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Abstract

We develop a calculus in which the computation steps re-

quired to execute a computer program can be separated
into discrete stages. The calculus, denoted A2, is embed-

ded within the pure untyped Xcalculus. The main result
of the paper is a characterization of sufficient conditions for
confluence for terms in the calculus. The condition can be
taken as a correctness criterion for translators that perform
reductions in one stage leaving residual redexes over for sub-

sequent computation stages. As an application of the theory,
we verify the correctness of a macro expansion algorithm.

The expansion algorithm is of some interest in its own right
since it solves the problem of desired variable capture using

only the familiar capture avoiding substitutions.

1 Introduction

The /l-calculus is widely used as a metalanguage for pro-

gramming language semantics because most of the complex-
ities of real programming languages can be modeled by rel-
atively simple and well-understood aspects of the calculus.
One important aspect of a programming language that does

not have an obvious analog in the A-calculus is the notion
of staging — the fact that it is usually desirable to sepa-

rate the computations required to execute a source program
into discrete stages: usually translation- time and run-time.

Compilers, macro expanders and partial evaluators are ex-
amples of translators that perform some computations stat-

ically and emit a residual program that will perform the
remaining computations in a separate run-time stage.

In this paper we develop some synt attic theory for a cal-
culus in which computation stages are represented explicitly.

Although the formalism can account for an arbitrary num-
ber of stages, in this report we will restrict our attention

to the two-stage case: compile-time and run-time. The cal-
culus, denoted AZ, is embedded within the pure untyped A-
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calculus and was first motivated by the problem of verifying
the correctness of macro expansion.

The main contribution of the paper is a characterization

of sufficient conditions for confluence. The condition can
be taken as a correctness criterion for translators that per-

form reductions in one stage leaving residual redexes over for
subsequent stages when more input is available. As an ap-
plication of the theory, we verify the correctness of a simple
macro expansion algorithm.

It is not unusual to model translation-time computation

steps by ordinary ,&reduction. A translator T E A operates

on a suitable representation ‘Jfl of a source program M
and yields a representation ‘M’l of a residual program M’.

T ‘M1 -p ‘M’l (1)

In this paper we wifl restrict our attention to A-calculus
based source languages. The reader will recall the well-

known fact that there is no R c A such that VM E A,
RM =$rM’ — representations of terms must be given a

priori. Although a variety of representations would suf-
fice, in th~ paper we will use Mogensen’s representation
[Mog92a]:

rz~ ~ Aabc.az

‘(M N)T = Aabc.brM3rN3

‘( Ax. M)l s Aabc.c(Az.rM1)

The key idea of the &calculus is a notion of represen-
tation or run-time reduction. We define:

‘B’ = {(r(AZ.M)N’, ‘M[z := N]’) I M, N c A} (2)

and consider the usual derived relations -+- -I , ++r -I and
PB

=r6n. It is clear that although =rO-r identifies distinct

,0-normal-forms, =r@l is nevertheless a consistent theory

since ‘/31 is a “mirror image” of /3.

AZ is obteined by combining these notions of reduction:

In ~z, one thinks of a representation ‘(,lz.M)N1 as an

“active datatype” that can either be reduced (that is, to
‘M[x := N]l) or taken apart (that is, to ‘Az.M1 and ‘N1).
The activity reflects what the represented code could do in
subsequent computation stages — in th~ case, run-time.
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One of the key problems taken up in this paper is to de-
termine the weakest conditions sufficient to ensure that the

translation-time operations on the data type do not interfere
wit h its intended run-time behavior. We take confluence to

be an appropriate notion of non-interference.

For unrestricted A-terms the relation /3z is not confluent.

For example,
r(Au.w)w% (4)

where TA, v, w and z are variables, has two distinct &

normal-forms: Abc.xv and Abc.br Au .V lr W1. In order to rule-
out such ill-formed terms we impose a simple type d~cipline.

We define the representation t~pes by

T ::=dlr+r

We write J4 : d if there exists an N such that M =BrN1

and M : u -+ r if M maps every term of type a to one of
type r. Intuitively, if there exists a r such that M : r then
M has a reasonable shape.

Unfortunately, we~-typedness does not suffice to ensure

confluence under /3z since well-typed terms may not respect
the run-time equational theory. For example, taking 1, K

and S to be the usual combmators, the term:

(5)

is of type d but has two distinct ,&normal-forrns: r K1 and
‘S7. Intuitively, the problem is that reducing directly to

a P-normal-form leads to a residual program r K’ whose
behavior differs from that obtained by first reducing the run-
time redex ‘1P and then reducing to /3-normal-form. The
key restriction on terms, well- behavedne.w, is intended to be
the weakest condition that rules-out such terms.

That well-typed and well-behaved terms are not built up
inductively from well-typed and well behaved subterms will

prove to be a key problem for proving confluence. Our proof
will rely on reasoning about /Lnormal-forms.

As an application of the theory, we will develop a macro
expansion algorithm for a simple A-calculus-based language

and verify its correctness. Th~ application is of interest

because one would like to think of macros as inessential ab-

stractions of patterns of syntax. One way to characterize
this is to say that their expansion can be interleaved with

term reduction without afecting the outcome. It is well-
known that thw property often fails for macro systems that
introduce bhding occurrences of variables. As an example,

consider the simple Or macro:

Or P Q ~ (Xz.if x then x else Q)P, (6)

An unintended variable capture can occur on expanding

(Or MI M2)

whenever x E FV(MZ ) and it is then easy to see that expan-
sion cannot be interleaved with term reduction. A concrete

example is:
(Xz.(Or False z)) True

in which (naive) expansion of the macro followed by ~-

reduction results in False while performing the fl-redex first
results in True.

Our expansion algorithm is of interest not only because it

is quite explicit about term representation but also because

it solves the aforementioned problems using only the familiar
capture avoiding substitutions.

The remainder of this paper is organized as follows. In
Section 2 we introduce well-behaved terms and illustrate
some of their properties with examples. In Section 3 we
prove the confluence theorem. In Section 4 we develop the
macro expansion algorithm and prove its correctness using
the main theorem. In Section 5 we compare the present work

with related work, emphasizing the connection to [Bar91,

Mog92b, Wan93] and to [Gri88]. Section 6 sketches some

future lines of research. Detailed prooik can be found in
[Mu193].

2 Well-Behaved Terms

2.1 Preliminaries

Let Var = {z1, ZZ., . . .} be a countable set of variables. We
use the symbol A for the set of terms:

A ::= z I ~z.A I AA

We use M z N to denote a-congruent terms. Let

R = {(M, N) I conditions}

be a reduction relation. We use R-nf(M) to denote the

R-normal-form of M and +Jz , ++R and =R to denote

the one-step, many-step and congruence relations (resp.)
generated by R. Let P be a property of terms. We use

the notation PR(M) to mean that P holds for all M un-
der R-reduction. Contexts C[.] are defined in the usual

way. We will often use the standard combinators 1 s Ax .Z,
K = Azy.z, S z Azyz.z.z(yz) and $2 s (Az.zz)(~z.zz) for
illustration.

We use ‘M1 to denote Mogensen’s representation of M
which is presented in Section 1. We note that r.7 is an injec-
tive higher-order abstract syntax, that ‘MT is a /?-normal-

form and that
FV(rM’) = FV(Af),

where FV(M) denotes the free variables of M.

The notion of reduction ‘/37 is as defined in (2). From
the remarks above we have the following properties of ‘/37.

Lemma 1

1. The relation ‘/31 ia Church-Rosser.

.2. For M, N G A, M =$N H ‘Mq =rp~rNT.

The main object of interest in thw paper is /32 as defined

in (3). As we illustrated in Section 1, ~2 is not confluent on
unrestricted terms.

2.2 Representation Types

In thw section we develop a type discipline to rule out inf-
ormed terms. The type expressions are given by:

r ::=dlr+r

where the type constant d denotes dynamic. We will use
the symbol r to denote an arbitrary representation type and
occasiondy TM to denote any type expression assignable to
term M.

The definition of well-typed terms is given in terms of
/?-convertibtity.
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Definition 1 (Well-Typed) For M 6 A we define M : T
as follows:

1. M : d% 3N c A, such that M =p ‘N1.

2, M:u+riff Mianotoftype dad VN:U,MN:T.

We say M is well-tgped iff there exists a r such that M :7.

Given M and r, it is obviously undecidable whether M : r.

2.2.1 Examples

In Figure 1 we present several examples to illustrate prop-
erties of well-typed terms. In (7), XC.S has type r + r
for any type r. This, reflects the usual polymorphism of
J-terms. (8) is an expander function for a let macro taken
from the macro system presented in Section 4. The expan-
sion function produces a representation of an application
when applied to appropriate representations of the parts of
a use of the macro. (9) is the ill-formed case from (4) that
motivated the type system. (10) illustrates that well-typed
terms can have ill-typed subterms. (11) is the well-typed
but badly-behaved case from (s).

We wish to stress the importance of the restriction % not
of type d“ in the definition of higher type. The restriction
is required to preserve important properties of the calculus.
Without it, the subject reduction property fails — a prop
erty on which our confluence proof depends. Consider the
term ‘Az.yl s ~ahc.c(k.r~n). Without the restriction it
is easy to see that the term has the following incompatible
types:

It is straightforward to construct a similar term with ‘/3l-
redexes (e.g., ‘( Az.y)(Az.y)l) whose higher type is not pre-
served under ‘@T-reduction.

2.2.2 Properties of Well-Typed Terms

We briefly consider some properties of well-typed terms.
Strong normalization obviously fails for both ,8 and ~z (e.g.,
W_ f11i2). The same example also shows that M will not in
general have a /32-normal-form. However, well-typed terms
do have the weak-normalization propert y.

Lemma 2 (Weak Normalization) If M : r then M has
a ,&normal-form.

2.3 Well-Behavedness

As we have stressed, well-typedness is not a strong enough
condition to guarantee the integrity of staged execution.
The example in (5) has two distinct /32-normal-forms: ‘K1
and ‘ST. We now define an additional criterion, well be-
havedness, with the intention of ruling-out such terms.

We begin by reviewing the notion of a self-interpreter (or
enumemtor) first introduced by Kleene [Kle36].

For Mogensen’s representation, such an enumerator is
quite simple:

E s Y(Aem.m(Az.z)

(Am.)

(Andv.e(nav)))

We will make use of the enumerator in defining an equiv-
alence relation on terms of base type. Two terms will be con-
sidered equivalent if and only if their /3-normal-forms denote
equivalent run-time code.

M= Niff M:d, N:dand EM=BEN.

From lemma 1 (part 2) and the definition we have:

Lemma 3 For all M, N, if ‘M’ =rPlrN1 then M z N.

The converse obviously does not hold.

We can now give the key definition.

Definition 2 (Well-Behaved)

1. M is well-behaved at d if M : d and VC[.], N1 : d s.t.
M = CIN1], VN2, s.t. NI x N2, CINI] = C[N2J.

2. M is well-behaved at u * r iff M : a -+ r and for all
well-behaved N : u, MN : r is well-behaved.

M is well-behaved if M is well-behaved at r for sll r such
that M : r.

The intuition behind 1. is that given CIN1] : d, a translator
ought to be able to replace the code fragment IVl : d with
any equivalent (and hopefully more efficient ) code fragment
N2 : d. 2. reflects the naturaJ higher representation type of
any translator.

Examples

1. k .Z is well-behaved.

2. ‘~z.z1 is well-behaved.

3. (-4rnn.Aabc.b(Aabc. ck. (n ‘z’))rn) is well-behaved.

4. KrP(r(Ati.v)wlz) is well-behaved.

5. ‘I ~l(kn.rI1)(hrm. rK1)(Am.rS1) is not well behaved.

It is obviously undecidable whether a given term M is well
behaved.

Lemma 4 (Subject Reduction) If M : r is well-behaved
and M ++B2 N then N : r.

Theorem 1 (Kleene)

3E e A, s.t, VM E Ae, E ‘M?=@ M.
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Ax.x

(Arnn.Aabc.b(Aabc. cAz.(n ‘zl))m)

r(kl.o)wlz

Krly(k.v)zo%)

r~ Il(Am.rIl)(Amn. rKl)(Am.rsl)

T-+T (7)

: d+(d+d)-+d (8)

has no type (9)

:d (lo)

:d (11)

Figure 1: Example Terms and their Types

3 Confluence of Well-Behaved Terms

We now turn to the main result of the paper: confluence
for well-behaved terms under &reduction. Unfortunately,
most of the usual methods for proving confluence of rewrit-
ing systems are of no help for the &-calculus. The general
results of Klop [K108o] for regular term rewriting systems
do not apply because .L?Zis not regular: ~ and ‘/31 interfere
with one-another. The Hindley-Rosen lemma [Bar84], (i.e.,
the union of commutative CR reduction relations is CR)
doesn’t apply because, although both ,6 and /3, are CR, ‘/31
does not commute with /3 on well-behaved terms (for ex-
ample, K r M1 (r (AU. W)WIZ). ) Similar problems arise with
development based proofs.

The key problem is that the relations M : r and M : ~ is
well- behaved are not defined in such a way that there is an
obvious basis for reasoning by induction on the structure of
terms or on the lengths of reduction sequences. One impor-
tant consequence of the definitions is that the relation ‘~1
is not substitutive. That is, for well-behaved M : r,

M +re~ M’ # M[z := N] +rpl M’[z := N].

The definition of well-behavedness is given in terms of
~-normzd-forms and so our proof of confluence relies on rea-
soning about P-normal-forms. We will require the following
two lemmas.

Lemma 5 If MO : r is well-behaved and MO =p, M. then

M. i8 well-behaved.

Proof: The proof is by induction on T and on why MO =~2 M..

❑

Lemma 6 If MO : r is well-behaved and Mo =~2 M. then

P-nflMo) =rP@-nfiM~).

Proof: (Sketch) The proof is by induction on r and on why
M. =P2 M.. We briefly consider the base case. Let T =

d, and consider why Mo =B2 M.. The non-trivial case is

MO =~2 M. because MO -+p2 M=. We proceed by induction

on n. For n = 1 let C[.], NO and N1 be such that MO s cINo]
and Ml s cIN1] where (No, Nl) G 92. If (No, Nl) ● ~,
then B-nf(Mn\ and &nf(M, ) are identical and the result,–

“ ,If (No, if;) z ‘/31, then since MO is well-is immedi~te.
behaved, and NO % iVI, MO = Ml. Let ‘M;’ E /?-nf(M,).
Then

MO - Ml iff

iff

3

iff

EMo =pEMl

ErM; l =PErM; l

M; =PM;

/3-nf(Mo) =rB-i/3-nf(Ml).

For n >1, MO ++~2 M.-I -p, M. and by the induc-

tion hypothesis /3-nf(MO) =rP-@-nf(M~-l ). If M.-1 -+6 M.

the result follows from the induction hypothesis. If

Mm-1 -wbq Mm

the result follows by the same reasoning aa in the base case
noting that Mn-1 is of type d by lemma 4 and well-behaved
by lemma 5. ❑

Theorem 2 (Confluence) If M : T is well behaved, then
VM1, M2 such that M ++P2 Ml and M +p2 M2 there ex-

ists an M3 such that Ml *P2 Ms and M2 +~2 M3.

Proof: By lemma 2, M, Ml and Mz all have &normal-
forms which, by lemma 6, are ‘/31-convertible. Confluence
then follows by two applications of lemma 1. ❑

4 Well-Behaved Macro Expansion

In thw section we present a simple A-calculus based language
with syntax extensions and an algorithm for expanding in-
stances of defined notation. It seems natural to view such an
algorithm as being correct if expansion of defined notation
commutes with reduction on terms. As we illustrated in Sec-
tion 1, naive expansion fails to satisfy this criterion because
unintended captures of free variables can occur during naive
expansion. Thk problem has been taken up many times be-
fore [KFFD86, Gri88, CR91, BA92] and [Car93]. We will
compare our approach with some of these in Section 5.

In most respects our approach will be the usual one for
macro expansion: instead of the translation process depicted
in (I) in which the front-end of the translator has produced
a $normal-form ‘M 1, thefront end produces a term Mo
in which definitions of macros are represented by expansion
functions and uses of macros are represented by applications
of the expansion functions to representations of the “parts”
of the macro use. The translation process can then be seen
as:

T MO -HB T ‘M1 -p ‘M’l,

where all macro calls in MO can be fulIy expanded by /r-
eduction yielding the ~-normal-form r M1 and the com-
piler then produces the representation of the object program
i_Mll+

4.1 Preliminaries

The grammar for our language C is defined in Figure 2. The
symbol x denotes a set {ZI, mz,...} of object variables and. . .
u denotes a dwjomt set of pattern variables {WI, V2, ,.. } to-
gether with the special symbol c which denotes empty (i.e.,
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A ‘o- x I AA I Az.A lIet-syntax Din A I U I w..-

D ..— v’..— WV . . . ~A

u ::= VA . . .

Figure 2: Grammar for L.

no variable). The symbol z denotes either an object vari-
able or a pattern variable. D denotes a syntax dejhition
and U denotes a use of the defined notation. The ellipses
“A.. ? denotes a sequence of A’s. The language provides
for lexically nested macro definitions. Thus, a use U will

be meaningful only as a subterm of A in let-syntax D in A.
Similarly, a pattern variable v is meaningful only in a macro
definition.l

Following Griffin, we use superscripts v“’ to denote bind-
ing patterns within definitions. For example, in:

let vi = vzinv~’ ~ (M, .V3)V2. (13)

the superscript V1 in V3‘1 indicates that free occurrences of
the variable that w is bound to that occur in the expres-
sion that V3 is bound to will ultimately be bound by the
corresponding variable on the right-hand side. We refer to
such superscripts as scope variables. While our language al-
lows only a single scope variable, it is easy to extend the
algorithm to sets of variables V{”l ‘“o’‘“k].)

We are making a number of other simplifying assump
tions that set aside problems that we are not attempting
to solve here. For example, constant symbols and/or literal
strings are important for making macros readable, however,
we have not included them here (and use object and pattern
variables informally as constants) to keep the equations sim-
ple. Similarly, we are not addressing the problems of parsing
the concrete syntax (but see [Car93, hfu189]) or problems
of programmers specifying compile-time computations over
represent ations — backquote.

The algorithm will translate terms relative to an envi-
ronment V ::= ~ I v[A/v] that binds pattern variables v to

values A. Environments have the following behavior:

c(v) = c

{
d4v’](v) s f(v)%e;;ise.

We will find it convenient to retain to two kinds of values in

v:
A ::= (F~, (ii, ~l),..., (;k, ~k)) I ‘Vv,

where Fk denotes a k-ary expansion function and i, j are
integers that are included to facilitate construction of the
application that will expand a use of the macro.

Finally, we will find it convenient to adopt the following
two conventions. First, for sJI Vvi in which vi E c, i = O.
Intuitively, i is the index of a variable so the convention
says that the empty variable has no index. Second, we use
the non-standard notation AM; .Mi. In such contexts M;

1StfictlY speaking, we are also using them as identifiers of m$-=
in uses.This pun allows us to avoid introducing new syntactic cate
gories and keep the equations simple.

denotes either a (non-empty) variable z, or, if i = O, then
AMi .hfj denotes Mj. These conventions will simplify the
key equations of the algorithm.

4.2 The Expansion Algorithm

The translation algorithm is given in Figure 3. From the
definition it is easy to see that if M has no macro uses
then [M]q is in /l-normal-form — (14) through (16) yield
a Mogensen representation. The translation of a Iet-syntaz

form (17) results in the translation of M in the environment
obtained by translating the definition D.

The translation of a definition (18) extends the environ-
ment by binding the leftmost symbol of the definition to
the appropriate expansion function together with pairs of
indices (ij,, jl), 1 <1< k. The body of the expansion func-
tion is determined by the translation of the right-hand side of
the definition in an environment in which the k parameters
of the function are bound to their scope variables. (These
will eventually be looked up in (20). ) The pairs (ijl, jI ), are
packaged-up with the expansion function so that they can
be used in translating a use of the defined notation. The
index ~1 gives the position in a use of the lth argument to
which the expansion function will be applied. If the index
ij, = Othen the jl th term in the use is not within the scope
of any variable in the macro use. If ijl # O then the j~th
term is in the scope of the variable at index ij,.

Turning to the translation of a macro use (19), the algo-
rithm produces an application of the k-ary expansion func-
tion associated with the leftmost symbol v to k arguments.
For 1< J < k, the ith argument is written as an abstraction
XM,jl .fMjl]q where the “formal parameter” Mij, is deter-
mined by the index * described above. When ijl # O, Mj,
is in the scope of variable itf~jl and the abstraction will ul-
timately be applied to the representation of the appropriate
variable (thus performing the capture). When ij, -= O, no
capture was specified in the definition and by our convention
JMijl .[Mj1]7 is sirnpb [Mjl]q.

Fhmlly, the last clause (20) gives the translation of a
pattern variable v. If q(v) = v’, for some v’ # ~ then a

capture was specified for v in the corresponding definition
and v is applied to the representation of v’. If q(v) = c then
no capture was specified and no application is generated.

As we will show, the algorithm constructs a representa-
tion of the specified binding pattern using only abstraction,
application and the familiar capture avoiding substitution.
Recall that the key clause is:

(Jz.M)[y := iv] s (AZ.M[Z := Z][y := N]) (21)

where z + y and z is unique. The basic technique was first
suggested to us by Pat O’Keefe [0’K92].
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Aabc.az (14)

Aabc.b([M]q)([N]~) (15)

/labc.c(Az.[M]9) (16)

[M]([D]q) (17)

d(AvJ, 0.. vjk . [Ml(9[rv,jl ‘/vJl] . . . rv,jk ‘/v~k]),(i~i,~l), . . . . (~~k,~k))/v] (18)

(~k AMij, .[MJ1]v . . . ~~ijk .[M~k]I,I) (19)

where ~(V) = (Fk, (~JI , i), . . . . (~jk,~k))

if q(o) S ‘V’l then vrv’l else v (20)

Figure 3: The Macro Transcription Algorithm

4.3 Example

The following example illustrates the algorithm’s method of
effecting desired captures while avoiding undesired captures.
In the example we will feel free to use M, N, . . .. and even
z as pattern variables and we will continue to be rather
informal with constants (using ‘=” and “in” for example
as term constants.) We will also assume the existence of a
conditional M ~ M, M.

D1 S let z = M in N“ ~ (kz.N)M

D2 E or PQ~(letz = Pin(z -+z, Q))

u z (or(11) %)

ME let-syntax D1 in

let-syntax Dz in U

Let let’ s (Amn.Aabc.b(Aabc. cAz.(n ‘zl))m). We com-
pute:

[Dl]c = e[(let’, (O, 3), (1, 5))/let].

Let or’ s (Apg.(let’ p (Xz.z ‘+1x, q))). Then

iD21(tID11L5) = ([~l]&)[(Or’, (0, 1), (0, 2))/01].

Note that the application of n to ‘Z1 in let’ together
with the abstraction over z in or’ jointly effect the capture
specified in the definition of D1.

The translation and expansion then proceed as in Figure
4. Note in (22) that the normal replacement rule for capture
avoiding substitution (21) prevents the capture of z in the
call by the binding inst ante of z int reduced in the defini-
tion of Dn. Also note that in (23), the usual a-conversion
again takes place converting Az.(n ‘Z1) to ~z’’.(n ‘Z”l)
— a ~ortiori, in Mogensen’s higher-order abstract syntax,
a-conversion is performed across representation levels. Fi-
nally, the book-keeping @-reduction is performed in (24) that
effects the capture specified in the definition of D1.

4.4 Correctness

Our correctness criterion is that macro expansion should
commute with &reduction on t-terms.

Theorem 3 (Correctness of Macro Expansion) [.1 is cor-
rect.

Proof: (Sketch) By the confluence theorem, it suffices to
show that for all M c L, [M]c is well-behaved. We first
show that for all M E L, [M]e : d. We then show by in-
duction on fM~e that for all C1.1, N] : d such that CIN1l =

5 Related Work

The work described here is closely related to the syntactic
approaches to self-interpretation studied in [Bar91] and self-
interpretation and partial evaluation deveIoped in [Mog92b]
and [Wan93]. Following Gomard [Gom90], the latter two
papers present type systems that compute a binding-time

analysis as a preprocessing phase of a partial evaluator. The
analysis yields a set of constraints on an annotated type
inference tree. Those redexes with static annotations can
be reduced statically whale those with dynamic annotations
cause the partial evaluator to emit residual code. The main
result of ~an93] is a soundness theorem verifying the cor-
rectness of the staging transformation for well-typed (well-
annotated) terms.

Let us outline some of the differences between this ap
preach and that presented in thw paper. First, setting aside
well-behavedness, the intention behind the type system de-
veloped here is that it give the weakest conditions that en-
sure that terms are sufficiently well-structured. Over and
above the requirement that terms be well-typed, we have
the additional requirement that ensures that a term is not
only well-structured but that it also respects the run-time
equational theory. As we have noted, this property is also
undecidable.

We have not considered recursive types in part because
our confluence result relies on weak normalization. It may
be possible to obtain a confluence proof using logical rela-
tions, however, this would require a structural type system.
Unfortunately, the natural axiom would be i- ‘mT : d which
is obviously much weaker than our base type condition.

The application of the theory to macro expansion is closely
related to (and to some extent was inspired by) Griffin’s
work [Gn88]. To the best of our knowledge, Griffin was
the first to suggest commutativity as a correctness criterion
for macro expansion. Griffin’s framework was expressed in
terms of the simply-typed A-calculus extended with pairs.
We share the use of higher-order abstract syntax to prevent
unintended captures of free variables. One technical diifer-
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[M~ = [(or (11) z)]([~z](fm))

= ((,lpg.(let’ p (kv.z ‘-+1 z, g))) ‘(I 1)1 ’21)

~p (let’ ‘(l 1)1 (Az’.z’ ‘+1 z’, rzl)) (22)

= ((hnn.~abc.b(~abc. c~z.(n ‘zl))m) ‘(I 1)1 (Az’.z’ ‘+1 z’, ‘Z1))

~p ~abc.b(~abc.c~z’’. ((~z’.z’ ‘-+1 Z’, ’21) ‘2’’1)) ‘(] 1)1 (23)

-p Aabc.b(Aabc.cAz’’. rz”q ‘+1 ‘z”~, ‘X1) ‘(I 1)1 (24)
r ~zlt.zt~~ ( + z“,z)(11)1

Figure 4: A Sample Macro Expansion

ence is that we have used explicit representations of terms
whereas Griffin has adopted the representation framework
from [HHP871 in which the source language is represented
by adding an appropriate set of base types and constants.
Another technical difference between our approaches is that
Griffin used capture permitting substitutions to effect in-
tended captures whereas we have used what we believe is a
somewhat more dkect method.

Whale Griflin’s work is in many respects more general
than ours, the present work does contribute a somewhat
more general correctness criterion. Griffin develops an ex-
pansion algorithm 7: and proves that under the algorithm,
expansion of notational definitions commutes with reduc-
tion on terms. He then takes the algorithm as a correctness
criterion — any other algorithm is correct if it agrees with
F: on all inputs. Our criterion — well-behavedness — is
independent of any particular expansion algorithm. Rather,
it is directly tied to the notion of commutativity. Well-
behavedness can therefore be used to prove the correctness
of a larger class of macro expanders. For example, Grif-
fin’s criterion would exclude any expander that attempted
to perform ~-reduction statically.

The notion of hygienic [KFFD86] macro expansion has
been widely adopted in the Scheme community as a correct-
ness criterion for macro expansion. An expansion algorithm
is said to be hygienic if it respects the following hygiene
condition [KFFD86]:

“Generated identifiers that become binding in-
st antes in the completely expanded program must
only bind variables that are generated in the same
transcription step.”

The classical hygienic expansion algorithm satisfies this con-
dition by repeatedly a-converting variables during each tran-
scription step.

While the approach taken in the algorithm of the pre-
ceding section using capture avoiding substitution has a su-
perficial correspondence with the repeated cr-conversion of
hygienic expansion, we emphasize that the approaches are
actually quite different.

Hygienic expansion is usually used in the context of S-
expression based dialects of LISP. In these dialects, program
fragments have no syntactical interpretation until all enclos-
ing macro calls have been fully expanded. Thus, it is not
clear how one can sensibly view macro expansion as being
interleaved with run-time reduction.

Its also worth noting the connection between th~ prop-
erty of S-expression LISP and the apparent gap in the defini-

tion of the hygiene condition — while the condition prevents
capture of free variable occurrences generated in one tran-
scription step by binding occurrences generated in another
step, it makes no reference to variable occurrences generated
in different bhding contexts in the same transcription step.
Let us consider a simple example.

let-syntax (rnac a (b c d)) + (b c a) in
((lambda (x) (rnac x (lambda (x) e))) Y)

Expanding the macro (hygienically) first, we get

--> J4acro ((lambda (x) (lambda (x) x)) y)
-->-Beta (lambda (x) x)

But performing the ~-reduction first it appears that we
would get:

-->-Beta (Mac y (lambda (x) e))
-->-Macro (lambda (x) y)

However, in S-expression LISP, the occurrence of the symbol
x within the macro call is not taken as a variable and thus
it is not bound by the left-most binding instance of x and
both orders produce the same result. So the correctness of
hygienic expansion is tied in some sense to thw particular
property of S-expression LISP.

While S-expressions provide for great expressive power
for macro writers in terms of picking apart pieces of syn-
tax, unfortunately, it leaves the macro user with only fairly
weak assurances that their intended binding patterns will
be preserved during expansion of their notational abbrevi-
ations. We believe that the classical S-expression syntactic
structure is insufficient to ensure under reasonable condi-
tions that macro expansion does not interfere with ordinary
reduction in the sense that we have emphasized.

6 Future Work

Our definition of well-behavedness requires that a term M
be well-behaved at r for all r such that M : r. It would
be desirable if the well-behavedness of a polymorphic term
could be inferred by its well-behavedness at a particular type
along the lines of [Abr86]. We would like to come to a better
understanding of the connection between the type system
presented here and the two-level type system of [NN88]. We
would also like to better understand the notion of staged
reduction with other representation schemes such as that
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presented in [BB92]. We hope to apply the current frame-
work to the verification of Mogensen’s self-applicable par-
tial evaluator. Finally, it would be interesting to consider
whether the equality condition could be weakened to allow a
translator somewhat wider leeway in substitution of terms.
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