
Proving Concurrent Constraint Programs

Frank S. de Boer* Maurizio Gabbriellit

Free University CWI

Abstract

We develop a compositional proof-system for the par-

tial correctness of concurrent constraint programs.

Soundness and (relative) completeness of the system

are proved with respect to a denotational semantics

based on the notion of strongest postcondition. The

strongest postcondition semantics provides a justifica-

tion of the declarative nature of concurrent constraint

programs, since it allows to view programs as theories

in the specification logic.

1 Introduction

Concurrent constraint programming ([24, 25, 26])

(ccp, for short) is a concurrent programming paradigm

which derives from replacing the store-as-valuation

conception of von Neumann computing by the store-

as-constraint model. Its computational model is based

on a global store, represented by a constraint, which

expresses some partial information on the values of

the variables involved in the computation. The con-

current execution of different processes, which interact

through the common store, refines the partial informa-

tion of the values of the variables by adding (teliing)

constraints to the store. Communication and synchro-

nization is achieved by allowing processes also to test

(ask) if the store entails a constraint before proceeding

in the computation.

One of the most characteristic features of the ccp

paradigm is a formalization of the basic operations

*Free University, de Boelelaan 1081, 1081 HV Amsterdam,

The Netherlands. e.mail: frankbCQcs.vu.rd
t CWI, p,o, BOX 94079, 109o GB Amsterdam, The Nether-

lands. e.mail: gabbri@cwi.nl

$CWI, P.O. Box 94079, 1090 GB Amsterdam, The Nether-

lands. e.mail; elena@cwi.nl

~Dip. di Informatica e Scienze dell’kformazione, Via

Benedetto XV, 3, Geneva, Italy. e.mail: catuscia@Mi.unipi.it

Permission to copv without fee all or part of this material is

granted providad that the copies are not made or distributed for,

direct commerci.s! advantaga, tha ACM copyright notica and tha

title of the publication and its data appear, and notice is given

that copying is by permission of the Association for Computing

Mac+rinary. To copv otharwise, or to republish, raquirea a fae

andor specific permission.

POPL 94- l&4, Portland Oregon, USA

@ 1994 ACM O-89791 -636-9t94/ool ..$3.50

Elena Marchiori$

CWI

Correct

Catuscia Palamidessi$

DISI

which allow to update and to query the common store,

in terms of the logical notions of consistency, conjunc-

tion and entailment supported by a given underlying

constraint system. An intriguing question however is

to what extent the incorporation of synchronization

mechanisms that are intended to describe ‘flow of con-

trol’ features, still allows a declarative interpretation

of ccp programs, i.e. to view a program as a logical

theory and the output of its computations as its logical

consequences.

From a purely semantical point of view, there is no

clear evidence of a declarative interpretation. Indeed

the semantic structures needed to give compositional

(fully abstract) models for the standard input/output

behaviour of ccp programs are similar to those used,

for example, for imperative languages bas~d on asyn-

chronous communication mechanisms ([6]) and are es-

sentially more complicated than those used for pure

(constraint) logic languages ([3, 17]). It should be

noted that for the deterministic fragment of ccp there

exists an elegant denotational semantics based on clo-

sure operators [26], which in [21] are shown to be in-

timately related to the logic of constraints.

The main result of this paper is the introduction

of a proof-theory for ccp, i.e. a calculus for proving

correctness of ccp programs (or, in other words, an

axiomatic semantics) which does provide a declarative

interpretation of ccp. The issue of the design of proof

systems appropriate to proving correctness of ccp pro-

grams has received no attention so far. For logic lan-

guages like Prolog the proof techniques of Hoare-Logic

([16]) have been applied in [10] to reason about prop-

erties of the flow of control and a process algebra for

ccp has been developed in [8] along the lines of ACP

([5]). The focus of this paper concerns more generally

the development of calculi for the correctness of ccp

programs with respect to a first-order specification of

what the program is supposed to compute.

A proof-theory for a concurrent imperative language

in general relates the ‘how’, that is, the flow of con-

trol described by a program, to the ‘what’, a speci-

fication of the program in some (usually first-order)

logic. To relate these two different worlds, the store-

as-valuation semantics (or state-based semantics, for

short) of an imperative program is lifted to a pred-

icate transformer semantics based on the notion of

http://crossmark.crossref.org/dialog/?doi=10.1145%2F174675.176925&domain=pdf&date_stamp=1994-02-01

the weakest precondition or, equivalently, the stTongest

postcondition ([12]). Since the standard semantics of

ccp can already be viewed as a predicate (i.e., store-as-

constraint) transformer semantics it is rather natural

to expect that the semantics itself can be used to prove

correctness of programs. This then would provide a

strong evidence for the declarative nature of ccp.

Unfortunately one can argue that the above sug-

gested expectation is not justified. Consider the fol-

lowing simple ccp program:

(ask(z = O) ~ Mt(y = 1))

+

(ask(z = 1) ~ tell(y = 1))

This program adds y = 1 to the store in case the initial

store either entails z = O or z = 1 (otherwise it sus-

pends). Thus one would like to state that the above

program satisfies the specification (z = O V z = 1) -+

y = 1, i.e. every terminating computation results in a

store such that whenever x = O or z = 1 then y = 1

is guaranteed to hold. However this correctness state-

ment cannot be justified semantically: Intuitively the

tell operation -tell(z = O V z = 1) satisfies the spec-

ification z = O V z = 1. Thus one would expect the

parallel composition

((adc(z = O) --+ tell(y = 1))

+

(ask(z = 1) + tetl(y = 1)))

II
teil(z = O V z = 1)

to satisfy

(tz=OVz =l)A((z =OVz=l)+y=l)

which would imply y = 1. However the above parallel

program does not satisfy y = 1 since z = OV z = 1 nei-

ther entails z = O nor z = 1, so the program will sus-

pend after the tell action. This simple example shows

that one cannot reason about the non-deterministic

choice in terms of the disjunction of the underlying

constraint system.

In this paper we introduce a specification logic to

reason about the correctness of ccp programs in terms

of properties of constraints. A property is described in

terms of constraints themselves and the usual (classi-

cal) logical operations of negation, conjunction and

existential quantification. A property described by

a constraint is interpreted as the set of constraints

that entail it (here the entailment relation stems from

the underlying constraint system). The logical op-

erations of disjunction, negation et c, then are inter-

preted in terms of the corresponding set-theoretic op-

erations. This definition of the specification logic al-

lows a direct correspondence between the program-

ming constructs of ccp and their logical counterparts:

For example, action prefixing corresponds to implica-

tion, non-deterministic choice to disjunction and par-

allel composition to conjunction.

From a semantical point of view this nice correspon-

dence derives from the compositionality of a notion of

observable which associates to a ccp program the set

of all its possible outputs (of terminating computa-

tions). This notion of observable is generally known

in the imperative tradition as the st?ongest postcon-

dztion of a program given the precondition tme (the

set of all initial states). The strongest postcondition

semantics of a program supports the concept of par-

tial correctness: A program P is said to be partially

correct with respect to a (first-order) specification 4
iff all terminating computations of P result in a state

(or constraint) satisfying 4, i.e. the strongest post-

condition of P is contained in the meaning of 4. A

compositional axiomatization of this notion of par-

tial correctness for concurrent imperative programs

requires in general the introduction of some kind of

history variables which encode the sequence of inter-

actions (or communications) of a process with its en-

vironment ([30]). In contrast, the monotonic compu-

tational model of ccp allows to incorporate the rele-

vant assumptions about the parallel environment in

the intial store, and to express logically the interac-

tive behaviour of a process in terms of implication: A

specification 4 -+ + can be interpreted as stating that

if the environment provides 4 then $ is guaranteed to

hold.

The strongest postcondition of a ccp program pro-

vides an abstraction of the standard input foutput

behaviour of ccp programs and as such it allows a

simple compositional semantics (parallel composition

is modelled by set-theoretic intersection and non-

deterministic choice by union). Thus the strongest

postcondition semantics supports a declarative inter-

pretation of ccp programs, i.e. they can be viewed as

theories in the specification logic.

The remaining of the paper is organized as follows.

In the next section we introduce some basic notions on

ccp languages. In section 3 we formalize the concept

of partial correctness for ccp programs by introducing

a specification logic. Section 4 contains the strongest

postcondition semantics and the proof system for ccp.

In section 5 we show how the proof system can be used

for the transformational design of ccp programs along

the lines of [19]. Section 6 concludes.

2 Preliminaries

In this section we give the basic definitions of ccp lan-

guages following [25]. We refer to that paper for more

details. The ccp languages are defined parametrically

wrt to a given constraint system. The notion of con-

99

straint system has been formalized in [25] following

Scott’s treatment of information systems ([27]). The

basic ingredients are a set of primitive constraints D,

each expressing some partial information, and a com-

pact entailment relation E defined on D. This gives

basically an information system with the consistency

structure removed. Then, following the usual con-

struction, a constraint system is obtained by consider-

ing sets of primitive constraints and by extending the

entailment relation on it in such a way that the re-

sulting structure is a complete a/ge/wait lattice. This

ensures the effectiveness of the extended entailment

relation. Here we only consider the resulting struc-

ture.

Definition 2.1 A constraint system is a complete al-

gebraic lattice (C, <, u, tree, false) where U is the lub

operation, and tme, false are the least and the great-

est elements of C, respectively.

Following the standard terminology and notation,

instead of < we will refer to its inverse relation, de-

noted by 1- and called entailment. Formally, Vc, d E

C. c 1- d e d s c. In order to treat the hiding op-

erator of the language a general notion of existential

quantifier is introduced which is formalized in terms

of cylindric algebras ([15]). This leads to the concept

of cyhiTic constraint system. In the following, we as-

sume given a (enumerable) set of variables Var with

typical elements z, y, z,

Definition 2.2 Let (C, <, U, true, fake) be a con-

straint system. Assume that for each z E VaT a func-

tion 3Z : C -+ C is defined such that for any c, d c C:

(i) c t- 3Z(c),

(ii) if c f d then E&(c) k 3Z(d),

(iii) %(c U %(d)) = %(c) u i(d),

(iv) %(3V(C)) = 3Y(%(c)).

Then C = (C, <, U, true, fake, VaT, ~) is a cylzndTzc

constraint system.

In the sequel we will identify a system C with its
underlying set of constraints C. Finally, in order to

model parameter passing, diagonal elements ([15]) are

added to the primitive constraints: We assume that,

for x, y ranging in Var, D contains the constraints dZY

which satisfy the following axioms.

(i) tme t- d==,

(ii) if z # z,y then d~y = 3~(d~~ U d.v),

(iii) if z # y then d.v U 3= (c U dm~) R c.

Note that if C models the equality theory, then the

elements d=v can be thought of as the formulas x =

y. In the following 3Z (c) is denoted by 3ZC with the

convention that, in case of ambiguity, the scope of 3Z

is limited to the first constraint subexpression. (So,

for instance, 3=C U d stands for 3Z(C) U d.)

Definition 2.3 Assuming a given cylindric con-

straint system C the syntax of agents is given by the

following grammar:

where the c, c% are supposed to be jinite constraints

(i.e. algebraic elements) in C. A ccp pTocess P is

then an object of the form D.A, where D is a set of

procedure declarations of the form p(z) :: A and A is

an agent.

The deterministic agents are obtained by imposing

the restriction n = 1 in the previous grammar. The

standard operational model of ccp can be described

by a transition system T = (Conf, --+). The configu-

rations (in) Conf are pairs consisting of a process, and

a constraint in C representing the common store. The

transition relation +~ Conf x Conf is described by

the (least relation satisfying the) rules R1-R6 of table

1.

The agent Stop represents successful termination.

The basic actions are given by tel/(c) and ask(c) con-

structs which act on the common store. Given a store

d, as shown by rule Rl, the execution of tell(c) up-

date the store to c U d. The action ask(c) represents

a guard, i.e. a test on the current store d, whose ex-

ecution does not modify d. We say that ask(c) is en-

abled in d iff d 1- c. According to rule R2 the guarded

choice operator gives rise to global non-determinism:

the agent ~~=1 ask (ci) -i Ai nondeterministically se-

lects one ask(ci) which is enabled in the current store,

and then behaves like A,. The external environment

can then affect the choice since ask (c) is enabled iff

the current store d entails c, and d can be modified by

other agents (rule RI). If no guard is enabled, then

the guarded choice agent suspends, waiting for other

(parallel) agents to add information to the store. The

situation in which all the components of a system of

parallel agents suspend is called global suspension or

deadlock. The operator II represents parallel compo-

sition which is described by rule R3 as interleaving.

The agent 3zA behaves like A, with a considered local

to A. To describe locality in rule R4 the syntax has

been extended by an agent 3dzA where d is a local

store of A containing information on x which is hid-

den in the external store. Initially the local store is

empty, i.e. dzA = 3t’UexA. Rule R5 treats the case

of a procedure call when the actual parameter differs

100

from the formal parameter: It identifies the formal pa-

rameter as a local alias of the actual parameter. For a

call involving the formal parameter a simple body re-

placement suffices (rule R6) since we are dealing with

a call by name parameter mechanism.

3 Properties as (sets of) con-

straints

In this section we formalize the concept of partial cor-

rectness of ccp programs.

Definition 3. I Given a constraint system C the syn-

tax of properties of constraints is given by the follow-

ing grammar:

Properties are built up from constraints and the

usual logical operations. Logical disjunction (V) and

implication (-+) are defined in the usual way: @V@ =df

=(~~ A =+) and @ -+ ~ =df =4 V ~. A constraint c

viewed as a property will be interpreted as the set of

constraints d that entail c, i.e. as the upward closure

t c of c in C (wrt the < ordering). Thus a constraint d

satisfies the (basic) property c iff d c T c. The logical

operations of conjunction and negation are interpreted

in the classical way: a constraint c satisfies a property

#A+ iff it satisfies both $ and $, a constraint c satisfies

a property 14 iff c does not satisfy +. Furthermore,

a constraint c satisfies a property 3z~ iff there exists

a constraint d satisfying @ such that 3*c = ~zd. It

is shown below that the syntactic difference between

3Z and 3Z indeed corresponds to a semantical differ-

ence. Formally, the semantics of a property is defined

as follows:

Definition 3.2 A property will be interpreted as the

set of constraints which satisfy it:

[cl = Tc

where T c = {d \ c < d}, and, for a set of constraints

f, the set ~x(f) denotes

{d I there exists c E ~. 3ZC = ~md}.

Note that the semantics of ~1# is justified by observ-

ing that in the lattice of properties, ordered by ~, the

meaning of the property false is the set {false} which

acts as the greatest element, We have the following
theorem:

Theorem 3.3 Given a (cylindrical) constraint sys-

tem C the set of its properties is a complemented dis-

tributive cylindrical constraint system.

Definition 3.4 A property @is called valid, notation

1= ~, iff every constraint c (of the given constraint

system) satisfies the property, i.e. [~] = C, where C

denotes the underlying constraint system.

Example 3.5 A constraint e satisfies the property

cvd iff e entails c or e entails d. A constraint e satisfies

the property 7C iff e does not entail c. Note that c u d

and c A d are equivalent properties, however the logical

operations of negation, disjunction and quantification

do not in generally correspond with the operations of

complement, greatest lower bound, and quantification

of the underlying constraint system. For example, if

c n d denotes the greatest lower bound of c and d then

(c V d) ~ (c n d) is easily seen to be a valid property.

But since c n d does not entail c or d, the reverse im-

plication is not valid in general. A similar observation

holds for a complemented constraint system. Also it

is not difficult to see that 3XC -+ 3ZC is valid, but that

the reverse implication does not hold.

Definition 3.6 Partial correctness assertions are of

the form P sat + where P is a process and ~ is a

property. The semantics of an assertion P sat @, with

P closed (namely, every procedure occurring in P is

declared), is given as follows:

~ P sat@ iff SP(P) ~ [~]

where

SP(P) =~,~ {d 6 C I there exist c c C and Q

s.t. (P, C) -+* (Q, d) ++ }

Intuitively P sat 4 holds iff every terminating compu-

tation of P (for any input c) results in a constraint d

which satisfies the property ~, The set SP(P) actu-

ally describes the st?ongest postcondition of the pro-

gram P with respect to the precondition twe (ev-

ery constraint satisfies the property true). The fi-

nal store of a terminating computation is often called

resting point because, essentially for the monotonic-

ity of the tell operation and the fact that once an ask

operation is enabled it cannot be disabled, we have:

(P, c) ---+” (Q, d) ~ iff there exists a ~derivation

(P, d) +* (Q, d) j%. Then SP(P) can equivalently

be characterized as follows:

Proposition 3.7 FOT any closed process P, S.P(P) =

{d E C I there exists Q s.t, (P, d) +’ (Q, d) ~}.

4 A calculus for CCP .

In order to obtain a calculus for partial correctness

assertions, we first introduce a compositional charac-

terization of the operational semantics SF’(P). Tech-

nically such a denotational semantics is used to prove

101

RI (D.tell(c), d) - (D. Stop, c u d)

R2 (D. ~~=lask(c,) -+ A,, d) - (D. Aj, d) j E [l, n] and d E C,

‘3 (D.A{”$ ~) = (g:j:’l:B, c’)
() ()

(D.B II A,c) ---+ (D.B II A’, c’)

(D.A, du ~zC) ---i (D. B,d’)

‘4 (D.3’zA, C) + (D.~’’zB, C U ~zd’)

R5 (D.P(y), C) ---+ (D.3dwzA, C) P(z): –As D,z+Y

R6 (D.p(z), c) + (D.A, C) p(z) : –A E D

Table 1: The (standard) transition system.

soundness and completeness of the calculus. More in-

terestingly, it turns out that we can obtain the rules

for the proof system by simply “mirroring” the equa-

tions of the denotational semantics. This is due to

the fact that the operators of the language are mod-

elled in these equations by simple set theoretic notions

(e.g. parallel composition as intersection) which in the

specification logic can be replaced by the correspond-

ing logical notions (e.g. intersection by conjunction).

This simple compositional structure of the SP seman-

tics gives a strong evidence of the declarative nature

of this paradigm since, as shown in detail in the fol-

lowing, it allows to view a program as a theory of the

specification logic.

Definition 4“1 Given a program $’! [~l(e) :
Processes -+ p(C) is defined by the equations in ta-

ble 2 where ~ denotes the least fixpoint wrt subset

inclusion of elements of p(C) containing fake. Here e

is an environment which assigns a set of resting points

to each procedure name.

Theorem 4.2 For any closed program P we have

SP(P) = [P](e), e arbitrary.

The first two equations of table 2 state that the

agents stop and tell(c) have as resting points all the

constraints and all the constraints which entail c, re-

spectively. Equation D2 states that c1 is a resting

point of a guarded choice agent ~~=1 ask(c,) -+ A,

if either it enables the guard ask (cl) and additionally

it is a resting point of A$, or it does not enable any

guard (and hence the agent suspends). Equation D3

is based on a simple semantic property: d is a rest-

ing point of A II B iff d is a resting point of both A

and B. According to equation D4, the resting points

of the agent 2xA are all those constraints which are

equal to a resting point of A up to the information on

x. Finally recursion is modelled, as usual, by a least

fixpoint construction. In rule D5 the variable y is as-

sumed to be different from the formal parameter and

in rule D6 on the other hand z is assumed to be the

formal parameter.

For deterministic agents the semantics [P](e) co-

incides with the denotational semantics of [26], which

associates with each deterministic agent its set of rest-

ing points and which is a fully abstract characteriza-

tion of its input/output behaviour. It is worth noting

that also in the case of nondeterministic processes the

operational semantics SP is compositional since it is

well known that the input/output behaviour of non-

deterministic processes is not compositional ([26, 7]).

As shown by the previous theorem, once we abstract

from the first components of the i/o pairs we obtain

compositionality at the price of a loss of information.

Indeed, while for deterministic agents we can extract

the i/o behaviour of P from SP(P), this is not possible

for non-deterministic agents. However, as previously

discussed, SP (P) provides the information we are in-

terested in also for non-deterministic agents since it

defines exactly the strongest postcondition wrt true.

The above theorem allows also an interpretation of

assertions P sat ~, with P arbitrary (thus including

non-closed processes). Namely, we can now define ~

P sat @ iff e ~ P sat #1, for every environment e,

where e ~ P sat @ iff [P](e) ~ [~].

In table 3 we define a calculus for assertions P sat @

using the usual natural deduction style. The rules CO-

C4 are obtained essentially by a “procedural” reading

of equations Do-D4 in table 2 and by a translation of

the set-theoretic notions into the corresponding logical

102

DO

D1

D2

D3

D4

D5

D6

D7

[D.stop](e.) = c

[D.tell(c)](e) =T c

[D. D, Iwk(cz) --+Ai](e) = f)t(C\ ~c,) u U,(tc, n [lI.A,](e))

UD.A [1 l?](e) = [D. A](e) n [D..B](e)

[D.3zA](e) = {d I there exists c E [D. A](e) s.t. 3Zd = 3ZC}

[~.p(y)](e) = [~.am(p(z) II ~elz(dzy))](e)

[D.p(z)](e) = e(p) p@D

[D.p(z)](e) = pil!

where ~(~) = [D\ {p}. AJJ(e{f/p)-)), P(Z) :: A 6 D

Table 2: Strongest postcondition semantics of CCP

ones. Thus ~ (which for properties is given by their

interpretation) is deleted, U is turned into V and fl

into A.

More precisely, from DO and D 1, which are not in-

ductively defined, we obtain two axioms. The agent

stop satisfies the weakest property true (CO) and the

agent tell(c) satisfies the property c (Cl). The cor-

responding operational intuitions are clear from those

given for DO and D 1.

The rule for non-deterministic choice (C2) can be

justified by considering equation D2: a resting point

of ~$ ask (ci) ~ At either does not entail any of the

asked constraints c%, in which case it satisfies the prop-

erty ~% -ICa, or it entails c, and is a resting point of A,,

so by the premise it satisfies ~, and thus it will satisfy

Ci A ~,. Note that for deterministic agents, rule C2

reduces to

D.A sat ~

D.ask(c) ~ A sat (c -+ ~)

since (c A ~) V TC is logically equivalent to c --i ~.

The rules for parallel composition and hiding can

be obtained in a similar way from the correspond-

ing equations. Note that 3Z both in the languages

of properties and agents has the same meaning, which

is different from the one of 3Z in the constraint system.

Reasoning about recursion is formalized in terms

of a meta-rule (Scott-induction [28]) which allows to

conclude that the agent p(z) satisfies a property @

whenever the body of p(z) satisfies the same property

assuming the conclusion of the rule. Finally, we have

the consequence rule C7 which states that if the pro-

gram P satisfies # and ~ implies + in the underlying

logic of properties then P satisfies 1.

A formal justification of the above calculus con-

sists in establishing its soundness and completeness.

Soundness means that every provable correctness as-

sertion is valid: whenever 1- P sat ~ then ~ P sat #.

Completeness on the other hand consists in the deriv-

ability of every valid correctness assertion: whenever

+ P sat # then F P sat #.

Theorem 4.3 (Soundness) The proof system con-

sisting of the rules CO-C7 is sound. More precisely,

whenever PI sat 41, Pn sat ~. F P sat q5 and

e+ P,sat#z, fo~i=l,n. then e~Psat~.

Proof

Induction on the length of the derivation. We treat the

case when the last rule applied is the recursion rule.

Since the proof D\ {p}.p(x) sat 4 t D \ {p}.A sat ~ is

shorter than the current one the induction hypothesis

says that for every environment e such that e ~ D \

{P}.P(z) sat 4 we also have that e ~ D \ {p}.A sat ~.

Let us take a particular e. We have to show that e >

D.p(z) sat ~, or, in other words that [D.p(z)](e) <

[~]. NOW [D.p(z)](e) = pW, where pfl = Ui f’i, with

~o = {.fa~se} and ~,+1 = [D\{p}.All(e{fi/p}). Thus it
suffices to prove by induction that for all n ~n ~ [I#J].

The base case is obvious. Suppose that jn z [#J].

So we have e{~n/p} ~ D \ {p}.p(z) sat #, and thus

we infer that e{j~/p} + D \ {p}.A sat ~, that is,

f~+l = [D\ {p}. Al(e{~Jp}) G J@].
❑

We prove completeness of the system in the sense of

Cook ([11]): we assume given as additional axioms

all the valid properties and we assume the expressibil-

ity of the strongest postcondition of a process P, i.e.

L UJ

CO D.stop sat true

Cl D.tell(c) sat c

C2
D. A,satq5, Vie{l,..., n}

D. ~ aslc(c,) -+ A, sat ~ -IC, V V(C, A #t)

% z a

C3
D.A sat ~ D.B sat ~

D. All Bsat#A@

C4
D.A sat ~

D.4xA sat dx~

C5 D \ {p}.p(x) sat 1#1t- D \ {p}.A sat #

D.p(z) sat #
p(z) :: A ~ D

C%
D.%(p(z) II tetl(z = y)) sat #

D.p(y) sat #J

c’ w

Table 3: A calculus for CCP

that there exists a property ~ such that SP(P) = [~]. In general SP(.P) can be expressed in an extension

Completeness then follows from an application of the

recursion rule and from the following lemma:

Lemma 4.4 Let D = {pl(zl) :: Al,.. .,pn(zm) ::

An]. For every agent A in which there occur only calls

of procedures of D, if ~ D.A sat ~ then

01, ..., @. t A sat q5.

where, fori = 1, ..., n, @; = p,(z;) sat SP(D.pi(z,)).

Corollary 4.5 (Completeness) Whenever

/= P sat ~, with P closed, then t P sat ~.

Proof

Let P = D.A, then by the lemma above it suffices to

show that p(z) sat SF (p(a)), p declared in D. Again

by the above lemma we have

@’l, ..., @w k- A; sat SP(D.p(Q))

where, for z’ = 1 , . . .,n, @i = pi(z,) sat SP(D.pi(z,))

and p(z%) :: A, 6 D (note that SP(D.Ai) =

SP(pz (z,))). Now a repeated application of the re-

cursion rule gives us 1- pi (z~) sat SP (pz (z,)).

❑

Note that (if there exists a @ such that SP(P) =

[d]) the rules CO-C6 give a calculus for the strongest

postcondition of -P wrt true, and rule C 7 allows to

obtain weaker properties.

of the first-order logic of properties which includes re-

cursively defined properties. Interpreting procedure

identifiers as property variables the rules CO- C4 of

the calculus allow to translate an agent into a re-

cursively defined property. Note that the resulting

property contains only positive occurrences of prop-

erty variables, thus its meaning can be defined as the

least fixed point of a monotonic operator on the lat-

tice of properties. Note also that the recursion rule

for procedures corresponds with the following rule for

recursively defined properties:

4[#/Pl + ‘#

p(z) + @

assuming the property p(z) to be (recursively) defined

by v. The substitution [~/P] applied to p(z) results

into ~, and applied to p(y), y distinct from z, into

3z(#AdzY).

4.1 Local non-determinism

In order to illustrate the generality of our ap-

proach for ccp languages we consider now a modifi-

cation of the standard ccp operational model where

guarded choice is modelled by local (i.e. internal) non-

determinism. The transition system Tl = (Conf, --+1)

is then obtained by adding rule R21 to rules Rl-

R.tl. The agent ~~=1 ask(cz) + Ai can now non-

104

R2z (~~=1 ask(c,) + A,, d) - (ask(cj) ~ Aj, d) j E [l, n], n >1

Table 4: The transition rule for local non-determinism.

deterministically select one j E [1, n] and hence be-

have like ask(cj) + Aj (which is a shorthand for

z~=lask(cj) + Aj) even if ask(cj) is not enabled

in the current store. The external environment then

cannot control the choice any more.

The denotational semantics now is obtained by sub-

stituting equation D2 in table 2 by the equation D2Z

given in table 5. Accordingly (writing -IC, V @$ as an

implication), the new proof system is obtained from

table 3 by replacing rule C2 by the rule C21 given

in table 6. Soundness and (relative) completeness of

this calculus can be proved analogously to the previous

case.

Note that the semantics resulting from table 2 mod-

ified by equation D2Z is the one introduced in [18] for

angelic ccp. The same semantics was used in [13] to

approximate the operational semantics obtained from

rules R1-R6 (i.e. with global choice) by observing

the upward closure of the set of the resting points of

a process P for a given input c.

D21 [D. xi ask(c,) -+ A;](e) = lJi(C\ ~c, U [A,](e))

Table 5: The equation for local non-determinism

Table 6: The rule for local non-determinism

4.2 Hoare logic

We have presented a calculus for assertions of the form

P sat ~. This allows to describe properties of the

final states of ccp computations without considering

any assumption on the initial store.

A natural extension would be to consider arbitrary

preconditions, i.e. to give a calculus for triples of the

form {~} P {#J} in the classical Hoare-logic style, with

the intuitive meaning that if the computation of P

starts in a store which satisfies ~ and terminates in

a state d, then d satisfies $. If preconditions are de-

scribed by upward closed properties then triples are

not more expressive than the assertions considered in

previous sections. Indeed let us formally define the

meaning of a triple as follows:

{4} 1’ {d} iff SPY(P) G [41

where SPW (P) denotes the set

{d I -there ezis-t c G [~] and Q s.t.

(P, C)+* (Q, d) j+ }

(the strongest postcondition wrt ~). Then, assuming

that T [~] = [~], it is easy to show that for any P,

SPY (P) = SP(P) n [+] and hence, from the interpre-

tation of -+,

{$} P{~}ifi Psat*+~

Upward closed properties can be syntactically char-

acterized as formulas constructed from constraints

using conjunction and disjunction only. The above

equivalence shows that for these properties the sat sys-

tem is expressive enough.

Introducing preconditions containing negation is

not straightforward since it can easily be shown that

in this case the stronger postcondition semantics

SPiZ (P) is not any more compositional (counterex-

amples can be obtained by slight modifications of the

usual ones which show that the input/output seman-

tics is not compositional). A calculus for the strongest

postcondition semantics in the general case then would

require additional proof-techniques similar to those

used for imperative languages (e.g. test for inter-

ference freedom [20], cooperation test [4]). But even

more basically, allowing arbitrary preconditions does

not even permit an axiomatiriation of the tell opera-

tion; namely, it can be argued that there does not ex-

ist a logical cent ext C[Z, y] such that for any property

~ and constraint c the strongest postcondition of the

tell operation tell(c) wrt to 4 is described by C[4, c].

Note, for example, that simply adding the constraint c

to the precondition is incorrect: It would yield jalse as

the strongest postcondition of tell(c) with respect ~c.

Moreover, it is not clear how such a generality would

really improve the expressive power of the calculus, for

ccp languages, from the point of view of applications.

105

5 The transformational design

of ccp programs

In this section we show how the programming logic

of ccp can be used for the design of ccp programs by

means of refinement techniques.

The main idea underlying the transformational ap-

proach to the design of programs is the stepwise trans-

formation of specifications into programs. To express

the stepwise construction of a program it is convenient

to introduce the formalism of miced terms ([19]), i.e.

terms that are constructed out of programs and spec-

ifications. In the case of ccp programs the strongest

postcondition semantics allows to view a program as

a property of constraints. Formally we define the lan-

guage of mixed terms of programs and properties as

follows:

The semantics of a mixed term is given with respect

to a set of procedure declarations D and is obtained

from the semantics [] as previously defined. In fact,

note that [] as defined in table 2 for agents and []

in definition 3.2 coincide if we identify II with A and

tell(c) with c.

In the mixed term formalism a partial correctness

assertion P sat @ then corresponds to the implication

P ~ ~. Implication itself thus models the satisfaction

or implementation or refinement relation: A mixed

term @ satisfies or implements or refines a mixed term

W iff @ 4 V holds. Note that the refinement relation,

which is modelled by set-inclusion, corresponds with a

decrease in non-determinism. An interesting example

illustrating the above is the validity of the following

implication (with a slight abuse of notation):

(te//(c) + tell(d)) + i!ell(c n d)

(Here m denote the glb of the given underlying con-

straint system.) So in the strongest postcondition se-

mantics the non-determinism present in telt(c TI d) is

reduced by tell(c) + tell(d) since in the latter program

we know that either c or d is told.

A derivation of a ccp program P from a specification

~ in this approach corresponds with a sequence

of implications between mixed terms 01, . . . On where

01 is the given specification ~ and @n denotes the de-

rived program. Furthermore each of the implications

@a+l --i $% is generated by an application of a transfor-

mational rule. Such a rule either consists of some log-

ical reasoning or a rule which allows the introduction

of programming constructs. For example a rule which

allows the introduction of non-deterministic choice is

easily derived from the corresponding proof rule of the

above proof system for partial correctness:

‘t z 2

Note that the proof rules for parallel (i.e. A), the

hiding operator and the consequence rule reduce to

purely logical rules, and that the proof rule for proce-

dures corresponds with the logical rule for recursively

defined predicates,

6 Conclusions

We presented a compositional proof system which al-

lows to prove partial correctness of concurrent con-

straint programs and we proved its soundness and

(relative) completeness. The rules of the calculus

are obtained from the definition of a simple deno-

tational semantics which describes the set of all the

resting points of a ccp process. Indeed, such a notion

of observable turns out to be compositional also for

the non-deterministic case and is informative enough

for partial correctness since it corresponds exactly to

the strongest postcondition wrt the precondition true.

Our results should be considered as the starting point

of a study of ccp languages which involves both theo-

retical and practical aspects.

From a theoretic point of view, one of our main

contributions is to clarify the declarative nature of

ccp languages and its advantages wrt other concurrent

programming paradigms. Indeed the proof-theory we

have defined allows to consider a ccp program as a

logical theory in the specification logic by means of a

direct translation of the language operators in their

classical logical counterparts. An immediate outcome

of this “logical reading” of ccp programs is the sim-

plicity of the calculus, especially if compared to proof

systems for concurrent imperative languages which in-

volve complicated notions as, for example, a test for

interference freedom.

Another interesting point is the close correspon-

dence between program denotations and logics for ccp

(actually they can be viewed as different faces of the

same coin). A very relevant line of research has been

devoted in the past few years to establish closer links

between denotational and axiomatic semantics of pro-

gramming languages, via a better understanding of

the relations between topology (and domain-theory)

and logics [22, 27, 29, 23]. The significance of such a

line was eventually made clear by Abramsky [1] who

exploited a seminal idea in [29]: the classic Stone rep-

resentation theorem for Boolean algebras is the key

to establish a correspondence (actually a duality of

categories) between denotational semantics (spaces of

106

points which are denotations of computational pro-

cesses) and program logics (lattices of properties of

processes).

The simplicity of our construction is essentially due

to the explicit logical interpretation of the basic pro-

gramming constructs. Further investigation should

clarify the relations between the logics of the con-

straints system and the programming logic. More pre-

cisely we aim at acomplete axiomatization of the logic

of properties.

The advantages of obtaining a programming logic

froma denotational semantics are self-evident in our

case (consider for example the soundness and com-

pleteness proofs). On the other hand, proof systems

for imperative concurrent languages are often designed

by using an “ad hoc ingenuity” and their soundness

and completeness are proved wrt an operational se-

mantics using elaborate techniques [2].

From a pragmatic point of view, for any real pro-

gramming language the importance of formal tools

to reason about the correctness of programs is ev-

ident. The concurrent constraint paradigm has al-

ready proved its usefulness in several implementations,

including a commercial one [14]. Techniques based

on abstract interpretation have been used to analyze

properties of ccp computations ([9, 13]), but as far as

we know, our is the first attempt to develop a for-

mal calculus for (partial) correctness. Such a formal

system should be viewed as a first step towards the

realization of formal methods for the verification and

the synthesis of ccp programs.

Further directions which we are currently working

on include an extension of the calculus to infinite com-

putations and to the more general case of Hoare-triples

wit h negative preconditions, and the development of

a refinement calculus for program synthesis along the

lines suggested in section 5.

References

[1]

[2]

[3]

S. Abramsky. Domain Theory in Logical Form.

Proceedings, Annual Symposium on Logic in

Computer Science, pp. 47-53, IEEE C’S, 1987.

Extended version in Annals of Pure and Applied

Logic, 51: 1-77, 1991.

K.R. Apt. Formal justification of a proof system

for Communicating Sequential Processes. Journal

of the ACM, 30:197–216, 1983.

K. R. Apt. Introduction to Logic Programming.

In J. van Leeuwen, editor, Handbook of Theoret-

ical Computer Science, volume B: Formal Mod-

els and Semantics. Elsevier, Amsterdam and The

MIT Press, Cambridge, 1990.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

K.R. Apt, N. Francez and W. P. de Roever. A

proof system for Communicating Sequential Pro-

cesses. ACM Transactions on Programming Lan-

guages and Systems, 2:359-385, 1980.

J.A. Bergstra and J.W. Klop. Process algebra:

specification and verification in bisimulation se-

mantics. In Mathematics and Computer Science

H, CWI Monographs, pp. 61-94. North-Holland,

1986.

F.S. de Boer, J.N. Kok, C. Palamidessi, and

J .J .M.M. Rutten. The failure of failures: Towards

a paradigm for asynchronous communication. In

proceedings of Concur ’91, Lecture Notes in Com-

puter Science, Vol. 527, Amsterdam, The Nether-

lands, August 1991.

F.S. de Boer and C. Palamidessi. A Fully Ab-

stract Model for Concurrent Constraint Program-

ming. In S. Abramsky and T.S.E. Maibaum,

editors, PTOC. of TAPSOFT/CAAP, LNCS 493,

pages 296-319. Springer-Verlag, 1991.

F.S. de Boer and C. Palamidessi. A process alge-

bra of concurrent constraint programming. Pro-

ceedings of the Joint International Conference

and Symposium on Logic Programming, JIC-

SLP ’92.

M. Codish, M. Falaschi, K. Marriott, and

W. Winsborough. Efficient Analysis of Concur-

rent Constraint Logic Programs. In A. Lingas,

editor, Proc. of the 20th International Colloquium

on Automata, Languagesl and Programming, vol-

ume 700 of Lecture Notes in Computer Science,

pages 633-644. Springer-Verlag, Berlin, 1993.

L. Colussi, E. Marchiori. Proving Correctness of

Logic Programs Using Axiomatic Semantics. Pro-

ceedings of the 8th International Conference on

Logic Programming, The MIT Press, pp. 629-644,

1991.

S.A. Cook. Soundness and completeness of an

axiom system for program verification. SIAM J.

Computation, 7(1):70-90, 1978.

E.W. Dijkstra. A discipline of programming.

Prentice-Hall, 1976.

M. Falaschi, M. Gabbrielli, K. Marriott, and

C. Palamidessi. Compositional Analysis for Con-

current Constraint Programming. In Proc. Eighth

IEEE Symp. on Logic In Computer Science,

pages 210–221. IEEE Computer Society Press,

Los Alamitos, California, 1993.

I. Foster and S. Taylor. Strand: New concepts in

parallel programming. Prentice Hall, 1989.

107

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

L. Henkin, J.D. Monk, and A. Tarski. Cylindric

Algebras (Part I). North-Holland, 1971.

C.A.R. Hoare. An axiomatic basis for computer

programming. Communications of the ACM,

12(10):576-580,583, 1969.

J. Jaffar and J.-L. Lassez. Constraint Logic Pro-

gramming. In Proc. Fourteenth Annual ACM

Symp. on Principles of Programming Languages,

pages 111-119. ACM, 1987.

R. Jagadeesan, V.A. Saraswat,

and V. Shanbhogue. Angelic non-determinism

in concurrent constraint programming. Techni-

cal report, Xerox Park, 1991.

E.-R. Olderog. Nets, Terms and Formulas. Cam-

bridge Tracts in Theoretical Computer Science

23, Cambridge Univ. Press, 1991.

S. Owicki and D. Gries. An axiomatic proof tech-

nique for parallel programs. Acts Informatica,

6:319-340, 1976.

P. Panangaden, V.A. Saraswat, P.J. Scott and

R.A. G. Seely. A Hyperdoctrinal View of Con-

current Constraint Programming. In Proc. REX

Wo?’kshop, LNCS 666, pages 457-476, 1992.

G. Plotkin. Dijkstra’s predicate transformers and

Smyth’s powerdomains, LNCS 86, 1980.

E. Robinson. Logical aspects of denotational se-

mantics, LNCS 283, 1987.

V.A. Saraswat. Concurrent Constraint PTogTam-

ming Languages. PhD thesis, Carnegie-Mellon

University, January 1989. Published by The MIT

Press, U. S. A., 1991.

V.A. Saraswat and M. Rinard. Concurrent con-

straint programming. In Proc. of POPL, pages

232-245, 1990.

V.A. Saraswat, M. Rinard, and P. Panangaden.

Semantics foundations of Concurrent Constraint

Programming. In Proc. of POPL, 1991.

D. Scott. Domains for denotational semantics. In

Proc. of ICALP, 1982.

D. Scott and J.W. de Bakker. A theory of pro-

grams. Technical Report Unpublished, Notes of

the IBM Vienna Seminar, 1969.

M. Smyth. Powerdomains and Predicate Trans-

formers: A Topological View. Automata,

Languages and Programming, Proceedings 1983,

LNCS 154, pp. 662-675, 1983.

J. Zwiers. Compositionalty and Partial Correct-

ness. LNCS 321, Springer-Verlag, 1989.

A Appendix

As an example of application of the proof system, we

show a derivation of the partial correctness assertion

p(z, v)sut(z=OVz>O)4y= z!,

for the procedure p(z, y) declared as p(z, y) :: A where

A = ask(z = O) +teli(y = 1)

+

ask(z > O) + A2

and

A2 = 3u, z(teZl(u = z – 1) II tell(y = z *z) II p(u, z)).

(we use + as a shorthand for ~~=l).

According to the above specification, this procedure

computes the factorial of a given integer z. Here we

assume that the underlying constraint domain allows

to express numerical constraint on the domain of (neg-

ative and positive) integers. In the proof we use the

short notation x ~ O for x = O V x > 0.

1.

2.

3.

4.

5.

6.

7.

8.

9.

P(~!Y)sa~~20-+v=~!

{ assumption]

P(z1 Y) II~4~ = ~) IIWY = 2))$a~
(z> O-+ Y= Z!) AZ= UAY=Z

{ from 1, tell(z = u) sat z = u,

tell(y = z) sat y = z and by C3 }

3z, g (p(%, g) II tell(z = u) II tell(y = z)) sat

‘U> O-- Z=U!

{ ~y C4 and C7: Note that

3z, Y((z>O-+ Y=z!)Az=u AY =z)+

(u~O~z=u!)isvalid}

P(u, z) sat (u z O) + z = u!

{ from 3 and by C6 }

te~t(u = z – 1) II tell(y = z *z) II p(u, z) sat

(u~O+Z= IJ!)Au=Z-l AY=Z*Z

{ from 4, by Cl and C3 }

A2satx>O~y=z!

{ from 5, by C4 and C7 }

telz(y = 1) sat y = 1

{by Cl}

Asat(z~O)-+y=z!

{ from 6, 7 and by C7: Note that

((=(z = O) A 7(z > O)) V

(z= OAY=l)V (Z> OA(Z>O+Y=Z!)))

-+(z~O-+y=Z!) isvalid}

p(z, y)satz~O-+y=z!

{ from 8 and by C5 }

108

