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ABSTRACT 
Vision-based user interfaces enable natural interaction modalities 
such as gestures.  Such interfaces require computationally 
intensive video processing at low latency. We demonstrate an 
application that recognizes gestures to control TV operations. 
Accurate recognition is achieved by using a new descriptor called 
MoSIFT, which explicitly encodes optical flow with appearance 
features. MoSIFT is computationally expensive — a sequential 
implementation runs 100 times slower than real time. To reduce 
latency sufficiently for interaction, the application is implemented 
on a runtime system that exploits the parallelism inherent in video 
understanding applications. 

Categories and Subject Descriptors 
C.3 [Computer Systems Organization]: Special-Purpose and 
application base systems. D.2 [Software] Software engineering.  

General Terms 
Algorithms, Performance, Design. 

Keywords 
Parallel Computing, Cluster Applications, Multimedia, Sensing, 
Stream Processing, Computational Perception. 

1. INTRODUCTION 
Video is becoming ubiquitous in daily life and the rate at which 
video is being generated has accelerated demand for machine 
understanding of rich media. Systems for processing video have 
been traditionally evaluated according the accuracy with which 
they can recognize events of interest, and the rate at which data 
can be processed. However, as interactive video applications 
become more prominent, latency is becoming increasingly 
important. Latency directly impacts many applications because 
they require that the results of video understanding be  

  
Figure 1: Setup of TV/camera for gestural control system. 

 
made immediately available to the user. Examples of latency-
sensitive applications include surveillance scenarios where the 
operator must be quickly alerted in an emergency, and vision-
based user interfaces or immersive environments where even 
moderate latencies unacceptably degrade the user experience. 
There has been extensive research on frame-rate processing of 
video, but simply achieving the desired throughput does not 
necessarily lead to any improvement in latency. A major barrier 
to widespread deployment of video understanding algorithms has 
been their computational expense. For instance, current methods 
for recognizing human activities in surveillance video typically 
involve spatio-temporal analysis such as computing optical flow 
and 3D SIFT descriptors at multiple scales for every frame in a 
high-resolution stream. Fortunately, the increasing availability of 
large-scale computer clusters is driving efforts to parallelize video 
applications. The majority of these efforts, such as MapReduce 
[9] and Dryad [11], focus on efficient batch analysis of large data 
sets; and while such systems accelerate offline indexing of video 
content, they do not support continuous processing. A smaller set 
of systems provide support for continuous processing of 
streaming data [1, 3, 8] but most focus on queries using relational 
operators and data types, or are intended for mining applications 
where throughput is optimized.  

Our demonstration application involves a situation where the 
television set is actively observing the viewers all the time.  This 
enables any viewer to control a TV’s operations, such as channel 
selection and volume, without additional devices such as remote 
controls, motion sensors or special clothing, simply by gesturing 
to the TV set. We demonstrate an implementation of a low-
latency gesture recognition system that processes video from a 
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commodity camera to identify complex gestures in real time and 
interpret them to control the TV set. Detailed examples of 
different user gestures used in our interface can be found at 
http://lastlaugh.inf.cs.cmu.edu/MIR10Demo and Figures 1 - 3. 
While this demo uses a commodity webcam, our proposed 
approach can be applied to video from depth-enhanced cameras 
that will soon become available.  Such sensors offer increased 
resiliency to background clutter, and initial reports indicate that 
they are well suited for natural user interfaces [16].  

Our demonstration allows any user standing or sitting in 
front of a TV set to control its operations through gestures. The 
TV is equipped with a camera that observes the users watching 
the programs. When a user gives an ‘attention’ signal by raising 
both arms, the control application then observes this user more 
carefully for a few seconds to recognize a control command. 
Examples of control commands can be hand and arm motion 
upward or outward, as well as crossing hands/arms. In the current 
interface, e.g., a left hand moving upwards indicates a channel 
should be switched up, a left hand moving outwards signifies that 
the channel should be switched down. Analogously we use the 
right hand to control the volume of the audio. Crossing gestures 
are used to shut off the TV.  User tests showed that downward 
motions cannot be effectively executed by seated users; therefore 
we avoided downward motions in the current gesture command 
set.  

In this demonstration, we highlight two novel aspects of our 
human-activity recognition research.  First, we employ a novel 
and robust descriptor called MoSIFT, which exploits continuous 
object motion explicitly calculated from optical flow and 
integrates it with distinctive appearance features. Although 
computationally more expensive, this approach significantly 
outperforms state-of-the-art approaches [12, 14, 18] on standard 
action recognition data sets [7]. These results validate our belief 
that the added computational complexity of sophisticated 
descriptors is warranted.  

Second, we utilize a cluster-based distributed runtime system 
called Sprout that achieves low latency by exploiting the 
parallelism inherent in video understanding applications to run 
them in interactive time scales.  In particular, although 
straightforward sequential implementations of MoSIFT can 
process relatively small collections of videos, such as the popular 
KTH dataset [21], they cannot process data at the speed required 
for the real-world applications that are the primary focus of our 
research. Our system implements the computationally 
challenging, but highly accurate MoSIFT descriptor on top of the 
Sprout runtime, and parallelizes execution across a cluster of 
several 8-core machines, to detect TV control gestures in full-
frame-rate video with low latency. 

2. ACTIVITY RECOGNITION IN VIDEO 
Activity recognition forms the core of video understanding 
systems for interactive applications. In this section, we briefly 
review current approaches to the problem and describe a feature 
representation, MoSIFT, that we employ in our system for 
extracting semantic content to control TV operations. This 
descriptor matches (or exceeds) state-of-the-art descriptors in 
terms of recognition accuracy on established action recognition 
datasets and has performed well on the challenging Gatwick 

airport surveillance collection. These experiments validate our 
decision to use MoSIFT in this demonstration.  

 
Figure 2: User gesturing “Channel Up”. 

Current approaches to action recognition in video are 
typically structured as follows: (1) identify a set of semantically-
interesting regions in the video; (2) characterize the spatio-
temporal neighborhood at each interest point as a feature vector, 
which is often quantized using a codebook; (3) aggregate the set 
of features extracted in a video snippet to generate a histogram of 
their occurrence frequencies; (4) treat this histogram as a high-
dimensional vector and classify it using a machine learning 
technique trained on human-annotated video sequences. 

Interest point detection reduces video data from a large 
volume of pixels to a sparse but descriptive set of features. 
Ideally, an interest point detector should densely sample those 
portions of the video where events occur while avoiding regions 
of low activity. Therefore, our goal is to develop a method that 
generates a sufficient but manageable number of interest points 
that can capture the information necessary to recognize arbitrary 
observed actions. Popular spatio-temporal interest point detectors 
[10, 13] are spatio-temporal generalizations of established 2D 
operators developed for image processing, such as the Harris 
corner detector. Although mathematically elegant, these 
approaches treat motion in an implicit manner and exhibit limited 
sensitivity for sooth gestures, which lack sharp space-time 
extrema [12]. By contrast, the philosophy behind the MoSIFT 
detector is to treat appearance and motion separately, and to 
explicitly identify spatially-distinctive regions in a frame that 
exhibit sufficient motion at a variety of spatial scales. 

The information in the neighborhood of each interest point is 
expressed using a descriptor that explicitly encodes both an 
appearance and a motion component. We are not the first to do 
this; several researchers [14, 20] have augmented spatio-temporal 
representations with histograms of optical flow (HoF). However, 
unlike those approaches, where the appearance and motion 
information is separately aggregated, MoSIFT constructs a single 
feature descriptor that concatenates appearance and motion. The 
former aspect is captured using the popular SIFT descriptor [15] 
and the latter using a SIFT-like encoding of the local optical flow. 
MoSIFT is a superset of the Laptev et al. detector [14] since 
MoSIFT not only detects velocity changes but also smooth 



movements. Additional implementation details of MoSIFT are 
given in our technical report [6]. 

 
Figure 3: TV view of the user gesturing to control operations 

We adopt the popular bag-of-features representation for 
action recognition, summarized as follows: Interest points are 
extracted from a set of training video clips. K-Means clustering is 
then applied over the set of descriptors to construct a codebook. 
Each video clip is represented by a histogram of occurrence of 
each codeword (bag of features). This histogram is treated as an 
input vector for a support vector machine (SVM) [8], with a Chi-
Square kernel [22]. Since the SVM is a binary classifier, to detect 
multiple actions we adopt the standard one-vs-all strategy to train 
separate SVMs for multi-class learning. 

While MoSIFT significantly improves activity recognition, 
the gain in accuracy is computationally expensive because it not 
only scans though different spatial scales but also calculates 
corresponding optical flows. A straightforward implementation of 
MoSIFT would exhibit unacceptable performance in terms of 
throughput and latency. On a single processor computing all the 
MoSIFT descriptors in a standard definition video stream would 
take 100 times slower than real time. With a naively parallelized 
implementation in which frames are processed in a pipelined 
fashion, the system would incur a delay of more than 2.5 seconds 
between an activity and a result action.  

3. A PARALLEL IMPLEMENTATION OF 
GESTURE-BASED TV CONTROL 
Our application is implemented on the Sprout runtime system, a 
distributed stream processing system designed to enable the 
creation of interactive perception applications [19]. Interaction 
requires low end-to-end latency, typically well under 1 second [4, 
5, 17]. Sprout achieves low latency by exploiting the coarse-
grained parallelism inherent in such applications, executing 
parallel tasks on clusters of commodity multi-core servers. Its 
programming model facilitates the expression of application 
parallelism while hiding much of the complexity of parallel and 
distributed programming.  

Sprout applications are structured as data flow graphs. The 
vertices of the graph are coarse-grained processing steps called 

stages, and the edges are connectors which represent data 
dependencies between stages. The data flow model is particularly 

well suited for perception, computer vision, and multimedia 

processing tasks because it mirrors the high-level structure of 
these applications, which typically apply a series of processing 

steps to a stream of video or audio data. Concurrency in the data 
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Figure 4 illustrates our application flow.  
flow model is explicit — stages may execute in parallel, 
constrained only by their data dependencies and the availability of 
processors.  

Figure 4 illustrates our application data flow. Each video 
frame from a camera that observes the user is sent to two separate 
tasks, face detection and MoSIFT detection task. The incoming 
frame is duplicated (Copy stage) and sent to two different stages 
which initialize tasks. The face detection task starts from a scale 
stage (Scaler) which scales the frame to a desired size. The tiling 
stage (Tiler) is an example of coarse-grained parallelization. The 
tiler divides each frame into configurable number of uniformly 
sized overlapping sub-regions. The tiles are sent to a set of stages 
to be processed in parallel. The tiler also generates meta-data that 
includes positions and sizes of the tiles, for merging the results. 
The face detected in the scaled frame is de-scaled via Descaler 
stage to recover the resolution. The face detection result is then 
sent to the display stage to display and a classify stage which will 
further fuse face detection result with MoSIFT features to detect 
gestures. The MoSIFT detection task accumulates frame pairs, 
and then extracts MoSIFT features that encode optical flow in 
addition to appearance. These features, filtered by the positions of 
detected faces, are aggregated over a window of frames to 
generate a histogram of their occurrence frequencies.  The 
histogram is treated as an input vector to a set of support vector 
machines trained to detect gestures in video streaming. These 



processes are included in Classify stage. The gesture detection 
result is further sent to TV control stage to perform associated TV 
controlling. 

4. CONCLUSIONS 
Efficient and automatic processing of streaming video content at 
low latencies is critical for a large class of emerging applications 
in surveillance, gaming, intelligent environments and vision-based 
user interfaces. Our novel representation for video content 
(MoSIFT) significantly improves the accuracy of human activity 
recognition but it is so computationally expensive that naive 
implementations on a single processor are impractical for 
complex real-world video control and gaming applications. Thus, 
we developed a novel method for leveraging clusters of multi-
core processors to significantly improve latency and throughput. 
This method exploits both the coarse- and the fine-grained 
parallelism inherent in the algorithm. The system enables video 
understanding algorithms to process streaming video for a wide 
variety of applications, such as gestures for TV control described 
here. In future work, we plan to extend the approach to work with 
depth-augmented video to improve the robustness of our system. 
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