
6 communications of the acm | june 2010 | vol. 53 | no. 6

letters to the editor

T
he “Profession of IT” View-
point “Orchestrating Coor-
dination in Pluralistic Net-
works” by Peter J. Denning
et al. (Mar. 2010) offered

guidance for distributed development
teams. As a leader of one such team,
I can vouch for the issues it raised.
However, my coordination problems
are compounded because email (and
related attachments) is today’s de fac-
to medium for business and technical
communication. The most up-to-date
version of a document is an email at-
tachment that instantly goes out of
date when changes are made by any
of the team members; project docu-
ments include specifications, plans,
status reports, assignments, and
schedules.

Software developers use distrib-
uted source-code control systems to
manage changes to code. But these
tools don’t translate well to all the
documents handled by nondevelop-
ers, including managers, marketers,
manufacturers, and service and sup-
port people. I’d like to know what
workflow-management tools Denning
et al. would recommend for such an
environment.

Ronnie Ward, Houston, TX

Author’s Response:
Workflow tools are not the issue. Many
people simply lack a clear model of
coordination. They think coordination is
about exchanging messages and that
related coordination breakdowns indicate
poorly composed, garbled, or lost messages
(as in email). Coordination is about making
commitments, usually expressed as “speech
acts,” or utterances that take action and
make the commitments that produce the
outcome the parties want. People learning
the basics of coordination are well on their
way toward successful coordination, even
without workflow tools.

We don’t yet know enough about effective
practices for pluralistic coordination to be
able to design good workflow tools for this
environment.

Peter J. Denning, Monterey, CA

Time to Debug

George V. Neville-Neil’s “Kode Vi-
cious” Viewpoint “Taking Your Net-
work’s Temperature” (Feb. 2010) was
thought-provoking, but two of its
conclusions—“putting printf()…
throughout your code is a really annoy-
ing way to find bugs” and “limiting the
files to one megabyte is a good start”—
were somewhat misleading.

Timing was one reason Neville-Neil
offered for his view that printf() can
lead to “erroneous results.” Debugger
and printf() both have timing loads.
Debug timing depends on hardware
support. A watch statement functions
like a printf(), and a breakpoint
consumes “infinite” time. In both sin-
gle-threaded and multithreaded envi-
ronments, a breakpoint stops thread
activity. In all cases, debugger state-
ments perturb timing in a way that’s
like printf().

We would expect such stimulus
added to multithreaded applications
would produce different output. Nev-
ille-Neil expressed a similar senti-
ment, saying “Networks are perhaps
the most nondeterministic compo-
nents of any complex computing sys-
tem.” Both printf() and debuggers
exaggerate timing differences, so the
qualitative issue resolves to individual
preferences, not to timing.

Choosing between a debugger and
a printf() statement depends on the
development stage in which each is to
be used. At an early stage, a debugger
might be better when timing and mes-
saging order are less important than
error detection. Along with functional
integration in the program, a debug-
ger can sometimes reach a point of
diminishing returns. Programmers
shift their attention to finding the first
appearance of an error and the point
in their programs where the error was
generated. Using a debugger tends
to be a trial-and-error process involv-
ing large amounts of programmer
and test-bench time to find that very
point. A printf() statement inserted
at program creation requires no setup

time and little bench time, so is, in this
sense, resource-efficient.

The downside of using a printf()
statement is that at program creation
(when it is inserted) programmers an-
ticipate errors but are unaware of where
and when they might occur; printf()
output can be overwhelming, and the
aggregate time to produce diagnostic
output can impede time-critical opera-
tions. The overhead load of output and
time is only partially correctable.

Limiting file size to some arbitrary
maximum leads programmers to as-
sume (incorrectly) that the search is for
a single error and that localizing it is the
goal. Limiting file size allows program-
mers to focus on a manageable subset
of data for analysis but misses other
unrelated errors. If the point of error-
generation is not within some limited
number of files, little insight would be
gained for finding the point an error
was in fact generated.

Neville-Neil saying “No matter how
good a tool you have, it’s going to do a
much better job at finding a bug if you
narrow down the search.” might apply
to “Dumped” (the “questioner” in his
Viewpoint) but not necessarily to every-
one else. An analysis tool is meant to
discover errors, and programmers and
users both win if errors are found. Try-
ing to optimize tool execution time over
error-detection is a mistake.

Art Schwarz, Irvine, CA

George V. Neville-Neil’s Viewpoint (Feb.
2010) said students are rarely taught to
use tools to analyze networking prob-
lems. For example, he mentioned Wire-
shark and tcpdump, but only in a cur-
sory way, even though these tools are
part of many contemporary university
courses on networking.

Sniffers (such as Wireshark and
Ethereal) for analyzing network pro-
tocols have been covered at Fairleigh
Dickinson University for at least the
past 10 years. Widely used tools for
network analysis and vulnerability
assessment (such as nmap, nessus,
Snort, and ettercap) are available
through Fedora and nUbuntu Linux

Workflow Tools for Distributed Teams?
DOI:10.1145/1743546.1743549	 	

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1743546.1743549&domain=pdf&date_stamp=2010-06-01

june 2010 | vol. 53 | no. 6 | communications of the acm 7

letters to the editor

distributions. Open source tools for
wireless systems include NetStumbler
and AirSnort.

Fairleigh Dickenson’s network
labs run on virtual machines to limit
inadvertent damage and the need for
protection measures. We teach the
basic network utilities available on
Windows- and/or Posix-compliant
systems, including ping, netstat, arp,
tracert (traceroute), ipconfig (ifconfig
in Linux/Unix and iwconfig in Linux
wireless cards), and nslookup (dig in
Linux). With the proper options, net-
stat displays IP addresses, protocols,
and ports used by all open and listen-
ing connections, as well as by protocol
statistics and routing tables.

The Wireshark packet sniffer iden-
tifies control information at different
protocol layers. A TCP capture specifi-
cation thus provides a tree of protocols,
with fields for frame header and trailer
(including MAC address), IP header
(including IP address), and TCP head-
er (including port address). Students
compare the MAC and IP addresses
found through Wireshark with those
found through netstat and ipconfig.
They then change addresses and check
results by sniffing new packets, analyz-
ing the arp packets that try to resolve
the altered addresses. Capture filters in
Wireshark support search through pro-
tocol and name resolution; Neville-Neil
stressed the importance of narrowing
one’s search but failed to mention the
related mechanisms. Students are also
able to make connections through (un-
encrypted) telnet and PuTTy, compar-
ing password fields.

My favorite Wireshark assignment
involves viewing TCP handshakes via
statistics/flow/TCP flow, perhaps fol-
lowing an nmap SYN attack. The free
security scanner nmap runs with Wire-
shark and watch probes initiated by the
scan options provided. I always assign
a Christmas-tree scan (nmap –sX) that
sends packets with different combina-
tions of flag bits. Capturing probe pack-
ets and a receiving station’s reactions
enables identification of flag settings
and the receiver’s response to them.
Operating systems react differently to il-
legal flag combinations, as students ob-
serve via their screen captures.

Network courses and network main-
tenance are thus strongly enhanced by
sniffers and other types of tools that yield

information concerning network traffic
and potential system vulnerabilities.

Gertrude Levine, Madison, NJ

What Jack Doesn’t Know About
Software Maintenance
I agree that the community doesn’t
understand software maintenance, as
covered in the article “You Don’t Know
Jack about Software Maintenance” by
Paul Stachour and David Collier-Brown
(Nov. 2009), but much more can be
done to improve the general under-
standing of the important challenges.

The software-maintenance proj-
ects I’ve worked on have been difficult,
due to the fact that maintenance work
is so different from the kind of work
described in the article. The commu-
nity does not fully understand that
maintenance involves much more
than just adding capabilities and fix-
ing bugs. For instance, maintenance
teams on large projects spend almost
as much time providing facility, op-
erations, product, and sustaining-en-
gineering support as they do changing
code.1 Moreover, the work tends to be
distributed differently. My colleagues
and I recently found maintenance
teams spending as much as 60% of
their effort testing code once the re-
lated changes are implemented.

Other misconceptions include:
The primary job in maintenance is fa-

cilitating changes. We found that sup-
port consumes almost as much effort
as changes and repairs;

Maintenance is aimed at addressing
new requirements. Because most jobs
are small, maintenance teams focus
on closing high-priority trouble reports
rather than making changes;

Funding maintenance is based on re-
quirements. Most maintenance proj-
ects are funded level-of-effort; as such,
maintenance managers must deter-
mine what they can do with the resourc-
es they have rather than what needs to
be done;

Maintenance schedules are based on
user-need dates. Maintenance sched-
ules are written in sand, so mainte-
nance leaders must determine what
can be done within a limited time pe-
riod;

Maintenance staff is junior. Average
experience for maintenance personnel
is 25 years during which they tend to

work on outdated equipment to fix soft-
ware written in aging languages; and

Maintenance is well tooled. We
found the opposite. Maintenance
tools are inferior, and development
tools and regression test suites do not
unfortunately support the work.

Maintenance involves much more
than Stachour and Collier-Brown indi-
cated. In light of the changing nature
of the work being done every day by
software maintenance teams, my col-
leagues and I urge Communications to
continue to cover the topic.

Reference
1.	 Reifer, D. Allen, J.-A., Fersch, B., Hitchings, B., Judy, J.,

and Rosa, W. Software maintenance: Debunking the
myths. In Proceedings of the International Society of
Parametric Analysis / Society of Cost Estimating and
Analysis Annual Conference and Training Workshop (San
Diego, CA, June 8-11). ISPA/SCEA, Vienna, VA, 2010.

Donald J. Reifer, Prescott, AZ

Authors’ Response:
In our slightly tongue-in-cheek description
of software maintenance, we were
concentrating on the “add a highway”
side of the overall problem, rather than
“repair the railroad bridge.” We try to
avoid considering software maintenance
as a separate process done by a different
team. That’s a genuinely difficult problem,
as Reifer points out. We’ve seen it tried
a number of times, with generally
disappointing results.

A better question might be the one
asked by Drew Sullivan, president of the
Greater Toronto Area Linux User Group,
at a presentation we gave on the subject:
“Why aren’t you considering maintenance
as continuing development?” In fact
we were, describing the earlier Multics
norm of continuous maintenance without
stopping any running programs. We’re
pleased to see the continuous process
being independently reinvented by
practitioners of the various agile methods.
In addition, we’re impressed by their
refactoring and test-directed development.
These are genuinely worthwhile
improvements to the continuous approach,
and we hope the techniques we re-
described are valuable to that community.

Paul Stachour, Bloomington, MN
	 David Collier-Brown, Toronto

Communications welcomes your opinion. To submit a
Letter to the Editor, please limit your comments to 500
words or less and send to letters@cacm.acm.org.

© 2010 ACM 0001-0782/10/0600 $10.00

