
Deriving ~lgorithms from type inference systems:

Application to strictness analysis

Chris Hankin

Department of Computing,

ImperiaJ College,

LONDON SW7 2BZ, UK

Daniel Le M& ayer

INRIA/IRISA

Campus de Beaulieu

35042 RENNES CEDEX, FRANCE

Abstract

The r?de of non-standard type inference in static program

analysis has been much studied recently. Early work em-
phasised the efficiency of type inference algorithms and paid

little attention to the correctness of the inference system.
Recently more powerful inference systems have been investi-

gated but the connection with efficient inference algorithms
has been obscured. The contribution of this paper is twofold:

first we show how to transform a program logic into an al-
gorithm and, second, we introduce the notion of lazy types

and show how to derive an efficient algorithm for strictness
analysis.

1 Introduction

Two major formal frameworks have been proposed for static
analysis of functional languages: abstract interpretation and

type inference. A lot of work has been done to characterise
formally the correctness and the power of abstract inter-
pretation. However the development of algorithms has not

kept pace with the theoretical developments. ThB is now a

major barrier that is preventing the inclusion of the most ad-

vanced techniques in compilers. The majority of the effort

on improving the efficiency of abstract interpretation has
concentrated on frontiers-based algorithms [1 3] or widening
techniques [6, 9]. The former still haa unacceptable perfor-

mance for some commonly occurring higher-order programs.
The latter is a general approach for accelerating convergence
in fixed point computations which, in the finite case, leads

to some loss in accuracy.
In contrast to abstract interpretation, type inference sys-

tems are routinely implemented as part of production qual-

ity compilers. This has led some researchers to develop pro-
gram analyses based on non-standard type inference. One of
the earliest examples is Kuo and Mishra’s strictness analysis
[18]. A natural question arises concerning the relationship
between this approaeh and abstract interpretation. Kuo and

l%m”ssion to copy without fee all or pert of this material is

grantad provided that tha copies are not made or distributed for

direct commercial advantaga, the ACM copyright notice and the

titla of the publication and its data appear, and notice is given

thet copying is by permission of the Association for Computing

Machinery. To copy otharwise, or to republish, requires a fse

and/or specifio permission.

POPL 94- 1/S4, Portland Or@gon,USA

@ 1994 ACfvf O-69791 +36-0t94~l ..$3.50

Mishra’s system is strictly weaker than the standard deno-
tational approaches but Jensen [14] has shown how it can be

extended to regain this equivalence. However, no type infer-
ence algorithm has been proposed for this system so far. The

logic is not immediately suggestive of an algorithm; this is
mairdy because of the weakening rule which may be applied

at arbitrary points in a derivation.
The goal of this paper is to bridge the gap between these

two contrasting approaches. The contribution of the paper
is twofold:

●

e

1.1

Methodological: we start from Jensen’s logical sys-

tem and we derive equivalent systems corresponding
to the standard implementation of abstract interpreta-

tion and to the frontiers optimisation. The derivation

relies on restrictions of the type language. In partic-
ular we show that frontiers are special forms of strict
types. We believe that describing the various imple-

mentation techniques in a common framework and ex-

pressing optirniaations as particular type restrictions
sheds a new light on the algorithmic aspects of static

analysis.

Technical: we propose a refinement of the language of
types, called lazy types and we derive a complete and

sound inference system for this language. This algo-

rithm has the same power w usual implementations of

abstract interpretation but does not exhibit the same
inefficiency problems.

Overview

We will use strictness analysis as a case stndy in this paper

but the techniques are generally applicable [15, 19]. Ab-
stract interpretation represents the strictness property of
a function by an abstract function defined on boolean dm
mains [23]. For instance g~bs t f = f means that the result
of a call to g is undefined if its second argument is unde-
fined. In terms of types, this property is represented by
g : t ~ f ~ f. Notice that t and f are now (non-standard)

types. Conjunctive types are required to retain the power of
abstract interpretation: a strict function like + must have
type (f ~ t ~ f) A (t+ f ~ f). Also an entailment relation

is defined on types and the corresponding type inference sys-
tem includes a weakening rule. This is enough to make type

202

http://crossmark.crossref.org/dialog/?doi=10.1145%2F174675.177858&domain=pdf&date_stamp=1994-02-01

inference a non trivial taak (let us notice however that such

a system does not suffer the undecidabtity problem of more

powerful intersection type systems [1, 2]: this is because we
are working with the simply typed ,1-calculus). We first de-

fine a notion of most general type which is equivalent to the
conjunction of all the types of an expression. The restriction

to most general types allows us to get rid of the weakening

rule and to derive an algorithm which corresponds to the
naive implementation of abstract interpretation. The most
general type can be seen as a representation of the tabula-

tion of the function. Then we proceed by showing that a

further restriction on most general types naturally leads to

the frontiers optimisation. The basic idea behind frontiers
is to take advantage of monotonicity during the calculation

of least fixed points. The restriction on types amounts to

representing a conjunction of types by its minimal elements.

The fact that abstract interpretation computes the most
general type of an expression accounts for its accuracy but

also for its inefficiency. We show that we can avoid some of
this inefficiency without losing any of the power of abstract

interpretation. The point is that abstract interpretation of-
ten provides much more information than really required.

If g is a function of n arguments, the abstract version of g
considers all possible combinations of the abstract values of

these n arguments: for instance g& t f t f f = f means

that a call to g is undefined if its second, fourth and fifth

arguments are undefined. In some cases this particular piece
of information will be useful to show that g is strict in one

of its arguments but in many caaes it will not be useful at
all. The basic idea behind our algorithm is to compute the

strictness types on demand rather than deriving systemati-

cally the most precise information as abstract interpretation
does. The corresponding notion of lazy types is defined by

allowing source expressions to occur inside types. Formally
wch a lazy type is equivalent to the most general type of

the expression, but it is in unevaluated form, very much like
a closurv in lazy languages. We give a simple example to

provide some intuition about lazy types. This example is
traditionally used to illustrate the inefficiency of abstract

interpretation [13].

foldrglb = ifl= nil

then b
else g (head 2) (foldr g (tail 1) b)

cat 1 = foldr append 1 nil

The analysis of this function by abstract interpretation, us-

ing a simple frontiers-bsaed approach, is intractable when
the abstract domain for lists is the usual four point do-

main [25]. We consider only simple strictness in this pa-
per but our argument applies to more complex domains as

well (and with more algorithmic significance) [15, 20]. As-

sume that we want to know if cat is strict. The abstract

version of cat is defined in terms of the abstrsct version of
f oldr. The abstract version of f oidr is a function in the

domain (Bool -+ Bool + Boo/) -+ Bool * Bool + Bool
and its representation is a table of sise 64. Two iteration

steps are required to find the least fixed point, so two func-
tions of this size are built. In terms of types this means
that 128 types are computed to find that cat needs its ar-
gument. In our algorithm, the original property to prove is

cat : f + f and this requires proving the following property:
foldr : append - f + t -+ f where the first component of

directly because if 1has type f then so does 1 = nil and the

body of foldr as well. This example shows that abstract in-

terpretation is unnecessarily expensive because it considers
all possible abstract values for the arguments of a function

when only some of them, are really useful. This problem
becomes crucial in the presence of higher-order functions.

In contrast, our algorithm finds information about append
without computing unnecessary information about its argu-

ments: in this example append is left unevaluated in the
type of foldr because it is not necessary to answer the orig-

inal question. This case is extreme because we do not need

any information about append at all. A dtierent original

question might require proving that append possesses a par-

ticular type.

1.2 Paper Organisation

The next section is a brief account of Jensen’s logic which is
the starting point of the work described here. We define the
notion of most general type in Section 3 and we describe the
corresponding system. We establish its correctness and com-

pleteness with respect to Jensen’s logic. Three algorithms
are derived from this system: a brute force implementa-

tion, an implementation of abstract interpretation and the

frontiers optimisation. These are presented in Section 4 as

different instantiation of a single generic abstract machine.
Section 5 introduces our notion of lazy types and presents

a lazy types system equivalent to the previous ones. The

algorithm for lazy types construction is described in Section

6 with its correctness and completeness properties. Section

7 is a review of related work and conclusions. Appendix 1

provides more details about the derivation of the abstract
machines and Appendix 2 is an example illustrating the lazy
types algorithm.

2 Jensen’s Strictness Logic

Jensen considers a simply typed J–calculus with constants.

The terms, A~, are defined by the following syntax:

The ordering on types and the program logic are defined in
Fig. 1. r is an environment mapping variables to formulae

(i.e. strictness types). In the rule Cond-1 u represents the
standard type of ez (or ea). The rule states that the con-

ditional is undefined if the predicate is; the type subscript
allows the choice of a representation for undefined which has

a type structure which is compatible with the outer context
of the conditional expression. Cond-2 states that any type

which can be inferred for both branches is valid for the con-

ditional expression; this is the counterpart of the least upper

bound operation used in traditional abstract interpretation.
We define = as the equivalence induced by the ordering on

types:

u=r~u<rmdr<u

3 Most General Types

We introduce a slightly restricted language of strictness for-

mulae in Fig. 2; this language is closely related to van
Bakel’s strict types [I]., Baaically strict types do not al-
low intersections on the right hand side of an arrow. This

the type is an unevaluated closure which corresponds to the
conjunction of all the types of append. This returns True

203

Figure 1: Jensen’s Strictness Logic

t,fET~
CTCT1 @cTs 1#1 E Ts ...J#~ET~

u-+@ET~ #JIA... AI$n ETI

Figure 2: The language Tr

restriction is convenient because it does not weaken the ex-

pressive power of the system and it makes type manipulation

easier.
We then define the notion of complete type. The restric-

tion to complete types allows us to avoid the use of weak-
ening because a complete type contains (is the conjunction

of) all of the elements greater than (or equal to) it.

DEFmITION 3. I

CT(T) = /A{ct(a) I a c Stlp(r)}

Sup(a) = {a’ c TS I a’ > a}

Ct(t) = t

Ct(f) = f
ct(u A r) = et(u) A Ct(T)

Ct(a --+ T) = CT(U) + et(T)

Sup(u) can be defined by induction on a. Notice that
CT can be extended to contexts in the obvious way.

Finally, we can define the notion of most general type
of an expression (with respect to some context): it is the

conjunction of all of the types possessed by the expression

in the given environment.

DEFINITION 3.2 (Most General Types)

MGT(r, e) = CT(~{Ct e T,s I r ET e : ai})

The logic for computing most general types is shown in
Fig. 3. C. is the set of T,s types compatible with a (with
the same arrow structure). In the following, we always con-

sider types modulo the congruence derived from the follow-
ing equivalence:

aAaza aAb Gb Aa (a Ah) AcSa A(b Ac)

Modulo this congruence, there is only a finite number of
types u’ such that u = a’.

The following theorems account for the correctness and
the completeness of F,s (with respect to ~T) :

THEOREM 3.3 (Correctness)

rt_Se:U+rbe:C7

THEOREM 3.4 (cOXIpleteIIeSS)

CT(I’) ES e : MGT(I’, e)

The proof of correctness is straightforward. The com-
pleteness theorem states that the type derived for an ex-

pression e by KS is (equivalent to) the conjunction of all the
types derived for e by ET. Its proof relies on the correctness
theorem and the following property:

PROPERTY 3.5

r<A,A+Te:a,a~u’a~r.CT(r) l-se: ct(a’)A~

ThE property is shown by induction on the length of the
proof of A ET e : cr.

4 Abstract Interpretation and Frontiers

In this section we present three abstract machines derived
from the above logic. All of the machines are instances of

a single scheme. The first machine implements the above
logic in a fairly direct manner; the other two are optimisw

tions of the first. The first computes the type of abstractions
and fixed points by exhaustive search. There are thus two
areas for optimisation: the first directs the search for fixed
points by building an ascending chain of approximations,

the resulting machine is equivalent to a naive abstract in-
terpretation; the second directs the search for abstractions

by using a more compact representation of the set of types
akin to the notion of frontiers [13].

The machines have three components: an S stack for
partial results, an environment E and a code C contain-

ing sub-expressions. The schematic machine is shown as a

204

Var ri~+~l~s~:~ mut r~sc:t

r[cw@l] +se:o; A.. .A*:l . . . r[z+@k] Ese:$y A.. .A+:k
Abs

r+s Ac.. :((#l+@~)A.. .A (#l+ !6&)A. .. A(#k+~$k))

rFsel:(($; A.. .A#;l)+@l)A. .. A((@~A. .. Ac#;m)+f6m)
rkse2:o~A,.,A8k

App
ri-se1e2 A,+,

{
i such that +;, ..+k, }a{b’l,..., eh}

Fix
r +s (Age) : u

r ➤s ~x(~g.e) : A~=l et ?uith(OI A.. .A~+6+,)Eu Eu fmdii

Cond-1
I?+sel:f

r t-s cond(el, .2, e3) : A CT’(CO)

I?ksel:t I’i-Se2:qi~A...A&2 rl-Ses:$~A...A+~a
Cond-2

r ~s cond(el, e2, .3) : A{+i [Sk,t.+, = #~ = +?}

.n the rule Abs, we generate the premises by taking all +1 = CT(U,) such that o, c Cc with o the standard type of z.

Figure 3: The Most General Types system

transition system in Fig. 4. We use the following conven-
tion: E[z I+ #] is the property “x is bound to ~ in E“ and

(z : ~): E represents an environment which is equal to E

except that x is bound to #.

To specify a particular machine, we must define the fol-
lowing operations:

~nitabs, initialabs, update~b~, iterab8, lastabs, comb~b~,

initt,=, initiait,z, updatef ,s, iterj,z, iastf 8ZjCombt,=,

app, cond, jiz (Fig. 4). To motivate the definition of the

schematic abstract machine, consider the logic in Fig. 3.

The only complicated transition rule corresponds to the im-

plementation of Abs. Abs requires an iteration to generate

all the ~i 6 CC as indicated in Fig. 3. Since the “body”
of a fixed point expression is always an abstraction (see the

abstract syntax), fixed point computations also involve it-
erations. In our later optimisations we will want to treat

these two types of iterations (abstractions and fixed points)
differently, thus we have separated them in the schematic

semantics. With this motivation in mind, the init functions

pick a start point for the iteration, the iter functions choose

the next step in the iteration, the last functions check for ter-
mination and the comb functions combine the results of the

iterations. The initiai functions generate a set from which

the next iteration is determined; these sets are updated on

each iteration.

This generic abstract machine can be derived from the
type system of the previous section in several stages very

much in the spirit of [11]. More details about this derivation
are given in Appendix 1. The result of these refinements is
an inference system which is an Abstract Evaluation System
in the terminology of [11]. Such an inference system can

alternatively be presented as an abstract machine as we have

done in Fig. 4. The correctness proof of the generic machine

depends on conditions on the generic instructions that we do
not present here. These conditions ensure that the iteration
is ‘completen with respect to the Abs rule of Fig. 3. It
can be shown that the three instantiations of this machine

described below satisfy these requirements.

THEOREM 4.1

(s, r, e:c)b”(~:s, r, c) + l_’1-Se:4

4.1 The na7ve machine

The following definitions are motivated by consideration of
the Abs rule in the logic. The operator initia2 generates the

set of complete types which correspond to the types in the
premises of the rule (except for the type selected by fir-d).
On each iteration, iter chooses another element from this
set and update removes it. Termination, decided by the

predicate last, occurs when the set is empty. The comb

operator builds the result type.

init f i= (U) = first(a)
initilllfiz (a)
CT(C.) – first(a)
iterf,=(~, u, r) = qtcz
updatefim(~, U, T)

~ – iterobs(~, C7,T)
2a9tf,=(Z, a, r) = $X; 0)
combf,=(r, s) =

We assume that the choice of @ is deterministic and fiTst
selects an arbitrary complete type compatible with u. The

operators app, cond and fix are defined as implied by the

type system.
Given these definitions, the rule for fixed points can be

simplified to a single rule:

(S, E, fix(~g.e) : C) b (S, E, (Age): Fix: C)

4.2 The abstract interpretation machine

In abstract interpretation, the search for a fixed point is no
longer random but involves the construction of an ascending

chain of approximations. We achieve this by modifying the
definitions of initfic,hitialf;=,iterj,m, updatef;-, kastf;z,

combf,z and fiz. The result of initfim(u)isthe least com-
plete type compatible with u. In this algorithm the next

205

(r : S,

(r : S,

(r : S,

(r : S,

(s, E[c * ‘#], .T : c) b (4: s, .E[C* ‘#’I, c)
(S, E, C : C) b (t:s, ~, c)

(S, E!, (Aca.e) : C) b (s, (S: iraita~s(u)): E, e : Abs : ~~erabs(~, % ~): c,

where ~ = initiaiab~(o)

(Ar, :s, (s:u):E, A~s:C) b (A(u+TJs ($ ’U)’EJ c,
(Z: O): E, Ite.rab.($,e,~) : c) b

(r , s, (S : ite~ab.(~,a,r)) : ‘, .: Ab. : cO~bab, : ~tera~~(z, e, ~’) : C)

where X’ = Uf)dateob.q(~,a, r)
if li~$tab~(~, a, r)

(Z: U) : E, Iterab.(r, e,~): c) b (r ‘ S, E, C)
if lasta~~(s, a, r)

(rl : r2 : S, E, C077Jbab. : C) b (corrabab.(rl, rz) : S, E, C)

(S, E, (e~ ez) : C) b (S, ~, el : ez : APP : c)
(s, E, cond(el, ez, es) : C) b (S, E, el:e2:e3:Cond:C)

(s, E,; i3x(Aga.e) : c) b (s, (a : initjir(u)) : E, e : Abs : Iterf:s(g, e,~) : ~~z : C)
where Z = initiaifi~(a)

(g: u) : E, Iterf,z(g, e,~) : C) b
(r : S, (g : iterf,r(~, u, r)) : E, e : Ab~ : CO~bfi= : ~terj,z(g, %~’) : C)

where X’ = upd~te~ir(~, U, r)

if 11a8tfi~(z, c, r)

(9’ U)’ ~, Ite+f-(gt %2)’ c) b (r:s! E c,:.—
if la~tf,~(u, r)

(rl : r2 : S, El, Comb~,= : C) b (combf,z(rl, rz) : S, E, C)

(rl:... :rn:S, E, Op:c) b (op(r~,..., r~):S, E, C)
Op E {App, Fix, Cond} of arity k

Figure 4: The schematic abstract machine.

iterate is generated from the result of the Drevious itera-
tion; the ~et Z plays no rtde in the computation and so

initialf,c and updatefi~ are redundant. The iteration ter-
minates when the result from one iteration is equal to the
result from the previous iteration: the ascending chain h~
stabilised. Since the result from the previous iteration is
already accounted for in the type generated by the current
iteration, comb f,= just discards it.

initf ,= (a) = cqfa)
2’7titiC3ifi.z(d)
iter~im(~,~j A(~ + ~s)) ~ ~Ti

update~,= (Z, u, T)
2astf,$(Z, u, r) : [-)=T)

combf,=(T, .9) . T

fax = id

It is straightforward to show the input/output equiva-
lence of this machme and the previous one. We observe
that the set of types modnlo = is finite. Moreover, the type
used for each iteration can be shown to be monotonically in-

creasing. As a consequence, the algorithm is guaranteed to

terminate with a fixed point. The correctness is shown with
respect to the brute force algorithm by a routine inductive
argument.

4.3 The frontiers machine

Considering first-order functions, the machine of the last
subsection effectively computes a truth-table representation

of the function. Clack and Peyton Jones [5] proposed an al-
ternative representation of first-order functions: rather than
representing a function by its truth table, one co~d just
record the maximal argument values at which the result was

O – th~ gives a compact representation from which the truth
table could be reconstructed. This representation was called

the O-frontier of the function. Hunt and Hankin [13] have

shown how this notion can be generalised to higher-order

functions over non-flat domains.
We now show how the frontiers optimisation can be in-

corporated into our work. We compute a restricted form of
type which records the maximal argument types which give

a result of type f.
The frontiers machine is considerably more complicated

than the other two. For simplicity, we consider unary func-
tions whose result type is a basic type. The extension to

n-ary functions with basic type results is relatively straight-

forward. The extension to functions with more complex re-

sult types is possible, but rather complex (see [13] for the

encodings required).
In this algorithm, the set Z is used to store the current

trial O-frontier [17]. Initially, it is empty and %itabs “selects”
the only candidate point. At the end of each iteration, either
the last type corresponds to a “frontier” type (the result

is f) and the set is unchanged, or it doesn’t and the next
lowest elements (preds) are added to the set. The process
terminates when the trial frontier is empty. We redefine the
abstraction operators as follows:

CT(tm)

@
I+ G nezt(Z, a, r)
nezt(~, a, r) – ~~eT&s(~, u, r)

ned{X, a, r) = @

G~(T A .9)

the maximal elements of

{u’e Tsla’ <u}
X, if res(r, a) = f
z u preds(a), otherfie

where Tes selects the result type from a functional type,

206

defined as:

res(~(u -+ T,) A T,a) = Ar,

‘THEOREM 5.5

The fix operators are the same aa for the abstract inter-

pretation machine. It is straightforward to show that this

machine is correct with respect to the abstract interpreta-

tion machine and thus the original logic.

5 Lazy Types

The frontier representation improves the basic algorithm by

avoiding the computation of certain types which can be de-
rived from the canonical form. But frontiers do not change

the essence of the implementation and still lead to imprac-

tical analyses in the presence of larger domains. We take a

more radical approach in this section: rather than returning

all possible pieces of information about the strictness of a

function we compute only the information required to an-
swer a particular question. This new philosophy naturally

leads to a notion of lazy evaluation of types. Lazy types are
defined in Fig. 5. The ordering on types and the logic are

shown in Fig. 6.
The key idea is that an expression from the term lan-

guage (with its environment) may appear w part of a type;
this plays the r61e of a closure. More formally, a closure

(I’, e) stands for A4GT(I’, e), the conjunction of all of the
possible types of the term. This correspondence explains the

new rules in the definition of ~ G. Not surprisingly, the lazy
evaluation of types is made explicit in the App rule: rather

than deriving all possible types for ez, we insert ez itself
(with the current environment) into the type of el. The fol-

lowing definition establishes a correspondence between lazy
types and ordinazy types, the extension to environments is

straightforward:

DEFINITION 5.1

Expand : TG ~ T1

Ezpand(t) = t Ezpand(f) = f

~zpand(al A UZ) = Ezpand(al) A Ezpand(a2)

Ezpancl(ul + u2) = Ezpand(ul) + l?zpand(az)

Expand((I’, e))= MGT(Ezpand(I’), e)

We can now state the correctness and completeness of the

lazy type system and the subsequent equivalence with the
original system.

THEOREM 5.2 (Correctness)

‘Ilr330ru3M 5.3 (Completeness)

THEOREM 5.4 (Equivalence)

First notice that we do not lose completeness by consid-

ering TI types: it can be shown quite easily that any type is
equivalent to a type in TI. The following theorems are used
in the proofs of theorems 5.2 and 5.3.

THEOREM 5.6

rt_Ge:(fJ$l A... A&a) * (rEGe:h) and . . .
and(r bG e : 4.)

ri-Te:(&A... A#n) * (r bTe: #l) and . . .
and(r ~T e : 4.)

Theorem 5.5 can be proved by induction on the proof of

the left hand side. Theorem 5.6 is shown by deriving a proof
of the right hand side from a proof of the left hand side (it

is quite straightforward). Theorem 5.6 allows us to prove
theorem 5.2 by induction on e. The proof of completeness is

carried out in two stages. First we show that the weakening

rule can be removed from ET without changing the set of

derivable types provided we add a form of weakening in the
Var, Fix and Cond rules. A similar property has been

proved for other type systems including a form of weakening
[1, 21]. Then we use theorems 5.5 and 5.6 and proceed by

induction on e to prove completeness.

6 The lazy types algorithm

Applying the same techniques as in Section 4, we can de-

rive an algorithm from the lazy type inference system. Space
considerations prevent us from describing the derivation steps

and we just present the result in the form of an abstract ma-

chine in Fig. 7. The implementation of the ln~ instruction

is omitted for the same reason; ~nf(~, ~) computes ~ <G @
aa defined in Fig. 6 (Theorem 6.2). Notice that a stack ele-

ment Si is either a boolean value or a disjunction of types.
True (resp. False) is installed at the top of the stack if

and only if the original property (of the form (e, 4)) in the
code is (resp. is not) provable in ~ a. Values which are

neither True nor False in the stack are disjunctions of TG
types (& V . . . v #n). The occurrence of such a value at the

top of the stack means that the original property is true if
(and only if) the recursive function currently being analysed
possesses one of the ~, types (in order to make the presen-

tation simpler we do not consider embedded occurrences of

fix here; the extension is straightforward). In order to prove
that fix(~g.e) has type 4 we add the assumption (g :, ~) in

the environment and try to prove e : ~. If the result is True
or False then the cwe is settled. Otherwise a list of condi-

tions ~i is returned and the algorithm iterates to try to show
that one of them is satisfied (rule for lter). Instruction Rec

is used to remember that we were trying to prove a property
on a recursively defined variable (denoted by w, in the en-
vironment); so if it fails we just return th~ property in the

stack rather than False. Appendix 2 develops an example
illustrating the treatment of recursion in the lasy type al-
gorithm. It analyses a function used in [18] to demonstrate
the limitations of a type system without conjunction.

Primitives And and OT are extended in the obvious way

to apply on types: their result is always supposed to be a

disjunction of TG types.

The following theorem states the correctness of the lazy
types algorithm.

THEOREM 6.1

1. (S, r,(e, #):C) b~ (Tme:S, I’, C)*r FGe:#

207

Figure 5: The language TG

I I
Fix

i=l i=l

r +G fix(~g.f?) , #~ (k ~ [1,~])

Cond- 1
r+Gel:f

Cond-2
~kGe2:@ rkGe~:+

r I-G cond(el, e2, e3) : # ri-GcOnd(el, e2, es) : #

Figure 6: The Lazy Types system

(s, Ej(c, t) : c) bG (True : S, E,C)
(s, E! (%f) : c) ~G (~aiae , s, E,C)

(S, E, (e,+, A +z) : c) bG (S, E,(e, #l) : (e, #2) : And: C)

(S, E, (k.e, u + ~) : C) bG (s, (2 : u) : -??, (.,T) : D(z) : c)

(s, E,(ele2,4) : c) bG (s, E,(el, (E, ez) + 41) : c)

(S, E, (cond(el, e2, e3), +) : C) bG (S, E,(el, f):(e2, #):(es, #) :And:Or :C)

(S, (z : o) : E,(D(a)) : C) pG (S, E,C)

(S, E, (flx(~g.e), $) : C) bG (S, (f :r +) : E,(e,4) : Iter(9je) : c)
(S,~k +-+, @], (g : V) : C) bG (S, ~[g W, #J],Inj(4, @) : (~ec, g,+) : C)

(True : S, E,(Rec, g, +) : C) bG (True : S, E,C)
(S1 : S, E, (I?.., g, #) : C) bG ~~ #Sk.i~)

(SI : s, (g + #) : ~,~t.+g,e) , c) bG (S1 , s,~,c)
S1 = True or S1 = False

((#l V... vh):s, (g:r +) :E,~~e@,e) :C) bG
(S, E, (.ficAg.e, @A #1) : (jic~g.e, #A 42) : Or Or C)

(s1 :s2 :s, E,op:c) bG ((oPs1s2) : s, E>c)
Op = And or Op = Or

Figure 7: The Lazy Types algorithm

208

2. (S,17, (e,@) : C) b~ (Faise : S, I’, C) e =(J? FCi e : ~)

if I’ and q$do not contain any I+, assumptions

The proof of this theorem is made hand in hand with the

proof of the following result:

THEOFLEM 6.2

if I’, ~ and + do not contain any ~, assumption

Most of the derivation steps to reach the abstract ma-

chine are very similar to the ones described in Section 4.
The most difficult part of the proof concerns the implemen-

t ation of fix. We have two main facts to prove: (1) the

iteration terminates and (2) the result is accurate. Termi-

nation is proved by showing that each type ~ A @, satisfies

A 4, <G d. It is easy to show that the result is accurate
when the iteration terminates with the True answer. In or-
der to show that the initial property cannot be satisfied if

the answer is False, we prove that at least one of the ~i
types returned by the iteration step is a necessary condition

to prove the original property (in other words, we do not
“bypass” the least fixed point).

The algorithm described in this section can be optimised
in several ways:

● The implementation of the conditional can avoid pro-

cessing the second and third term when the first term

has type f.

● In the rule for application, when expression e2 is a con-

st ant or a variable then its type (t for a constant, its
type in the environment for a variable) can be inserted

into the type of el rather than passing the whole envi-

ronment. Notice that this optimisation is common in
the implementation of lazy languages.

● When an iteration step returns ~1 V.. . V & then each

of the #l is a sufficient condition to prove the original

property ~. So to prove (g :4 A 4,) : r >Ge : q3 A #, it

is enough to prove (g : ~A~i) : r >G e : #i.

These optimisations are easy to justify formally and improve

the derivation considerably. The reader can easily check
that: (nil, nil, (cat, f ~ f) : nil) b: (True : nil, nil, nil)

where cat is the function defined in the introduction. A

more complex example is described in Appendix 2.

7 Related work

To summarise: we claim to make two contributions, one
methodological and the other technical. We briefly review

related work in these two areas before discussing further
work.

The techniques we have used in the first stage of our re-
finements (Sections 3 and 5) are related to previous work on

restricting type systems (see for inst ante [21] for a type sys-
tem with subtypes and [1] for a type system with conjunction
types and subtypes), especially the transformations required
to remove weakening. Our approach to the development of

abstract machines from logics (Sections 4 and 6) is closely
related to Hannan’s and Miller’s [11]. For example, the first

rule for fixed points can be recast as the result of a folding

of inference rules [10, 11]. However our presentation of the

generic abstract machine is akin to notions found in denota-

tional semantics: the three abstract machines can be viewed

.ss three different “interpretations”. As far as methodology

is concerned, we believe that our main contributions are to

describe the various stages of refinement in a systematic way
in the same conceptual framework (even if the abstract ma-

chines have been presented using the usual transition rule

syntax for better readability) and to show that standard
implementations of abstract interpretation can be inserted

quite naturally in this context. For example it is nice to see

that the frontiers optimisation can be described as a partic-
ular rest riction on types.

The main technical contribution of the paper is the no-
tion of lazy types and the corresponding type system and al-

gorithm. This addresses an issue that has taxed the abstract
interpret ation community greatly. The papers [4, 5, 7, 8, 9,

13, 16, 18] all tackle the same issue. The basic problem is

that the choice to abstract functions by functions is a disas-

trous one for the efficiency of the analysis. We can classify
the various proposals to circumvent the problem into two

cat egories: (1) some of them [4, 8, 13, 16] strive for a better
representation of abstract functions to improve their compu-

tation without losing completeness (with respect to the sys-
tem of Section 2) while (2) others [6, 7, 9, 18] trade a cheaper

implement ation oft he fixed point against a loss of accuracy.

Our algorithm falls into the first category because it is com-

plete with respect to the usual abstract interpretation but
it has the syntactic flavour of some of the works in the sec-

ond category [7, 8, 18, 24]. As noticed earlier, lazy types

improve on previous work on ilontiers [9, 13]. It is closer

in spirit to the minimal function graphs approach in which

abstract functions are represented by relations represent-
ing the portion of the graph of the function that is needed

in a particular computation (its so-called minimal function
graph). However minimal function graphs are only defined

for a first-order language and the extension to higher-order
does not seem to be easy. The abstract reduction approach

[7, 24] is also based on a form of lazy evaluation but there is
no notion of types and it is a symbolic form of expressions

which is evaluated lazily. As other methods in its category,
abstract reduction may entail an arbitrary cut in the fixed

point iteration to ensure termination. Of course this is at

the price of accuracy.
There are three major directions in which the work pre-

sented here can be extended. On the methodological side, we

would like to follow [10] in extracting some general transfor-
mations on inference rules of the type studied here to derive

abstract machines. On the technical side, we would like to
study the integration within our framework of approximat-

ion techniques such as widening [6, 22] and its implication
on the efficiency of the analysis. Also we would like to extend
our work to logics involving data types and richer properties
[15]. Finally, we are currently implementing the lazy types

algorithm; we hope to be able to report results soon.

Acknowledgements

The first author was partially funded by ESPRIT Work-

ing Group 6809 (Semantique II). Pascal Fradet and Thomas
Jensen gave helpful comments on an earlier draft.

209

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

S. van Bakel, Complete restrictions of the intersec-

tion type discipline, Theoretical Computer Science,
102(1):135-163, 1992.

H. Barendregt, M. Coppo, M. Dezani-Ciancaglini, A
filter lambda model and the completeness of type as-
signment, Journal of Symbolic Logic, 48(4), 1983.

P. N. Benton, Strictness logic and polymorphic invari-

ance, in Proceedings o,f the 2nd Int. Symposium on

Logical Foundations of Computer Science, LNCS 620,

Springer Verlag, 1992.

T.-R. Chuang and B. Goldberg, A syntactic approach
to fixed point computation on finite domains, in Pro-
ceedings of the 1992 ACM Conference on Lisp and

Functional Programming, ACM Press, 1992.

C. Clack and S. L. Peyton Jones, Strictness Anaiysis -
A Practical Approach, in J. P. Jouannaud (cd), Func-

tional Programming Languages and Computer Archi-
tecture, LNCS 201, Springer Verlag, 1985.

P. Cousot and R. Cousot, Comparing the Galois Con-

nection and Widening/Narrowing Approaches to Ab-

stract Interpretation, in M. Bruynooghe and M. Wirs-
ing (eds), PLILP ‘9%’, LN CS 631, Springer Verlag,

1992.

M. van Eekelen, E. Goubault, C. Hankin and E. Nbker,

Abstract reduction: a theory via abstract interpreta-
tion, in R. Sleep et al (eds), Term graph rewriting:

theory and practice, John Wiiey & Sons Ltd, 1992.

A. Ferguson and R. J. M. Hughes, Fast abstract inter-
pretation using sequential algorithms, to appear in the

Proceedings WSA’93, Springer Verlag, 1993.

C. L. Hankin and L. S. Hunt, Approximate ficed points
in abstract interpretation, in B. Krieg-Briickner (cd),

Proceedings of the fth European Symposium on Pro-

gramming, LNCS 582, Springer Verlag, 1992.

J. J. Hannan, .Investigating a proof-theoretic meta-
language, PhD thesis, University of Pennsylvania,

DIKU Technical Report Nr 91/1, 1991.

J. Hannan and D. Miller, From Operation/ Seman-
tics to Abstract Machines, Mathematical Structures

in Computer Science, 2(4), 1992.

F. Henglein, Efficient type inference for higher-order

binding time analysis, in Proceedings of the 5th ACM
Conference on Functional Programming Languages

and Computer Architecture, LNCS 523, Springer Ver-
lag, 1991.

L. S. Hunt and C. L. Hankin, Fixed Points and Fron-
tiers: A New Perspective, Journal of Functional Pro-
gramming, l(l), 1991.

T. P. Jensen, Strictness Analysis in Logical Form, in J.
Hughes(al),Proceedings o~ the 5th ACM Conference

on Functional Programming Languages and Computer

Architecture, LNCS 523, Springer Verlag, 1991.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

T. P. Jensen, Abstract Interpretation in Logical Form,
PhD thesis, University of London, 1992. Also available

as DIKU TechnicaJ Report 93/11.

N. D. Jones and A. Mycroft, Data-flow analysis of

applicative programs using minimal function graphs,
in Proceedings of the ACM Conference on Principles

of Programming Languages, 1986.

S. L. Peyton Jones and C. Clack, Finding Fired Points

in Abstract Interpretation, in S. Abramsky and C. L.

Hankin (eds), Abstract Interpretation of Declarative

Languages, Ellis Horwood, 1987.

T.-M. Kuo and P. Mishra, Strictness analysis: a new
perspective based on type inference, in Proceedings of
the fth ACM Conference on Functional Programming
Languages and Computer Architecture, ACM Press,

1989.

J. Launchbury, Strictness and binding time: two for

the price of one, in Proceedings of the ACM Confer-

ence on Programming Languages Design and Imple-

mentation, 1991.

A. Leung and P. Mishra, Reasoning about simple and

exhaustive demand in higher-order lazy languages, in
Proceedings of the 5th ACM Conference on Functional

Programming Languages and Computer Architecture,
LNCS 523, Springer Verlag, 1991.

J. C. Mitchell, Type inference with simple subtypes,
Journal of Functional Programming, 1(3), 1991.

B. Monsuez, Polymorphic Typing by Abstmct Inter-
pretation, in Proceedings of 12th Conference FST tY

TCS, Springer Verlag, 1992.

A. Mycroft, Abstmct Interpretation and Optimizing

Transformations for Applicative Programs, PhD the-
sis, University of Edinburgh, December 1981.

E. N6cker, Strictness analysis using abstract reduction,
in Proceedings of the 6th ACM Conference on Func-

tional Programming Languages and Computer Archi-
tecture, ACM Press, 1993.

P. Wadler, Strictness Analysis on Non-flat Domains,
in S. Abramsky and C. L. Hankin (eds), Abstmct In-
terpretation of Declarative Languages, EIJis Horwood,

1987.

P. Wadler, Is there a use for linear logic?, in Pro-
ceedings of the ACM SIGPLA N Symposium on Partiai
Evaluation and Semantics-Based Program Manipula-

tion, ACM Press, 1991.

Appendix 1: Deriving The Abstract Machines

The abstract machines presented in Section 4 can be de-

rived in a rather systematic way from the Most General
Types system presented in Section 3. In this appendix we

provide some intuition about this derivation by showing how
the rules for variables and application are successively trans-

formed. The original rules are as follows (Fig. 3):

rp~~l~s~:~

210

r+se~:T~ rl-se2:T2

r +s e~e~ : App(TI, T2)

with

TI=((#~A . .. A#&l)~@l) A... A((#~A. .. A@Jflm)~t#m)

T2=81A. ..A6h

and

App(Tl$ T2) = ~ @i i such that {#j, #:l }+{o,,..., ok}

:

The first reason why the inference system described in Fig.
3 E not an abstract machme IS that some reference rules
have several premises. The first refinement ensures that sll
rules have a single premise. This is achieved by defining a
predicate

Ml : /ist(enu) + list(e) + iist(Tr) - Bool
such_ that
kflrz~e Vii?, +sei : 0:.

MI is defined as follows for variables and application:

MIECS

Ml r[c=~]:~ ~:c ~:s

Ml 17:r:E e1:e2:C T1:T2:S

Ml I’:E (e~ e2):C App(TI, T.3):S

Ml nil nil nil

In this system a new environment is created for each
instruction (subexpression) in the code. This is not very
sensible and the second transformation replaces the list of
environments by a single environment.

M2 P e1:e2:C T1:T2:S

M2 r (.1 ez) : C App(T1, Tz) : S

M2 nil nil nil

The only reason why M2 still does not behave like an
abstract machine is that some variables in the premises do

not occur in the goal (we can see that this is the case for
application by considering the definition of App above). In

operational terms, this amounts to saying that the system
does not exhibit a tail recursive behaviour. This problem

is solved by introducing an extra argument R which is not
modified in the rules and will ultimately be instantiated with
the result of the computation.

M3 F e1:e2:App:C S R

M3 r (e1e2):C S R

M3 1’ C App(T1, T2) : S R

M3 r App:C T2:T1:S R

M3 nil nil R : nil R

We now have an inference system which is an Abstmct
Evaluation System in the terminology of [10, 11]. This means
that ewecan alternatively resent it as a rewriting system de-

!scnbmg a machine with t ree components. We just have to
rewrite any rule:

M3 r’ c’ s’ R
M3 r CSR

(r, c, s) b (r’, c’, s’)

Applying this technique and rearranging the order of the
arguments, we get the following rules (which are the rules

of the schematic abstract machine in Fig. 4).

(S, E[c I-+ +], z : C) D (~ : S, E[z - #], C)

(s, E, (ele2):C) b (S, E, el :e2 :App:C)
(T2 : T1 : S, E, App : C) b (APP(TI, T2) : S, E, C)

Appendix 2: The lazy types algorithm at work

The following function was used in [18] to demonstrate the
limitations of a type system without conjunction.

fix(lg.(k.~y.~z.cond(eg z 0)(+ x y)(~ y z (– z l))))

We show how the lazy type algorithm is able to derive
that this function is strict in its first argument, so haa type

T1 = f ~ t ~ t ~ f. The derivation is shown below.
This example illustrates the implementation of fix: first the

assumption g :, T1 is added to the environment and the
property to prove is (E, T1). The assumption is not strong

enough to prove the required property but the first iteration
step returns a necessary condition (g : T2) which is added
to the environment (with T2 = t ~ f a t - f). This is
because it is necessary to prove that the function is strict

in its second argument to show that it is strict in its first
argument. The second iteration step succeeds in proving

(E, T1 A T2) from the assumption (g : (Tl A T2)) and the

find result is True as expected.
We use the following notation:

G = flx(Ag.(Az.Ay.b. cond(eg z 0)(+ r y)(g y z (- z l))))

E = cond(eg z 0)(+ c y)(g y c (- z 1))

E’ = (k. Ay.Az.E)

T1 =(f~t~t~f)

T2=(t~f~t~f)

We show how the property G : TI is proved by the Iasy types
algorithm:

(nil, nil, (G, T1) : nil) b~

(nil, (z :t):(y :t):(o:f):(g:r T1) :niJ,

(.E, f) : D(z): D(y); D(c); Iter(g, E); nii) b:

(nii, (z :t):(y: t):(c:f):(g:r T1) :nil,

(((q z O),f) : ((+ ~v), f); ((gv c(– z l)), f); And; @; W~); D(v); D(Z);

Iter(g, E); nii) b&

(True : False : nil, (z : t) : (y : t) : (m : f) : (g :~ Tl) : nii,

(((g Yc (- z l)), f) : And; Or; D(z); D(Y); D(c); Iter(g, E)i M) b>

(True : False : nil, (z : t) : (y : t) : (z : f) : (g :~ TI) : nil,

211

((g, T2) : And; Or; D(z); ~(y); ~(~); ~~er(g, ~); ~~~) b~

(False : True False : nil, (z : t) : (y : t) : (c : f) : (g r 2’1) : nil,

(Rec, g, Z’2) : And; Or; D(z); D(y); D(c); Iter(g, E); nil) b~

((T2) : nil,(~ :r T’l) : nit, Iter(g, E) : rair) p>

(nil, nit, (G, T1 A Tz) : rail) b:

(nil, (j :, (T1AT2)) : nil, (E’, T1) : (E’, T2) : And: Iter(g, E) : nii) b~

(True : nil, (g :r (’T1AT2)) : nil, (13’, T2) : And: Iter(g, E) : nil) b~

(True : False : True: nil, (z t) : (y : f) : (z : t) : (g :~ (T1AT2)) : nii,

((g, Tl) : And; Or; D(z); D(y); D(z); And; Iter(g, E); nil) b~
(True : True : Faise : True : nil, (z : t) : (y : f) : (c : t) : (g :r (T1AT2)) :

nil, (Rec, g, Z’l) : And; Or; D(z); D(y); D(c); And; Iter(g, E); nil) b:

(True : True : nil, (g :r (Tl A T2)) : nit, And : Iter(g, E); nii) b:

(True : nii, nil, nio

212

