorithms with
other techniques. As illustrated in Fig. 2, the localization
system consists of three functional blocks: Attack Alarm,
Path Estimation, and Validation.

For the Attack Alarm block, we assume that by using
an existing technique, the presence of a wormhole attack
can be detected by victims whose traffic travels through the
wormhole link. For example, victims may be able to tell that
an attack is underway because of the statistical distribution
of round-trip times measured through paths that utilize the
wormhole link [19, 25], the power spectral density of inter-
Hello message arrival times received through the link [13],
or other indicators. We further assume that such techniques
will also identify the endpoints of the wormhole link. For
a self-contained wormhole, which we will focus on here for
simplicity, these nodes are also the tunnel endpoints. So
when an attack is detected, the Attack Alarm block identifies
tunnel endpoints and initiates the Path Estimation block.

The Path Estimation block employs the tunnel path es-
timation algorithm presented in Section 4. Initiated by the
Attack Alarm block, this block estimates the most likely
tunnel path among all possible paths between two suspected
endpoints.

The Validation block receives the tunnel path estimate
from the Path Estimation block, and uses the detection algo-
rithm proposed in Section 3 to check whether the estimated
path is being used as an in-band wormhole tunnel. If the
estimated path is judged to be innocent, then the Validation
block declares ‘no attack’; otherwise, it declares ‘attack’ and
identifies the tunnel path.

In the localization system, the path estimation algorithm
is used earlier than the validation algorithm for a single path.
However, we deal with the single path validation problem
first, in Section 3, because it gives the intuition behind the
tunnel path estimation algorithm.

2.4 Mathematical Model

2.4.1 Notation
The transmission timing at a set of nodes is modeled as

point processes. We use uppercase bold letters (e.g., S)
to denote point processes and the corresponding lowercase
bold letters (i.e., s) to denote their realizations. For a point
process S, we use S(k) to denote the random variable corre-
sponding to the kth transmission epoch, and s(k) its realiza-

tion. Given two realizations of point processes (a1, a2, . . .)
and (b1, b2, . . .),

⊕
is the superposition operator defined as

(ak)∞k=1 ⊕ (bk)∞k=1 = (ck)∞k=1, where c1 ≤ c2 ≤ · · · and
{ak}

∞
k=1∪ {bk}

∞
k=1 = {ck}

∞
k=1. Given a realization s, we use

S to denote the set of elements in this realization

2.4.2 Information flow and Observation Model
We assume that the MANET carries information flows,

and the wormhole attracts certain flows through its tunnel.
We assume that these flows have delay constraints such that
packets of such flows must be forwarded by intermediate
nodes within certain deadlines. The notion of information
flow with a bounded delay constraint can be formally defined
as below.

Definition 1. Let Fi denote the point process correspond-
ing to the transmission epochs at relay node Ri. Then
the sequence of processes (F1, . . . ,Fn) forms an information
flow with bounded delay ∆ if for every realization fi (i =
1, . . . , n), there exist bijections gi : Fi → Fi+1 (i = 1, . . . , n−
1) such that 0 ≤ gi(s)− s ≤ ∆ for all s ∈ Fi.

The bijection gi maps the transmission timing of a packet
in Ri to that of the same packet in Ri+1. The bijection
condition means packet conservation, and gi(s)− s ∈ [0, ∆]
ensures causality and a maximum delay ∆.

In practice, a node can multiplex different traffic in its
transmissions. It can also introduce dummy transmissions
to confuse the intrusion detection system. In addition, if a
packet is dropped in the middle of the path, then the packet
is not a part of an information flow. Therefore, timing traces
at monitored nodes may include an information flow and
some other transmissions to which we refer as chaff noise.

Under the hypothesis that a set of nodes Ri forms a worm-
hole tunnel, the observed transmission epochs Si at Ri will
then be a superposition of an information flow Fi and chaff
noise Wi:

Si = Fi ⊕ Wi, i = 1, . . . , n,
Fi+1 = gi(Fi) i = 1, . . . , n− 1.

(1)

Note that chaff noise is not subject to any constraints on
information flows and can be correlated with the flows.

In this paper, we mainly consider two problems, single
path validation and tunnel path estimation. Their mathe-
matical formulations are given in the beginning of Section 3
and Section 4.

3. SINGLE PATH VALIDATION
This section presents the detection algorithm for the Vali-

dation block, which detects the presence of a wormhole tun-
nel on a suspected path. The algorithm also provides the
intuition behind the tunnel path estimation algorithm pro-
posed in Section 4.

3.1 Single Path Validation Problem
Suppose that we are interested in detecting whether a se-

quence of nodes, R1, R2, . . . , Rn, forms an in-band worm-
hole tunnel. Let Si (i = 1, . . . , n) be the process of transmis-
sion timestamps of node Ri. By observing Si (i = 1, . . . , n)
for some time t (t > 0), test the following hypotheses:

H0 : S1, S2, . . . , Sn are jointly independent
H1 : (Si)

n
i=1 contains an information flow

(2)



We note that the above two hypotheses are not compli-
mentary in general. In general, a flow may travel a subset
of relay nodes, say only R1, R2, and R3. In that case, only
timing at those three nodes would satisfy (1). In practice,
one will need to execute a sequence of the tests of the form
(2), starting with validating first whether R1 and R2 carry
a flow. If positive, we then verify whether R1, R2, and R3

carry a flow and so on.

3.2 Fundamental Limit on Consistent
Detection

Using timing information alone has its limit in detecting
the presence of an information flow traveling through a set
of relay nodes. Intuitively, even for any realization of jointly
independent transmission epochs (H0 in (2)), the decompo-
sition of the form (1) is possible if the rate of the information
flow is sufficiently low. Thus the detectability of the worm-
hole from timing information hinges on the strength of the
flow being sufficiently strong. We therefore need the notion
of chaff-to-traffic ratio (CTR) under H1.

Definition 2. [15] Given the realizations of an informa-
tion flow (fi)

n
i=1 and chaff noise (wi)

n
i=1, the chaff-to-traffic

ratio (CTR) is defined as

CTR(t) ,

n∑

i=1

|Wi ∩ [0, t]|

n∑

i=1

|(Fi ∪Wi) ∩ [0, t]|

,

CTR , lim sup
t→∞

CTR(t)

(3)

where |Wi ∩ [0, t]| is the number of time epochs correspond-
ing to the chaff packets at node Ri within the time period
[0, t] and |(Fi∪Wi)∩ [0, t]| the total number of transmission
epochs at node Ri during the same time.

It was shown in [15] that flows with CTR greater than
a certain value can be hidden to avoid the detection. We
therefore need the notion of Chernoff-consistency [21].

Definition 3. Let δt be a detector that uses all timing data
up to time t. The detector δt is called r-consistent (r ∈
[0, 1]) if it is Chernoff-consistent for all the information
flows with CTR bounded almost surely by r. In other words,
the false alarm probability PF (δt) and the miss probability
PM (δt) satisfy the following:

1. lim
t→∞

PF (δt) = 0 for any (Si)
n
i=1 under H0;

2. sup
(Si)

n
i=1

∈P

lim
t→∞

PM (δt) = 0, where

P = {(Si)
n
i=1 : (Si)

n
i=1 contains an information flow,

and lim sup
t→∞

CTR(t) ≤ r a.s.}.

The consistency of a detector is defined as the supremum
of r such that the detector is r-consistent.

Consistency of the detector is the supremum of the frac-
tion of chaff packets the detector can tolerate. Therefore,
higher consistency means that the detector is more robust
to chaff noise. In what follows, we will present a detection
algorithm and establish its Chernoff consistency.

3.3 Background: Minimum CTR Flow
Detection

The structure of the proposed detector is based on a thresh-

old test on a lower bound ĈTR(t) on the true CTR(t) as
defined in (3). Specifically, the proposed detector takes the
following form

{
declare H0 (no attack) if ĈTR(t) > τ

declare H1 (attack) if ĈTR(t) ≤ τ
(4)

To establish the Chernoff consistency of the above test,
we use the minimum CTR statistics. Specifically, given the
observed transmission epochs (si)

n
i=1, we construct the test

statistic by the following optimization

ĈTR(t) , min
fi,wi:si=fi⊕wi∼H1

n∑

i=1

|Wi ∩ [0, t]|

n∑

i=1

|(Fi ∪Wi) ∩ [0, t]|

(5)

where si = fi ⊕ wi ∼ H1 stands for the constraint that si

carry a flow fi with bounded delay as defined in H1.
We will delay the discussion of the ways of obtaining the

above optimization with a linear complexity algorithm to
Section 3.4. For now, we assume that the above optimization
can be easily obtained and present a theoretical justification
for the detector given in (4).

In [15], assuming that the timing epochs are Poisson pro-
cesses, it is shown that, under H0,

∃ τo ∈ (0, 1) s.t. lim
t→∞

ĈTR(t) = τo almost surely (6)

Furthermore, under H1, if CTR is less than τo almost surely,
then

lim sup
t→∞

ĈTR(t) ≤ CTR < τo almost surely (7)

Therefore, if we choose the detection threshold in (4) as τo−ǫ
with sufficiently small positive ǫ, then the detector is τo − ǫ

consistent. What is left is a way to obtain ĈTR(t) in (5).

3.4 Computation of Minimum CTR
The algorithm that computes the above statistic is first

proposed in [15]. Referred to as Multi-Bounded Delay Relay
(MBDR), this algorithm partitions optimally the received
traces si into the flow components fi and the chaff compo-
nents wi, where the flow components satisfy the bounded
delay constraint. Here we present MBDR assuming first
that there is no timing error in the transmission epoch mea-
surements. MBDR works as follows:

Given the measurements (si)
n
i=1:

1. Match every packet at time t1 in s1 with the first un-
matched packet t2 in [t1, t1 +∆] in s2, conditioned on
that t2 has a match in s3.

2. For i = 2, . . . , n − 1, match the packet ti in si with
the first unmatched packet ti+1 in [ti, ti + ∆] in si+1,
conditioned on that ti+1 has a match in si+2 (assume
every packet in sn has a match).

3. After trying to match all the packets in s1, label all
the unmatched packets as chaff.
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Figure 3: MBDR
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Figure 4: Damage from Clock Skews.

For example, consider the two-hop case illustrated in Fig. 3.
To match t1 ∈ S1, MBDR first tries to find a match for t2.
However, MBDR cannot match t1 to t2, because t2 has no
match in s3. Then, MBDR tries to find a match for t3 ∈ S2,
which is the next unmatched packet in [t1, t1 + ∆] in s2.
Since t3 can be matched with t4 ∈ S3, t1 is matched with t3.
If t3 does not have a match in s3, MBDR will try to match
t1 with the next unmatched packet in [t1, t1 + ∆] in s2. If
there are no more packets left in that interval, MBDR will
label t1 as chaff.

For implementation of MBDR, please refer to Table 5 in
[15]. The complexity of MBDR is O(n2|S1|), which is linear
with repect to the number of observations [15].

3.5 Minimum CTR Detection
with Timing Synchronization

In this section, we introduce Minimum CTR Detection
with Timing Synhronization (MCTRD-TS), an in-band worm-
hole tunnel detection algorithm robust to clock skew.

Clock skew can severely degrade the operation of MBDR.
Fig. 4 illustrates an example of such damage. The empty
circles represent the realizations of an information flow un-
der the perfect clock synchronization assumption, and grey
circles in s2 and s3 represent the measurements with the
presence of clock skew. The arrows show how the clocks of
node 2 and node 3 are different from node 1. Based on er-
rorless measurments, MBDR should claim that there is no
chaff. However, the measurements with timing errors make
MBDR falsely declare that all packets are chaff. This exam-
ple shows the need to take care of clock skew.

Because unrestricted clock skew would make the problem
intractable, we suppose that clock differences between nodes
are bounded by α. Given the measurements with unknown
timing errors, it is impossible to calculate the exact value

of ĈTR(t). However, if the measurements are adjusted ac-
cordingly, we can still use them for detection.

Fig. 5 describes our approach with a two-hop example.
Grey circles are the measurements with timing errors. First,
we increase every timestamp in si by (i − 1)α and denote
the modified measurements by (si)

3
i=1. If S1, S2, and S3

are independent point processes, then so are S1, S2, and S3.

s1

s2

s3

αα

2α2α

(a) Step 1

s1

s2

s3

∆ + 2α

(b) Step 2

Figure 5: MCTRD-TS

Table 1: Minimum CTR Detection with Timing Synhronization
(MCTRD-TS)

MCTRD-TS(s1, . . . , sn, ∆):

for i = 1 : n
for j = 1 : |Si|

si(j)← si(j) + (i− 1)α
end

end

ĈTR← MBDR(s1, . . . , sn, ∆ + 2α)

return

{
H1 if ĈTR ≤ τ
H0 o.w.;

On the other hand, if (si)
3
i=1 were drawn from H1, then the

above adjustment recovers the causality of information flows,
which could have been broken by clock skew. In addition,
it can be easily checked that, after the adjustment, informa-
tion flows satisfy the delay constraint ∆ + 2α. Therefore,
we can regard (si)

3
i=1 as our new measurements without

timing errors, in which transmission delay is bounded by
∆ + 2α. Based on this argument, MCTRD-TS with thresh-
old τ works as follows: Given the measurements (si)

n
i=1:

1. For i = 2, . . . , n, increase every timestamp in si by
(i−1)α. Denote the modified measurements by (si)

n
i=1.

2. Apply MBDR with delay constraint ∆ + 2α to the
modified measurements (si)

n
i=1, and calculate the test

statistic ĈTR(t).

3. If ĈTR(t) > τ , declare H0 (no attack); otherwise, de-
clare H1 (attack).

Implementation of MCTRD-TS is given in Table 1. Its
computational complexity is same as that of MBDR, O(n2|S1|),
which is linear with respect to the number of observations.
The following states the consistency of MCTRD-TS.

Theorem 1. Assume that (Si)
n
i=1 under H0 are Poisson

processes. Let τo be the value to which ĈTR(t) converges
almost surely under H0. Then, for τ less than τo, MCTRD-
TS with threshold τ is τ -consistent.

Sketch of Proof: Denote MCTRD-TS with threshold τ by
δt. Under H0, τ < τo and (6) imply that lim

t→∞
PF (δt) = 0

for (Si)
n
i=1 under H0.



Table 2: Simulation Parameters

n the number of processes

λ the rate of Si (i = 1, . . . , n)

α maximum clock difference

∆ maximum delay

fc CTR of the traffic under H1

Under H1, if CTR ≤ τ almost surely, then (7) implies
that lim

t→∞
PM (δt) = 0. Therefore, δt is τ -consistent.

Furthermore, from theorem 3.2 in [15], it can be shown
that τo is the supremum of consistency we can achieve by
adjusting the threshold of MCTRD-TS.

Theorem 1 characterizes the detection performance and
the limit of MCTRD-TS. Under the Poisson assumption,
we can set τ to be τo − ǫ for small positive ǫ and achieve
(τo − ǫ)-consistent detector. Even in practical situations, τo

in theorem 1 can be a good standard for a threshold. Ex-
perimental results in Section 3.7 address that τo is a lower

bound for ĈTR(t) of VoIP traffic under H0, when t is suffi-
ciently large. Hence, even for VoIP data, setting τ to be τo

gives us a τo-consistent detector.
Suppose that the maximum allowable false alarm proba-

bility κ is given and we aim to minimize the miss detection
probability. If we can acquire a large number of sample val-

ues 1 of ĈTR(t) under H0, we can set τ as follows.

τ , sup{x :The fraction of ĈTR(t) with ĈTR(t) ≤ x (8)

is less than or equal to κ.}

where supremum is taken to maximize the threshold and, in
turn, minimize the miss detection probability.

3.6 Performance Analysis: Simulations
This section presents the simulation results of MCTRD-

TS using Poisson traffic. Table 2 contains the explanation
about simulation parameters. In simulations, Poisson pro-
cesses are used for transmission processes of nodes, and the
transmission delay is uniformly distributed in [0, ∆].

Clock skew uncertainties are represented by independent
and identically distributed random variables U1, U2, . . . , Un,
uniformly distributed in [0, α]. We add Ui to every times-
tamp of the ith node to emulate the effects of clock skews.

Fig. 6 contains receiver operating characteristics (ROCs)
of MCTRD-TS with different number of observations2. When
the number of observations increases, the ROC moves closer
to the upper left corner (i.e., zero error probabilities) as
expected from theorem 1.

3.7 Performance Analysis: Experimental
Results

This section presents the experimental results for MCTRD-
TS in a network testbed.

1Sample values can be collected by applying MCTRD-
TS to many sets of H0 traces. For example, assume that
we have a normal traffic covering a sufficiently long time
interval. Then, we can synthesize H0 traffic, based on the
approximation that traces from disjoint time intervals are
independent. If we are not able to acquire such traffic, we
can instead use a good synthetic traffic model (e.g., renewal
process with heavy tail interarrival time).

2100 packets per node means that MCTRD-TS uses 100
packets per node for each detection trial.
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Figure 6: ROCs of MCTRD-TS with different number of observations:
n = 6, λ = 14, ∆ = 0.5, fc = 0.2, α = 0.1, 10,000 Monte Carlo runs.
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3.7.1 Test Environment
We evaluated MCTRD-TS for wormhole tunnel localiza-

tion accuracy by using it to process data generated in a
network testbed at the Army Research Laboratory (ARL).
The testbed is based on Naval Research Laboratory’s Mobile
Ad-hoc Network Emulator (MANE) [1]. A MANE system
consists of a collection of Linux-based test nodes and one or
more emulation servers that are interconnected via Ether-
net. These systems are logically arranged in a hub and spoke
configuration such that all traffic between test nodes must be
relayed by an emulation server. The emulation servers model
the geographic positioning and movement of test nodes, and
determine whether packets sent between them should be re-
layed transparently or dropped as a function of emulated
distance, transmission power, noise, and other factors.

Our experiment used 12 test nodes equipped with the Fe-
dora Core 3 operating system and the OLSR ad hoc routing
daemon supported by olsr.org [2]. The MANE testbed was
configured to position these nodes in the U-shaped topology
depicted in Fig. 7. Here, the path (2, 6, . . . , 12, 5) can be in-
terpreted as the tunnel path estimate given by the Path Es-
timation block of the localization system. Under H1, nodes
2, 1, 3, and 5 were configured to act as wormhole attackers.
Nodes 2 and 5 were used as tunnel endpoints, with nodes 1
and 3 acting as relays, as explained in Section 2.1.

Each of these nodes runs a wormhole attack tool that uses
the vtun utility [4] to create wormhole tunnels. Tunnels
may be configured to use either unreliable (UDP) or reliable
(TCP) transport layers. Because the cumulative effect of
packet loss over long tunnel path can prevent a wormhole
link from stabilizing, making the attack ineffective, our tests
used TCP-based tunnels.

In addition to the OLSR protocol messages sent between



Table 3: Packet Loss Probability

Link Prob Link Prob Link Prob

2 - 6 0.0006 1 - 11 0.0021 3 - 10 0.0526

6 - 8 0.0012 11 - 7 0.0291 10 - 12 0.0055

8 - 4 0.0007 7 - 9 0.0033 12 - 5 0.0433

4 - 1 0.0318 9 - 3 0.0193

nodes 2 and 5, we created a flow of synthetic application traf-
fic between these nodes. Both kinds of traffic are covertly
forwarded by the attackers through the wormhole tunnel.
To create this traffic, we used NRL’s Real-Time Application
Representative (RAPR) [3]. We configured RAPR to gener-
ate a bursty flow of UDP packets resembling voice over IP
(VoIP) traffic.

3.7.2 Results and Analysis
We evaluated MCTRD-TS using a self-contained in-band

wormhole. However, we anticipate that MCTRD-TS would
exhibit similar performance for a tunnel used in an extended
in-band wormhole.

The objective of MCTRD-TS is to detect the presence of
an information flow in the eleven-hop path (2, 6, . . . , 12, 5).

The experimental setting for each hypothesis is as follows.
Under H0, each node transmits VoIP packets independently
from other nodes. Under H1, node 2, node 1, node 3, and
node 5 are attackers, and they form the eleven-hop in-band
wormhole tunnel described above. Furthermore, as illus-
trated in Fig. 7, a VoIP interference flow having the same
rate as the tunnel flow is injected on the path (8, 4, 1, 11)
thereby making the experiment more realistic. Under H1,
TCP tunnels are created between node 2 and node 1, be-
tween node 1 and node 3, and between node 3 and node
5. As explained in Section 2.1, when the intermediate at-
tackers, node 1 and node 3, receive packets from one TCP
tunnel and send them through the next TCP tunnel, de-
encapsulation and re-encapsulation occur. It was occasion-
ally observed that, during this process, two or more TCP
packets merge into a bigger TCP packet. The effect is simi-
lar to introducing chaff packets.

Observations for detection consist of the timestamps of
TCP/UDP data packets and OLSR control packets. From
every node except node 5, we gather the transmission tim-
ings of every packet with a non-zero length payload, whose
next hop address includes the node’s next hop in the sus-
pect path. From node 5, we collect the timings of received
packets with a non-zero length payload.

In our experiment, the link connectivity is modeled by
the Free Space Path Loss (FSPL) propagation model. In
this setting, every link has a certain packet loss probability.
The packet loss probabilities of one-hop links in the suspect
path are given in Table 3. Note that lost packets will also act
as chaff and, furthermore, will trigger TCP retransmissions.

Fig. 8 is the plot of ĈTRs calculated by MCTRD-TS, un-
der H0 and H1 respectively, using 1,000 packets per node.

The ĈTR value of index i represents the ĈTR calculated
using the ith set of data consisting of 1,000 packets per

node. The uppermost plot is ĈTR values under H0, the bot-

tom one is ĈTR values under H1, and the middle straight
line represents a proper threshold. We can observe that
despite the packet loss and the presence of large amount
of chaff noise, two hypotheses are quite separable. When

more than 2,000 observations per node were used, ĈTRs for
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Figure 8: ĈTR plots of MCTRD-TS: H0 rate = 19.4 packet/sec, H1

rate = 18.2 packet/sec, ∆ = 50ms, α = 40ms, and the number of
observation is 1,000 packets per node.
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Figure 9: ROCs of MCTRD-TS with different number of observations:
∆ = 50ms, α = 40ms. 1,500 Monte Carlo runs for 1,000 packet/node
case, 3,000 Monte Carlo runs for 500 packet/node case, and 15,000
Monte Carlo runs for 100 packet/node case.

two hypotheses were completely separated. When we ran
MCTRD-TS over independent Poisson traffic with the rate

19.4 packet per sec, ĈTRs stayed within [0.75, 0.82] range,

which is much lower than H0 ĈTR values from the syn-

thetic VoIP traffic. This implies that lim sup
t→∞

ĈTR under H0

is much lower when the transmission processes are Poisson
processes. From (6) and (7), we can infer that the detec-
tor is more robust to chaff when used over synthetic VoIP
traffic than Poisson traffic. This argument agrees with the
claim in [15] that the Poisson assumption provides the lower
bound on the actual detection performance.

Fig. 9 contains ROCs of MCTRD-TS with different num-
bers of observations. ROCs are achieved by varying the
threshold of MCTRD-TS from 0 to 1 while computing the
false alarm probability and miss detection probability for
each threshold. The comparison of ROCs shows that a
larger number of observations result in better detection per-
formance.

Table 4 shows examples of setting threshold τ , and the
resulting error probabilities. We employed (8) in section 3.5
with κ = 0.004. There exist errors due to the lack of sample

H0 ĈTR values. From the table, we can see the clear trade-
off between the observation time and detection performance
(also observable in Fig. 9). Note that the observation time
depends on the tunnel stability which is affected by the node
mobility. Thus, we can infer how the mobility of nodes may



Table 4: Error Probability versus the number of observations

number of observations per node τ PF PM

100 0.935 0.006 0.161

500 0.970 0.005 0.026

1000 0.978 0.007 0.003

affect detection performance, noting that tunnel instability
may also degrade the effectiveness of the attack.

4. TUNNEL PATH ESTIMATION
In this section, we present the tunnel path estimation al-

gorithm that is used in the Path Estimation block of the
localization system.

4.1 Tunnel Path Estimation Problem
Let G = (N ,A) be a directed graph representing the

MANET topology, and assume that an in-band wormhole
attack exists. Let N , |N |, and Ri (i = 1, . . . , N) denote
the nodes, where R1 and RN are the tunnel endpoints. (i, j)
is in A if and only if Ri can send packets directly to Rj . By
observing (Si)

N
i=1 for some time t (t > 0), the goal is to find

the true tunnel path (i.e., the path containing an informa-
tion flow) among all possible paths from R1 to RN .

Note that the above formulation assumes that we start
with the correct tunnel endpoints. In practice, the Attack
Alarm block can produce false alarms or identify the wrong
tunnel endpoints. Even in that case, our path estimation
algorithm will still select the most likely path. However, the
path will be proved innocent in the Validation block with
high probability. Hence, we focus on the case in which the
decision of the Attack Alarm block is correct. Although the
clock skew problems can be resolved as in Section 3.5, for
simplicity, we assume that node clocks are synchronized.

4.2 Incremental Optimal Scheduling
Before presenting the tunnel path estimation algorithm,

we introduce a new minimum-CTR calculation method, which
is used as a building block of the path estimation algo-
rithm. Finding the minimum CTR is equivalent to finding
a maximum number of relays. Here, we formally define a
relay as a sequence of timings (ti)

n
i=1, ti ∈ Si, satisfying

ti ∈ [ti−1, ti−1 + ∆], 2 ≤ i ≤ n (i.e., satisfying causality
and the delay bound). Relays (ai)

n
i=1 and (bi)

n
i=1 are said

to be disjoint if ai 6= bi, ∀i. And, a collection of disjoint
relays is said to be order-preserving if for any two relays
(ai)

n
i=1, (bi)

n
i=1, a1 < b1 implies ai < bi, 2 ≤ i ≤ n.

In [15], given the realization of transmission processes,
MBDR is shown to find a maximum number of disjoint re-
lays by finding the earliest 3 order-preserving relays. How-
ever, if we run MBDR for a large number of paths, it be-
comes inefficient in that it cannot reuse the calculation on
the shared paths. For instance, assume that we want to
find a maximum number of disjoint relays for (si)

n
i=1 and

(si)
n+1
i=1 . Then, it is natural to expect that there would be a

way to utilize the calculation on (si)
n
i=1 for the calculation

on (si)
n+1
i=1 . However, in case of MBDR, the calculation on

(si)
n+1
i=1 cannot benefit from the calculation on (si)

n
i=1 due

to its recursive characteristic. To improve this drawback, we

3Given two relays (a1, . . . , an) and (b1, . . . , bn), we say
that (ai)

n
i=1 is earlier than (bi)

n
i=1 if ∃m ≥ 1 s.t., ai ≤

bi for 1 ≤ i < m, and am < bm.

propose a matching algorithm, called Incremental Optimal
Scheduling (IOS), which calculates the CTRs of increasing
paths while benefiting from the previous calculations.

Given the realizations (si)
n
i=1, IOS finds a maximum num-

ber of disjoint relays for each (si)
k
i=1, 2 ≤ k ≤ n, as follows:

1. Set L(i, 1) = {s1(i)}, 1 ≤ i ≤ |S1|, and k = 2.

2. Define L(i, k) to be the set of epochs in Sk which can
be matched4 to at least one element in L(i, k − 1).

3. Find the earliest order-preserving relays for (si)
k
i=1;

first, find the earliest relay containing s1(1), then find
the earliest order-preserving relay containing s1(2), and
repeat this until we reach the last epoch of S1. Based
on the sets L(i, j), 1 ≤ i ≤ |S1|, 1 ≤ j ≤ k, this can be
done by finding minimums of sets (refer to lines 10-29
in Table. 5 in Appendix A).

4. After the matching is finished, calculate ĈTR for (si)
k
i=1.

If the timing s1(i) is contained in one of the found
relays, then remove the epochs in L(i, j), 1 ≤ j ≤
k, which are earlier than the relay; otherwise, make
L(i, j), 1 ≤ j ≤ k, empty.

5. If k = n, terminate; otherwise, k ← k + 1 and go to 2.

After the iteration for k = m is finished, L(i, j), 1 ≤ i ≤
|S1|, 1 ≤ j ≤ m, consists of the epochs t ∈ Sj which can
possibly be an entry of the IOS relay containing s1(i), in the
later iterations. In other words, if t ∈ Sj is not in L(i, j),
then t can never be in the IOS relay containing s1(i) in the
later iterations. In step 4, epochs which no longer have such
possibility are removed from the sets.

IOS attempts to find the earliest order-preserving relays,
which are the same as what MBDR finds 5. The rationale
behind the above paragraph and step 4 is based on two char-
acteristics of MBDR : (i) if s1(j) is not contained in any relay
found by MBDR over (si)

m−1
i=1 , then it is not contained in any

relay found by MBDR over (si)
m
i=1; (ii) if MBDR on (si)

m−1
i=1

finds a relay (ai)
m−1
i=1 and MBDR on (si)

m
i=1 finds a relay

(bi)
m
i=1, where a1 = b1, then ai ≤ bi, 1 ≤ i ≤ m − 1. The

implementation of IOS is given in Table 5 in Appendix A.
The following theorem states the optimality of IOS.

Theorem 2. For any realization (si)
n
i=1, IOS finds a max-

imum number of disjoint relays.

Sketch of Proof: See Appendix B

If we use IOS to find a maximum number of relays for
(si)

n
i=1 and (si)

n+1
i=1 , the calculation for (si)

n+1
i=1 can be effec-

tively reduced by using the sets L(i, j), 1 ≤ i ≤ |S1|, 1 ≤
j ≤ n, resulting from the calculation on (si)

n
i=1. We denote

such calculation by ÎOS(T, L, sn+1) = (T̃ , L̃, C̃TR) , where

T and T̃ are the number of all epochs in (si)
n
i=1 and (si)

n+1
i=1

respectively, L̃(i, j), 1 ≤ i ≤ |S1|, 1 ≤ j ≤ n + 1, are new

resulting sets, and C̃TR is ĈTR calculated for (si)
n+1
i=1 . The

complexity of ÎOS(T, L, sn+1) is O(|S1|(n log n)) (see Ap-
pendix A.). However, if we use MBDR, since it does not
benefit from the previous calculation on (si)

n
i=1, the com-

plexity of calculation for (si)
n+1
i=1 is O(|S1|n

2) [15].

4a ∈ Si+1 can be matched to b ∈ Si iff a ∈ [b, b + ∆].
5It is shown in the proof of theorem 2.
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Figure 10: At each iteration, Ri looks for neighbors which have an
outgoing arc to Ri (Here, A and B.). PA and PB are survivor paths
of A and B calculated in the last iteration, and PA′ and PB′ are their

one-hop extensions toward Ri. If ĈTR of PA′ is lower than that of
PB′ , then Ri sets its survivor path to be PA′ .

4.3 Minimum-CTR Tunnel Path Estimation
Using ÎOS as a building block, we propose a tunnel path

estimation algorithm, called Minimum-CTR Tunnel Path
Estimation (MCTR-PE). The main idea is that every node
saves one survivor path having itself as the end vertex and
R1 as the start vertex. At each iteration, Ri sets its sur-
vivor path to be the best path among one-hop extensions of
its neighbors’ survivor paths (extended by adding Ri as the

end vertex). The path with the minimum ĈTR is regarded

as the best path, where ĈTR for each extension is calculated

by ÎOS. After N iterations, MCTR-PE returns the survivor
path of RN . Fig. 10 illustrates how a node sets its survivor
path at each iteration. The rationale behind MCTR-PE is

that the path with lower ĈTR more tends to contain an
information flow (i.e., more tends to be a true tunnel path).
Given (si)

N
i=1, MCTR-PE works as follows:

1. Let h = 1. For i = 2, . . . , N , let Ii = {j ∈ N|(j, i) ∈
A}. Ri saves one survivor path pi. Initially, p1 = (1),
and pi = (), i 6= 1.

2. For i = 2, . . . , N , save pi into p̂i. And, for i = 2, . . . , N ,
let Ci = {j ∈ Ii| i /∈ p̂j and 1 ∈ p̂j}.

3. For i = 2, . . . , N , if Ci is not empty, make one-hop
extension of each p̂j , j ∈ Ci, by adding i as the end
vertex. Among the extended paths, pick the path with

the minimum ĈTR found by ÎOS. Save the selected
path into pi.

4. Increase h by 1. If h < N , go to the step 2; otherwise,
return the survivor path of RN .

The implementation of MCTR-PE is given in table 6 in
Appendix A, and the complexity 6 is O(|S1||A|N

2 log N).

4.4 Performance Analysis
We tested MCTR-PE simulating the network topology

shown in Fig. 11, where the path denoted by the arrow is
the in-band wormhole tunnel path. There are 60 possible
paths from R1 to R19. We set every node to transmit at the
same rate (4 packets per sec), and the delay constraint is
0.5 sec. A transmission process of a node not on the tunnel
path is independent of all other nodes. Error detection prob-
ability 7 versus the flow strength is plotted in Fig. 12. The

6Total N−1 iterations are excuted, and in each iteration

ÎOS is excuted at most |A| times.
7Error detection probability is the probability that

MCTR-PE chooses a wrong path.

2

3 12

4

13

5

19

14

6

1

15

10
16

8 9

7

17

18

11

Figure 11: Test Topology for MCTR-PE
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Figure 12: MCTR-PE Results: Error Probability versus FCR. For
500 samples/node case, no error occurred for FCR > 0.43. For 100
samples/node case, no error occurred for FCR > 1.5.

ratio
|{flow packets}|

|{chaff noise}|
on the tunnel path, denoted by Flow

to Chaff Ratio (FCR), is used as the metric to characterize
the flow strength. The error detection propability shows an
exponential decay as FCR increases, and when 500 samples
per node are used, it shows reasonably low error probability
even when the flow strength is weak (FCR < 0.5). In addi-
tion, the increase in the number of observations leads to a
significant decrease in the error detection probability.

5. DISCUSSION
While the presented results are encouraging, verifying that

the MCTRD-TS and MCTR-PE algorithms can identify worm-
hole tunnels accurately under more realistic conditions will
require additional research. In particular, MCTR-PE needs
to be tested with more realistic traces than Poisson traf-
fic. Both algorithms should be tested in larger topologies,
with more complex background traffic. In practice, a sus-
pected path may partially overlap with many other flow
paths. Thus, the transmission activities of groups of nodes
along the path may be correlated, even when the suspected
path is innocent. In such situations, the detection of the
tunneled traffic becomes more difficult, and attaining the
detection accuracy in Section 3.7 and Section 4.4 will likely
require increasing the number of observations per trial.

As noted earlier, we have assumed that the tunnel path of
a persistent wormhole attack will remain stable for at least
one period of sufficient duration to allow logging the re-
quired number of packet transmissions, e.g., 100-1000 pack-
ets. While this assumption appears to be a reasonable one
in general, its validity depends on the mobility of the nodes.
Regardless, the performance of MCTRD-TS and MCTR-PE
should be evaluated in the presence of network mobility.



6. CONCLUSION
This paper presents timing-based algorithms for localiz-

ing in-band wormhole tunnels in MANETs, and proposes a
conceptual model for a tunnel localization system that com-
bines our algorithms with existing techniques for detecting
the presence of a wormhole attack. We believe these are the
first algorithms directed at identifying such tunnels in their
entirety, including colluding relay nodes. We have described
their mathematical basis, and presented performance eval-
uations using Poisson traffic and data from a MANET em-
ulation testbed that included synthetic VoIP traffic and an
implementation of a wormhole attack. Simulation and ex-
perimental results indicate that the algorithms exhibit high
accuracy given an opportunity to obtain a sufficient num-
ber of packet observations, and are robust to probabilistic
packet loss, chaff, and clock skew uncertainty, which are key
characteristics of MANET environments.
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Table 5: Incremental Optimal Scheduling (IOS)

IOS(s1, . . . , sn, ∆, t):

1: for i = 1 : 1 : |S1|, L(i, 1) = {S1(i)}. end.

2: for j = 1 : 1 : n− 1, CTR(j)← 0. end.

3: T ← |S1|, k ← 2.

4: While k ≤ n

5: T ← T + |Sk|.
6: for i = 1 : 1 : |S1|
7: L(i, k)← {x ∈ Sk : [x−∆, x] ∩ L(i, k − 1) 6= ∅}
8: end

9: for j = 1 : 1 : k, I(j)← 0, J(j)← 0. end. f ← 0.

10: for i1 = 1 : 1 : |S1|
11: σ ← 0, u1 ← 0.

12: for j = 2 : 1 : k

13: L̂j ← {x ∈ L(i1, j) : x > J(j) and x ≥ uj−1}

14: If L̂j is empty, σ ← 1 and break. end

15: uj ← min L̂j .

16: end

17: If σ = 0

18: I(k)← uk.

19: for j = k − 1 : −1 : 2

20: I(j)← min(L̂j ∩ [I(j + 1)−∆, I(j + 1)]).

21: end

22: for j = 2 : 1 : k

23: L(i1, j)← {x ∈ L(i1, j) : x ≥ I(j)}.
24: end

25: J ← I, f ← f + 1.

26: else

27: for j = 1 : 1 : k, L(i1, j)← ∅. end.

28: end

29: end

30: CTR(k − 1)← T−kf
T

. k ← k + 1.

31: end

32: return CTR

APPENDIX

A. IMPLEMENTATIONS
The implementations of IOS and MCTR-PE are given in

Table 5 and Table 6 respectively. ÎOS(T, L, sn+1) executes
lines 5-30 in Table 5 once for k = n + 1. Let λ be the
maximum among the rates of s1, . . . , sn+1, and assume that

the measurements are ordered. The main steps of ÎOS are
lines 13, 20, and 23. Since |L̂j | ≤ nλ∆ on average, 1 ≤ j ≤
n+1, a single execution of three lines takes O(log n). Hence,

the complexity of ÎOS(T, L, sn+1) is O(|S1|(n log n)).

B. PROOF OF THEOREM 2
MBDR in [15] finds the earliest order-preserving relays,

and it was proved to find a maximum number of disjoint
relays. Let (T n

i (k))n
k=1 be the ith relay found by IOS over

(si)
n
i=1, and (T̂ n

i (k))n
k=1 the ith relay found by MBDR. We

will show that (T n
i (k))n

k=1 = (T̂ n
i (k))n

k=1, ∀i, n.
We use mathematical induction. When n = 2, it is easy

to check that (T 2
i (k))2k=1 = (T̂ 2

i (k))2k=1, ∀i. Assume that

(T n
i (k))n

k=1 = (T̂ n
i (k))n

k=1, ∀i, is true for n ≤ m − 1. Then,

showing (T m
i (k))m

k=1 = (T̂ m
i (k))m

k=1, ∀i, concludes the proof.

The proof for (T m
1 (k))m

k=1 = (T̂ m
1 (k))m

k=1 is given below. For
i ≥ 2, it can be proved in the same manner by using another
induction (i.e., assume the statement is true for i ≤ b − 1,
and prove that it is also true for i = b.).

Since MBDR finds the earliest order-preserving schedules,
T̂ m

1 (1) ≤ T m
1 (1). And, if T̂ m

1 (2) > T m
1 (2), then

T̂ m
1 (1) ≤ T m

1 (1) ≤ T m
1 (2) < T̂ m

1 (2) ≤ T̂ m
1 (1) + ∆

and thus (T̂ m
1 (1), T m

1 (2), T m
1 (3), . . . , T m

1 (m)) is earlier than

Table 6: Minimum-CTR Tunnel Path Estimation (MCTR-PE)

MCTR-PE(s1, . . . , sN , ∆, t):

1: p1 ← (1). T1 ← |S1|
2: L1: |S1| × 1 array, L1(i, 1) = {s1(i)}, 1 ≤ i ≤ |S1|.
3: for i = 2 : 1 : N

4: pi ← (), T1 ← 0 Ii ← {j ∈ N| (j, i) ∈ A}
5: Li: |S1| × 1 array, Li(j, 1) = ∅, 1 ≤ j ≤ |S1|.
6: end

7: h = 1.

8: While h < N

9: for i = 2 : 1 : N

10: p̂i ← pi, T̂i ← Ti

11: L̂i ← Li

12: Ci ← {j ∈ Ii| i /∈ p̂j and 1 ∈ p̂j}.
13: end

14: for i = 2 : 1 : N

15: if Ci 6= ∅
16: for all j ∈ Ci

17: (T̃j , L̃j , C̃TRj)← ÎOS(T̂j , L̂j , si).

18: end

19: j
∗ ← arg min

j∈Ci

C̃TRj

20: pi ← extend(p̂j∗ , i).

21: Ti ← T̃j∗ , Li ← L̃j∗ .

22: end

23: end

24: h← h + 1

25: end

26: return pN

*extend(p̂j∗ , i): 1-hop extension of p̂j∗ , where i is added at its end.

(T̂ m
i (k))m

k=1 contradicting the operation of MBDR. Hence,

T̂ m
1 (2) ≤ T m

1 (2), and similarly, T̂ m
1 (k) ≤ T m

1 (k), 1 ≤ k ≤ m.

Next, we show T m
1 (k) ≤ T̂ m

1 (k), 1 ≤ k ≤ m.

When IOS finds the earliest relay containing T̂ m
1 (1) (i.e.,

runs lines 11-28 of Table. 5), J(j) = 0, 1 ≤ j ≤ m, because

T̂ m
1 (1) ≤ T m

1 (1). Let w be the index such that s1(w) =

T̂ m
1 (1). The fact that (T̂ m

1 (k))m
k=1 is a relay found by MBDR

implies T̂ m
1 (k) ∈ L(w, k), 1 ≤ k ≤ m. This results from the

induction hypothesis and two properties of MBDR: (i) if
s1(w) is not contained in any relay found by MBDR over
(si)

m−1
i=1 , then it is not contained in any relay found by

MBDR over (si)
m
i=1; (ii) if MBDR on (si)

m−1
i=1 gives a relay

(ai)
m−1
i=1 and MBDR on (si)

m
i=1 gives a relay (bi)

m
i=1, where

a1 = b1, then ai ≤ bi, 1 ≤ i ≤ m− 1.
Assume that timings are positive. T̂ m

1 (k) ∈ L(w, k), 1 ≤
k ≤ m, implies u1 = 0, u2 = min{x ∈ L(w, 2) : x ≥ u1} ≤

T̂ m
1 (2), . . . , um = min{x ∈ L(w, m) : x ≥ um−1} ≤ T̂ m

1 (m),

because ui ≤ T̂ m
1 (i) ≤ T̂ m

1 (i + 1), 1 ≤ i ≤ m− 1.
Since none of L(w, k), 1 ≤ k ≤ m is empty, I(m) = um ≤

T̂ m
1 (m), in line 18. And, in line 20,

I(m−1) = min({x ∈ L(w, m−1) : x ≥ um−1}∩[I(m)−∆, I(m)])

The set on the right side is nonempty, and if um−1 ∈ [I(m)−
∆, I(m)], then I(m − 1) = um−1; otherwise, I(m − 1) =

min(L(w, m− 1)∩ [I(m)−∆, I(m)]) ≤ T̂ m
1 (m− 1), because

T̂ m
1 (m−1) ∈ L(w, m−1) and I(m) ≤ T̂ m

1 (m). In both cases,

I(m− 1) ≤ T̂ m
1 (m− 1), and similarly I(k) ≤ T̂ m

1 (k), ∀k.
On the other hand, (I(k))m

k=1 is the first relay found by
ISO, meaning that (T m

1 (k))m
k=1 = (I(k))m

k=1. Hence, T m
1 (k) ≤

T̂ m
1 (k), ∀k. Therefore, (T m

1 (k))m
k=1 = (T̂ m

1 (k))m
k=1.
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