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1 Introduction

Most modern CPUS pipeline instructions.

When two instructions need the same machine

resource—like a bus, register or functional unit—

at the same time, they suffer a structural haz-

ard, which stalls the pipeline or corrupts a re-

sult. Compilers order or schedule instructions to

cut structural hazards. A fundamental step in

scheduling is detecting if a series of instructions

suffers a structural hazard.

This paper describes a method for detecting

structural hazards 5–80 times faster than its pre-

decessors, which generally have simulated the

pipeline at compile time. It accepts a compact

specification of the pipeline and creates a finite-

state automaton that can detect structural haz-

ards in one table lookup per instruction.

The automaton maintains an integer state that

encodes all potential structural hazards for all

instructions in the pipe. It accepts an instruc-

tion type and a state and either reports a haz-

ard or produces the state that folds in the new

instruction and advances the pipeline by one cy-
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cle. The automaton can be implemented with a

two-dimensional array.

An implementation of the method below gen-

erates practical automata quickly. For example,

a 33mhz MIPS R3000 generates a 6175-state au-

tomaton for the MIPS R3000/R3010[8] in five

seconds. This architecture has only 14 distinct

instruction classes with respect to creating struc-

tural hazards, so the automaton’s table takes

only 14 x 6175 two-byte entries. Contrast this

with the t heretical upper bound of 222’37 states

for the MIPS R3000/R3010.

Such automata will speed up current instruc-

tion scheduling heuristics and allow compilers to

try more schedules. Profilers that count cycles—

like pixie[13] and qp[2]—could use it too.

We use an algorithm described in 1975[5], but

the prior literature describes neither implemen-

tations nor measurements, perhaps because the

defining paper attacked a variant problem that

needed much larger 3D tables. We show that

smaller 2D tables suffice for typical schedulers,

we prove that the automata are minimal, and we

describe an implementation and experiments.
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2 Background

Some schedulers detect structural hazards by

recording the instructions in the pipe and when

each was issued[9]. When the next instruction is

proposed, the scheduler compares each instruc-

tion in the pipe with the proposed instruction

and objects if’ there is a hazard. The compari-

son code is machine-specific. If the architecture

is complex, so is the code.
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Instruction Resources needed

cycle O cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6

mov. s EX

add. s u S+A A+R R+S

mul. s u E+M M M N N+A R

Figurel: R4000 Subset

Resource Resources needed

Vector 0123 456

Empty state 0000 000

add. s u S+A A+R R+S o @ @

Combined vectors U S+A A+R R+S @ @ g

Shifted state S+A A+R R+S @ 000

Figure 2: Issuing add. s into an empty pipe.

Resource Resources needed

Vector o 1 2 3 456

Previous state S+A A+R R+S 0 000

add. s u S+A A+R It+S O@@

Combined vectors S+A+U I hazard on A hazard on R I R+S o@@

Figure 3: Issuing subsequent add. s into pipe.

Other structural-hazard

tion tables [5] or resource

The vector is indexed by

detectors use reserva-

vectors [3, 4] instead.

a cycle number, and

each element records the resources needed dur-

ing that cycle. There is one resource vector for

each distinct class of instructions and another

that composes the vectors of all instructions al-

ready in the pipe. To schedule an instruction,

the scheduler compares its resource vector with

the composite vector for the instructions already

in the pipe. If both vectors show a need for the

same resource at the same time, a structural haz-

ard is reported. Otherwise, the resources from

the instruction’s vector are incorporated into the

composite. Then the composite vector is shifted

one cycle forward to simulate issuing the new in-

struction.

Figure 1 describes three instructions from the

MIPS R4000 floating point unit (FPU). For ex-

ample, add. s requires exclusive access to the U

(for “unpack”) stage in cycle O, the S (for “shift”)

and A (for “adder”) stages in cycle 1, A and R (for

“round” ) in cycle 2, and R and S in cycle 3.

bles 8-7 and 8-8 in Reference [8] elaborate.

To illustrate resource vectors, we issue

Ta-

two

add. s instructions into an empty pipe. The first

causes no structural hazard. Combining the ini-

tial empty vector with add. s’s and shifting it

one cycle forward yields the next state’s resource

vector. Figure 2 demonstrates this combination.

Later instructions must respect these reserva-

tions.

The second add. s (Figure 3) causes a struc-

tural hazard when issued in this state. The first

add. s needs A in its third cycle, and after the first

add. s issues, this reservation appears in the com-

posite vector’s second cycle. The second add. s

needs A (and S) in its second cycle, which causes

a hazard. There’s another hazard on R one cycle

later.
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3 The ‘LDSTP” Automaton

In 1975, Davidson, Shar, Thomas, and Patel

(here abbreviated “DSTP” ) [5] proposed to use

resource vectors to compute an automaton. The

automaton would accept integers representing an

instruction class i, a cycle count c, and a pipeline

states. If the pipeline is in states, and if c cycles

later, i could be issued without structural haz-

ard, the automaton would produce the integer

that encodes the new pipeline state; otherwise,

it would report a hazard. The automaton could

be represented as a single 3D table.

The DSTP automaton has been underused.

The literature includes few citations[12, 1, 7,

6, 10]—mostly surveys—and describes no imple-

mentations or measurements.

One explanation is table size. For example, we

implemented the method and found that it gen-

erates 6175 states for the MIPS R3000. This ma-

chine has 14 instruction classes and instructions

that take up to 37 cycles, so the 3D table would

have 6175 x 14 x 37 or over 3.1 million two-byte

entries. The table’s not sparse, so sparse matrix

encodings wouldn’t help.

DSTP’S application needed the whole table,

but many schedulers do not. (DSTP’S applica-

tion required the 3D table in order to find the

minimum average latency of a given sequence

of instructions and the cycles that contribute to

that latency—a special-purpose scheduling ob-

jective.) A typical scheduler might run down a

prioritized list of ready instructions and schedule

the first one for which the automaton reports no

hazard for the current pipeline state. If all ready

instructions suffer a hazard, then the scheduler

might issue a nop. The scheduler can thus get by

with only the 2D slice of the 3D table for which

c is 1. This observation drops the R3000 table to

6175 x 14 or 86,450 two-byte entries. The sim-

plified DSTP automaton is practical for current

pipelined microprocessors.

DSTP’S table constructor, adapted to 2D ta-

bles, works as follows. It represents each state S

internally as a 2D table of Boolean values. S[1, t]

is 1 if and only if instruction 1 suffers a structural

hazard if issued t cycles after the machine enters

state S.

States are computed using collision matrices,

which record when instructions collide. The col-

lision matrices are computed into a 3D table, M,

of Boolean values. kf[~A, 1~, t] is 1 if and only

if issuing ~~ t cycles after issuing 1A causes a

structural hazard. The slice ikf[lA] is 1A’s col-

lision matrix. Collision matrices are computed

using resource vectors:

where I[t]denotes

struction 1 uses at

if % such that

l~[k+t]nlB[k]#@

otherwise

the set of resources that in-

time t. The sample machine

above yields these collision mat rices:

1A IB t

123456

add. s add. s 110000
mov. s 000000
mul. s 000000

mov. s add. s 000000
mov. s 000000
mul. s 000000

mul. s add. s 001100
mov. s 000000
mul. s 110000

For example, the leftmost 1 in the top row in-

dicates that one add. s instruction must not fol-

low another by exactly one cycle. The adjacent 1

indicates that the two add.s’s also colIide if sep-

arated by exactly two cycles. Note that mov. s

collides with nothing.

If a machine is in state S, and S[1, 1] is O, then

instruction 1 may be issued immediately with a

transition to state S’. To compute the matrix for

S’, S is shifted one cycle forward (to reflect the

passage of the issuing cycle) and combined with

1’s collision matrix, A4[l] (to reflect the subse-

quent potential hazards introduced by 1):

S’[J,t] = S[J,t + 1] v MII, J, t]

(The original DSTP algorithm allowed an in-

struction to be issued after an arbitrary number

of cycles, k. Under this model, for every k such

that S[1, k] = O, substitute t + k for t + 1 in
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mov. s

(’) mul. s mov. s

adds \ mov. h
mov. s,

mOv. s/ . .. . ~

Figure4: Finite Automaton

the equation and create S:. Transitions for this

automaton were labelled with both 1 and k.)

The automaton is built as follows. Beginning

with the empty start state (a matrix of all O’s),

all instructions are issued, producing new states.

For each state, S, an instruction 1 is issued if

S[1, 1] = O. The combining rule above forms a

target state, S’. If S’ has not been created be-

fore, it is added to the automaton, as is a transi-

tion from S to S’ on 1. Otherwise, the previously

created identical matrix (state) is the target of

the transition. This process terminates when all

possible instructions have been issued from all

states. A state lacks a transition on a particular

instruction (because S[1, 1] = 1) when a struc-

tural hazard exists.

This algorithm yields the automaton in Fig-

ure 4 for the sample machine. The empty start

state is on the left. The transition from that

state on add.s, for example, shifts the start

state’s bits one position left and then ors in

add. s ‘S colkkm matrix. Similarly, the transi-

tion from the target state on mul. s shifts that

state’s bits one position left and then ors in

mul. s’s collision matrix.

The algorithm above creates a minimal finite

state automaton for machines with a nop, which

is an instruction that participates in no struc-

tural hazards. To prove this, it is sufficient to

show that some sequence of input instructions

distinguishes every pair of different states. A nop

instruction has a collision matrix of all O’s (that

is, Jf[nop, 1, t] = 0, VI, t) and all other instruc-

tions’ collision matrices are all O with respect to

issuing a nop (that is, M[l, nop,~] = o,VI, ~).
The DSTP algorithm guarantees that each state

represents a unique matrix of 1‘s and 0’s. As-

sume, without loss of generality, that S. and S’u

differ because S3[1, t] = 1 and SY[l, t] = O for

some 1 and t. If t – 1 nop’s are issued to each

state, the new states, S: and S;, will have the

properties that S~[l, 1] = 1 and S$ [1,1] = O be-

cause the combining rule above simply shifts each

state by one cycle and combines it with the nop’s

empty collision matrix. S: [1, 1] = 1, so S: has no

transition on 1. SJ does have a transition on 1, so

t – 1 nops followed by instruction 1 distinguishes

SO and S’u. Thus any two distinct states created

by the DSTP algorithm are distinguishable, and

the automaton must be minimal.

An alternative automata generator has been

described recently [n]. It generates minimal au-

tomata with heuristics and a postpass mini-

mizer. Our adapted DSTP algorithm generates

minimal automata directly and appears to do so

significantly faster than this alternative.
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4 Fewer Instruction Classes

The size of the automaton’s transition table is

reduced primarily by reducing the number of

states, but reducing the number of instruction

classes helps too. Many instructions share re-

source vectors. For example, addition instruc-

tions generally have the same resource vectors

as subtraction instructions. Combining like in-

structions into classes reduces the over one hun-

dred R3000/R3010 instructions modelled to 20

classes.

We also combine instruction classes that are

identical with respect to the generated collision

matrices. Two instructions, A and 1?, are com-

bined if and only if

M[A, 1, t] = M[B, 1, t] and

&l[l, A, t] = Ii/q], B,t] Vl, t.

Instructions with distinct resource vectors can

generate the same collision matrices, because the

resource vector identifies the resources that cause

the conflict, but the collision matrix records only

that there is a conflict. This optimization re-

duces the 20 R3000/R3010 instruction classes

above to 14.

5 An Implementation

An automaton compiler has been implemented

as part of a larger system, RPS S (Retcwgetalde

Pipeline Scheduling Substrate), which is under

development. RPSS accepts a compact, formal

specification of a pipelined machine and emits

the machine-specific part of an instruction sched-

uler. It produces routines for detecting control

and data hazards as well as an automaton to de-

tect structural hazards.

RPSS attacks more than just structural haz-

ards, so its specifications include material be-

yond the scope of this paper. Eliminating this

extra material leaves just a list of resource vec-

tors, one per instruction class. Blanks separate

vector elements, and +’s separate resources used

during a single cycle. The suffix “n flags stages

that are repeated for n consecutive cycles. Multi-

ple instructions may share the same description.

For example,

u S+A A+R R+s . add. s

U A R D-27 D+A D+R D+A D+R A R. div. d

describe the R4000 instruction classes that add. s

and div. d exemplify. Text accompanying Fig-

ure 1 in Section 2 described some of the resources

named above, and Tables 8-7 and 8-8 in Refer-

ence [8] describe them all.

Appendices A and B contain specifications for

the R4000 FPU and the R3000/R3010; they

present only the material relevant to struc-

tural hazards. RPSS cannot model variable-

length instructions (e.g., the R4000’s sqrt. d),

so the specification must choose a single

pipeline description—typically minimum, max-

imum or average instruction length—and au-

tomaton clients must accept approximate an-

swers for those few instructions whose length

cannot be predicted. The R4000 spec in Ap-

pendix B uses the maximum length sqrt. d to

maximize generated states.

To create a structural hazard detection au-

tomaton, a 500-line Icon program preprocesses

the specification into initialized C data struc-

tures describing the pipeline. Bit vectors en-

code the resources used in each cycle. One-

dimensional arrays of these blt vectors encode

resource vectors.

The automaton compiler results from link-

ing this data module with 300 lines of C that

construct an automaton. A 33mhz R3000 con-

structed automata for the R3000/R3010 and for

the R4000 FPU in under five seconds each. The

table below describes the automata sizes. The

theoretical maxima are huge. For a machine

with r resources, there are 2“ possible values

for each element of each resource vector; if its

longest pipeline has n stages, then there could

be as many as 2rxn possible resource vectors or

states.

R4000 FPU R3000/R3010 variant

classes states classes states

15 29x112 20 222x37 theoretical

maximum

15 2665 14 6175 actual
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int tick(unsigned *new, unsigned *old, unsigned *instruction) {

int i;

new[hlAXSTAGES-2] = instruction[MAXSTAGES-1] ; /x optimized first iteration x/

for (i = MAXSTAGES - 2; i > O; i--) {

unsigned int a = old[i], b = instruction[i];

if (a & b) /* if overlap . . . */

return O; /* . . . then report hazard */

new[i-1] = a I b; /* otherwise combine vectors and shift */

3
if (old[O] & instruction[O]) /* optimized last iteration */

return O;

return 1;

}

Figure5: Optimized Code to Interpret Resource Vectors

The automata are much faster than their pre-

decessors. A typical implementation of fixed-

length resource vectors accepts three resource

vectors: one for the instruction, another for

the current composite, and an empty one for

the new composite. An optimized implemen-

tation is given in Figure 5. For the MIPS

R3000/R3010 pipeline, which requires 37-stage

vectors, this code takes 329 cycles to detect a

structural hazard onaMIPSR3000, a.ssumingno

cache misses. A more sophisticated implemen-

tationmight implement variable-length resource

vectors, but even it can’t average better than a

fixed-length implementation of 5-stage vectors,

which takes 50 cycles.

Analogous code using our automaton replaces

the resource vectors with integers andthefunc-

tion with an expression:

newstate = dfa[oldstate] [instruction] ;

It takes 9 cycles, and schedulers that test several

instructions before picking the best can amortize

the cost of one subscript calculation with

/* done once */

t emp = dfa[oldstate];

. . .

I* done repeatedly *I

newstate ‘ temp [instruction] ;

and average as few as 4 cycles per test.
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R3000/R3010 Description

pc+epc+lr RD ALU DIVA 15 ALU-3 MEM WB FWB+f .d.
pc+epc+lr RL) ALU DIV-8 ALU-3 MEkl WB FWB+f _d.

pc+epc+lr RD ALU MEM WB FWB+f .d.

pc+epc+ir RD ALU MUL-2 ALU MEM WB FWB+f .d.

pc+epc+ir RD ALU MUL’3 ALU MEM WB FWB+f _d.
pc+epc+ir RD ALU-2 MEM WB FWB+f_d.

pc+epc+ir RD ALU-3 MEM WB FWB+f _d.

pc+epc+ir RD C+ALU MEM WB FWB.

pc+epc+ir rd+pc+epc alu mem r.d+wb.

pc+epc+ir rd+pc+epc alu mem nb.

pc+epc+ir rd+pc+epc alu r-3 I+mem wb

pc+epc+ir rd alu C+S+MEM WB FWB.

pc+epc+ir rd alu MEM WB FWB+f _d.

pc+epc+ir rd alu lo+mem wb.

pc+epc+ir rd alu mem+hi wb.

pc+epc+ir rd alu mem r_d+wb.

pc+epc+ir rd alu mem ub.

pc+epc+ir rd alu r_t+mem wb.

pc+epc+ir rd lo+alu+hi lo+hi”li.

pc+epc+ir rd lo+alu+hi lo+hi-34.

j al

j
bgt zal

Ctcl

lWCI

mtlo

mthi

add

sb

lW1

mult

div

B R4000 FPU Description

EX . mov. s

U S+A A+R R+S. add. s
UAR. c.cond.s

u s. neg.s

UARSAR. Cvt.s.w

USARS. cvt.d.w

UARSSAR. Cvt.s.l

UARS. cvt.d.l

USAR.

UE+MMMNN+AR.

cvt.s.d

mul.s

UE+MMMMNN+AR. mul. d
U S+A S+R S D-13 D+A D+R D+A D+R A R. div.s

U A R D-27 D+A D+R D+A D+R A R. div.d
U E A+R”50 A R. sqrt.s

U E A+R”I08 A R. sqrt. d

div.d

div.s

abs. d

mul.s

mul. d

add. d

cvt.d.w

c.eq.d
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