High Level Tools for the Debugging of
Real-Time Multiprocessor Systems.

M. Timmerman, F. Gielen, P. Lambrix.
Dept. of Computing Science
Royal Miltary Academy
Renaissance Av. 30
B-1040 Brussels
Belgium
E-mail: Frank.Gielen@rma-brussels.rtt.be

Abstract

Todays’ real-time systems become ever more com-
plez and multiprocessor hardware starts pervading
many types of equipment. This complezity indicates
that real-time programming has matured into a true
software engineering discipline which demands the
appropriate set of tools for the support of the entire
system lifecycle. Since studies show that debugging
takes about half of the development time it is obvious
that powerful debuggers are needed. The character-
wstics of real-time systems tmpose specific require-
ments on the debugger. The system must be capable
of detecting logical as well as timing errors and the
wmvasive nature of the debugging system must not
alter the temporal logic of the application. We de-
scribe the design and the ymplementation of a de-
bugger for a tightly coupled multiprocessor real-time
system which complies with those specific require-
ments 'This paper emphasizes on the high Ieve?tools
which are necessary for the analysis and the inter-
pretation of the trace data which has been collected
al runtime. Those lools are necessary due to the
high amounts of trace data being collected.

1 Introduction

A debugging session on a real-time multiproces-
sor system is characterized by large volumes of data
which have to be analyzed. Classical debuggers
mainly display the data and leave the job of data
analysis to the software engineer who has to build
a mental model of the system behavior. The job
of converting the raw textual data into information
upon which debugging hypotheses can be made, is
performed by the programmer)
This observation has resulted in an effort tocreate a

distributed debugging system for Unix based work-:

stations which captures and analyses the behavior
and the errors on a real-time shared memory multi-
processor target system. The host system has two
modules for the interpretation and analysis of the
data: a graphical visualizer for the representation
of dynamic information about tasks and processors
and a rule based query system which draws infer-

ences about the real-time behavior of the target sys-
tem. '

The real-time debugging process is a two phase pro-
cess. During the first phase the target system is
monitored and the execution history of the system
is recorded. In this article we will emphasize the
second phase which covers the analysis and the in-
terpretation of the data. '

Qur approach is to consider debugging as a

database application. The debugger uses a rela-
tional database management system with a query
language that is extended with temporal relations.

2 The DARTS project.

2.1 Application Domain.

Qur system, "DARTS”, which is an acronym
for Debug Assistant for Real-Time Systems, is de-
signed for real-time systems which are developped
in a host-target environment. The host system is a
Unix Workstation and the targets are single board
computers on a VMEbus. The workstation and the
targets are connected via ethernet.

2.2 Data Collection.

The debug data on the multiprocessor target is
collected as event traces. Therefore we had to pro-
vide hooks in the runtime system for software probe
procedures that log system level events into a trace
buffer. At present four classes of events can' be
selected for logging: scheduler resynchronization,
system calls, interrupt activity and watchpoints on
shared resources. Once a buffer is filled it is trans-
mitted to the host system while the target system
continyes with another buffer. The design and the
implementation of the event trace systermn were the
subject of previous publications [1,2{ -

2.3 The Visualizer. !

The Visualizer is the front end module on the

host system which interacts with the user and pro-
vides the following functions. . }

Session Control enables the user to establish a con-
nection with the target system and to cortrol the

151

operation of the debugger server on the target sys-
tem. "

The Monitor gives a graphical representation of the
activities on the target system. This includes sched-
uler resynchronization and multiprocessor load bal-
ancing operations per processor, processor selection
and activation per task and the occurrence of sys-
tem events. It offers the possibility to visualize the
system activities in a suspicious region which has
been identified with the query system.

The Filter options allow the user to refine his hy-
pothesis set about the real-time bug by increment-
ing the level of detail of the collected data and by
increasing the selectivity of the trace options.

The Data Recorder controls the input stream to the
host system. The visualizer can acquire data in real
time from the target system or it can replay a pre-
viously recorded session.

3 The Rule Based Query System.

3.1 Temporal Logic.

As a temporal framework for the reasoning about
the dynamic behavior of real-time systems, we use a
temporal logic. Temporal logics allow us to reason
about the development of a world in time, and en-
able us to discuss how situations change due to the
passage of time. The runtime behavior of a real-
time system can be seen as a sequence of states
that undergo transformations determined by the

rogram’s instructions and by external stimuli. We
ll;ave selected a temporal framework based on pred-
icate calculus. Properties of the world are extended
with a supplementary parameter representing time.

3.2 Implementation.

We have chosen Prolog as the implementation
language Prolog is a programming language based
on predicate calculus. It provides the adequate
mechanisms to represent the time-extended pred-
icates as well as to declare the temporal relations
between time intervals (such as before, after, dur-
ing ...) l}3] Using Prolog we are also able to model
knowledge from different sources in a uniform way.
For instante, data flow didgrams from the design
phase as well as the event stream captured at run-
time ¢an be described-with Prolog programs. More-
over, Prolog can be used as a query language and as
3 verification tool by the user. - Qur system parses
the raw event stream from the target into a set of
Prolog facts.

3.3 Source Code Tracking.

During a debugging session the programmer uses
hypothéses about the source code and the system
design and receives event,traces from the target sys-
tem. The event traces do not contain any symbolic
information. Since the programmer uses this infor-
mation for the modification of his set of hypotheses,
symbolic analysis must be an integral part of the
debugger. In non real-time systems we can direct

‘the compiler to produce additional symbolic infor-

mation for the purpose of source level debugging.

This solution is not acceptable for real-time appli-
cations since in that case we affect the code gen-
eration of the compiler. Most available compilers
can only produce symbolic information if they do
rot optimize the code. It is clear that this can have
significant influence on the temporal logic of the
real-time system. We have tried to build a system
that allows source level debugging without altering
the executable code.

The system is based on control flow analysis where
we try to match the sequences of system events
which occur at runtime with sequences of system
events inferred from the source code. The main idea
is to extract, on the basis of the source code and the
semnantics of the runtime system, all the information
concerning the sequences of system events that may
be generated.

In a first step the real-time program is analyzed
in two stages: a language dependent front-end and
a back-emf generator of Prolog clauses. The front-
end can be considered as part of the compilation
system. It parses the source code and gathers all the
information which is useful for the source code con-
trol flow analysis. This includes information about
system events and information about control state-
ments. This information is then transformed into a
list of Prolog terms of the form :

sequence(SC,SL).

The SC is a source context, while SL is a source
list.
The basic unit for control flow analysis is a task.
The analyzer first isolates the tasks within the
source code module and starts the analysis at the
task level.
The source context SC is a Prolog list denoting a
articular sequential piece of code. For instance,
ﬁfl.?,loop?,taskl] is the source context of the sec-
ond branch of the first if-statement within the sec-
ond while-statement of task ’taskl’. The control
flow statements are labeled by the code analyzer in
order to obtain an explicit context name. The if-
statement receives the selection context label 'ifl’
and the while loop is labeled as iteration 'loop2’.
The source context of a task changes upon entering
the body of a subprogram, a branch of a selection
and the body of an iteration.
The source list SL is a Prolog list which represents
for a particular source context the sequential list of
system events and control flow statements in that
source context. The elements in a source list may
point to sub-contexts, who in their turn have source
lists. These elements are predicates of the following
types.

o service calls (suc). These denote the parts
in the source code which explicitly perform
straight-line system calls.

o selections (select). Selects denote the compos-

ite source contexts where one out of several
possibilities can be chosen (if, case). They

152

http://crossmark.crossref.org/dialog/?doi=10.1145%2F174266.170489&domain=pdf&date_stamp=1993-12-01

point to sub-contexts containing the branches
of the selection

tterations (loop). Parts of the source which can
be executed a number of times, depending on
a boolean condition are denoted by 1terations
As with the selects, the loops point to sub-
contexts, which are the bodies of the 1terations

o subprogram calls (user-call). A user subpro-
gram corresponds to a function or procedure
call at the application level. The call itself does
not invoke the runtime environment The user-
call points to a context which is the body of the
called subprogram

runtime (library-call). We also have calls to
functions or procedures which are language h-
braries or syntactic language constructs that
unwind in a series of system calls for their
implementation. Library-calls point to tables
containing explicit knowledge about the run-
time executive.

Using pointers to sub-contexts we obtamn a h-
erarchy of source contexts Unfolding the source
list of a particular source context 1n the proper way
gives us all the possibilities of sequences of service
calls generated by the code of that source context.
The code for an individual task taskl 1s represented
by SL which satisfies sequence(taskl, SL) and the
possible expansions of the elements in SL.

For each service call we store the symbolic pa-
rameter information, together with the return value
parameter and the line number information For
each other element 1 a source list we keep also the
line number information.

Having gathered this information, we match it
with an event trace. During the second phase we
process the sequence of event traces received from
the target system We classify the service calls of
the event traces per task and find the corresponding
source code. Per task the source code and the event
traces can be matched at the service call level. We
use the following rules:

o A service call in a source list matches a service
call n the trace, if they have the same name
and if the values of the (command dependent)
relevant parameters are the same
However we allow for the possibility that not all
parameter values are available from the trace

A selection n a source hst matches a part of a
trace if one of the branches matches that part
of the trace

An 1teration 1n a source list matches a part of
a trace 1if the body of the iteration matches 0
or more times that part of the trace

(In our implementation we try to find the max-
imum number of iterations first.)

A user-call in a source list matches a part of
a trace if the subprogram body matches that

part of the trace.
(In our implementation we do' not yet allow re-
curstve functions which contain service calls.)

For runtime contexts we use a table-driven ap-
proach For each library function we have hsted
the different possibilities of sequences of service
calls 1n a table such that we can prefer the oc-
currence of specific sequences:

a hibrary-call in a source list matches a part of a
trace if one of the preprocessed table sequences
for that call matches that part of the trace.

As a result of the matching we have per task a
trace/source sequence of service calls with for each
service call the place of occurrence in the source
code, the parameter-value pairs (with ’not available’
for the values for which the trace does not provide
any information), the time stamp and the processor
on which the service call was performed

In most cases a unique relation between the
source and the event stream is found. In some cases
several possibilities remain. The user must add this
to his set of hypotheses and use other means to nar-
row the suspicious region.

In our implementation we included an extension
to cope with the problem of incomplete information
at the boundaries of a trace. We allow to start the
matching at a specific line 1n the source code (for
incomplete information at the beginning of a task)
and to stop the matching at a specific place in the
trace (for never-ending tasks, such as cyclic tasks).

In the last step the original Prolog fact base is
replaced with a new fact base which contains sym-
bolic information and hne numbers The user can
now query this fact base at a high level Possi-
ble queries are for instance, to find all or the nth
system event in a particular task, or to-find all in-
stantiations of the system event on a specific line in
the source, or to find the corresponding create-start
pairs for a particular task.

3.4 Temporal Distorsion.

The debugger is only useful when the temporal
distorsion introduced by the event trace functions
does not alter the schedulability of the set of tasks
of the apphications A set of tasks which s schedu-
lable before the insertion of trace functions must
remain schedulable with event trace functions. Al-
though only a few real-time languages make suffi-
cient provisions for schedulability analysis, the an-
alyzer offers the possibhiity to determine the worst
case overhead per task which is introduced by ev-
ery trace function As the event trace functions
are written in assembler, the mstruction execution
tume can be computed in a table-driver fashion as a
function of the opcode and the addressing mode and
the processor rate of the application. This method
gives us the worst case time distortion per task In
order to have an estimation about the total tem-
poral distortion per task the individual distorsions
must be added to the distortion of other kernel level
trace functions: scheduler trace functions, interrupt
trace functions and vanable trace functions. With

153

this wformation we can evaluate the inference of
the trace functions with the real-time requirements
of the system.

4 Feasibility Demonstration.
4.1 Real-Time remote procedure calls.
The application which we will use for the feasibil-
ity demonstration is a multiprocessor system with
hard real-time as well as soft real-time deadlines
which uses remote procedure calls between proces-
sors for the scheduling of work requests. We empha-
size on the development of an interprocessor com-
munication protocol in support of those real-time
remote procedure calls. The case study covers the
implementation of the transmitter. The system is
temporal fault tolerant, which implies that 1t has to
be able to recover from a missed deadline
One of the processors is set up as a master front-
end processor for handling all interactions with the
external world The management of all peripheral
hardware is the responsibility of the front-end pro-
cessor and all possible interrupts have to be redi-
rected to 1t. The other processors in the system are
res&arved resources for the execution of application
code.
Upon the arrival of an external event the global
scheduler, executing on the front-end processors,
sends a work request to any of the available appl-
cation processors where some work has to be per-
formed The work request is characterized by a
hard-real time deadline. If the deadline cannot be
met the system exhibits a mode change and con-
tinue to operate in a degraded soft real-time mode
until it regains the ability to guarantee hard real-
time deadlines. The remote procedure calls are
to be categorized as real-time remote procedure
calls (RT-RPC) because the timeliness of the client-
server action has to be guaranteed.
Using the RT-RCP the front-end processor, which
1s the RPC chent, defines the deadline. This spec-
ifies how long the front-end processor 1s willing to
wait for the result.
In the hard real-time mode the RT-RPC fails 1if the
application processor cannot provide a reply before
the deadline or, in case of the soft real-time mode,
before a certain time after the deadline
In the RT-RPC protocol which we use for this study,
the communicating entities exchange a request, an
acknowledgement and a result message Figure 1
shows an example of the message flow in a two pro-
cessor system The front-end processor sends out
a request message with two deadlines, D, and Dj;.
One of the servers tries to send out an acknowledge-
ment to the front-end before the acknowledgement
deadline, D,.
If the server can handle the request 1t tries to de-
Iiver the request before the result deadline Dy.
The front-end only continues in hard real-time
mode if the acknowledgement from the server is re-
ceived before the first deadline. The server in his
turn only sends out the acknowledgement if both
deadlines can be met. In all other cases the hard
real-time operation mode fails and the front-end

1o - processor t

1%
T T
\
[s et
] 4]
1 + T } B Processor 2
. ™

l €

Figure 1° RT-RPC messages

front-end nppication
procesaor processor
y - 1
oy
Tranmwnactar Receiver
" T ¢ " ”4 1“'
I Tranmmasion Medkim —l

Figure 2: The layered model for RT-RPC.

processor shifts the entire system to the soft real-
time fall back mode

In the soft real-time mode the front-end processor
waits for an acknowledgement even if 1t arrives after
the first deadline and it waits for the result if the ac-
knowledgement is received before the second dead-
line. Only in the case where no acknowledgement is
received before the second deadline, the front-end
processor reports failure We concentrate on the
communication protocol layers that allow a smooth
shift between the hard and the soft real-time oper-
ation modes. The Stenning protocol which is the
subject of the next section 1s very well suited for
this type of problems

4.2 The Stenning Protocol.

Figure 2 depicts a typical situation for protocol
specification: two protocol entities communicate via
a medium 1n order to provide some service. The
service provided by the protocol entities will be re-
ferred to as the upper layer service, the service of
the underlying medium 1s the lower layer service
The Stenming protocol works as follows (figure 2)

At the transmitter each data umt from the upper
layer, Upper Data Unit or UDU, is associated with a
unique sequence number The UDU is sent repeat-
edly to the medium until an acknowledgement with

154

the corresponding sequence number arrives. At the
reciever end the UDUs are delivered to the upper
layer service requester in the order of the sequence
number.

For each data unit received from the medium, Low
Data Unit or LDU, the receiver sends back an ac-
knowledgement with the corresponding sequence
number.

The Stenning protocol can be used to support the
operation mode shift of the RT-RPC service in the
following way. The retransmission period for the
UDU over the medium equals the first deadline of
the system. If an acknowledgement arrives before
the expiration of this period, the system continues
to operate in hard real-time mode and no retrans-
mission of the UDU will occur. If on the other hand
the acknowledgement does not atrive before the ac-
knowledgement deadline then the transmitter con-
tinuously outputs the request again until the second
deadline expires.

The use of the formal design method FOCUS is ap-
plied to the Stenning communication protocol [4).
In the FOCUS ‘trace formalism actions are used to
model the service primitives. The specifications are
predicates on the actions and yield a set of possible
action trace sequences.

After the stepwise refinement the specification of
the transmitter contains the following real-time
predicate: p an q denote sequences of actions of
the system and k is a sequence number.

Yp € Act” :p‘opu‘tT k,d) =>
3g € Act* : poputy(k,d) o g o getr(k,d)
‘ and #v/@g < N

The hard real-time predicate specifies that if the
transmitter puts an LDU to the medium (puty
(k,d)) then at the most N units of time may have
elapsed before the acknowledgement has arrived
(getr (k,d)). This is the formalization of the hard
real-time requirement of the real-time remote pro-
cedure calls. ‘ ‘
Predicate calculus propositions can be translated
into a clausal form which closely resembles Prolog
clauses. We use this property and present the pred-
icate in an appropriate format for our purpose.

getT(Data, K, T1) : —
putT(Deta, K, T2),T1 > T2.

maz._duration(K,N): —
CputT(., K, T1),getT(- K,T2),T2 < T1+ N.

The first clanse indicates that the occurrence of
an acknowledgement is implied by the fact that a
packet has been sent out to the medium.

The second clause states that the acknowledgement
occurs within a predefined timeframe.

4.3 Implementation.

The Stenning protocol has been implemented on
a shared memory system with two processors: the
front-end processor and a second processor that
handles the work request. The program is writ-
ten in C and uses the services of MTOS-UX for the
communication between the processors.
During the execution of the program, the software
probes for the scheduler monitor and the system call
monitor are active. The debugging system verifies
the system’s execution history against the real-time
constraints. In order to do this, a number of trans-
lations are necessary.
The first translation converts the raw event stream
into a number of Prolog fact bases. Figure 3 shows
part of the fact base for the system calls after the
translation. Every entry of the fact base has the
following relation scheme:

svc(SysﬁemCall,CallingTask,
ArgList, TimeStamp,Processorld).

The major inconvenience with this representa-
tion is that the arguments are still in machine for-
mat and that the events are not related to the source
code. Therefore we compare the event stream with
the output of the source code parser and add line
numbers, context information and symbolic infor-
mation. This produces a new fact base with cm
facts (cm stands for context match). ' The Prolog
relation scheme is given by:

cm(TaskContext,(LineNumber SymbolicTrace)).

The SymbohcTrace is an updated version of the svc
facts with line numbers and symbolic information.
CallingTask has been replaced by a more complete
CallingContezt . This is shown in figure 4 which
contains some of the corresponding cm-facts for the
svc-facts of figure 3.

The interpretation of this information is as follows.
Event | matches the MTOS-UX sndmbx system call
in task clni at line 126. It can be found inside a
loop which has been assigned the label loop by the
source code analyzer. The list of arguments is pre-
sented as a set of couples: the first element is the
symbol name in the source code, the second ele-
ment holds the runtime value. The litteral na in
the second field means that the runtime value is
not available. Certain events have no line number
information. This means that the évent trace has
not been generated directly by a statement in the
source code but that it was called indirectly from
a library module. In this case the context informa-
tion points to the part of the code which called the
library function. For the second event this was a
malloc call inside the subprogram add_to_queue.

For the next translation step we analyze the source
code and write the rules that transform a sequence
of source code events into a sequence of higher level
actions. The rules are implemented in Prolog and
we apply them to the cm-fact base. We now obtain
a set of action lists, which match the abstraction

155

level of the specification phase.

If the action alphabet is the same as the action al-
phabet of the trace specification formalism, we are
able to verify the specification predicates on those
action lists. Figure 5 shows how it was possible
to detect the packets which needed retransmission
during a certain interval, using this method Ac-
cording to the specifications this implies that the
system has missed a hard real-time deadline at that
moment

As a matter of fact we observe that for all elements
of the list the acknowledgement time is less than 200
milliseconds (Da), while request 4 only receives an
acknowledgement after 379 milliseconds.

4.4 Latency Error.

The first example shows how the combination of

the graphical system and the Prolog fact bases en-
ables the software engineer to detect a latency error
in the communication system. The error condition
can be summiarized as follows.
The transmitter task sends a data packet to proces-
sor two. Although processor two is in a wait state it
takes 60 milliseconds before the receiver task starts
processing the packet (figure 6). Moreover, if we
examine the same situation at other moments we
see that the latency delay is arbitrary but never
higher than 100 milliseconds. In some cases this
phenomenon even the tr itter to miss
the acknowledgement deadline and trigger a mode
change, even though the second processor was the-
oretically capable of doing the work request.

The origin of this problem is the implementation
of the wait state in the scheduler of MTOS-UX. If
a processor has no work to do, it halts itself and
waits for the next clock tick.

In order to localize this bug both the graphical sys-
tem and the query system were necessary. The
query system was asked to give the instants of all
putT actions. With this timing information we can
scroll and zoom into the appropriate time interval
on the graphical system. At that moment, the vi-
sualization of the tasking activity on the processors
shows us that there exists an abnormal delay be-
tween the end of the transmitter (xmtr) and the
start of the receiver (revr).

4.5 Deadline Miss.

The second example demonstrates how the Pro-
log system can be used to detect the messages which
have not been acknowledged within a predefined
time frame. It is direct application of the verifica-
tion of the hard real-time predicate of section 5.2.
From the moment that we obtain the action list
with the appropriate sequence numbers, the verifi-
cation of the hard real-time predicate is straightfor-
ward. We use the following Prolog procedure:

max.duration(Number, Da):-putT(Number,T1),
getT(Number,T2), T2 < T1 4 Da.

This Prolog procedure is almost identical to the
clausal representation of the real-time predicate in
section 5.2 The Prolog procedure can be used to
generate all the sequence numbers of actions that
satisfy the predicate or it can verify an action with
a particular sequence number

5 Conclusion.

We have presented a debugging system that cap-

tures the dynamic behavior of a system as an event
stream.
The uniform representation of the different sources
of knowledge about the real-time system (event
stream, design, source code and human expertise,
...} allows us to reason about the faulty behavior of
the system with a hypothesis set which integrates
elements from the different phases of the life cycle.
This work is an improvement over existing debug-
ging systems because it carries an explicit notion
of time and because the data collection in the tar-
gets has a limited and deterministic influence on the
real-time behavior of the system.

References

(1] TIMMERMAN M., GIELEN F., The Design
of DARTS: A Dynamic Debugger for Multipro-
cessor Real Time Applications., Proceedings of
the 3th EuroMicro Workshop on Real-Time Sys-
tems, IEEE CS Press, 1991.

[2] GIELENF., 4 debugger for mulliprocessor real-

time applications, Ph. D. thesis, Free University
of Brussels, forthcoming, 1993. '

{3) LE DOUX C.H., PARKER D.S. Jr., Sauving
Traces for Ads Debugging., Ada in Use, Pro-
ceedings of the Ada International Conference,
Cambridge University press, 1985.

[4] DENDAFER C., WEBER R., Development and
Implementation of a Communication Protocol -
An Egercice in Focus, Sonderforschungsbereich
342, Technische Universitiat Miinchen, 1992.

MTOS-UX is a registered trademark of
Industrial Programming, Incorporated.

156

OOOND OB WN -

svc(send_to_mailbox,'clnt’, [24656820,16'd6e0,0],18280.39, 1).
svc(allocate_memory, 'xmtr’, [-1,24,16°d494],18280.77, 1).
svc(pause,’clnt’,[167402],18281.33, 1).

svc(send_to_mailbox,’xmtr’, [24656728,16%17a5908,0],18282.64, 1).
svc(receive_from _mailbox, 'xmtr’, [24656820,16’17a5808, 16 'd4dc],18282.97, 1).
svc(pause, 'rcvr’, [167101],18320.31, 2).

: svc(send_to_mailbox, 'rcvr’, [24656820,16'17a5a08,0},18420.31, 2).

: svc(receive_from_mailbox,’rcvr’, [24656728,16°17a5a08,16°d2e4],18420.67, 2).
: svc(free_memory, 'xmtr’,[-1,24,16°17a5b00],18440.43, 1).

Figure 3 System call Prolog fact base.

1: cm(clnt, (126,svc(sndmbx, [loop4,client],
[(output_gate,24656820), ('ktest_packet’,55008),(’0L’,0), ('&status’,na),
(32768,na)],18280.38,1, [return_status]))).
2: em(xmtr, (x,svc(alloc, [’malloc_if1.1’,malloc,add_to_queuel,

[(’-1L',-1),(alosiz,24), (’&aloadr’,b54420),(0,na)l,18280.77,1,[
3: cm(clnt, (124,svc(pause, [loop4,client], [(1026,1026)]1,18281.33,1,[

nN.
D).

4: cm(xmtr, (74,svc(sndmbx,[’i£10.1’,7if4.2°,lo0pl,transmitter],
[(pipe_out,24656728), (pipe_output,24795400),(’0L’,0),(’'&status’,na),
(32768,na)],18282.64,1, [return_status]))).

Figure 4: Traces with line numbers and symbolic information.

actions([snd(20300), snd(22320),

snd(24340),

snd(26360), snd(28381)]).

actions([put7(20301), putT(22321), putT(24342), putT(26361), putT(28392)]).
actions([getT(20441), getT(22440), getT(24540), getT(26740), getT(28540)]).

actions{[retransmit (26560)71).

Figare 5 Action lists derived from event traces

gotR (zk>)
WA VR Processor 2
1180 1220
IEES Processor
1120
puty (<kd>

Figure 6: Graphical representation of the scheduler activity

Permission to copy without fee all or part of this matenal i1s
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
titte of the publication and 1ts date appear, and notice I1s given
that copying 1s by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

e 1993 ACM 0-89791-633-6/93/0012.. $3 50

157

Developing Parallel Applications
Using High-Performance Simulation

Eric A. Brewer
William E. Weih!
MIT Laboratory for Computer Science*

Abstract

Researchers already use high-performance simulatorsfor
algorithm development and architectural studies. Ad-
vances n simulation technology and workstation perfor-
mance have made program development on top of simula-
tors — debugging, testing, and some tuning — fast enough
for real applications. Simulators provide many advan-
tages over running directly on a multiprocessor, including
versatility, trivial repeatabnlity, and detailed nonintrusive
data collection and debugging. We make the case for
application development via simulation and address sim-
ulation’s traditional disadvantages. We also propose a
development methodology that integrates simulation into
the multiprocessor development environment. Finally, we
examine the software engineering issues required by this
integration and the use of parallel simulators for devel-
opment.

We believe that most multiprocessor application de-
velopment should be done on top of a high-performance
simulator (running on a workstation) rather than directly
on the multiprocessor. Researchers already use these
high-performance simulators for algorithm development
[CBDW91], architectural studies [HM92], and language
and compiler design ([WBC*+91, HWW93]. The primary
advantages of development via simulation are the cost
effectiveness of workstations, the ability to exploit pow-
erful sequential debuggers, the support for nonintrusive
data collectton and 1nvariant checking, and the versatility
of simulation.

Although traditional multiprocessor simulators are too
slow to run real applications, high-performance simula-
tors, including TangoLite [DGH91], RPPT [CDJ*91],
and our own system PROTEUS [BDCW91], achieve orders
of magnitude speedup over traditional stmulators; typical
development simulations take only a few minutes. The
rapid increases in workstation performance will continue
to diminish the turn-around time.

*E-mail brewer@®lcs.mit.edu This work s supported by the Na-
tional Science Foundation, grant CCR-8716884, by DARPA, Contract
N00014-91-J-1698, by an equtpment grant from Digital Equipment Cor-
poration, and by grants from AT&T and IBM Enic Brewer 1s supported
by an Office of Naval Research Fellowship The views and conclu-
sions contained in this document are those of the authors and should not
be merpreted as representing the official policies, either expressed or
imphed, of the U S government

Although we designed PROTEUS to explore algorithms
and language 1ssues, our experience and that of other
users indicates that development is easier and faster
with PROTEUS than with real multiprocessors. For ex-
ample, Colbrook found that the development of novel
search-tree algorithms was about six times faster us-
ing PROTEUS compared to the previous development of
search-tree algorithms on a transputer-based multiproces-
sor [Col, CBDW91], even though the algorithms devel-
oped on PROTEUS were far more complex. Furthermore,
a typical symulation took only about a minute and pro-
duced higher quality measurements. Although our data
comes from PROTEUS, the methodology applies to high-
performance simulation in general.

After discussing high-performance simulators in Sec-
tion 1, we make the case for application development via
simulation We discuss the advantages and disadvantages
of development on simulators 1n Sections 2 and 3, and
then propose a methodology in Section 4. We change
gears starting with Section 5, where we examine the is-
sues that arise given this approach to development. These
issues include simulating from a log, extending sequen-
tial debuggers, and ensuring source-code compatibility
between the simulator and the target multiprocessor. Fi-
nally, in Sections 6 and 7, we address development on a
concurrent simulator and summarize our conclusions.

1 Background

Traditional multiprocessor simulators interpret one
instruction at a time. This allows arbitrary accu-
racy at tremendous cost. Such simulators typically re-
quire around 200 instructions per simulated 1nstruction
[CLN90], although the fastest versions (with less accu-
racy) can achieve 2040 instructions per simulated in-
struction for uniprocessor architectures [Bed90].

High-performance simulators like PROTEUS and Tan-
gol.ite use direct execution to improve performance Most
simulated instructions are mapped to host instructions and
thus approach zero overhead. Typically, assembly lan-
guage basic blocks must be augmented with code that
tracks the passage of simulated time, so these simulators
have a lower bound of about two 1nstructions per simu-
lated instruction in practice. Early uses of direct execu-
tion for simulation include work by Fujimoto [FC88],

158

