
Controlling Your TV with Gestures
Ming-yu Chen1, Lily Mummert2, Padmanabhan Pillai2,

Alex Hauptmann1, Rahul Sukthankar2,1

1 Carnegie Mellon University
School of Computer Science

Pittsburgh, PA 15213
+1 412 268 1448

{ mychen,alex,rahuls}@cs.cmu.edu

2 Intel Labs Pittsburgh
 4720 Forbes Ave, Suite 410

Pittsburgh, PA 15213
+1 412 297 4020

{lily.b.mummert,padmanabhan.s.pillai}@intel.com

ABSTRACT
Vision-based user interfaces enable natural interaction modalities
such as gestures. Such interfaces require computationally
intensive video processing at low latency. We demonstrate an
application that recognizes gestures to control TV operations.
Accurate recognition is achieved by using a new descriptor called
MoSIFT, which explicitly encodes optical flow with appearance
features. MoSIFT is computationally expensive — a sequential
implementation runs 100 times slower than real time. To reduce
latency sufficiently for interaction, the application is implemented
on a runtime system that exploits the parallelism inherent in video
understanding applications.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose and
application base systems. D.2 [Software] Software engineering.

General Terms
Algorithms, Performance, Design.

Keywords
Parallel Computing, Cluster Applications, Multimedia, Sensing,
Stream Processing, Computational Perception.

1. INTRODUCTION
Video is becoming ubiquitous in daily life and the rate at which
video is being generated has accelerated demand for machine
understanding of rich media. Systems for processing video have
been traditionally evaluated according the accuracy with which
they can recognize events of interest, and the rate at which data
can be processed. However, as interactive video applications
become more prominent, latency is becoming increasingly
important. Latency directly impacts many applications because
they require that the results of video understanding be

Figure 1: Setup of TV/camera for gestural control system.

made immediately available to the user. Examples of latency-
sensitive applications include surveillance scenarios where the
operator must be quickly alerted in an emergency, and vision-
based user interfaces or immersive environments where even
moderate latencies unacceptably degrade the user experience.
There has been extensive research on frame-rate processing of
video, but simply achieving the desired throughput does not
necessarily lead to any improvement in latency. A major barrier
to widespread deployment of video understanding algorithms has
been their computational expense. For instance, current methods
for recognizing human activities in surveillance video typically
involve spatio-temporal analysis such as computing optical flow
and 3D SIFT descriptors at multiple scales for every frame in a
high-resolution stream. Fortunately, the increasing availability of
large-scale computer clusters is driving efforts to parallelize video
applications. The majority of these efforts, such as MapReduce
[9] and Dryad [11], focus on efficient batch analysis of large data
sets; and while such systems accelerate offline indexing of video
content, they do not support continuous processing. A smaller set
of systems provide support for continuous processing of
streaming data [1, 3, 8] but most focus on queries using relational
operators and data types, or are intended for mining applications
where throughput is optimized.

Our demonstration application involves a situation where the
television set is actively observing the viewers all the time. This
enables any viewer to control a TV’s operations, such as channel
selection and volume, without additional devices such as remote
controls, motion sensors or special clothing, simply by gesturing
to the TV set. We demonstrate an implementation of a low-
latency gesture recognition system that processes video from a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
MIR’10, March 29–31, 2010, Philadelphia, Pennsylvania, USA.
Copyright 2010 ACM 978-1-60558-815-5/10/03...$10.00.

commodity camera to identify complex gestures in real time and
interpret them to control the TV set. Detailed examples of
different user gestures used in our interface can be found at
http://lastlaugh.inf.cs.cmu.edu/MIR10Demo and Figures 1 - 3.
While this demo uses a commodity webcam, our proposed
approach can be applied to video from depth-enhanced cameras
that will soon become available. Such sensors offer increased
resiliency to background clutter, and initial reports indicate that
they are well suited for natural user interfaces [16].

Our demonstration allows any user standing or sitting in
front of a TV set to control its operations through gestures. The
TV is equipped with a camera that observes the users watching
the programs. When a user gives an ‘attention’ signal by raising
both arms, the control application then observes this user more
carefully for a few seconds to recognize a control command.
Examples of control commands can be hand and arm motion
upward or outward, as well as crossing hands/arms. In the current
interface, e.g., a left hand moving upwards indicates a channel
should be switched up, a left hand moving outwards signifies that
the channel should be switched down. Analogously we use the
right hand to control the volume of the audio. Crossing gestures
are used to shut off the TV. User tests showed that downward
motions cannot be effectively executed by seated users; therefore
we avoided downward motions in the current gesture command
set.

In this demonstration, we highlight two novel aspects of our
human-activity recognition research. First, we employ a novel
and robust descriptor called MoSIFT, which exploits continuous
object motion explicitly calculated from optical flow and
integrates it with distinctive appearance features. Although
computationally more expensive, this approach significantly
outperforms state-of-the-art approaches [12, 14, 18] on standard
action recognition data sets [7]. These results validate our belief
that the added computational complexity of sophisticated
descriptors is warranted.

Second, we utilize a cluster-based distributed runtime system
called Sprout that achieves low latency by exploiting the
parallelism inherent in video understanding applications to run
them in interactive time scales. In particular, although
straightforward sequential implementations of MoSIFT can
process relatively small collections of videos, such as the popular
KTH dataset [21], they cannot process data at the speed required
for the real-world applications that are the primary focus of our
research. Our system implements the computationally
challenging, but highly accurate MoSIFT descriptor on top of the
Sprout runtime, and parallelizes execution across a cluster of
several 8-core machines, to detect TV control gestures in full-
frame-rate video with low latency.

2. ACTIVITY RECOGNITION IN VIDEO
Activity recognition forms the core of video understanding
systems for interactive applications. In this section, we briefly
review current approaches to the problem and describe a feature
representation, MoSIFT, that we employ in our system for
extracting semantic content to control TV operations. This
descriptor matches (or exceeds) state-of-the-art descriptors in
terms of recognition accuracy on established action recognition
datasets and has performed well on the challenging Gatwick

airport surveillance collection. These experiments validate our
decision to use MoSIFT in this demonstration.

Figure 2: User gesturing “Channel Up”.

Current approaches to action recognition in video are
typically structured as follows: (1) identify a set of semantically-
interesting regions in the video; (2) characterize the spatio-
temporal neighborhood at each interest point as a feature vector,
which is often quantized using a codebook; (3) aggregate the set
of features extracted in a video snippet to generate a histogram of
their occurrence frequencies; (4) treat this histogram as a high-
dimensional vector and classify it using a machine learning
technique trained on human-annotated video sequences.

Interest point detection reduces video data from a large
volume of pixels to a sparse but descriptive set of features.
Ideally, an interest point detector should densely sample those
portions of the video where events occur while avoiding regions
of low activity. Therefore, our goal is to develop a method that
generates a sufficient but manageable number of interest points
that can capture the information necessary to recognize arbitrary
observed actions. Popular spatio-temporal interest point detectors
[10, 13] are spatio-temporal generalizations of established 2D
operators developed for image processing, such as the Harris
corner detector. Although mathematically elegant, these
approaches treat motion in an implicit manner and exhibit limited
sensitivity for sooth gestures, which lack sharp space-time
extrema [12]. By contrast, the philosophy behind the MoSIFT
detector is to treat appearance and motion separately, and to
explicitly identify spatially-distinctive regions in a frame that
exhibit sufficient motion at a variety of spatial scales.

The information in the neighborhood of each interest point is
expressed using a descriptor that explicitly encodes both an
appearance and a motion component. We are not the first to do
this; several researchers [14, 20] have augmented spatio-temporal
representations with histograms of optical flow (HoF). However,
unlike those approaches, where the appearance and motion
information is separately aggregated, MoSIFT constructs a single
feature descriptor that concatenates appearance and motion. The
former aspect is captured using the popular SIFT descriptor [15]
and the latter using a SIFT-like encoding of the local optical flow.
MoSIFT is a superset of the Laptev et al. detector [14] since
MoSIFT not only detects velocity changes but also smooth

movements. Additional implementation details of MoSIFT are
given in our technical report [6].

Figure 3: TV view of the user gesturing to control operations

We adopt the popular bag-of-features representation for
action recognition, summarized as follows: Interest points are
extracted from a set of training video clips. K-Means clustering is
then applied over the set of descriptors to construct a codebook.
Each video clip is represented by a histogram of occurrence of
each codeword (bag of features). This histogram is treated as an
input vector for a support vector machine (SVM) [8], with a Chi-
Square kernel [22]. Since the SVM is a binary classifier, to detect
multiple actions we adopt the standard one-vs-all strategy to train
separate SVMs for multi-class learning.

While MoSIFT significantly improves activity recognition,
the gain in accuracy is computationally expensive because it not
only scans though different spatial scales but also calculates
corresponding optical flows. A straightforward implementation of
MoSIFT would exhibit unacceptable performance in terms of
throughput and latency. On a single processor computing all the
MoSIFT descriptors in a standard definition video stream would
take 100 times slower than real time. With a naively parallelized
implementation in which frames are processed in a pipelined
fashion, the system would incur a delay of more than 2.5 seconds
between an activity and a result action.

3. A PARALLEL IMPLEMENTATION OF
GESTURE-BASED TV CONTROL
Our application is implemented on the Sprout runtime system, a
distributed stream processing system designed to enable the
creation of interactive perception applications [19]. Interaction
requires low end-to-end latency, typically well under 1 second [4,
5, 17]. Sprout achieves low latency by exploiting the coarse-
grained parallelism inherent in such applications, executing
parallel tasks on clusters of commodity multi-core servers. Its
programming model facilitates the expression of application
parallelism while hiding much of the complexity of parallel and
distributed programming.

Sprout applications are structured as data flow graphs. The
vertices of the graph are coarse-grained processing steps called

stages, and the edges are connectors which represent data
dependencies between stages. The data flow model is particularly

well suited for perception, computer vision, and multimedia

processing tasks because it mirrors the high-level structure of
these applications, which typically apply a series of processing

steps to a stream of video or audio data. Concurrency in the data

Source

Display

Copy

Scaler

Tiler

Feature merger

Descaler

Copy

Classify

Pair generator

SIFT
SIFT

SIFT
SIFT
motionSIFT

Scaler

Tiler

Face merger

Descaler

SIFT
SIFT

SIFT
Face detect

Copy

TV control

Figure 4 illustrates our application flow.
flow model is explicit — stages may execute in parallel,
constrained only by their data dependencies and the availability of
processors.

Figure 4 illustrates our application data flow. Each video
frame from a camera that observes the user is sent to two separate
tasks, face detection and MoSIFT detection task. The incoming
frame is duplicated (Copy stage) and sent to two different stages
which initialize tasks. The face detection task starts from a scale
stage (Scaler) which scales the frame to a desired size. The tiling
stage (Tiler) is an example of coarse-grained parallelization. The
tiler divides each frame into configurable number of uniformly
sized overlapping sub-regions. The tiles are sent to a set of stages
to be processed in parallel. The tiler also generates meta-data that
includes positions and sizes of the tiles, for merging the results.
The face detected in the scaled frame is de-scaled via Descaler
stage to recover the resolution. The face detection result is then
sent to the display stage to display and a classify stage which will
further fuse face detection result with MoSIFT features to detect
gestures. The MoSIFT detection task accumulates frame pairs,
and then extracts MoSIFT features that encode optical flow in
addition to appearance. These features, filtered by the positions of
detected faces, are aggregated over a window of frames to
generate a histogram of their occurrence frequencies. The
histogram is treated as an input vector to a set of support vector
machines trained to detect gestures in video streaming. These

processes are included in Classify stage. The gesture detection
result is further sent to TV control stage to perform associated TV
controlling.

4. CONCLUSIONS
Efficient and automatic processing of streaming video content at
low latencies is critical for a large class of emerging applications
in surveillance, gaming, intelligent environments and vision-based
user interfaces. Our novel representation for video content
(MoSIFT) significantly improves the accuracy of human activity
recognition but it is so computationally expensive that naive
implementations on a single processor are impractical for
complex real-world video control and gaming applications. Thus,
we developed a novel method for leveraging clusters of multi-
core processors to significantly improve latency and throughput.
This method exploits both the coarse- and the fine-grained
parallelism inherent in the algorithm. The system enables video
understanding algorithms to process streaming video for a wide
variety of applications, such as gestures for TV control described
here. In future work, we plan to extend the approach to work with
depth-augmented video to improve the robustness of our system.

5. ACKNOWLEDGMENTS
This work was supported in part by the National Science
Foundation under Grants Nos. IIS-0917072, IIS-0812465, and
IIS- 0751185. Any opinions, findings, and conclusions expressed
in this material are those of the author(s) and do not reflect the
views of the National Science Foundation.

6. REFERENCES
[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M.

Cherniack, J. Hwang, W. Lindner, A. S. Maskey, A. Rasin,
E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The design
of the Borealis stream processing engine. In Proc. Innovative
Data Systems Research, 2005.

[2] J. K. Aggarwal and Q. Cai. Human motion analysis: a
review. In Proc. Nonrigid and Articulated Motion Workshop,
1997.

[3] L. Amini, H. Andrade, R. Bhagwan, F. Eskesen, R. King, P.
Selo, Y. Park, and C. Venkatramani. SPC: A distributed,
scalable platform for data mining. Workshop on Data Mining
Standards, Services, and Platforms, 2006.

[4] J. Brady. A theory of productivity in the creative process.
IEEE Computer Graphics and Applications, 6(5):25–34, May
1986.

[5] S. K. Card, G. G. Robertson, and J. D. Mackinlay. The
information visualizer, an information workspace. In CHI
’91: Human factors in computing systems, 181–186, 1991.

[6] M.-Y. Chen and A. Hauptmann. Mosift: Recognizing human
actions in surveillance videos. In CMU-CS-09-161, 2009.

[7] M.-Y. Chen; L. Mummert; P. Pillai; A. Hauptmann;
R.Sukthankar, Exploiting Multi-level Parallelism for Low-
latency Activity Recognition in Streaming Video; Proc.
ACM Multimedia Systems (MMSys) Conference, 2010,

[8] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Çetintemel, Y. Xing, and S. Zdonik. Scalable distributed
stream processing. In Proc. Innovative Data Systems
Research, 2003.

[9] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. CACM, 51(1), 2008.

[10] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Behavior
recognition via sparse spatio-temporal features. In IEEE
Workshop on PETS, 2005.

[11] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from sequential
building blocks. Proc. European Conference on Computer
Systems, 2007.

[12] Y. Ke, R. Sukthankar, and M. Hebert. Efficient visual event
detection using volumetric features. Proc. Int’l Conference
on Computer Vision, 2005.

[13] I. Laptev and T. Lindeberg. Space-time interest points. In
Proc. Int’l Conference on Computer Vision, 2003.

[14] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld.
Learning realistic human actions from movies. In Proc.
Computer Vision and Pattern Recognition, 2008.

[15] D. Lowe. Distinctive image features form scale-invariant
keypoints. Int’l Journal on Computer Vision, 60(2), 2004.

[16] Microsoft, "Project Natal in detail". Microsoft. June 2009.
http://www.xbox.com/en-GB/news-features/news/Project-
Natal-in-detail-050609.htm. Retrieved Jan 26, 2010.

[17] R. B. Miller. Response time in man-computer conversational
transactions. In AFIPS ’68: Proc. of the Dec. 9-11, 1968,
joint computer conference (Fall, part I), pages 267–277,
1968.

[18] J. C. Niebles, H. Wang, and L. Fei-Fei. Unsupervised
learning of human action categories using spatial-temporal
words. In Proc. British Machine Vision Conference, 2006.

[19] P. Pillai, L. Mummert, S. Schlosser, R. Sukthankar, and C.
Helfrich. SLIPStream: scalable low-latency interactive
perception on streaming data. In Proc. NOSSDAV, 2009.

[20] K. Schindler and L. Van Gool. Action snippets: How many
frames does human action recognition require? In Proc.
Computer Vision and Pattern Recognition, 2008.

[21] C. Schuldt, I. Laptev, and B. Caputo. Recognizing human
actions: A local SVM approach. In Proc. ICPR, 2004.

[22] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. Local
features and kernels for classification of texture and object
categories: A comprehensive study. Int’l Journal on
Computer Vision, 73(2), 2007.

