
Lightweight Recoverable Virtual Memory

M. SATYANARAYANAN, HENRY H. MASHBURN, PUNEET KUMAR,
DAVID C. STEERE, and JAMES J. KISTLER

Carnegie Mellon University

Recoverable virtual memory refers to regions of a virtual address space on which transactional

guarantees are offered. This article describes RVM, an efficient, portable, and easily used

implementation of recoverable virtual memory for Unix environments, A unique characteristic of

RVM is that it allows independent control over the transactional properties of atomicity,

permanence, and serializability. This leads to considerable flexibility in the use of RVM,

potentially enlarging the range of applications than can benefit from transactions. It also

simplifies the layering of functionality such as nesting and distribution. The article shows that

RVM performs well over its mtended range of usage even though it does not benefit from

specialized operating system support. It also demonstrates the importance of intra- and inter-

transaction optimization.

Categories and Subject Descriptors: D.4.2 [Operating Systems]: Storage Management—mrtual
memory; D.4.5 [Operating Systems]: Reliability—fault tolerance; D,4.8 [Operating Systems]:
Performance—measurements; H.2.2 [Database Management]: Physical Design—recouery and

restart; H.2.4 [Database Management]: Systems—trczmact~on processing.

General Terms: Design, Experimentation, Measurement, Performance, Reliability

Additional Key Words and Phrases: Camelot, Coda, logging, paging, persistence, RVM, scalabil-

ity, throughput, truncation, Unix

1. INTRODUCTION

How simple can a transactional facility be, while remaining a potent tool for

fault tolerance? Our answer, as elaborated here, is a user-level library with

minimal programming constraints, implemented in about 10K lines of main-

line code and no more intrusive than a typical runtime library for input-out-

put. This transactional facility, called RVM, is implemented without special-

This work was sponsored by the Avionics Laboratory, Wright Research and Development Center,

Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, Ohio, under

contract F33615-90-C-1465, ARPA order no. 7597. James Kistler is now affiliated with the DEC

Systems Research Center, Palo Alto, CA 94301.

Authors’ addresses: School of Computer Science, Carnegie Mellon University, 5000 Forbes

Avenue, Pittsburgh, PA 15213; J. Kistler, DEC Systems Research Center, Palo Alto, CA 94301.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.

@ 1994 ACM 0734-2071/94/0200-0033 $3.50

ACM TransactIons on Computer Systems, Vol. 12, No. 1, February 1994, Pages 33-57.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F174613.174615&domain=pdf&date_stamp=1994-02-01

34 . M, Satyanarayanan et al.

ized operating system support and has been in use for over two years on a

wide range of hardware from laptops to servers.

RVM is intended for Unix applications with persistent data structures that

must be updated in a fault-tolerant manner. The total size of those data

structures should be a small fraction of disk capacity, and their working set

size must easily fit within main memory.

This combination of circumstances is most likely to be found in situations

involving the metadata of storage repositories. Thus RVM can benefit a wide

range of applications from distributed file systems and databases to object-

oriented repositories, CAD tools, and CASE tools. RVM can also provide

runtime support for persistent programming languages. Since RVM allows

independent control over the basic transactional properties of atomicity,

permanence, and serializability, applications have considerable flexibility in

how they use transactions.

It may often be tempting, and sometimes unavoidable, to use a mechanism

that is richer in functionality or better integrated with the operating system.

But our experience has been that such sophistication comes at the cost of

portability, ease of use, and more onerous programming constraints. Thus

RVM represents a balance between the system-level concerns of functionality

and performance and the software engineering concerns of usability and

maintenance. Alternatively, one can view RVM as an exercise in minimalism.

Our design challenge lay not in conjuring up features to add, but in determin-

ing what could be omitted without crippling RVM.

We begin this article by describing our experience with Camelot [Eppinger

et al. 1991], a predecessor of RVM. This experience, and our understanding of

the fault-tolerance requirements of Coda [Kistler and Satyanarayanan 1992;

Satyanarayanan et al. 1990] and Venari [Nettles and Wing 1992; Wing et al.

1992], were the dominant influences on our design. The description of RVM

follows in three parts: rationale, architecture, and implementation. Wherever

appropriate, we point out ways in which usage experience influenced our

design. We conclude with an evaluation of RVM, a discussion of its use as a

building block, and a summary of related work.

2. LESSONS FROM CAMELOT

2.1 Overview

Camelot is a transactional facility build to validate the thesis that general-

purpose transactional support would simplify and encourage the construction

of reliable distributed systems [Spector 1991]. It supports local and dis-

tributed nested transactions and provides considerable flexibility in the

choice of logging, synchronization, and transaction commitment strategies.

Camelot relies heavily on the external page management and interprocess

communication facilities of the Mach operating system [Baron et al, 1987],

which is binary compatible with the 4.3BSD Unix operating system [Leffler

et al. 1989]. Figure 1 shows the overall structure of a Camelot node. Each

ACM Transactions on Computer Systems, VO1 12, No 1, February 1994,

Lightweight Recoverable Virtual Memory . 35

m “o” E5ia

Mach Kernel

_ Recoverable

Processes

_ Camelot

System

Components

Fig. 1, This figure shows the structure of a Camelot node with application code,

module is implemented as a Mach task, and communication between modules

is via Mach’s interprocess communication facility (IPC).

2.2 Usage

Our interest in Camelot arose in the context of the two-phase optimistic

replication protocol used by the Coda File System. Although the protocol does

not require a distributed commit, it does require each server to ensure the

atomicity and permanence of local updates to metadata in the first phase.

The simplest strategy for us would have been to implement an ad hoc fault

tolerance mechanism for metadata using some form of shadowing. But we

were curious to see what Camelot could do for us.

The aspect of Camelot that we found most useful is its support for recover-

able virtual memory [Eppinger 1989]. This unique feature of Camelot enables

regions of a process’ virtual address space to be endowed with the transac-

tional properties of atomicity, isolation, and permanence. Since we did not

find a need for features such as nested or distributed transactions, we

realized that our use of Camelot would be something of an overkill. Yet we

persisted, because it would give us first-hand experience in the use of
transactions and because it would contribute toward the validation of the

Camelot thesis.

ACM Transactions on Computer Systems, Vol. 12, No 1, February 1994

36 . M. Satyanarayanan et al

We placed data structures pertaining to Coda metadata in recoverable

memory I on servers. The metadata included Coda directories as well as

persistent data for replica control and internal housekeeping. The contents of

each Coda file was kept in a Unix file on a server’s local file system. Server

recovery consisted of Camelot restoring recoverable memory to the last

committed state, followed by a Coda salvager which ensured mutual consis-

tency between metadata and data.

2.3 Experience

The most valuable lesson we learned by using Camelot was that recoverable

virtual memory was indeed a convenient and practically useful programming

abstraction for systems like Coda. Crash recovery was simplified because

data structures were restored in situ by Camelot. Directory operations were

merely manipulations of in-memory data structures. The Coda salvager was

simple because the range of error states it had to handle was small. Overall,

the encapsulation of messy crash recovery details into Camelot considerably

simplified Coda server code.

Unfortunately, these benefits came at a high price. The problems we

encountered manifested themselves as poor scalability, programming con-

straints, and difficulty of maintenance. In spite of considerable effort, we

were not able to circumvent these problems. Since they were direct conse-

quences of the design of Camelot, we elaborate on these problems in the

following paragraphs.

A key design goal of Coda was to preserve the scalability of AFS. But a set

of carefully controlled experiments (described in an earlier paper [Satyanara-

yanan et al. 1990]) showed that Coda was less scalable than AFS. These

experiments also showed that the primary contributor to loss of scalability

was increased server CPU utilization and that Camelot was responsible for

over a third of this increase. Examination of Coda servers in operation

showed considerable paging and context-switching overheads due to the fact

that each Camelot operation involved interactions between many of the

component processes shown in Figure 1. There was no obvious way to reduce

this overhead, since it was inherent in the implementation structure of

Camelot.

A second obstacle to using Camelot was the set of programming constraints

it imposed. These constraints came in a variety of guises. For example,

Camelot required all processes using it to be descendants of the Disk Man-

ager task shown in Figare 1. This meant that starting Coda servers required

a rather convoluted procedure that made our system administration scripts
complicated and fragile. It also made debugging more difficult because start-

ing a Coda server under a debugger was complex. Another example of a

programming constraint was that Camelot required us to use Mach kernel

threads, even though Coda was capable of using user-level threads. Since

kernel thread context switches were much more expensive, we ended up

paying a hefty performance cost with little to show for it.

1For brevity, we often omit c’virtual” from “recoverable virtual memory” in the rest of this article.

ACM Transactions on Computer Systems, Vol 12, No 1. February 1994

Lightweight Recoverable Virtual Memory . 37

A third limitation of Camelot was that its code size, complexity, and tight

dependence on rarely used combinations of Mach features made maintenance

and porting difficult. Since Coda was the sternest test case for recoverable

memory, we were usually the first to expose new bugs in Camelot. But it was

often hard to decide whether a particular problem lay in Camelot or Mach.

As the cumulative toll of these problems mounted, we looked for ways to

preserve the virtues of Camelot while avoiding its drawbacks. Since recover-

able virtual memory was the only aspect of Camelot we relied on, we sought

to distill the essence of this functionality into a realization that was cheap,

easy to use, and had few strings attached. That quest led to RVM.

3. DESIGN RATIONALE

The central principle we adopted in designing RVM was to value simplicity

over generality. In building a tool that did one thing well, we were heeding

Lampson’s sound advice on interface design [Lampson 1983]. We were also

being faithful to the long Unix tradition of keeping building blocks simple.

The change in focus from generality to simplicity allowed us to take radically

different positions from Camelot in the areas of functionality, operating

system dependence, and structure.

3.1 Functionality

Our first simplification was to eliminate support for nesting and distribution.

A cost-benefit analysis showed us that each could be better provided as an

independent layer on top of RVM.2 While a layered implementation may be

less efficient than a monolithic one, it has the attractive property of keeping

each layer simple. Upper layers can count on the clean failure semantics of

RVM, while the latter is only responsible for local, nonnested transactions.

A second area where we have simplified RVM is concurrency control.

Rather than having RVM insist on a specific technique, we decided to factor

out concurrency control. This allows applications to use a policy of their

choice and to perform synchronization at a granularity appropriate to the

abstractions they are supporting. If serializability is required, a layer above

RVM has to enforce it. That layer is also responsible for coping with dead-

locks, starvation, and other unpleasant concurrency control problems.

Internally, RVM is implemented to be multithreaded and to function

correctly in the presence of true parallelism. But it does not depend on kernel

thread support and can be used with no changes on user-level thread imple-
mentations. We have, in fact, used RVM with three different threading

mechanisms: Mach kernel threads [Cooper and Draves 1988], coroutine C

threads, and coroutine LWP [Satyanarayanan 1991].

Our final simplification was to factor out resiliency to media failure.

Standard techniques such as mirroring can be used to achieve such re-

siliency. Our expectation is that this functionality will most likely be imple-

mented in the device driver of a mirrored disk.

‘An implementation sketch is provided in Section 8.

ACM TransactIons on Computer Systems, Vol 12, No, 1, February 1994

38 . M. Satyanarayanan et al.

Application Code

I II II I1
Nesting ~ Distribution ~Serializability

I 11 1I 1

RVM
Atomicity

Permanence: process failure

Operating System
Permanence: media failure

Fig. 2. Layering of functionality in RVM.

RVM thus adopts a layered approach to transactional support, as shown in
Figure 2. This approach is simple and enhances flexibility: an application

does not have to buy into those aspects of the transactional concept that are

irrelevant to it.

3.2 Operating System Dependence

To make RVM portable, we decided to rely only on a small, widely supported,
Unix subset of the Mach system call interface. A consequence of this decision

was that we could not count on tight coupling between RVM and the VM

subsystem. The Camelot Disk Manager module runs as an external pager

[Young 1989] and takes full responsibility for managing the backing store for

recoverable regions of a process. The use of advisory VIM calls (pin and unpin)

in the Mach interface lets Camelot ensure that dirty recoverable regions of a

process’ address space are not paged out until the corresponding log records

are forced to disk. This close alliance with Mach’s V%l subsystem allows

Camelot to avoid double paging and to support recoverable regions whose size

ACM Transactions on Computer Systems, Vol 12, No 1, February 1994.

Lightweight Recoverable Virtual Memory . 39

approaches backing store or addressing limits. Efficient handling of large

recoverable regions is critical to Camelot’s goals.

Our goals in building RVM were more modest. We were not trying to

replace traditional forms of persistent storage, such as file systems and

databases. Rather, we saw RVM as a building block for metadata in those

systems and in higher-level compositions of them. Consequently, we could

assume that the recoverable memory requirements on a machine would only

be a small fraction of its total disk storage. This in turn meant that it was

acceptable to waste some disk space by duplicating the backing store for

recoverable regions. Hence RVM’S backing store for a recoverable region,

called its external data segment, is completely independent of the region’s VM

swap space. Crash recovery relies only on the state of the external data

segment. Since a VM pageout does not modify the external data segment, an

uncommitted dirty page can be reclaimed by the VM subsystem without loss

of correctness. Of course, good performance also requires that such pageouts

be rare.

One way to characterize our strategy is to view it as a complexity -versus-re-

source usage tradeoff. By being generous with memory and disk space, we

have been able to keep RVM simple and portable. Our design supports the

optional use of external pagers, but we have not implemented support for this

feature yet. The most apparent impact on Coda has been slower startup

because a process’ recoverable memory must be read in en masse rather than

being paged in on demand.

Insulating RVM from the VM subsystem also hinders the sharing of

recoverable virtual memory across address spaces. But this is not a serious

limitation. After all, the primary reason to use a separate address space is to

increase robustness by avoiding memory corruption. Sharing recoverable

memory across address spaces defeats this purpose. In fact, it is worse than

sharing (volatile) virtual memory because damage may be persistent! Hence,

our view is that processes willing to share recoverable memory already trust

each other enough to run as threads in a single address space.

3.3 Structure

The ability to communicate efficiently across address spaces allows robust-

ness to be enhanced without sacrificing good performance. Camelot’s modular

decomposition, shown earlier in Figure 1, is predicated on fast IPC. Although

it has been shown that IPC can be fast [Bershad et al. 1990], its performance

in commercial Unix implementations lags far behind that of the best experi-

mental implementations. Even on Mach 2.5, the measurements reported by

Stout et al. [1991] indicated that IPC is about 600 times more expensive than

local procedure call.3 To make matters worse, Ousterhout [1990] reports that

the context-switching performance of operating systems is not improving

linearly with raw hardware performance.

3430 microseconds versus 0.7 microseconds for a null call on a typical contemporary machine, the

DECStation 5000/200.

ACM TransactIons on Computer Systems, Vol 12, No 1, February 1994

40 . M. Satyanarayanan et al.

Given our desire to make RVM portable, we were not willing to make its

design critically dependent on fast IPC. Instead, we have structured RVM as

a library that is linked in with an application. No external communication of

any kind is involved in the servicing of RVM calls. An implication of this is, of

course, that we have to trust applications not to damage RVM data struc-

tures and vice versa.

A less obvious implication is that applications cannot share a single

write-ahead log on a dedicated disk. Such sharing is common in transactional

systems because disk head movement is a strong determinant of performance

and because the use of a separate disk per application is economically

infeasible at present. In Camelot, for example, the Disk Manager serves as

the multiplexing agent for the log. The inability to share one log is not a

significant limitation for Coda, because we run only one file server process on

a machine. But it may be legitimate concern for other applications that wish

to use RViM. Fortunately, there are two potential alleviating factors on the

horizon.

First, independent of transaction-processing considerations, there is consid-

erable interest in log-structured implementations of the Unix file system

[Rosenblum and Ousterhout 19921. If one were to place the RVM log for each
application in a separate file on such a system, one would benefit from

minimal disk head movement. No log multiplexer would be needed, because

that role would be played by the file system.

Second, there is a trend toward using disks of small form factor, partly

motivated by interest in disk array technology [Patterson et al. 1988]. It has

been predicated that the large disk capacity in the future will be achieved by

using many small disks. If this turns out to be true, there will be considerably

less economic incentive to avoiding a dedicated disk per process.

In summary, each process using RVM has a separate log. The log can be

placed in a Unix file or on a raw disk partition. When the log is on a file, RVM

uses the fsync system call to synchronously flush modifications onto disk.

RVMS permanence guarantees rely on the correct implementation of this

system call. For best performance, the log should either be in a raw partition

on a dedicated disk or in a file on a log-structured Unix file system.

4. ARCHITECTURE

The design of RVM follows logically from the rationale presented earlier. In

the description below, we first present the major program-visible abstractions

and then describe the operations supported on them.

4.1 Segments and Regions

Recoverable memory is managed in segments, which are loosely analogous to

Multics segments. RVM has been designed to accommodate segments up to

2‘4 bytes long, although current hardware and file system limitations restrict

segment length to 2 ~Z bYtes. The number of segments on a machine is OnIY

limited by its storage resources. The backing store for a segment maybe a file

or a raw disk partition. Since the distinction is invisible to programs, we use

the term “external data segment” to refer to either.

ACM Transactions cm Computer Systems, Vol. 12, No. 1, February 1994

Lightweight Recoverable Virtual Memory . 41

0 Unix Virtual Memory 232.1

Segment-1 /

o 264-1

““e~

Segment-2

Fig. 3. Each shaded area mapping regions of segments specified during mapping.

As shown in Figure 3, applications explicitly map regions of segments into

their virtual memory. RVM guarantees that newly mapped data represents

the committed image of the region. A region typically corresponds to a related

collection of objects and may be as large as the entire segment. In the current

implementation, the copying of data from external data segment to virtual

memory occurs when a region is mapped. The limitation of this method is

startup latency, as mentioned in Section 3.2. In the future, we plan to provide

an optional Mach external pager to copy data on demand.

Restrictions on segment mapping are minimal. The most important restric-

tion is that no region of a segment may be mapped more than once by the

same process. Also, mappings cannot overlap in virtual memory. These

restrictions eliminate the need for RVM to cope with aliasing. Mapping must

be done in multiples of page size, and regions must be page aligned.

Regions can be unmapped at any time, as long as they have no uncommit-

ted transactions outstanding. RVM retains no information about a segment’s

mappings after its regions are unmapped. A segment loader package, built on

top of RVM, allows the creation and maintenance of a load map for recover-

able storage and takes care of mapping a segment into the same base address

each time. This simplifies the use of absolute pointers in segments. A recover-

able memory allocator, also layered on RVM, supports heap management of

storage within a segment.

4.2 RVM Primitives

The operations provided by RVM for initialization, termination, and segment

mapping are shown in Figure 4a. The log to be used by a process is specified

at RVM initialization via the options_ desc argument. The map operation is

called once for each region to be mapped. The external data segment and the

range of virtual memory addresses for the mapping are identified in the first

argument. The unmap operation can be invoked at any time that a region is

quiescent. Once unmapped, a region can be remapped to some other part of
the process’ address space.

After a region has been mapped, memory addresses within it may be used

in the transactional operations shown in Figure 4b. The begin _transaction

ACM Transactions on Computer Systems, Vol. 12, No. 1, February 1994.

42 . M. Satyanarayanan et al,

e
(o) Imtml[zatmn & Mapping Operzzt]on~

E2zl
(c) Log Control Opermons

::2.:=
begin_transaction (tid, restore_rmode);

set_range(tid, base_addr, nbytes) ;

(b) Trmsactlonal Operations

query(options_desc, region_desc);

set_options (options_desc) ;

create_log(options, log_len, mode) ;

(d) Mmcllaneous Operat]um

Fig.4 RVM primitives.

operation returns a transaction identifier, tid, that is used in all further

operations associated with that transaction. The set_range operation lets

RVM know that a certain area of a region is about to be modified. This allows

RVM to record the current value of the area so that it can undo changes in

case of an abort. The restore_ mode flag to begin _transaction lets an applica-

tion indicate that it will never explicitly abort a transaction. Such a no-re-

store transaction is more efficient, since RVM does not have to copy data on a

set-range. Read operations on mapped regions require no RVM intervention.

A transaction is committed by end _transacticm and aborted via

abort_ transaction. By default, a successful commit guarantees permanence of

changes made in a transaction. But an application can indicate its willing-

ness to accept a weaker permanence guarantee via the commit_ mode param-

eter of end _transaction. Such a no-fZush or “lazy” transaction has reduced

commit latency since a log force is avoided. To ensure persistence of its

no-flush transactions the application must explicitly flush RVM’S write-ahead

log from time to time. When used in this manner, RVM provides bounded

persistence, where the bound is the period between log flushes. Note that

atomicity is guaranteed independent of permanence.

Figure 4C shows the two operations provided by RVM for controlling the

use of the write-ahead log. The fh-st operation, flush, blocks until all commit-

ted no-flush transactions have been forced to disk. The second operation,

truncate, blocks until all committed changes in the write-ahead log have been

reflected to external data segments. Log truncation is usually performed

transparently in the background by RVM. But since this is a potentially

long-running and resource-intensive operation, we have provided a mecha-

nism for applications to control its timing.

The final set of primitives, shown in Figure 4d, performs a variety of

functions. The query operation allows an application to obtain information

such as the number and identity of uncommitted transactions in a region.

The set _ options operation sets a variety of tuning knobs such as the thresh-

old for triggering log truncation and the sizes of internal buffers. Using

ACM TransactIons on Computer Systems, Vol. 12, No, 1, February 1994

Lightweight Recoverable Virtual Memory . 43

create_ log, an application can dynamically create a write-ahead log and then

use it in an initialize operation.

5. IMPLEMENTATION

Since RVM draws upon well-known techniques for building transactional

systems, we restrict our discussion here to two important aspects of its

implementation: log management and optimization. The RViM manual

[Mashburn and Satyanarayanan 19921 offers many further details, and a
comprehensive treatment of transactional implementation techniques can be

found in Gray and Reuter [1993].

5.1 Log Management

5.1.1 Log Format. RVM is able to use a no-undo/redo value-logging

strategy [Bernstein et al. 1987] because it never reflects uncommitted changes

to an external data segment. The implementation assumes that adequate

buffer space is available in virtual memory for the old-value records of

uncommitted transactions. Consequently, only the new-value records of com-

mitted transactions have to be written to the log. The format of a typical log

record is shown in Figure 5.

The bounds and contents of old-value records are known to RVM from the

set-range operations issued during a transaction. Upon commit, old-value

records are replaced by new-value records that reflect the current contents of

the corresponding ranges of memory. Note that each modified range results

in only one new-value record even if that range has been updated many times

in a transaction. The final step of transaction commitment consists of forcing

the new-value records to the log and writing out a commit record.

No-restore and no-flush transactions are more efficient. The former result

in both time and space spacings since the contents of old-value records do not

have to be copied or buffered. The latter result in considerably lower commit

latency, since new-value and commit records can be spooled rather than

forced to the log.

5.1.2 Crash Recovery and Log Truncation. Crash recovery consists of

RVM first reading the log from tail to head, then constructing an in-memory

tree of the latest committed changes for each data segment encountered in

the log. The trees are then traversed, applying modifications in them to the

corresponding external data segment. Finally, the head and tail location

information in the log status block is updated to reflect an empty log. The

idempotency of recovery is achieved by delaying this step until all other

recovery actions are complete.

Truncation is the process of reclaiming space allocated to log entries by

applying the changes contained in them to the recoverable data segment.

Periodic truncation is necessary because log space is finite and is triggered

whenever current log size exceeds a preset fraction of its total size. In our

experience, log truncation has proved to be the hardest part of RVM to

implement correctly. To minimize implementation effort, we initially chose to

ACM Transactions on Computer Systems, Vol. 12, No. 1, February 1994.

44 . M, Satyanarayanan et al.

Reverse Displacements

hfi {

Trans Range

Hdr Hdr 1
----i)ata ------- ~;g; --------- Data ----------- ~~g~ -----Data -.-----* ~k

I !1 I h
Forward Displacements

Fig. 5. This log record format of a typical log record read either way.

Tail Displacements

I f 1,

I

Disk Status Truncation Current. New Record.
Label Block

.
Epoch

.
Epoch

.
Space

i
I

Head Displacements

Fig.6. This fi~reshows epoch truncation freed fornew log records

reuse crash recovery code for truncation. In this approach, referred to as

epoch truncation, the crash recovery procedure described above is applied to

an initial part of the log while concurrent forward processing occurs in the

rest of the log. Figure 6 depicts the layout ofa log while an epoch truncation

is in progress.

Although exclusive reliance on epoch truncation is a logically correct

strategy, it substantially increases log traffic, degrades forward processing

more than necessary, and results in bursty system performance. Now that

RVM is stable and robust, we are implementing a mechanism for incremental

truncation during normal operation. This mechanism periodically renders the

oldest log entries obsolete by writing out relevant pages directly from VM to

the recoverable data segment. To preserve the no-undo/redo property of the

log, pages that have been modified by uncommitted transactions cannot be

written out to the recoverable data segment. RVM maintains internal locks to

ensure that incremental truncation does not violate this property. Certain

situations, such as the presence of long-running transactions or sustained

high concurrency, may result in incremental truncation being blocked for so

long that log space becomes critical. Under those circumstances, RVM reverts

to epoch truncation.
Figure 7 shows the two data structures used in incremental truncation.

The first data structure is a page vector for each mapped region that

maintains the modification status of that region’s pages. The page vector is

loosely analogous to a VM page table: the entry for a page contains a dirty bit

and an uncommitted reference count. A page is marked dirty when it has

committed changes. The uncommitted reference count is incremented as

set _ ranges are executed and decremented when the changes are committed

or aborted. On commit, the affected pages are marked dirty. The second data

structure is a FIFO queue of page modification descriptors that specifies the

ACM TransactIons on Computer Systems, Vol 12, No, 1, February 1994

Lightweight Recoverable Virtual Memory . 45

Page Vector
Uncommitted

Rt?f Cnt

Dirty
Reserved

PP P P
12 3 4

log head Log Records log tail

Fig. 7. This figure shows incremental truncation count drop to zero.

order in which dirty pages should be written out in order to move the log

head. Each descriptor specifies the log offset of the first record referencing

that page. The queue contains no duplicate page references: a page is

mentioned only in the earliest descriptor in which it could appear. A step in

incremental truncation consists of selecting the first descriptor in the queue,

writing out the pages specified by it, deleting the descriptor, and moving the

log head to the offset specified by the next descriptor. This step is repeated

until the desired amount of log space has been reclaimed.

5.2 Optimization

Early experience with RVM indicated two distinct opportunities for substan-

tially reducing the volume of data written to the log. We refer to these as

intratransaction and intertransaction optimizations respectively.

Intratransaction optimizations arise when set-range calls specifying identi-

cal, overlapping, or adjacent memory addresses are issued within a single

transaction. Such situations typically occur because of modularity and defen-

sive programming in applications. Forgetting to issue a set-range call is an

insidious bug, while issuing a duplicate call is harmless. Hence applications

are often written to err on the side of caution. This is particularly common

when one part of an application begins a transaction and then invokes
procedures elsewhere to perform actions within that transaction. Each of

those procedures may perform set-range calls for the areas of recoverable

memory it modifies, even if the caller or some other procedure is supposed to

ACM Transactions on Computer Systems, Vol. 12, No. 1, February 1994.

46 . M. Satyanarayanan et al.

have done so already. Optimization code in RVM causes duplicate set-range

calls to be ignored and overlapping and adjacent log records to be coalesced.

Intertransaction optimizations occur only in the context of no-flush trans-

actions. Temporal locality of reference in input requests to an application

often translates into locality of modifications to recoverable memory. For

example, the command “Cp d 1 /* d2° on a Coda client will cause as many

no-flush transactions updating the data structure in RVM for d2 as there are

children of d 1. Only the last of these updates needs to be forced to the log on a

future flush. The check for intertransaction optimization is performed at

commit time. If the modifications being committed subsume those from an

earlier unflushed transaction, the older log records are discarded.

6. STATUS AND EXPERIENCE

RVM has been in daily use for over two years on hardware platforms such as

IBM RTs, DEC MIPS workstations, Sun Spare workstations, and a variety of

Intel 386/486-based laptops and workstations. Memory capacity on these

machines ranges from 12MB to 64 MB, while disk capacity ranges from 60MB

to 2.5GB. Our personal experience with RVM has only been on Mach 2.5 and

3.0. But RVM has been ported to SunOS and SGI IRIX at MIT, and we are

confident that ports to other Unix platforms will be straightforward. Most

applications using RVM have been written in C or C + +, but a few have been

written in Standard ML. A version of the system that uses incremental

truncation is being debugged.

Our original intent was just to replace Camelot by RVM on servers, in the

role described in Section 2.2. But positive experience with RVM has encour-

aged us to expand its use. For example, transparent resolution of directory

updates made to partitioned server replicas is done using a log-based strategy

[Kumar and Satyanarayanan 1993]. The logs for resolution are maintained in

RVM. Clients also use RVM now, particularly for supporting disconnected

operation [Kistler and Satyanarayanan 1992]. The persistence of changes

made while disconnected is achieved by storing replay logs in RVM, and user

advice for long-term cache management is stored in a hoard database in

RVM,

An unexpected use of RVM has been in debugging Coda servers and clients

[Satyanarayanan et al. 1992]. As Coda matured, we ran into hard-to-repro-

duce bugs involving corrupted persistent data structures. We realized that

the information in RVM’S log offered excellent clues to the source of these
corruptions. All we had to do was to save a copy of the log before truncation

and build a postmortem tool to search and display the history of modifica-

tions recorded by the log.

The most common source of programming problems in using RVM has been

in forgetting to do a set set-range call prior to modifying an area of recover-

able memory. The result is disastrous, because RVM does not create a

new-value record for this area upon transaction commit. Hence the restored

state after a crash or shutdown will not reflect modifications by the transac-

tion to that area of memory. The current solution, as described in Section 5.2,

ACM TransactIons on Computer Systems, Vol. 12, No, 1, February 1994.

Lightweight Recoverable Virtual Memory . 47

is to program defensively. A better solution would be language based, as

discussed in Section 8.

7. EVALUATION

A fair assessment of RVM must consider two distinct issues. From a software

engineering perspective, we need to ask whether RVM’S code size and com-

plexity are commensurate with its functionality. From a systems perspective,

we need to know whether RVM’S focus on simplicity has resulted in unaccept-

able loss of performance.

To address the first issue, we compared the source code of RVM and

Camelot. RVM’S mainline code is approximately 10K lines of C, while utili-

ties, test programs, and other auxiliary code contribute a further 10K lines.

Camelot has a mainline code size of about 60K lines of C and auxiliary code of

about 10K lines. These numbers do not include code in Mach for features like

IPC and the external pager that are critical to Camelot.

Thus the total size of code that has to be understood, debugged, and tuned

is considerably smaller for RVM. This translates into a corresponding reduc-

tion of effort in maintenance and porting. What is being given up in return is

support for nesting and distribution, as well as flexibility in areas such as

choice of logging strategies—a fair trade by our reckoning.

To evaluate the performance of RVM we used controlled experimentation

as well as measurements from Coda servers and clients in actual use. The

specific questions of interest to us were:

—How serious is the lack of integration between RVM and VM?

—What is RVM’S impact on scalability?

—How effective are intra- and intertransaction optimizations?

7.1 Lack of RVM-VM Integration

As discussed in Section 3.2, the separation of RVM from the VM component of

an operating system could hurt performance. To quantify this effect, we

designed a benchmark inspired by the TPC family of benchmarks [Serlin

1991] and used it in a series of carefully controlled experiments.

7.1.1 The Benchmark. The TPC family of benchmarks is stated in terms

of a hypothetical bank with one or more branches, multiple tellers per

branch, and many customer accounts per branch. A transaction updates a

randomly chosen account, updates branch and teller balances, and appends a

history record to an audit trail.

In our variant of this benchmark, we represent all the data structures

accessed by a transaction in recoverable memory. The number of accounts is a

parameter of our benchmark. The accounts and the audit trail are repre-

sented as arrays of 128-byte and 64-byte records respectively. Each of these

data structures occupies close to half the total recoverable memory. The sizes

of the data structures for teller and branch balances are insignificant.
Access to the audit trail is always sequential, with wraparound. The

pattern of accesses to the account array is a second parameter of our

benchmark. The best case for paging performance occurs when accesses are

ACM Transactions on Computer Systems, Vol. 12, No 1, February 1994.

48 . M, Satyanarayanan et al.

sequential. The worst case occurs when accesses are uniformly distributed

across all accounts. To represent the average case, the benchmark uses an

access pattern that exhibits considerable temporal locality. In this access

pattern, referred to as localized, 70% of the transactions update accounts on

570 of the pages; 25$%0of the transactions update accounts on a different 159Z0

of the pages; and the remaining 59Z0 of the transactions update accounts on

the remaining 809?0 of the pages. Within each set, accesses are uniformly

distributed.

7.1.2 Results. Our primary goal in these experiments was to understand

the throughput of RVM over its intended domain of use. This corresponds to

situations where paging rates are low, as discussed in Section 3.2. A sec-

ondary goal was to observe performance degradation relative to Camelot as

paging becomes more significant. We expected this to shed light on the

importance of RVM-VM integration.

To meet these goals, we conducted experiments for account arrays ranging

from 32K entries to about 450K entries. This roughly corresponds to ratios of

10!%oto 175% of total recoverable-memory size to total physical-memory size.

At each account array size, we performed the experiment for sequential,

random, and localized account access patterns. Table I and Figare 8 present

our results. Hardware and other relevant experimental conditions are de-

scribed in Table I.

For sequential account access, Figure 8a shows that RVM and Camelot

offer virtually identical throughput. This throughput hardly changes as the

size of recoverable memory increases. The average time to perform a log force

on the disks used in our experiments is about 17.4 milliseconds. This yields a

theoretical maximum throughput of 57.4 transactions per second, which is

within 15% of the observed best-case throughputs for RVM and Camelot.

When account access is random, Fig-m-e 8a shows that RVM’S throughput is

initially close to its value for sequential access. As recoverable-memory size

increases, the effects of paging become more significant, and throughput

drops. But the drop does not become serious until recoverable-memory size

exceeds about 70’%0 of physical-memory size. The random-access case is

precisely where one would expect Camelot’s integration with Mach to be most

valuable. Indeed, the convexities of the curves in Figure 8a show that

Camelot’s degradation is more graceful than RVMS. But even at the highest

ratio of recoverable to physical-memory size, RVM’S throughput is better than

Camelot’s.
For localized account access, Figure 8b shows that RVM’S throughput drops

almost linearly with increasing recoverable-memory size. But the drop is

relatively slow, and performance remains acceptable even when recoverable-

memory size approaches physical-memory size. Camelot’s throughput also

drops linearly and is consistently worse than RVM’S throughput.

These measurements confirm that RVMS simplicity is not an impediment

to good performance for its intended application domain. A conservative

interpretation of the data in Table I indicates that applications with good

locality can use up to 4090 of physical memory for active recoverable data,

ACM Transactions on Computer Systems, Vol 12, No. 1, February 1994.

No. of
Accounts

32768
65536
98304

131072
163840
196608
229376
262144
294912
327680
360448
393216
425984
458752

Lightweight Recoverable Virtual Memory .

Table I. This Table Presents Transactional Throughput Significantly

llmem
Pmem

12.5~o

25 .0%

37.5%

50.0%
62.5%
75.0%
87.5%

100.0%
112.5%

125.0%

137.5%

150.0%

162.5%

175.0%

FWM (Trans/See)

Sequential

48.6 (OO)

48.5 (O2)

48.6 (OO)

48.2 (0,0)

48.1 (00)

47.7 (o o)

47.2 (0,1)

46.9 (OO)

46.3 (O 6)

46.9 [07)

48.6 (O O)

46.9 (O2)

46.5 (O4)

464 (O 4)

Random

47.9 (oo)
46.4 (OI)

45.5 (0.0)

44.7 (0,2)

43,9 (o o)

43.2 (O O)

42.5 (0.0)

41.6 (0.0)

40.8 (O5)

39.7 (o o)

338 (09)

33.3 (14)

30.9 (o 3)

27,4 (02)

Localized

47,5 (o o)

46,6 (0.0)

46.2 (OO)

45.1 (00)

44.2 (0.1)

43.4 (o o)

43,8 (O 1)

41.1 (0.0)

39.0 (O6)

39.0 (0.5)

40.0 (o o)

39.4 (o 4)

38.7 (02)

35.4 (1 o)

Camelot (Trans/See)

Sequential

48.1 (0.0)

48.2 (0.0)

48.9 (O1)

48.1 (OO)

48,1 (0.0)

48.1 (04)

48.2 (0.2)

48.0 (OO)

48.0 (OO)

48.1 (0.1)

48.3 (OO)

48.9 (OO)

48.0 (OO)

47.7 (o o)

Random

41.6 (04)

34,2 (0.3)

30.1 (o 2)

29.2 (0.0)

27.1 (0.2)

25.8 (12)

23.9 (O1)

21.7 (00)

20.8 (02)

19.1 (00)

18.6 (00)

18.7 (O1)

18.2 (OO)

17.9(01)

Localized

44.5 (o 2)

43.1 (O6)

41.2(02)

41.3 (o 1)

40.3 (o 2)

39.5 (O8)

37.9 (o 2)

35.9 (02)

35.2 (O1)

33.7 (0.0)

33.3 (o 1)

32.4 (O2)

32.3 (O2)

31.6(00)

49

while keeping throughput degradation to less than 10%. Applications with

poor locality have to restrict active recoverable data to less than 25% for

similar performance. Inactive recoverable data can be much larger, con-

strained only by startup latency and virtual-memory limits imposed by the

operating system, The comparison with Camelot is especially revealing. In

spite of the fact that RVM is not integrated with VM, it is able to outperform

Camelot over a broad range of workloads.

Although we were gratified by these results, we were puzzled by Camelot’s

behavior. For low ratios of recoverable to physical memory we had expected

both Camelot’s and RVM’S throughputs to be independent of the degree of

locality in the access pattern. The data shows that this is indeed the case for

RVM. But in Camelot’s case, throughput is highly sensitive to locality even at

the lowest recoverable-to-physical-memory ratio of 12.55Z0. At that ratio

Camelot’s throughput in transactions per second drops from 48.1 in the

sequential case to 44.5 in the localized case, and to 41.6 in the random case.

Closer examination of the raw data indicates that the drop in throughput is

attributable to much higher levels of paging activity sustained by the Camelot

Disk Manager. We conjecture that this increased paging activity is induced

by a less efficient checkpointing implementation for segment sizes of the

order of main memory size. During truncation, the Disk Manager writes out
all dirty pages referenced by entries in the affected portion of the log. When

truncation is frequent and account access is random, many opportunities to

amortize the cost of writing out a dirty page across multiple transactions are

lost. Less frequent truncation or sequential account access result in fewer

such lost opportunities.

7,2 Scalability

As discussed in Section 2.3, Camelot’s heavy toll on the scalability of Coda

servers was a key influence on the design of RVM. It is therefore appropriate

ACM Transactions on Computer Systems, Vol 12, No 1, February 1994

50 . M. Satyanarayanan et al

Q 50 -
&j -a- w--w_UI
c e -e-
0 ❑ -~-,.
“~ 40 -\ ‘ ..0
@ \ .
c \ \ \

❑ \
E \ ● X*\

30 “ ❑’ \ 1*
<

\
\

‘Q. \n ●

-. ,U
—— RVM Sequential “ = .~

20 — Cemelot Sequential ‘D-~-Ba

- - RVM Random
-n

w + Camelot Random

70’ ;0
o 40 60 80 100 120 140 160 180

Rmem/Pmem (per cent)

(a) Worst and Best Cases

$50 -
q ●’.-e
@ 0. ‘- .-*..
c
Q “a ●

.- -“n. ..aa ‘.-....*. . . .
z 40

‘... P..., a, ●
.9

.*.. .*

8
.

c
,,$.. ,

n-... ●
. . . .

E
❑ ❑

O... @ ❑

30

20 -EzEizJ

d ;0
o 40 60 80 100 120 140 160 180

Rmem/Pmem (per cent)

(b) Average Ctse

Fig.8. These plots illustrate transactional throughput worst cases.

to ask whether RVM has yielded the anticipated gains in scalability, The

ideal way to answer this question would be to repeat the experiment men-

tioned in Section 2.3, using RVM instead of Camelot. Unfortunately, such a

direct comparison is not feasible because server hardware has changed

considerably. Instead of IBM RTs we now use the much faster Decstation

5000\ 200s. Repeating the original experiment on current hardware is also

not possible, because Coda servers now use RVM to the exclusion of Camelot.

Consequently, our evaluation of RVM’S scalability is based on the same set

of experiments described in Section 7.1. For each trial of that set of experi-

ACM Transactions on Computer Systems. Vol. 12, No. 1, February 1994

Lightweight Recoverable Virtual Memory . 51

n

4~
o 20 40 60 80 100 120 140 160 180

Rmem/Pmem (per cent)

(a) Worst and Best Cases

I.....*....e....m.....V....a....w....=....b...w.. ..9...0

4

L

o 20 40 60 80 100 120 140 160 180
Rmem/Pmem (percent)

(b) Avertigc Cose

Fig.9. These plots depict amortized CPUcost per transaction,

ments, the total CPU usage on the machine was recorded. Since no extrane-

ous activity was present on the machine, all CPU usage (whether in system

or user mode) is attributable to the running of the benchmark. Dividing the

total CPU usage by the number of transactions gives the average CPU cost

per transaction, which is our metric of scalability. Note that this metric

amortizes the cost of sporadic activities like log truncation and page fault

servicing over all transactions.
Figure 9 compares the scalability of RVM and Camelot for each of the three

access patterns described in Section 7.1.1. For sequential account access,

RVM requires about half the CPU usage of Camelot. The actual values of

ACM Transactions on Computer Systems,Vol. 12, No, 1, February 1994.

52 . M. Satyanarayanan et al

Table II. This Table Presents Savings Due to RVM Optimizations, Chents, and Servers

Machine

name

gneg

haydn

wagner

mozart

ives

verdl

bath

purcell

berlloz

Machine

type

server

server

server

chent

chent

chent

client

client

cllent

llansactions

committed

267,224

483,978

248,169

34,744

21,013

21,907

26,209

76,491

101,168

Bytes Written

to Log

289,215,032

661,612,324

264,557,372

9,039,008

6,842,648

5,789,696

10,787,736

12,247,508

14,918,736

Intra-Transaction

Savings

20 7’%

215’70

20 9’%

41.67.

31.2%

281%

25 8%

41 .3%

17.3%

Inter-’JYansaction

Savings

o o%

0070

0 0%

26,7%

220’70

209%

21 9’%

362%

64.3%

Total

Savings

207%

21.5970

20.9%

68 397C

53 2%

49 o%

477%

77 5%

81 6%

CPU usage remain almost constant for both systems over all the recoverable

memory sizes we examined.

For random account access, Figure 9a shows that both RVM and Camelot’s

CPU usage increase with recoverable memory size. But it is astonishing that

even at the limit of our experimental range, RVM’S CPU usage is less than

Camelot’s. In other words, the inefficiency of page fault handling in RVM is

more than compensated for by its lower inherent overhead,

For localized account access, Figure 9b shows that CPU usage increases

linearly with recoverable-memory size for both RVM and Camelot. For all

sizes investigated, RVM’S CPU usage remains well below that of Camelot’s.

Overall, these measurements establish that RVM is considerably less of a

CPU burden than Camelot. Over most of the workloads investigated, RVM

typically requires about half the CPU usage of Camelot. We anticipate that

refinements to RVM such as incremental truncation will further improve its

scalability.

RVM’S lower CPU usage follows directly from our decision to structure it as

a library rather than as a collection of tasks communicating via IPC. As

mentioned in Section 3.3, Mach IPC costs about 600 times as much as a

procedure call on the hardware we used for our experiments. Further con-

tributing to reduced CPU usage are the substantially smaller path lengths in

various RVM components due to their inherently simpler functionality.

7.3 Effectiveness of Optimizations

To estimate the value of intra- and intertransaction optimizations, we instru-

mented RVM to keep track of the total volume of log data eliminated by each

technique. Table II presents the observed savings in log traffic for a represen-

tative sample of Coda clients and servers in our environment.

The data in Table II shows that both servers and clients benefit signifi-

cantly from intratransaction optimization. The saving in log traffic is typi-

cally between 2070 and 3070, though some machines exhibit substantially

higher savings. Intertransaction optimizations typically reduce log traffic on

clients by another 20–30%. Servers do not benefit from this type of optimiza-

tion, because it is only applicable to no-flush transactions. RVM optimizations

have proved to be especially valuable for good performance on portable Coda

ACM Transactions on Computer Systems, Vol. 12, No 1, February 1994

Lightweight Recoverable Virtual Memory . 53

clients, because disks on those machines tend to be selected on the basis of

size, weight, and power consumption rather than performance.

7.4 Broader Analysis

A fair criticism of the conclusions drawn in Sections 7.1 and 7.2 is that they

are based solely on comparison with a research prototype, Camelot. A favor-

able comparison with well-tuned commercial products would strengthen the

claim that RVM’S simplicity does not come at the cost of good performance.

Unfortunately, such a comparison is not currently possible because no widely

used commercial product supports recoverable virtual memory. Hence a

performance analysis of broader scope will have to await the future.

8. RVM AS A BUILDING BLOCK

The simplicity of the abstraction offered by RVM makes it a versatile base on

which to implement more complex functionality. In principle, any abstraction

that requires persistent data structures with clean local failure semantics can

be built on top of RVM. In some cases, minor extensions of the RVM interface

may be necessary.

For example, nested transactions could be implemented using RVM as a

substrate for bookkeeping state such as the undo logs of nested transactions.

Only top-level begin, commit, and abort operations would be visible to RVM.

Recovery would be simple, since the restoration of committed state would be
handled entirely by RVM. The feasibility of this approach has been confirmed

by the Venari project [Wing et al. 1992].

Support for distributed transactions could also be provided by a library

build on RVM. Such a library would provide coordinator and subordinate

routines for each phase of a two-phase commit, as well as for operations such

as beginning a transaction and adding new sites to a transaction. Recovery

after a coordinator crash would involve RVM recovery, followed by appropri-

ate termination of distributed transactions in progress at the time of the

crash. The communication mechanism could be left unspecified until runtime

by using upcalls from the library to perform communications. RVM would

have to be extended to enable a subordinate to undo the effects of a first-phase

commit if the coordinator decides to abort. One way to do this would be to

extend end _transaction to return a list of the old-value records generated by

the transaction. These records could be preserved by the library at each

subordinate until the outcome of the two-phase commit is clear. On a global

commit, the records would be discarded. On a global abort, the library at each

subordinate could use the saved records to construct a compensating RVM

transaction.

RVM can also be used as the basis of runtime systems for languages that

support persistence. Experience with Avalon [Wing 1991], which was built on

Camelot, confirms that recoverable virtual memory is indeed an appropriate
abstraction for implementing language-based local persistence. Language

support would alleviate the problem mentioned in Section 6 of programmers

forgetting to issue set-range calls: compiler-generated code could issue these

ACM Transactions on Computer Systems, Vol. 12, No. 1, February 1994

54 . M. Satyanarayanan et al

calls transparently. An approximation to a language-based solution would be

to use a postcompilation augmentation phase to test for accesses to mapped

RVM regions and to generate set-range calls.

Further evidence of the versatility of RVM is provided by the recent work of

O’Toole et al. [1993]. In this work, RVM segments are used as the stable

to-space and from-space of’ the heap for a language that supports concurrent

garbage collection of persistent data. While the authors suggest some im-

provements to RVM for this application, their work establishes the suitability

of RVM for a very different context from the one that motivated it.

9. RELATED WORK

The field of transaction processing is enormous. In the space available, it is

impossible to fully attribute all the past work that has indirectly influenced

RVM. We therefore restrict our discussion here to placing RVM’S contribution

in proper perspective and to clarifying its relationship to its closest relatives.

Since the original identification of transactional properties and techniques

for their realization [Gray 1978; Lampson 1981], attention has been focused

on three areas. One area has been the enrichment of the transactional

concept along dimensions such as distribution, nesting [Moss 1985], and

longevity [Garcia-Molina and Salem 1987]. A second area has been the

incorporation of support for transactions into languages [Liskov and Scheifler

1983], operating systems [Haskin et al. 1988], and hardware [Chang and

Mergen 1988]. A third area has been the development of techniques for

achieving high performance in OLTP environments with very large data

volumes and poor locality [Good et al. 1985].

In contrast to those efforts, RVM represents a back-to-basics movement.

Rather than embellishing the transactional abstraction or its implementa-

tion, RVM seeks to simplify both. It poses and answers the question “What is

the simplest realization of essential transactional properties for the average

application?” By doing so, it makes transactions accessible to applications

that have hitherto balked at the baggage that comes with sophisticated

transactional facilities.
The virtues of simplicity for small databases have been extolled previously

by Birrell et al. [1987]. Their design is even simpler than RVM’S and is based

on new-value logging and full-database checkpointing. Each transaction is

constrained to update only a single data item. There is no support for explicit

transaction abort. Updates are recorded in a log file on disk, then reflected in

the in-memory database image. Periodically, the entire memory image is
checkpointed to disk, the log file deleted, and the new checkpoint file re-

named to be the current version of the database. Log truncation occurs only

during crash recovery, not during normal operation.

The reliance of Birrell et al.’s technique on full-database checkpointing

makes the technique practical only for applications which manage small

amounts of recoverable data and which have moderate update rates. The

absence of support for multiitem updates and for explicit abort further limits

its domain of use. RVM is more versatile without being substantially more

complex.

ACM Transactions on Computer Systems,Vol. 12. No. 1, February 1994

Lightweight Recoverable Virtual Memory . 55

Transaction-processing monitors (TPMs), such as Encina [Transarc Corp.

1991; Young et al. 1991] and Tuxedo [Andrade et al. 1989; Unix System Labs

1993], are important commercial products. TPMs add distribution and sup-

port services to OLTP backends and integrate heterogeneous systems. Like

centralized database managers, TPM backends are usually monolithic in

structure. They encapsulate all three of the basic transactional properties

and provide data access via a query language interface. This is in contrast to

RVM, which supports only atomicity and the process failure aspect of perma-

nence, and which provides access to recoverable data as mapped virtual

memory.

A more modular approach is used in the Transarc TP toolkit, which is the

backend for the Encina TPM. The functionality provided by RVM corresponds

primarily to the recovery, logging, and physical storage modules of the

Transarc toolkit. RVM differs from the corresponding Transarc toolkit compo-

nents in two important ways. First, RVM is structured entirely as a library

that is linked with applications, while some of the toolkit’s modules are

separate processes. Second, recoverable storage is accessed as mapped mem-

ory in RVM, whereas the Transarc toolkit offers access via the conventional

buffered I\O model.

Chew et al. [1993] have recently reported on their efforts to enhance the

Mach kernel to support recoverable virtual memory. Their work carries

Camelot’s idea of providing system-level support for recoverable memory a

step further, since their support is in the kernel rather than in a user-level

Disk Manager. In contrast, RVM avoids the need for specialized operating

system support, thereby enhancing portability.

RVMS debt to Camelot should be obvious by now. Camelot taught us the

value of recoverable virtual memory and showed us the merits and pitfalls of

a specific approach to its implementation. Whereas Camelot was willing to

require operating system support to achieve generality, RVM has restrained

generality within limits that preserve operating system independence.

10. CONCLUSION

In general, RVM has proved to be useful wherever we have encountered a

need to maintain persistent data structures with clean failure semantics. The

only constraints upon its use have been the need for the size of the data

structures to be a small fraction of disk capacity and for the working set size

of accesses to them to be significantly less than main memory.
The term “lightweight” in the title of this article connotes two distinct

qualities. First, it implies ease of learning and use. Second, it signifies

minimal impact on system resource usage. RVM is indeed lightweight along

both these dimensions. A Unix programmer thinks of RVM in essentially the

same way he thinks of a typical subroutine library, such as the stdio package.

While the importance of the transactional abstraction has been known for
many years, its use in low-end applications has been hampered by the lack of

a lightweight implementation. Our hope is that RVM will remedy this

situation. While integration with the operating system may be unavoidable

ACM Transactions on Computer Systems,Vol. 12,No 1, February 1994.

56 . M. Satyanarayanan et al.

for very demanding applications, it can be a double-edged sword, as this

article has shown. For a broad class of less demanding applications, we

believe that RVM represents close to the limit of what is attainable without

hardware or operating system support.

ACKNOWLEDGMENTS

Marvin Theimer and Robert Hagmann participated in the early discussions

leading to the design of RVM. We wish to thank the designers and implemen-

tors of Camelot, especially Peter Stout and Lily Mummert, for helping us

understand and use their system. The comments of our SOSP shepherd, Bill

Weihl, helped us improve the presentation significantly.

REFERENCES

ANDRADE, J. M., CARGES, M. T., AND KOVACH, K. R. 1989. Building a transaction processing

system on UNIX systems. In UnLFoi-um Conference Proceedings

BARON, R. V, BLACK, D. L , BoLoshT, W., CHEW, J., GOLUB, D. B., RASHIII, R. F., TEVANIAN, A.j JR.

AND YOUNG, M, W, 1987. Mach Kernel Interface Ma nucd. School of Computer Science,

Carnegie Mellon Univ., Pittsburgh, Pa.

BERNSTEIN, P. A., HADZILACOS, V., AND GOOEIMAN, N. 1987, Concurrency Control and Recovery

m Database Systems, Addison Wesley, Reading, Mass.

BERSHAD, B. N., ANDERSON, T. E , LAZOWSKA, E, D., ~D LEVY, H. M. 1990. Lightweight remote

procedure call. ACM Trans. Comput. Syst. 8, 1 (Feb.).

BIRRELL, A. B., JONES, M. B., AND WOBBER, E. P, 1987. A simple and efficient implementation

for small databases, In Proceedings of the llth ACM Symposium on Operating System

Prmclples ACM, New York.

CHANG, A. AND MERGEN, M. F. 1988. 801 Storage: Architecture and programming. ACM

Trans. Comput Syst. 6, 1 (Feb)

CHEW, K.-M., REDDY, A. J., ROMER, T. H , AND SILBERSCHATZ, A. 1993. Kernel support for

recoverable-persistent virtual memory. In Proceedings of the USENIX Mach III S-ymposlum.

USENIX Association, Berkeley, Calif.

COOPER, E C, AND DRAVES, R. P. 1988. C threads. Tech. Rep, CMU-CS-88-154, Dept. of

Computer Science, Carnegie Mellon Umv., Pittsburgh, Pa.

EPPINGER, J. L 1989, Virtual memory management for transaction processing systems, Ph.D

thesis, Dept. of Computer Science, Carne~e Mellon Univ., Pittsburgh, Pa.

EPPINGER, J. L,, MUMMERT, L. B., AND SPECTOR, A. Z. 1991. Camelot and Avalon. Morgan

Kaufmann, San Mateo, Calif,

GARCIA-M• LINA, H. AND SALEM, K. 1987. Sagas. In Proceedings of the ACM Sigmod Confer-

ence. ACM, New York.

GOOD, B,, HOMAN, P. W., GAWLICK. D. E., AND SAMMER, H. 1985. One thousand transactions

per second. In Proceedings of IEEE Compcon. IEEE, New York.

GRAY, J. 1978. Notes on database operating systems. In Operating Systems An Aduanced
Course. Springer-Verlag, New York.

GRAY, J. AND REUTER, A. 1993. Transaction Processing: Concepts and Techruques. Morgan

Kaufmann, San Mateo, Calif.

HASKIN,R., MALAC’HI,Y., SAWDON,W., ANDCHAN,G. 1988, Recovery Management in Quicksil-
ver, ACM Trans. Comput. Syst. 6, 1 (Feb.),

KISTLER, J. J. AND SATYANARAYANAN, M. 1992. Disconnected operation in the Coda file system.

ACM Trans. Comput. Syst. 10, 1 (Feb.).

KUMAR, P, AND SATYANARAYANAN, M. 1993. Log-based directory resolution in the Coda file

system. In Proceedings of the 2nd International Conference on Parallel and Distributed

Information Systems, ACM, New York.

ACM TransactIons on Computer Systems. Vol. 12, No 1, February 1994

Lightweight Recoverable Virtual Memory . 57

LAMPSON, B. W. 1981. Atomic transactions. In Distributed Systems—Architecture and Imple-

men tation. Springer-Verlag, New York.

LAMPSON, B. W. 1983. Hints for computer system design. In Proceedings of the 9th ACM

Symposium on Operating Systems Principles. ACM, New York.

LEFFLER, S. L., MCKUSICK, M. K., KARELS, M. J., AND QUARTERMAN, J. S. 1989. The Design and

Implementation of the 4.3BSD Unix Operating System. Addison-Wesley, Reading, Mass.

LISKOV, B. H, AND SCHEIFLER,1%W. 1983. Guardians and actions: Linguistic support for
robust, distributed programs. ACM Tran. Program. Lang. 5, 3 (July).

MASHBURN, H. AND SATYANARAYANAN, M. 1992. RVM User Manual. School of Computer Sci-

ence, Carnegie Mellon Univ., Pittsburgh, Pa.

MOSS, J. E. B. 1985. Nested Transactions: An Approach to Reliable Distributed Computing.

MIT Press, Cambridge, Mass.

NETTLES, S. M. AND WING, J. M. 1992. Persistence + Undoability = Transactions. In Proceed-

ings of HICSS-25. IEEE Computer Society Press, Los Alamitos, Calif.

O’TOOLE, J., NETTLES, S., AND GIFFORD,=,D. 1993. Concurrent compacting garbage collection of

a persistent heap. In Proceedings of the 14th ACM Sympos~um on Operating System Prlnclples,

ACM, New York.

OUSTERHOUT, J. K. 1990. Why aren’t operating systems getting faster as fast as hardware? In

Proceedings of the USENIX Summer Conference. USENIX Association, Berkeley, Calif.

PATTERSON, D. A., GIBSON, G., AND KATZ, R. 1988. A case for redundant arrays of inexpensive

disks (RAID). In Proceedings of the ACM SIGMOD Conference. ACM, New York.

ROSF,NBLUM, M. AND OUSTERHOUT, J. K. 1992. The design and implementation of a log-struc-

tured file system. ACM Trans. Comput. Syst. 10, 1 (Feb.).

SATYAPJARAYANAN, M. 1991. RPC2 User Guide and Reference Manual. School of Computer

Science, Carnegie Mellon Univ., Pittsburghj Pa.

SATYANARAYANAN, M., KISTLER, J. J., KUMAR, P., OKASAKI, M. E., SI~GF,L, E. H., AND STEERE, D. C.

1990. Coda: A highly available file system for a distributed workstation environment. IEEE

Trans. Comput. 39, 4 (Apr.).

SATYANARAYANAN, M., STEERE, D. C., KUDO, M., AND MASHBURN, H. 1992. Transparent logging

as a technique for debugging complex distributed systems, In Proceedings of the 5th ACM

SIGOPS European Workshop. ACM, New York.
S~RLIN, O. 1991. The history of DebitCredit and the TPC. In The Benchmark Handbook.

Morgan Kaufman, San Mateo, Calif.

SPECTOR, A. Z. 1991. The design of Camelot. In Camelot and Aualon. Morgan Kaufmann, San

Mateo, Calif.

STOUT, P. D., JAFFE, E. D., AND SPECTOR, A. Z. 1991. Performance of select Camelot functions.

In Camelot and Aualon. Morgan Kaufmann, San Mateo, Calif.

TRANSARC CORP. 1991. Encina Product Oueruiew. Transarc Corp., Pittsburgh, Pa,

UNIX SYSTEM LABS. 1993. TUXEDO System Product OvervLew, Unix System Laboratories,

Summit, N.J.

WING, J. M. 1991. The Avalon language. In Camelot and Avalon. Morgan Kaufmann, San

Mateo, Calif.

WIN~, J. M., FAEHNDRICH, M., MORRISETT, G.j AND NETTLES, S. M. 1992. Extensions to stan-

dard ML to support transactions. In ACM SIGPLAN Workshop on ML and its Applications.

ACM, New York.

YOUNG,M. W. 1989. Exporting a user interface to memory management from a communica-
tion-oriented operating system. Ph.D. thesis, Dept. of Computer Science, Carnegie Mellon
Univ., Pittsburgh, Pa.

YOUNG, M. W., THOMPSON, D. S., AND JAFFE, E. 1991. A modular architecture for distributed

transaction processing. In Proceedings of the USENIX Wznter Conference. USENIX Associa-

tion, Berkeley, Calif.

Received July 1993; revised August 1993; accepted October 1993

ACM TransactIons on Computer Systems, Vol. 12, No. 1, February 1994.

