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WYSINWYX:
What You See Is Not What You eXecute
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Over the last seven years, we have developed static-analysis methods to recover a good approxi-
mation to the variables and dynamically allocated memory objects of a stripped executable, and
to track the flow of values through them. The article presents the algorithms that we developed,
explains how they are used to recover Intermediate Representations (IRs) from executables that
are similar to the IRs that would be available if one started from source code, and describes their
application in the context of program understanding and automated bug hunting.

Unlike algorithms for analyzing executables that existed prior to our work, the ones presented
in this article provide useful information about memory accesses, even in the absence of debugging
information. The ideas described in the article are incorporated in a tool for analyzing Intel x86
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executables, called CodeSurfer/x86. CodeSurfer/x86 builds a system dependence graph for the
program, and provides a GUI for exploring the graph by (i) navigating its edges, and (ii) invoking
operations, such as forward slicing, backward slicing, and chopping, to discover how parts of the
program can impact other parts.

To assess the usefulness of the IRs recovered by CodeSurfer/x86 in the context of automated
bug hunting, we built a tool on top of CodeSurfer/x86, called Device-Driver Analyzer for x86
(DDA/x86), which analyzes device-driver executables for bugs. Without the benefit of either source
code or symbol-table/debugging information, DDA/x86 was able to find known bugs (that had been
discovered previously by source-code analysis tools), along with useful error traces, while having
a low false-positive rate. DDA/x86 is the first known application of program analysis/verification
techniques to industrial executables.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program
Verification—Assertion checkers; model checking; D.2.5 [Software Engineering]: Testing and
Debugging—Symbolic execution; D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and reengineering; D.3.2 [Programming
Languages]: Language Classifications—Macro and assembly languages; D.4.6 [Operating
Systems]: Security and Protection—Invasive software; E.1 [Data]: Data Structures—Arrays;
lists, stacks, and queues; records; F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages—Program analysis

General Terms: Algorithms, Security, Theory, Verification

Additional Key Words and Phrases: Abstract interpretation, context-sensitive analysis, data struc-
ture recovery, interprocedural dataflow analysis, pointer analysis, reverse engineering, static
analysis
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1. INTRODUCTION

Recent research in programming languages, software engineering, and com-
puter security has led to new kinds of tools for analyzing programs for bugs
and security vulnerabilities [Havelund and Pressburger 2000; Wagner et al.
2000; Engler et al. 2000; Corbett et al. 2000; Bush et al. 2000; Ball and Ra-
jamani 2001; Chen and Wagner 2002; Henzinger et al. 2002; Das et al. 2002].
In these tools, static analysis is used to determine a conservative answer to
the question “Can the program reach a bad state?”1 Some of this work has
already been transitioned to commercial products for source-code analysis (see
Ball et al. [2006], Coverity [], and CodeSonar []).

However, these tools all focus on analyzing source code written in a high-level
language. Unfortunately, most programs that an individual user will install on
his computer, and many commercial off-the-shelf (COTS) programs that a com-
pany will purchase, are delivered as stripped machine code (i.e., neither source
code nor symbol-table/debugging information is available). If an individual or

1Static analysis provides a way to obtain information about the possible states that a program
reaches during execution, but without actually running the program on specific inputs. Static-
analysis techniques explore the program’s behavior for all possible inputs and all possible states
that the program can reach. To make this feasible, the program is “run in the aggregate”; that is,
on descriptors that represent collections of memory configurations [Cousot and Cousot 1977].
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company wishes to vet such programs for bugs, security vulnerabilities, or ma-
licious code (e.g., back doors, time bombs, or logic bombs) the availability of
good source-code analysis products is irrelevant.

Less widely recognized is that even when the original source code is avail-
able, source-code analysis has certain drawbacks [Howard 2002; WHDC 2007].
The reason is that computers do not execute source code; they execute machine-
code programs that are generated from source code. The transformation from
source code to machine code can introduce subtle but important differences be-
tween what a programmer intended and what is actually executed by the pro-
cessor. For instance, the following compiler-induced vulnerability was discov-
ered during the Windows security push in 2002 [Howard 2002]: the Microsoft
C++ .NET compiler reasoned that because the program fragment shown in the
following on the left never uses the values written by memset (intended to scrub
the buffer pointed to by password), the memset call could be removed, thereby
leaving sensitive information exposed in the freelist at runtime.

memset(password, ’\0’, len);
free(password);

=⇒ free(password);

Such a vulnerability is invisible in the original source code; it can only be de-
tected by examining the low-level code emitted by the optimizing compiler. We
call this the WYSINWYX phenomenon (pronounced “wiz-in-wicks”): What You
See [in source code] Is Not What You eXecute [Reps et al. 2005; Balakrishnan
et al. 2007; Balakrishnan 2007].

WYSINWYX is not restricted to the presence or absence of procedure calls;
on the contrary, it is pervasive. Some of the reasons why analyses based on
source code can provide the wrong level of detail include the following.

—Many security exploits depend on platform-specific details that exist because
of features and idiosyncrasies of compilers and optimizers. These include
memory-layout details (such as the positions, i.e., offsets, of variables in
the runtime stack’s activation records and the padding between structure
fields), register usage, execution order (e.g., of actual parameters at a call),
optimizations performed, and artifacts of compiler bugs. Bugs and security
vulnerabilities can escape notice when a tool is unable to take into account
such fine-grained details.

—Analyses based on source code2 typically make (unchecked) assumptions, for
example, that the program is ANSI C compliant. This often means that an
analysis does not account for behaviors that are allowed by the compiler and
that can lead to bugs or security vulnerabilities (e.g., arithmetic is performed
on pointers that are subsequently used for indirect function calls; pointers
move off the ends of arrays and are subsequently dereferenced; etc.).

—Programs are sometimes modified subsequent to compilation, for example,
to perform optimizations or insert instrumentation code [Wall 1992]. They
may also be modified to insert malicious code. Such modifications are not
visible to tools that analyze source code.

2Terms like “analyses based on source code” and “source-code analyses” are used as a shorthand
for “analyses that work on intermediate representations (IRs) built from source code.”
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In short, even when source code is available, a substantial amount of in-
formation is hidden from source-code analysis tools, which can cause bugs,
security vulnerabilities, and malicious behavior to be invisible to such tools.

The alternative is to perform static analysis at the machine-code level. The
advantage of this approach is that the machine code contains the actual in-
structions that will be executed; this addresses the WYSINWYX phenomenon
because it provides information that reveals the actual behavior that arises
during program execution.

Although having to perform static analysis on machine code represents a
daunting challenge, there is also a possible silver lining: by analyzing an arti-
fact that is closer to what is actually executed, a static-analysis tool may be able
to obtain a more accurate picture of a program’s properties. The reason is that
(to varying degrees) the semantic definition of every programming language
leaves certain details unspecified. Consequently, for a source-code analyzer to
be sound, it must account for all possible implementations, whereas a machine-
code analyzer only has to deal with one possible implementation; namely, the
one for the code sequence chosen by the compiler.

For instance, in C and C++ the order in which actual parameters are eval-
uated is not specified: actuals may be evaluated left-to-right, right-to-left, or
in some other order; a compiler could even use different evaluation orders for
different functions. Different evaluation orders can give rise to different be-
haviors when actual parameters are expressions that contain side effects. For
a source-level analysis to be sound, at each call site it must take the join (�)
of the results from analyzing each permutation of the actuals.3 In contrast,
an analysis of an executable only needs to analyze the particular sequence of
instructions that lead up to the call.

Static-analysis tools are always fighting imprecision introduced by the join
operation. One of the dangers of static-analysis tools is that loss of precision
by the analyzer can lead to the user being swamped with a huge number of
reports of potential errors, most of which are false positives. As illustrated in
Figure 1, because a source-code analysis tool summarizes more behaviors than
a tool that analyzes machine code, the join performed at q must cover more
abstract states. This can lead to less precise information than that obtained
from machine-code analysis. Because more precise answers mean a lower
false-positive rate, machine-code analysis tools have the potential to report
fewer false positives.

There are other trade-offs between performing analysis at source level versus
the machine-code level: with source-code analysis one can hope to learn about
bugs and vulnerabilities that exist on multiple platforms, whereas analysis
of the machine code only provides information about vulnerabilities on the
specific platform on which the executable runs. From that standpoint, source-
code analysis and machine-code analysis are complementary.

3We follow the conventions of abstract interpretation [Cousot and Cousot 1977], where the lattice
of properties is oriented so that the confluence operation used where paths come together is join
(�). In dataflow analysis, the lattice is often oriented so that the confluence operation is meet (�).
The two formulations are duals of one another.
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Fig. 1. Source-code analysis, which must account for all possible choices made by the compiler,
must summarize more paths (see (a)) than machine-code analysis (see (b)). Because the latter can
focus on fewer paths, it can yield more precise results.

Although it is possible to create source-code tools that strive to have greater
fidelity to the program that is actually executed (examples include Chandra
and Reps [1999] and Nita et al. [2008]) in the limit, the tool would have to
incorporate all the platform-specific decisions that would be made by the com-
piler. Because such decisions depend on the level of optimization chosen, to
build these choices into a tool that works on a representation that is close to
the source level would require simulating much of the compiler and optimizer
inside the analysis tool. Such an approach is impractical.

In addition to addressing the WYSINWYX issue, performing analysis at the
machine-code level provides a number of other benefits:

—Programs typically make extensive use of libraries, including dynamically
linked libraries (DLLs), which may not be available as source code. Typi-
cally, source-code analyses are performed using code stubs that model the
effects of library calls. Because these are created by hand, they may contain
errors, which can cause an analysis to return incorrect results. In contrast, a
machine-code analysis tool can analyze the library code directly [Gopan and
Reps 2007].

—The source code may have been written in more than one language. This
complicates the life of designers of tools that analyze source code because
multiple languages must be supported, each with its own quirks.

—Even if the source code is primarily written in one high-level language, it
may contain inlined assembly code in selected places. Source-code analysis
tools typically either skip over inlined assembly [CodeSurfer] or do not push
the analysis beyond sites of inlined assembly [PREfast 2004]. To a machine-
code analysis tool, inlined assembly just amounts to additional instructions
to analyze.

—Source-code analysis tools are only applicable when source is available, which
limits their usefulness in security applications (e.g., to analyzing code from
open-source projects).

Research carried out during the last decade by our research group [Xu et al.
2000, 2001; Balakrishnan and Reps 2004; Reps et al. 2005, 2006; Balakrishnan
and Reps 2006, 2007; Gopan and Reps 2007; Balakrishnan 2007; Lim and Reps
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2008; Balakrishnan and Reps 2008] as well as by others [Larus and Schnarr
1995; Cifuentes and Fraboulet 1997b; Debray et al. 1998, 2004; Bergeron et al.
1999; Amme et al. 2000; De Sutter et al. 2000; Bergeron et al. 2001; Kiss et al.
2003; Backes 2004; Regehr et al. 2005; Guo et al. 2005; Christodorescu et al.
2005; Kruegel et al. 2005; Cova et al. 2006; Chang et al. 2006; Brumley and
Newsome 2006; Emmerik 2007; Zhang et al. 2007] has developed the founda-
tions for performing static analysis at the machine-code level. The machine-
code analysis problem comes in three versions: (i) in addition to the executable,
the program’s source code is also available; (ii) the source code is unavailable,
but the executable includes symbol-table/debugging information (“unstripped
executables”), and (iii) the executable has no symbol-table/debugging informa-
tion (“stripped executables”). The appropriate variant to work with depends on
the intended application. Many techniques apply to multiple variants, but are
severely hampered when symbol-table/debugging information is absent.

In 2004, we supplied a key missing piece, particularly for analysis of stripped
executables [Balakrishnan and Reps 2004]. Previous to that work, static anal-
ysis tools for machine code had rather limited abilities: it was known how
to (i) track values in registers and, in some cases, the stack frame [Larus and
Schnarr 1995], and (ii) analyze control flow (sometimes by applying local heuris-
tics to try to resolve indirect calls and indirect jumps, but otherwise ignoring
them).

The work presented in our 2004 paper [Balakrishnan and Reps 2004] pro-
vided a way to apply the tools of abstract interpretation [Cousot and Cousot
1977] to the problem of analyzing stripped executables, and we followed this
up with other techniques to complement and enhance the approach [Reps
et al. 2005, 2006; Let et al. 2005; Balakrishnan and Reps 2006, 2007, 2008;
Balakrishnan 2007, 2008]. This body of work has resulted in a method to
recover a good approximation to an executable’s variables and dynamically al-
located memory objects, and to track the flow of values through them. These
methods are incorporated in a tool called CodeSurfer/x86 [Balakrishnan et al.
2005a].

CodeSurfer/x86: A Platform for Recovering IRs from Stripped Executables.
Given a stripped executable as input, CodeSurfer/x86 [Balakrishnan et al.
2005a] recovers IRs that are similar to those that would be available had
one started from source code. The recovered IRs include control-flow graphs
(CFGs), with indirect jumps resolved; a call graph, with indirect calls resolved;
information about the program’s variables; possible values for scalar, array,
and pointer variables; sets of used, killed, and possibly-killed variables for each
CFG node; and data dependences. The techniques employed by CodeSurfer/x86
do not rely on debugging information being present, but can use available
debugging information (e.g., Windows .pdb files) if directed to do so.

The analyses used in CodeSurfer/x86 are a great deal more ambitious
than even relatively sophisticated disassemblers, such as IDAPro (www.hex-
rays.com/idaprol/). At the technical level, they address the following problem.
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Given a (possibly stripped) executable E, identify the procedures,
data objects, types, and libraries that it uses, and,
—for each instruction I in E and its libraries,
—for each interprocedural calling context of I, and
—for each machine register and variable V in scope at I,
statically compute an accurate overapproximation to the set of values
that V may contain when I executes.

It is useful to contrast this approach against the approach used in much
of the other work that now exists on analyzing executables. Many research
projects have focused on specialized analyses to identify aliasing relation-
ships [Debray et al. 1998], data dependences [Amme et al. 2000; Cifuentes
and Fraboulet 1997b], targets of indirect calls [De Sutter et al. 2000], values of
strings [Christodorescu et al. 2005], bounds on stack height [Regehr et al. 2005],
and values of parameters and return values [Zhang et al. 2007]. In contrast,
CodeSurfer/x86 addresses all of these problems by means of a set of analyses
that focuses on the problem stated before. In particular, CodeSurfer/x86 discov-
ers an overapproximation of the set of states that can be reached at each point
in the executable—where a state means all of the state: values of registers,
flags, and the contents of memory—and thereby provides information about
aliasing relationships, targets of indirect calls, etc.

One of the goals of CodeSurfer/x86 is to be able to detect whether an exe-
cutable conforms to a standard compilation model. By “standard compilation
model” we mean that the executable has procedures, activation records (ARs),
a global data region, and a free-storage pool; might use virtual functions and
DLLs; maintains a runtime stack; each global variable resides at a fixed offset
in memory; each local variable of a procedure f resides at a fixed offset in the
ARs for f ; actual parameters of f are pushed onto the stack by the caller so
that the corresponding formal parameters reside at fixed offsets in the ARs
for f ; the program’s instructions occupy a fixed area of memory, and are not
self-modifying.

During the analysis performed by CodeSurfer/x86, these aspects of the pro-
gram are checked. When violations are detected, an error report is issued, and
the analysis proceeds. In doing so, however, we generally choose to have the
analyzer only explore behaviors that stay within those of the desired execu-
tion model. For instance, if the analysis finds that the return address might
be modified within a procedure, it reports the potential violation, but proceeds
without modifying the control flow of the program. Consequently, if the exe-
cutable conforms to the standard compilation model, CodeSurfer/x86 creates
a valid IR for it; if the executable does not conform to the model, then one
or more violations will be discovered, and corresponding error reports will be
issued; if the (human) analyst can determine that the error report is indeed a
false positive, then the IR is valid. The advantages of this approach are (i) it
provides the ability to analyze some aspects of programs that may deviate from
the desired execution model; (ii) it generates reports of possible deviations from
the desired execution model; (iii) it does not force the analyzer to explore all of
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the consequences of each (apparent) deviation, which may be a false positive
due to loss of precision that occurs during static analysis.4

Contributions. The contributions of our work can be summarized as follows.

—We devised an abstract memory model that is suitable for analyzing executa-
bles (see Section 2).

—We developed (several variations of) a static-analysis algorithm that, without
relying on symbol-table or debugging information, is able to track the flow
of values through memory (see Section 3).

—We devised an algorithm to recover variable-like entities from an executable
that can serve as proxies for the missing source-level variables in algo-
rithms for further analysis of executables (see Section 4 and Section 5).
The algorithm addresses the problem of recovering such entities regardless
of whether they are local, global, or allocated in the heap.

—We used these methods to create the first automatic program-verification tool
for stripped executables: it allows one to check that a stripped executable con-
forms to an API-usage rule specified as a finite-state machine [Balakrishnan
et al. 2005b; Balakrishnan and Reps 2008] (see Section 6).

—We used these methods to create the first program-slicing tool for executables
that can help with understanding dependences across memory updates and
memory accesses [Balakrishnan et al. 2005a].

Legal Issues. Machine-code analysis has different usage scenarios depend-
ing, for instance, on whether

—the user has source code for the entire application, including the libraries
and OS utilities that it uses;

—the user has source code for the application, but only machine code for the
libraries and OS utilities;

—the user has only machine code.

In most parts of the world, the latter two situations may be subject to legal re-
strictions. Most end-user license agreements (EULAs) contain provisions that
prohibit disassembly, decompilation, and reverse engineering of the licensed
program. Wikipedia’s page on “Software License Agreements” [Wikipedia:
Shrink-Wrap and Click-Wrap Licenses] notes, “Whether shrink-wrap licenses
are legally binding [in the United States] differs between jurisdictions, though
a majority of jurisdictions hold such licenses to be enforceable.” It adds,

. . . publishers have begun to encrypt their software packages to make it impos-
sible for a user to install the software without either agreeing to the license
agreement or violating the Digital Millennium Copyright Act (DMCA) and for-
eign counterparts. [Wikipedia: Enforceability]

4For future reference, additional discussion of the checks performed and error reports issued can
be found in Section 3.5.2, Section 3.6, Section 3.8, and Footnote 16. Some of the limitations of our
analysis techniques are discussed in Section 8.
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In the United States, the DMCA prohibits the circumvention of access-control
technologies [DMCA Section 1201]. However, there are several statutory excep-
tions for law enforcement, intelligence, and other government activities (Sec-
tion 1201(e)), reverse engineering/interoperability (Section 1201(f)), encryption
research (Section 1201(g)), and security testing (Section 1201(j)). In addition
to the statutory exceptions, other exemptions can be granted by the Librarian
of Congress. As to whether EULA clauses that prohibit reverse engineering for
interoperability purposes are enforceable,

The 8th Circuit case of Blizzard v. BnetD determined that such clauses are
enforceable, following the Federal Circuit decision of Baystate v. Bowers.
[Wikipedia: Shrink-Wrap and Click-Wrap Licenses]

To us, however, the boundary between permitted activities and excluded ac-
tivities is not entirely clear. The point of a EULA is to allow users to execute the
application’s machine code. These days many applications are run in nonstan-
dard ways, for example, in a guest virtual machine, using runtime optimization
[Bala et al. 2000], or under program shepherding [Kiriansky et al. 2002]. Static
analysis of machine code is yet another nonstandard form of execution, one
based on abstract interpretation [Cousot and Cousot 1977]. In general, as in
ordinary execution of machine code, abstract execution of machine code involves
repeatedly decoding an instruction and performing a state change according to
the instruction’s semantics. The only difference from standard execution is that
a nonstandard semantics is used: in essence, instead of running the program
on single concrete states, the program is “run in the aggregate”; that is, it is
executed over descriptors that represent collections of states.

Organization and Roadmap to the Article. The remainder of the article is
organized as follows: Section 2 presents the abstract memory model used in
CodeSurfer/x86, and an algorithm to recover variable-like entities, referred
to as a-locs (for abstract locations), from an executable. Section 3 presents
an abstract-interpretation-based algorithm, referred to as value-set analysis
(VSA), to recover information about the contents of machine registers and
memory locations at every program point in an executable. Section 4 presents
an improved a-loc recovery algorithm. Section 5 describes how the various
algorithms used in CodeSurfer/x86 interact with each other. Section 6 presents
Device-Driver Analyzer for x86 (DDA/x86), a tool built on top of CodeSurfer/x86
to analyze device-driver executables for bugs, and presents a case study in
which DDA/x86 was used to find bugs in Windows device drivers. Section 7
discusses related work. Section 8 presents our conclusions and directions for
further work.

Even though this is a lengthy article, it was necessary to be selective about
the material presented, or the work would have been considerably longer. The
article concentrates on the essential core of our work; in a few places we re-
fer the reader to other papers, either for additional details (see Footnote 6,
Section 3.1, and Section 3.4) or for information about variations and enhance-
ments of the techniques presented in this article (see the list at the beginning
of Section 7).

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 6, Article 23, Pub. date: August 2010.



23:10 • G. Balakrishnan and T. Reps

For readers more familiar with source-code analysis, we have tried to make
the work as accessible as possible.5 Such readers may wish to keep two coun-
terbalancing themes in mind (concentrating on whichever is of greater interest
to them).

—To a considerable degree, we were able to make our analysis problems closely
resemble standard source-code analysis problems. To a large extent, the algo-
rithms we describe are adaptations and variations on well-known techniques.
This theme runs through Section 2, Section 3, and Section 6, which provide
a flavor of the algorithms used in CodeSurfer/x86 and how their capabilities
compare with source-code analyses.

—At the same time, considerable work was necessary to map ideas from source-
code analysis over to machine-code analysis, due to several reasons:
—We work with stripped executables, so our analyses start with no informa-

tion about the program’s variables.
—Even control-flow information presents difficulties: (i) branch conditions

are implicit because in x86 separate instructions are used for setting flags
based on some condition, and a subsequent conditional-jump instruction
performs the branch according to flag values; and (ii) it is often difficult to
identify the targets of indirect jumps and indirect function calls.

—As discussed in Section 6.2, when creating finite-state machines for prop-
erty checking, the vocabulary of events in executables differs from the
vocabulary of events in source code.

The theme of how our analyzer can bootstrap itself from preliminary IRs that
record fairly basic information about the code of a stripped executable to IRs
on which it is possible to run analyses that resemble standard source-code
analyses is the subject of Section 2.2, Section 4, and Section 5.

In source-code analysis, abstraction refinement [Kurshan 1994; Clarke et al.
2000] is a well-known technique for enhancing precision. Section 5 describes
our abstraction-refinement loop, which not only improves precision but also
orchestrates the analysis phases that allow us to overcome the lack of any
initial information about a program’s variables.

5For readers who need a brief introduction to the 32-bit Intel x86 instruction set (also called IA32),
it has six 32-bit general-purpose registers (eax, ebx, ecx, edx, esi, and edi), plus two additional
registers: ebp, the frame pointer, and esp, the stack pointer. By convention, register eax is used
to pass back the return value from a function call. In Intel assembly syntax, which is used in the
examples in this article, the movement of data is from right to left (e.g., mov eax,ecx sets the value
of eax to the value of ecx). Arithmetic and logical instructions are primarily two-address instruc-
tions (e.g., add eax,ecx performs eax := eax + ecx). An operand in square brackets denotes a
dereference (e.g., if a is a local variable stored at offset -16, mov [ebp-16],ecx performs a := ecx).
The lea instruction loads an address (e.g., lea ecx,[ebp-16] performs ecx := &a). Branching is
carried out according to the values of condition codes (“flags”) set by an earlier instruction. For
instance, to branch to L1 when eax and ebx are equal, one performs cmp eax,ebx, which sets ZF

(the zero flag) to 1 iff eax− ebx = 0. At a subsequent jump instruction jz L1, control is transferred
to L1 if ZF = 1; otherwise, control falls through.
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2. AN ABSTRACT MEMORY MODEL

One of the major stumbling blocks in analyzing executables is the difficulty
of recovering information about variables and types, especially for aggregates
(i.e., structures and arrays). Consider, for instance, a data dependence from
statement a to statement b that is transmitted by write/read accesses on some
variable x. When performing source-code analysis, the programmer-defined
variables provide us with convenient compartments for tracking such data
manipulations. A dependence analyzer must show that a defines x, b uses x,
and there is an x-def-free path from a to b. However, in executables, memory
is accessed either directly, by specifying an absolute address, or indirectly,
through an address expression of the form “[base + index × scale + offset]”,
where base and index are registers, and scale and offset are integer constants.
It is not clear from such expressions what the natural compartments are that
should be used for analysis. Because executables do not have intrinsic entities
that can be used for analysis (analogous to source-level variables), a crucial
step in the analysis of executables is to identify variable-like entities.

If debugging information is available (and trusted), this provides one possi-
bility; however, even if debugging information is available, analysis techniques
have to account for bit-level, byte-level, word-level, and bulk-memory manip-
ulations performed by programmers (or introduced by the compiler) that can
sometimes violate variable boundaries [Backes 2004; Miné 2006; Reps et al.
2006]. If a program is suspected of containing malicious code, even if debug-
ging information is present, it cannot be entirely relied upon. For these reasons,
it is not always desirable to use debugging information (or at least to rely on it
alone) for identifying a program’s data objects. (Similarly, past work on source-
code analysis has shown that it is sometimes valuable to ignore information
available in declarations and infer replacement information from the actual
usage patterns found in the code [Eidorff et al. 1999; O’Callahan and Jackson
1997; Ramalingam et al. 1999; Siff and Reps 1996; van Deursen and Moonen
1998].)

Example 2.1. The two programs shown in Figure 2 will be used in this
section to illustrate the issues involved in recovering a suitable set of variable-
like entities from a machine-code program. The C program shown in Figure 2(a)
initializes all elements of array pts[5] and returns pts[0].y. The x-members
of each element are initialized with the value of the global variable a and the
y-members are initialized with the value of global variable b. The initial values
of the global variables a and b are 1 and 2, respectively.

Figure 2(b) shows the corresponding x86 program (in Intel assembly-
language syntax). By convention, esp is the stack pointer in the x86 architec-
ture. Instruction 1 allocates space for the locals of main on the stack. Figure 3(a)
shows how the variables are laid out in the activation record of main. Note that
there is no space for variable i in the activation record because the compiler
promoted i to register edx. Similarly, there is no space for pointer p because
the compiler promoted it to register eax.

Instructions L1 through 12 correspond to the for-loop in the C program.
Instruction L1 updates the x-members of the array elements, and instruction
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Fig. 2. (a) A C program that initializes an array of structs; (b) the corresponding x86 program (in
Intel assembly-language syntax).

Fig. 3. (a) Layout of the activation record for procedure main in Example 2.1; (b) abstract memory
model; (c) a-locs identified by the semi-naı̈ve algorithm.

8 updates the y-members. Instructions 13 and 14 correspond to initializing the
return value for main.

2.1 Memory-Regions and Abstract Addresses

This section presents the basic abstract memory model that is used in
CodeSurfer/x86’s analyses. One simple model considers memory to be an array
of bytes. Writes (reads) in this model are treated as writes (reads) to the corre-
sponding element of the array. However, there are some disadvantages in such
an approach.

—It may not be possible to determine specific address values for certain mem-
ory blocks, such as those allocated from the heap via malloc. For the analysis
to be sound, writes to (reads from) such blocks of memory have to be treated
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as writes to (reads from) any part of the heap, which leads to imprecise (and
mostly useless) information about memory accesses.

—The runtime stack is reused during each execution run; in general, a given
area of the runtime stack will be used by several procedures at different
times during execution. Thus, at each instruction a specific numeric address
can be ambiguous (because the same address may belong to different Acti-
vation Records (ARs) at different times during execution): it may denote a
variable of procedure f, a variable of procedure g, a variable of procedure h,
etc. (A given address may also correspond to different variables of different
activations of f.) Therefore, an instruction that updates a variable of pro-
cedure f would have to be treated as possibly updating the corresponding
variables of procedures g, h, etc., which also leads to imprecise information
about memory accesses.

To overcome these problems, we work with the following abstract memory
model [Balakrishnan and Reps 2004]. Although in the concrete semantics the
activation records for procedures, the heap, and the memory area for global
data are all part of one address space, for the purposes of analysis, we sep-
arate the address space into a set of disjoint areas, which are referred to as
memory-regions (see Figure 3(b)). Each memory-region represents a group of
locations that have similar runtime properties: in particular, the runtime loca-
tions that belong to the ARs of a given procedure belong to one memory-region.
Each (abstract) byte in a memory-region represents a set of concrete memory
locations. For a given program, there are three kinds of regions: (1) the global-
region, for memory locations that hold initialized and uninitialized global data,
(2) AR-regions, each of which contains the locations of the ARs of a particular
procedure, and (3) malloc-regions, each of which contains the locations allo-
cated at a particular malloc site. We do not assume anything about the relative
positions of these memory-regions.

For an n-bit architecture, the size of each memory-region in the abstract
memory model is 2n. For each region, the range of offsets within the memory-
region is [−2n−1, 2n−1 − 1]. Offset 0 in an AR-region represents all concrete
starting addresses of the ARs that the AR-region represents. Offset 0 in a
malloc-region represents all concrete starting addresses of the heap blocks
that the malloc-region represents. Offset 0 of the global-region represents the
concrete address 0.

The analysis treats all data objects, whether local, global, or in the heap, in
a fashion similar to the way compilers arrange to access variables in local ARs,
namely, via an offset. We adopt this notion as part of our abstract semantics: an
abstract address in a memory-region is represented by a pair: (memory-region,
offset).

By convention, esp is the stack pointer in the x86 architecture. On entry
to a procedure P, esp points to the top of the stack, where the new activation
record for P is created. Therefore, in our abstract memory model, esp holds ab-
stract address (AR P, 0) on entry to procedure P, where AR P is the activation-
record region associated with procedure P. Similarly, because malloc returns
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the starting address of an allocated block, the return value for malloc (if allo-
cation is successful) is the abstract address (Malloc n, 0), where Malloc n is the
memory-region associated with the nth call-site on malloc.6

Example 2.2. Figure 3(c) shows the memory-regions for the program in
Example 2.1. There is a single procedure, and hence two regions: one for global
data and one for the AR of main. Furthermore, the abstract address of local
variable py is the pair (AR main,-44) because it is at offset -44 with respect to
the AR’s starting address. Similarly, the abstract address of global variable b
is (Global,8).

2.2 Abstract Locations (A-Locs)

As pointed out earlier, executables do not have intrinsic entities like source-code
variables that can be used for analysis; therefore, the next step is to recover
variable-like entities from the executable, which will serve as proxies for the
program’s actual variables (e.g., the variables declared in the source code from
which the executable was created). We refer to such variable-like entities as
a-locs (for “abstract locations”).

Heretofore, the state-of-the-art in recovering variable-like entities is repre-
sented by IDAPro [], a commercial disassembly toolkit. IDAPro’s algorithm is
based on the observation that the data layout generally follows certain conven-
tions: accesses to global variables appear as “[absolute-address]”, and accesses
to local variables appear as “[esp + offset]” or “[ebp − offset]”. IDAPro identifies
such statically-known absolute addresses, esp-based offsets, and ebp-based off-
sets in the program, and treats the set of locations in between two such absolute
addresses or offsets as one entity. We refer to this method of recovering a-locs
as the semi-naı̈ve algorithm. The semi-naı̈ve algorithm is based on purely local
techniques. (IDAPro does incorporate a few global analyses, such as one for
determining changes in stack height at call-sites. However, the techniques are
ad hoc, heuristic methods.)

In CodeSurfer/x86, the semi-naı̈ve algorithm is used to identify the initial
set of a-locs; several global analyses based on abstract interpretation are then
used to obtain an improved set of a-locs. The latter methods are discussed in
Section 4.

Let us look at the a-locs identified by the semi-naı̈ve algorithm for the pro-
gram in Example 2.1.

Global a-locs. In Example 2.1, instructions “mov ebx, [4]” and “mov
ecx,[8]” have direct memory operands, namely, [4] and [8]. IDAPro iden-
tifies these statically-known absolute addresses as the starting addresses of
global a-locs and treats the locations between these addresses as one a-loc.

6CodeSurfer/x86 actually uses an abstraction of heap-allocated storage, called the recency abstrac-
tion, that involves more than one memory-region per call-site on malloc [Balakrishnan and Reps
2006]. The recency abstraction overcomes some of the imprecision that arises due to the need to
perform weak updates (i.e., accumulate information via join) on fields of summary malloc-regions.
In particular, the augmented domain often allows our analysis to establish a definite link between
a pointer field of a heap-allocated object and objects pointed-to by the pointer field.
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Consequently, IDAPro identifies addresses 4..7 as one a-loc, and the addresses
8..11 as another a-loc. Therefore, we have two a-locs: mem 4 (for addresses 4..7)
and mem 8 (for addresses 8..11). (An executable can have sections for read-only
data. The global a-locs in such sections are marked as read-only a-locs.)

Local a-locs. Local a-locs are determined on a per-procedure basis as fol-
lows. At each instruction in the procedure, IDAPro computes the difference
between the value of esp (or ebp) at that point and the value of esp at
procedure entry. These computed differences are referred to as sp delta.7

After computing sp delta values, IDAPro identifies all esp-based indirect
operands in the procedure. In Example 2.1, instructions “lea eax, [esp+8]”,
“mov [esp+0], eax”, “lea eax, [esp+4]”, and “mov edi, [esp+0]” have esp-
based indirect operands. Recall that on entry to procedure main, esp contains
the abstract address (AR main, 0). Therefore, for every esp/ebp-based operand,
the computed sp delta values give the corresponding offset in AR main. For
instance, [esp+0], [esp+4], and [esp+8] refer to offsets -44, -40, and -36, re-
spectively, in AR main. This gives rise to three local a-locs: var 44, var 40, and
var 36. Note that var 44 corresponds to all of the source-code variable py. In
contrast, var 40 and var 36 correspond to disjoint segments of array pts[]:
var 40 corresponds to program variable pts[0].x; var 36 corresponds to the
locations of program variables pts[0].y, p[1..4].x, and p[1..4].y. In addi-
tion to these a-locs, an a-loc for the return address is also defined; its offset in
AR main is 0.

In addition to the a-locs identified by IDAPro, two more a-locs are added:
(1) a FormalGuard that spans the space beyond the topmost a-loc in the AR-
region, and (2) a LocalGuard that spans the space below the bottommost a-loc
in the AR-region. FormalGuard and LocalGuard delimit the boundaries of an
activation record; therefore, a memory write to FormalGuard or LocalGuard
represents a write beyond the end of an activation record.

Heap a-locs. In addition to globals and locals, we have one a-loc per heap-
region. There are no heap a-locs in Example 2.1 because it does not use the
heap.

Registers. In addition to the global, heap, and local a-locs, registers are also
considered to be a-locs.

After the a-locs are identified, we create a mapping from a-locs to
(rgn, off, size) triples, where rgn represents the memory-region to which the
a-loc belongs, off is the starting offset of the a-loc in rgn, and size is the
size of the a-loc. The starting offset of an a-loc a in a region rgn is de-
noted by offset(rgn, a). For Example 2.1, offset(AR main,var 40) is -40 and

7When IDAPro computes the sp delta values, it uses heuristics to identify changes to esp (or ebp)
at procedure calls and instructions that access memory, and therefore the sp delta values may be
incorrect. Consequently, the layout obtained by IDAPro for an AR may not be in agreement with
the way that memory is actually accessed during execution runs. This can have an impact on the
precision of the results obtained by our abstract interpretation algorithms; however, as discussed
in Section 4.4, the results obtained by the algorithms are still sound, even if the initial set of a-locs
is suboptimal because of incorrect sp delta values.
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offset(Global, mem 4) is 4. The a-loc layout map can also be queried in the
opposite direction: for a given region, offset, and size, what are the overlap-
ping a-locs? As described in Section 3.4, such information is used to interpret
memory-dereferencing operations during VSA.

3. VALUE-SET ANALYSIS (VSA)

Another significant obstacle in analyzing executables is that it is difficult to
obtain useful information about memory-access expressions in the executable.
Information about memory-access expressions is a crucial requirement for any
tool that works on executables. Consider the problem of identifying possible
data dependences between instructions in executables. An instruction i1 is data
dependent on another instruction i2 if i1 might read the data that i2 writes. For
instance, in Example 2.1, instruction 14 is data dependent on instruction 8 be-
cause instruction 8 writes to pts[0].y and instruction 14 reads from pts[0].y.
On the other hand, instruction 14 is not data dependent on instruction L1.

There has been work in the past on analysis techniques to obtain such infor-
mation. However, prior techniques are either overly conservative or unsound
in their treatment of memory accesses. The alias-analysis algorithm proposed
by Debray et al. [1998] assumes that any memory write can affect any other
memory read. Therefore, their algorithm reports that instruction 14 is data de-
pendent on both L1 and 8; that is, it provides an overly conservative treatment
of memory operations. On the other hand, Cifuentes and Fraboulet [1997b]
use heuristics to determine if two memory operands are aliases of one another,
and hence may fail to identify the data dependence between instruction 8 and
instruction 14.

To obtain information about memory-access expressions, CodeSurfer/x86
makes use of a number of analyses, and the sequence of analyses performed
is itself iterated (for reasons discussed in Section 5). The variable and type-
discovery phase of CodeSurfer/x86 recovers information about variables that
are allocated globally, locally (i.e., on the stack), and dynamically (i.e., from the
freelist); see Section 2.2 and Section 4. The recovered variables (a-locs) are the
basic variables used in CodeSurfer/x86’s value-set-analysis (VSA) algorithm,
which statically identifies the set of values that the a-locs may contain when
an instruction I executes. This section describes the VSA algorithm.

VSA is a combined numeric analysis and pointer analysis algorithm that
determines a safe approximation of the set of numeric values or addresses
that each register and a-loc holds at each program point. In particular, at
each instruction I that contains an indirect memory operand, VSA provides
information about the contents of the registers that are used. This permits it
to determine the (abstract) addresses that are potentially accessed (and hence
the a-locs that are potentially accessed) which, in turn, permits it to determine
the potential effects of I on the state.

The problem that VSA addresses has similarities with the pointer anal-
ysis problem that has been studied in great detail for programs written in
high-level languages [Hind 2001]. For each variable (say v), pointer analysis
determines an overapproximation of the set of variables whose addresses v can
hold. Similarly, VSA determines an overapproximation of the set of addresses
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that a register or a memory location holds at each program point. For instance,
VSA determines that at instruction L1 in Example 2.1 eax holds one of the off-
sets {−40, −32, −24, . . . , −8} in the activation record of procedure main, which
corresponds to the addresses of field x of the elements of array pts[0..4].

On the other hand, VSA also has some of the flavor of numeric static analy-
ses, where the goal is to overapproximate the integer values that each variable
can hold; in addition to information about addresses, VSA determines an over-
approximation of the set of integer values that each data object can hold at
each program point. For instance, VSA determines that at instruction L1, edx
holds numeric values in the range 0, . . . , 4.

A key feature of VSA is that it tracks integer-valued and address-valued
quantities simultaneously. This is crucial for analyzing executables because
numeric operations and address-dereference operations are inextricably inter-
twined even in the instruction(s) generated for simple source-code operations.
For instance, consider the operation of loading the value of a local variable
v into register eax. If v has offset -12 in the current AR, the load would
be performed by the instruction mov eax, [ebp-12]. This involves a numeric
operation (ebp-12) to calculate an address whose value is then dereferenced
([ebp-12]) to fetch the value of v, after which the value is placed in eax. A
second key feature of VSA is that, unlike earlier algorithms [Cifuentes and
Fraboulet 1997a, 1997b; Cifuentes et al. 1998; Debray et al. 1998], it takes into
account data manipulations that involve memory locations.

VSA is based on abstract interpretation [Cousot and Cousot 1977], where
the aim is to determine the possible states that a program reaches during
execution, but without actually running the program on specific inputs. The
set of descriptors of memory configurations used in abstract interpretation is
referred to as an abstract domain. An element of an abstract domain represents
a set of concrete (i.e., runtime) states of a program. An element of the abstract
domain for VSA associates each a-loc with a set of (abstract) memory addresses
and numeric values.

VSA is a flow-sensitive, context-sensitive, interprocedural, abstract inter-
pretation algorithm (parameterized by call-string length [Sharir and Pnueli
1981]). In the rest of this section, we formalize the VSA domain and describe
the VSA algorithm in detail.

3.1 Value-Sets

A value-set represents a set of memory addresses and numeric values. Recall
from Section 2.1 that each abstract address is a pair (memory region, offset).
Therefore, a set of abstract addresses can be represented by a set of tuples of
the form (rgni �→ {oi

1, oi
2, . . . , oi

ni
}).

A value-set uses a k-bit strided-interval (SI) [Reps et al. 2006] to represent
the set of offsets in each memory-region. Let γ denote the concretization func-
tion for the strided-interval domain; a k-bit strided interval s[l, u] represents
the set of integers

γ (s[l, u]) = {i ∈ [−2k−1, 2k−1 − 1] | l ≤ i ≤ u, i ≡ l(mod s)},
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where:

—s is called the stride.
—[l, u] is called the interval.
—0[l, l] represents the singleton set {l}.

We also call ⊥ a strided interval; it denotes the empty set of offsets (i.e., ∅).
We use StridedInterval to denote the set of all 32-bit strided intervals, and define
the following.

MemRgn= {Global} ∪ Proc ∪ AllocMemRgn
ValueSet=MemRgn → StridedInterval⊥

In the preceding definition,⊥ is used to denote a partial map. That is, a ValueSet
may not contain offsets in some memory-regions.

Consider the set of addresses S = {(Global �→ {1, 3, 5, 9}), (AR main �→
{−48,−40})}. The value-set for S is the set {(Global �→ 2[1,9]), (AR main �→
8[−48,−40])}. Note that the value-set for S is an overapproximation; the value-
set includes the global address 7, which is not an element of S. For conciseness, a
value-set will be shown as an r-tuple of SIs, where r is the number of memory-
regions for the executable. By convention, the first component of the r-tuple
represents addresses in the Global memory-region. Using this notation, the
value-set for S is the 2-tuple, (2[1,9],8[−48,−40]).

A value-set is capable of representing a set of memory addresses as well as
a set of numeric values (which is a crucial requirement for analyzing executa-
bles because numbers and addresses are indistinguishable at runtime). For
instance, the 2-tuple (2[1,9],⊥) denotes the set of numeric values {1, 3, 5, 7, 9}
as well as the set of addresses {(Global, 1), (Global, 3), . . . , (Global, 9)}; how-
ever, because the second component is⊥, it does not represent any addresses in
memory-region AR main. The 2-tuple (⊥,8[−48,−40]) represents the set of ad-
dresses {(AR main,−48), (AR main,−40)}; however, because the first component
is ⊥, it does not represent any pure numeric values nor any addresses in the
Global memory-region.

Advantages of strided intervals for analysis of executables. We chose to use
SIs instead of ranges because alignment and stride information allow indirect
addressing operations that implement either (i) field-access operations in an
array of structs, or (ii) pointer-dereferencing operations, to be interpreted more
precisely.

Let *a denote a dereference of a-loc a. Suppose that the contents of a is not
aligned with the boundaries of other a-locs; then a memory access *a can fetch
portions of two or more a-locs. Similarly, an assignment to *a can overwrite
portions of two or more a-locs. Such operations appear to forge new addresses.
For instance, suppose that the address of a-loc x is 1000, the address of a-loc y
is 1004, and the contents of a-loc a is 1001. Then *a (as a 4-byte fetch) would
retrieve 3 bytes of x’s value and 1 byte of y’s value.

This issue motivated the use of SIs because SIs are capable of representing
certain nonconvex sets of integers, and ranges (alone) are not. Suppose that the
contents of a is the set {1000, 1004}; then *a (as a 4-byte fetch) would retrieve
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all of x (and none of y) or all of y (and none of x). The range [1000, 1004]
includes the addresses 1001, 1002, and 1003, and hence *[1000, 1004] (as a
4-byte fetch) could result in a forged address. However, because VSA is based
on SIs, {1000, 1004} is represented exactly, as the SI 4[1000, 1004]. If VSA
were based on range information rather than SIs, it would either have to try to
track segments of (possible) contents of data objects, or treat such dereferences
conservatively by returning �vs, thereby losing track of all information.

The value-set abstract domain. Value-sets form a lattice. Informal descrip-
tions of a few 32-bit value-set operators are given next. (For a detailed descrip-
tion of the value-set domain, see Reps et al. [2006].)

—(vs1�vs vs2): Returns true if the value-set vs1 is a subset of vs2, false other-
wise.

—(vs1 �vs vs2): Returns the meet of value-sets vs1 and vs2 (by taking the point-
wise meet of their strided-intervals).

—(vs1 �vs vs2): Returns the join of value-sets vs1 and vs2 (by taking the point-
wise join of their strided-intervals).

—(vs1 ∇vs vs2): Returns the value-set obtained by widening [Cousot and Cousot
1977] vs1 with respect to vs2, for example, if vs1 = (4[40,44]) and vs2 =
(4[40,48]), then (vs1 ∇vs vs2) = (4[40,231 − 4]). Note that the upper bound
for the interval in the result is 231 − 4 (and not 231 − 1) because 231 − 4 is
the maximum positive value that is congruent to 40 modulo 4.

—(vs+vs c): Returns the value-set obtained by adjusting all values in vs by the
constant c, for example, if vs = (4,4[4,12]) and c = 12, then (vs+vs c) =
(16,4[16,24]).

—∗(vs, s): Returns a pair of sets (F, P). F represents the set of “fully accessed”
a-locs: it consists of the a-locs that are of size s and whose starting addresses
are in vs. P represents the set of “partially accessed” a-locs: it consists of
(i) a-locs whose starting addresses are in vs but are not of size s, and (ii)
a-locs whose addresses are in vs but whose starting addresses and sizes do
not meet the conditions to be in F. (This information is obtained using the
a-loc layout map described in Section 2.2.)

—RemoveLowerBounds(vs): Returns the value-set obtained by setting the lower
bound of each component SI to −231. For example, if vs = (1[0,100],
1[100,200]), then RemoveLowerBounds(vs)= (1[−231 ,100],1[−231 ,200]). (If
the strided-interval has a nonunit stride, the stride is preserved.)

—RemoveUpperBounds(vs): Similar to RemoveLowerBounds, but sets the upper
bound of each component to 231 − 1. (If the strided-interval has a nonunit
stride, the stride is preserved.)

3.2 Abstract Environment (AbsEnv)

AbsEnv (for “abstract environment”) is the abstract domain used during VSA
to represent a set of concrete stores that arise at a given program point. This
section formalizes AbsEnv.

Let Proc denote the set of memory-regions associated with procedures in
the program; AllocMemRgn denote the set of memory-regions associated with
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heap-allocation sites; Global denote the memory-region associated with the
global data area; and a-locs[R] denote the a-locs that belong to memory-region
R. In addition to MemRgn and ValueSet, we work with the following basic
domains.

AlocEnv[R]= a-locs[R] → ValueSet
Flag= {CF, ZF, SF, PF, AF, OF}

Flag represents the set of x86 flags. An x86 flag is either set to TRUE or FALSE

at runtime. To represent multiple possible Boolean values, we use the abstract
domain Bool3.

Bool3 = {FALSE, MAYBE, TRUE}
In addition to the Booleans FALSE and TRUE, Bool3 has a third value, MAYBE,
which means “the value is unknown” (i.e., it may be FALSE or it may be TRUE).
AbsEnv maps each region R to its corresponding AlocEnv[R], each register to a
ValueSet, and each Flag to a Bool3.

AbsEnv=

(register → ValueSet)
× (Flag → Bool3)
× ({Global} → AlocEnv[Global])
× (Proc → AlocEnv[Proc]⊥)
× (AllocMemRgn → AlocEnv[AllocMemRgn]⊥)

⊥ is again used to denote a partial map. For instance, a procedure P whose
activation record is not on the stack is mapped to ⊥ rather than to a value
in AlocEnv[P]. (The Global region, however, is always mapped to a value in
AlocEnv[Global].)

We use the following notational conventions.

—Given a memory a-loc or a register a-loc a and ae ∈ AbsEnv, ae[a] refers to
the ValueSet for a-loc a in ae.

—Given vs ∈ ValueSet and r ∈ MemRgn, vs[r] refers to the strided interval for
memory-region r in vs.

—Given f ∈ Flag and ae ∈ AbsEnv, ae[f] refers to the Bool3 for flag f in ae.

3.3 Representing Abstract Stores Efficiently

To represent the abstract store at each program point efficiently, we use applica-
tive dictionaries, which provide a space-efficient representation of a collection
of dictionary values when many of the dictionary values have nearly the same
contents as other dictionary values in the collection [Reps et al. 1983; Myers
1984].

Applicative dictionaries can be implemented using applicative balanced
trees, which are standard balanced trees on which all operations are carried
out in the usual fashion, except that whenever one of the fields of an interior
node M would normally be changed, a new node M′ is created that duplicates
M, and changes are made to the fields of M′. To be able to treat M′ as the child
of parent(M), it is necessary to change the appropriate child-field in parent(M),
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so a new node is created that duplicates parent(M), and so on, all the way to
the root of the tree. Thus, new nodes are introduced for each of the original
nodes along the path from M to the root of the tree.

Because an operation that restructures a standard balanced tree may modify
all of the nodes on the path to the root anyway, and because a single operation
on a standard balanced tree that has n nodes takes at most O(log n) steps, the
same operation on an applicative balanced tree introduces at most O(log n)
additional nodes and also takes at most O(log n) steps. The new tree resulting
from the operation shares the entire structure of the original tree except for
the nodes on a path from M′ to the root, plus at most O(log n) other nodes
that may be introduced to maintain the balance properties of the tree. In our
implementation, the abstract stores from the VSA domain are implemented
using applicative AVL trees [Myers 1984]. That is, each function or partial
function in a component of AbsEnv is implemented with an applicative AVL
tree.

3.4 Intraprocedural Value-Set Analysis

This section describes an intraprocedural version of VSA. For the time being,
we consider programs that have a single procedure and no indirect jumps.
To aid in explaining the algorithm, we adopt a C-like notation for program
statements. We will discuss the following kinds of instructions, where R1 and
R2 are two registers of the same size, c, c1, and c2 are explicit integer constants,
and ≤ and ≥ represent signed comparisons.

R1 = R2+ c R1 ≤ c
*(R1+ c1) = R2+ c2 R1 ≥ R2

R1 = *(R2+ c1)+ c2

Conditions of the two forms shown on the right are obtained from the
instruction(s) that set condition codes used by branch instructions (see
Section 3.4.2).

The analysis is performed on a control-flow graph (CFG) for the procedure.
The CFG consists of one node per x86 instruction, and there is a directed edge
n1→n2 between a pair of nodes n1 and n2 in the CFG if there is a flow of
control from n1 to n2. The edges are labeled with the instruction at the source
of the edge. If the source of an edge is a branch instruction, then the edge is
labeled according to the outcome of the branch. For instance, in the CFG for
the program in Example 2.1, the edge 12→L1 is labeled edx<5, whereas the
edge 12→13 is labeled edx≥5. Each CFG has two special nodes: (1) an enter
node that represents the entry point of the procedure, (2) an exit node that
represents the exit point of the procedure.

Each edge in the CFG is associated with an abstract transformer that cap-
tures the semantics of the instruction represented by the CFG edge. Each
abstract transformer takes an in ∈ AbsEnv and returns a new out ∈ AbsEnv.
Sample abstract transformers for various kinds of edges are listed in Figure 4.
Interesting cases in Figure 4 are described next.
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Fig. 4. Abstract transformers for VSA. (In the second and third instruction forms, s represents
the size of the dereference performed by the instruction.)

—Because each AR region of a procedure that may be called recursively (as
well as each heap region) potentially represents more than one concrete data
object, assignments to their a-locs must be modeled by weak updates, that is,
the new value-set must be joined with the existing one, rather than replacing
it (see case 2 of Figure 4).

—Furthermore, unaligned writes can modify parts of various a-locs (which
could possibly create forged addresses). In case 2 of Figure 4, such writes
are treated safely by setting the values of all partially modified a-locs to �vs.
Similarly, case 3 treats a load of a potentially forged address as a load of
�vs. (Techniques for more precise handling of partial accesses to a-locs are
discussed in Section 4.)

Given a CFG G for a procedure (without calls), the goal of intraprocedural
VSA is to annotate each node n with absEnvn ∈ AbsEnv, where absEnvn
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Fig. 5. Intraprocedural VSA algorithm.

represents an overapproximation, with respect to all possible runs of the pro-
gram, of the set of memory configurations that arise just before n executes.
The intraprocedural version of the VSA algorithm is given in Figure 5. The
value of absEnventer must supply an initial abstract value for each a-loc to
overapproximate the possible initial values of the memory, registers, and flags
on entry to the program.

The AbsEnv abstract domain has very long ascending chains.8 Hence, to
ensure termination, widening needs to be performed. Widening needs to be
carried out at at least one edge of every cycle in the CFG; however, the edge at
which widening is performed can affect the accuracy of the analysis. To choose
widening edges, our implementation of VSA uses techniques due to Bourdoncle
[1993] (see Balakrishnan [2007, Chapter 7]).

Example 3.1. This example presents the results of intraprocedural VSA
for the program in Example 2.1. For the program in Example 2.1, the AbsEnv
for the entry node of main is {esp �→ (⊥,0), mem 4 �→ (1,⊥), mem 8 �→ (2,⊥)}.
Recall that instruction “L1:mov [eax], ebx” updates the x members of array
pts. Instruction “14: mov eax, [edi]” initializes the return value of main to
p[0].y. The results of the VSA algorithm at instructions L1, 8, and 14 are as
follows.

8The domain is of bounded height because strided intervals are based on 32-bit two’s complement
arithmetic. However, for a given executable, the bound is very large: each a-loc can have up to
|MemRgn| SIs; hence the height is (n× |MemRgn| × 232), where n is the total number of a-locs.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 6, Article 23, Pub. date: August 2010.



23:24 • G. Balakrishnan and T. Reps

Instruction L1 and 8 Instruction 14
esp �→ (⊥,−44)

mem 4 �→ (1,⊥)
mem 8 �→ (2,⊥)
eax �→ (⊥,8[−40,231 − 8])
ebx �→ (1,⊥)
ecx �→ (2,⊥)
edx �→ (1[0,4],⊥)
edi �→ �vs

var 44 �→ (⊥,−36)

esp �→ (⊥,−44)
mem 4 �→ (1,⊥)
mem 8 �→ (2,⊥)
eax �→ (⊥,8[−40,231 − 8])
ebx �→ (1,⊥)
ecx �→ (2,⊥)
edx �→ (5,⊥)
edi �→ (⊥,−36)

var 44 �→ (⊥,−36)

For instance, VSA recovers the following facts.

—At instruction L1, the set of possible values for edx is {0, 1, 2, 3, 4}. At instruc-
tion 14, the only possible value for edx is 5. (Recall that edx corresponds to
the loop variable i in the C program.)

—At instruction L1, eax holds the following set of addresses.
{(AR main,−40), (AR main,−32), . . . , (AR main,0), . . . , (AR main,231 − 8)}.

That is, at instruction L1, eax holds the addresses of the local a-locs
var 40, var 36, ret-addr, and FormalGuard. (See Figure 3(b) for the lay-
out of AR main.) Therefore, instruction L1 possibly modifies var 40, var 36,
ret-addr, and FormalGuard.
Similarly, at instruction 8, eax+4 refers to the following set of addresses.

{(AR main,−36), (AR main,−28), . . . , (AR main,4), . . . , (AR main,231 − 4)}.
Therefore, instruction 8 possibly modifies var 36 and FormalGuard.

—At instruction 14, the only possible value for edi is the address
(AR main,−36), which corresponds to the address of the local a-loc var 36.

The value-sets obtained by the analysis can be used to discover the data de-
pendence that exists between instructions 8 and 14. At instruction 8, the set of
possibly modified a-locs is {var 36, FormalGuard}. At instruction 14, the set of
used a-locs is {var 36}. Reaching-definitions analysis based on this information
reveals that instruction 14 is data dependent on instruction 8.

Reaching-definitions analysis based on the information at instruction L1
would also reveal that instruction 14 is also data dependent on instruction L1,
which is spurious (i.e., a false positive), because the set of actual addresses
accessed at instruction L1 and instruction 14 are different. The reason for
the spurious data dependence is that the semi-naı̈ve algorithm, described in
Section 2, recovers too coarse a set of a-locs. For instance, for the program in
Example 2.1, the semi-naı̈ve algorithm failed to recover any information about
the array pts. Section 4 presents an improved a-loc recovery algorithm that is
capable of recovering information about arrays, fields of structs, etc., thereby
reducing the number of spurious data dependences.

At instruction L1, the set of possibly modified a-locs includes ret-addr, which
is the a-loc for the return address. This is because the analysis was not able to
determine a precise upper bound for eax at instruction L1, although register
edx has a precise upper and lower bound at instruction L1. Note that, because
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eax and edx are incremented in lock-step within the loop, the affine relation
eax = (esp + edx × 8) + 4 holds at instruction L1. The implemented system
identifies such affine relations and uses them to find precise upper or lower
bounds for registers, such as eax, within a loop [Balakrishnan 2007, Chapter 7,
Section 2].

3.4.1 Idioms. Before applying an abstract transformer, the instruction is
checked to see if it matches a pattern for which we know how to carry out
abstract interpretation more precisely than if value-set arithmetic were to be
performed directly. Some examples are given next.

XOR r1,r2, when r1 = r2 = r. The XOR instruction sets its first operand to
the bitwise-exclusive-or (∧) of the instruction’s two operands. The idiom catches
the case when XOR is used to set a register to 0; hence, the a-loc for register r is
set to the value-set (0[0,0],⊥, . . .).

TEST r1,r2, when r1 = r2 = r. The TEST instruction computes the bitwise-
and (&) of its two operands, and sets the SF, ZF, and PF flags according to the
result. The idiom addresses how the value of ZF is set when the value-set of r
has the form (si,⊥, . . .):

ZF :=

⎧⎪⎪⎨
⎪⎪⎩

TRUE if γ (si) = {0}
FALSE if γ (si) ∩ {0} = ∅
MAYBE otherwise

where “γ ” is the concretization function for the strided-interval domain (see
Section 3.1).

CMP a,b or CMP b,a. In the present implementation, we assume that an
allocation always succeeds (and hence value-set analysis only explores the be-
havior of the system on executions in which allocations always succeed). Under
this assumption, we can apply the following idiom: Suppose that k1, k2, . . . are
malloc-regions, the value-set for a is (⊥, . . . , sik1, sik2, . . .), and the value-set for
b is (0[0,0],⊥, . . .). Then ZF is set to FALSE.

3.4.2 Predicates for Conditional Branch Instructions. In x86 architec-
tures, predicates used in high-level control constructs such as if, while, for,
etc., are implemented using conditional branch instructions. A conditional
branch instruction (say jxx TGT) evaluates a predicate involving the proces-
sor’s flags and transfers control to the target instruction (TGT) if the predicate
expression is TRUE; otherwise, it transfers control to the next instruction. For
instance, a jl instruction evaluates the conditional expression SF = 1, where
SF is the sign flag. It is not clear from conditional expressions such as SF = 1
what the high-level predicate is.

To determine the high-level predicate, it is necessary to consider the instruc-
tion that sets the processor’s flags before the conditional jump instruction is ex-
ecuted. In Example 2.1, i < 5 is compiled down to the x86 instruction sequence
(cmp edx, 5; jl L1). The cmp operation sets the processor’s flags to the result
of computing the arithmetic expression edx− 5. Instruction “cmp edx, 5” sets
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Fig. 6. High-level predicates for conditional jump instructions. (In column 5, X′ refers to the value
of X after the instruction executes. Because test sets CF and OF to FALSE, the flag predicates in
column 6 have been simplified accordingly.)

SF to 1 iff (edx− 5 < 0), that is, iff edx < 5. Because instruction jl is preceded
by “cmp edx, 5” and jl transfers control to L1 iff SF = 1, we conclude that
the instruction sequence (cmp edx, 5; jl L1) implements the high-level predi-
cate edx < 5. High-level predicates for various instruction sequences involving
conditional jump instructions are shown in Figure 6.

3.5 Context-Insensitive Interprocedural Value-Set Analysis

Let us consider procedure calls, but ignore indirect jumps and indirect calls for
now. The interprocedural algorithm is similar to the intraprocedural algorithm,
but analyzes the supergraph of the executable.

Supergraph. In addition to the nodes used in an intraprocedural CFG, a
supergraph has two nodes for every call-site: a call node and an end-call node.
A supergraph for a program is obtained by first building CFGs for individual
procedures and adding edges among call, end-call, enter, and exit nodes as
follows.

—For every call-site call P, an edge is added from the call node for call P to
the enter node of procedure P.

—For every procedure P, an edge is added from the exit node of P to the end-call
node associated with every call to procedure P.

—For every call-site, an edge is added from the call node to its corresponding
end-call node.

The call→enter and the exit→end-call edges are referred to as linkage edges,
and the other edges are referred to as nonlinkage edges.

The structure of the algorithm for interprocedural VSA is similar to the
intraprocedural VSA algorithm given in Figure 5, except that the abstract
transformer for a linkage edge is performed in two stages. First, appropriate
abstract operations are performed on the incoming abstract state to track the
modifications to memory and to the value of esp made by the call instruction
(as a result of pushing the return address on the stack) or ret instruction (as a
result of popping the return address off the stack). This step is performed by the
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Fig. 7. Layout of the memory-regions for the program in Example 3.2. (LocalGuard and
FormalGuard are not shown.)

Fig. 8. (a) A C program that initializes an array of structs; (b) the corresponding x86 program.

invocation of AbstractTransformer on line 11 of Figure 5. Second, the resulting
AbsEnv value is adjusted in the Propagate procedure (line12 of Figure 5) via the
methods presented later in Section 3.5.1 and Section 3.5.2. For technical rea-
sons, the abstract transformer for a call→end-call edge is the identify function
(see line 11) of Figure 5 and lines 8–10 of Figure 12). The abstract transformers
for nonlinkage edges in a supergraph are similar to the ones used in Section 3.4.

Example 3.2. We use the program shown in Figure 8 to explain the inter-
procedural version of VSA. The program consists of two procedures, main and
initArray. Procedure main has an array pts of struct Point objects, which
is initialized by calling initArray. After initialization, initArray returns the
value of pts[0].y.

The memory-regions and their layouts are shown in Figure 7. AR main has
four a-locs: the return address, local variable var 40 (corresponding to array
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Fig. 9. Relative positions of the AR-regions of the caller (C) and callee (X) at a call.

pts), and two actual parameters: ext 44 and ext 48. Note that two of the local
variables in initArray are mapped to registers in the disassembly: i is mapped
to edx and p is mapped to eax. Therefore, AR initArray has only the follow-
ing four a-locs: the return address, formal parameter arg 0, formal parameter
arg 4, and local variable var 4 (corresponding to variable py).

Observation 3.3 In our abstract memory model, we do not assume anything
about the relative positions of the memory-regions. However, at a call, it is
possible to establish the relative positions of the caller’s AR-region (AR C) and
the callee’s AR-region (AR X). Figure 9 illustrates this idea. At runtime, AR C
and AR X overlap on the stack just before a call is executed. Specifically, the
abstract address (AR C,−s) in memory-region AR C corresponds to the abstract
address (AR X,4) in memory-region AR X. Therefore, the value of esp at a call
refers to the abstract address (AR C,−s) or (AR X,4). The observation about the
relative positions of AR C and AR X established at a call-site is used in Section
3.5.1 and Section 3.5.2 to adjust the abstract values propagated to enter nodes
and end-call nodes, respectively.

For instance, at instruction 20 in Figure 8, (AR main,−48) corresponds to
(AR initArray, 4). Note that the observation about the relative positions of
AR main and AR initArray at instruction 20 enables us to establish a corre-
spondence between the formal parameters arg 0 and arg 4 of AR initArray
and the actual parameters ext 48 and ext 44 of AR main, respectively. (See Fig-
ure 7.) The correspondence between the actual parameters of the caller and the
formal parameters of the callee is used to initialize the formal parameters in
the abstract value propagated to an enter node.

3.5.1 Propagation Along a call→enter Edge. Pseudocode for the adjust-
ment that is made to an AbsEnv value that is propagated to an enter node along
a call→enter edge is shown in Figure 10. Procedure AdjustAtEnter takes the
AbsEnv value propagated to the enter node as an argument and returns a new
AbsEnv for use in the called procedure. As a first step, the value-set of esp in the
newly computed value is set to (⊥, . . . ,0, . . . ,⊥), where the 0 occurs in the slot
for AR X (line 4 in Figure 10). This step corresponds to changing the current AR
from that of AR C to AR X. After initializing esp, for every a-loc a ∈ a-locs[AR X],
the corresponding set of a-locs in the AR X is determined (line 8 of Figure 10),
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Fig. 10. Adjustment to an AbsEnv value that is propagated to an enter node along a call→enter
edge.

and a new value-set for a (namely newa) is computed (lines 6–15 of Figure 10).
(Note that line 8 of Figure 10 is based on Observation 3.3.) If procedure X is not
recursive, the value-set for a in out is initialized to newa (line 19 of Figure 10).
If procedure X is recursive, a weak update is performed (line 17 of Figure 10).
It is necessary to perform a weak update (rather than a strong update as at
line 19 of Figure 10) because the AR-region for a recursive procedure (say P)
represents more than one concrete instance of P’s activation record. Note that
initialization of the a-locs of callee X (line 5–20 of Figure 10) has the effect of
copying the actual parameters of caller C to the formal parameters of callee X.9

Example 3.4. In the fixpoint solution for the program in Example 3.2, the
AbsEnv for the enter node of initArray is as follows.

mem 4 �→ (1,⊥,⊥) eax �→ (⊥,−40,⊥)
mem 8 �→ (2,⊥,⊥) esp �→ (⊥,⊥,0)
arg 0 �→ (⊥,−40,⊥) ext 48 �→ (⊥,−40,⊥)
arg 4 �→ (5,⊥,⊥) ext 44 �→ (5,⊥,⊥)

(The regions in the value-sets are listed in the following order: Global, AR main,
AR initArray.) Note that the formal parameters arg 0 and arg 4 of initArray

9Note that when processing the other instructions of callee X that update the value of a formal
parameter, we do not update the corresponding actual parameter of the caller, which is unsound. We
do not update the value-set of the actual parameter simultaneously because we do not know relative
positions of AR C and AR X at these instructions. The problem can be addressed by tracking the
relative positions of the memory-regions at all instructions (and an experimental implementation
that does so was carried out by J. Lim).
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Fig. 11. The merge operation performed at an end-call node.

have been initialized to the value-sets of the corresponding actual parameters
ext 48 and ext 44, respectively.

3.5.2 Propagation Along an exit→end-call Edge. A different kind of ad-
justment is made to an AbsEnv value that is propagated to an end-call node
along an exit→end-call edge: the value is merged with the AbsEnv value at
the corresponding call node. The merge operation takes two AbsEnv values
as arguments: (1) inc, the AbsEnv value at the corresponding call node, and
(2) inx, the AbsEnv value at the exit node. The desired value for the end-call
node is similar to inx except for the value-sets of ebp, esp, and the a-locs of AR C.
The new value of AbsEnv out is obtained by merging inc and inx, as shown in
Figure 11.

In standard x86 code, the value of ebp at the exit of a procedure is usually
restored to the value of ebp at the call. Therefore, the value-set for ebp in out
is obtained from the value-set for ebp from inc (line 5 of Figure 11). The actual
implementation of VSA checks the assumption that the value-set of ebp on exit
has been restored to the value-set of ebp at the corresponding call by comparing
inx[ebp] and inc[ebp]. If inx[ebp] is different from inc[ebp], VSA issues a report
to the user.

Observation 3.3 about the relative positions of AR-regions AR C and AR X
is used to determine the value-set for esp at the end-call node (lines 6–18
of Figure 11). Suppose that esp holds the abstract address (AR C, s) just be-
fore the call. When a call is executed, the return address is pushed on the
stack; thus, at the enter node of procedure X, esp holds the abstract address
(AR C, s−4), which is identified with (AR X,0). Therefore (AR C, s) corresponds to
(AR X,4).
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Fig. 12. Propagate procedure for interprocedural VSA.

The return address is popped off the stack when the instruction associated
with the exit node is processed,10 which means that a call has no net change
in stack height if the value of esp in inx is (AR X,4). Consequently, if esp in inx

holds the abstract address (AR X, t), the value-set of esp in out should be set to
(AR C, s+si t –si 4). For instance, at the call instruction 20 in Example 3.2, the
value-set for esp is (⊥,−48,⊥). Therefore, the abstract address (AR main,−48)
corresponds to the abstract address (AR initArray,4). In this example, esp
does hold the abstract address (AR initArray,4) in the AbsEnv inx propagated
from initArray; consequently, the value-set of esp in out is set to the abstract
address (AR main,−48).

Finally, the value-sets of the a-locs in a-locs[AR C] are updated in a manner
similar to lines 5–20 of Figure 10. If the value-set for esp in inx has no offsets
in AR X (the false branch of the condition at line 8 of Figure 11), the value-set of
esp in out is set to the value-set for esp in inx. (Ordinarily, the condition at line
8 of Figure 11 is false only for procedures that do not allocate a new activation
record on the stack, such as alloca.)

3.5.3 Interprocedural VSA Algorithm. The algorithm for interprocedural
VSA is similar to the intraprocedural VSA algorithm given in Figure 5, except
that the Propagate procedure is replaced with the one shown in Figure 12, and
the call on Propagate in line 12 of Figure 5 is changed to pass edge n → succ
as the first argument. The main differences between the interprocedural VSA
algorithm and the intraprocedural VSA algorithm are as follows.

—The abstract transformer for the call→enter linkage edge is that of the call
instruction; it is invoked by AbstractTransformer on line 11 of Figure 5; then
the AdjustAtEnter adjustment is performed during Propagate at line 4 of
Figure 12.

10The x86 ret instruction has an optional parameter which specifies the number of additional bytes
by which esp is incremented; such an instruction removes additional elements from the stack.
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—The abstract transformer for the exit→end-call edge is that of the ret in-
struction; it is invoked by AbstractTransformer on line 11 of Figure 5; then
the MergeAtEndCall adjustment is performed during Propagate at line 7 of
Figure 12.

—The abstract transformer for the call→end-call edge is the identity function;
it is invoked by AbstractTransformer on line 11 of Figure 5; then the MergeA-
tEndCall adjustment is performed during Propagate at line 10 of Figure 12.

Note that a new AbsEnv value at a call node is propagated along the call
node’s call→end-call edge, as well as its call→enter edge (see line 12 of Fig-
ure 5 as well as lines 3–4 and lines 8–10 of Figure 12). The MergeAtEndCall
performed on line 10 of Figure 12 ensures that even if propagation quiesces
in the callee, the effect of the call node’s new AbsEnv value will be propagated
properly in the caller.

3.6 Indirect Jumps and Indirect Calls

The supergraph of the program will not be complete in the presence of indirect
jumps and indirect calls. Consequently, the supergraph has to be augmented
with missing jump and call edges using abstract memory configurations deter-
mined by VSA. For instance, suppose that VSA is interpreting an indirect-jump
instruction J1:jmp [1000 + eax × 4], and let the current abstract store at this
instruction be {eax �→ (1[0,9],⊥, . . . ,⊥)}. Edges need to be added from J1 to the
instructions whose addresses could be in memory locations {1000, 1004, . . . ,
1036}. If the addresses {1000, 1004, . . . , 1036} refer to the read-only section of
the program, then the addresses of the successors of J1 can be read from the
header of the executable. If not, the addresses of the successors of J1 in loca-
tions {1000, 1004, . . . , 1036} are determined from the current abstract store at
J1. Due to possible imprecision in VSA, it could be the case that VSA reports
that the locations {1000, 1004, . . . , 1036} have all possible addresses. In such
cases, VSA proceeds without recording any new edges. However, this could lead
to an underapproximation of the value-sets at program points. Therefore, the
analysis issues a report to the user whenever such decisions are made. We will
refer to such instructions as unsafe instructions. Another issue with using the
results of VSA is that an address identified as a successor of J1 might not be
the start of an instruction. Such addresses are ignored, and the situation is
reported to the user.

When new edges are identified, instead of adding them right away, VSA
defers the addition of new edges until a fixpoint is reached for the analysis of
the current supergraph. After a fixpoint is reached, the new edges are added
and VSA is restarted on the new supergraph. This process continues until no
new edges are identified during VSA.

Indirect calls are handled similarly, with a few additional complications.

—A successor instruction identified by the method outlined previously may
be in the middle of a procedure. In such cases, VSA reports this to the
user.
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Fig. 13. (a) Call-graph; (b) memory-region status map for different call-strings. (Key: NS: nonsum-
mary, S: summary; * refers to a saturated call-string.)

—The successor instruction may not be part of a procedure that was identified
by IDAPro. This can be due to the limitations of IDAPro’s procedure-finding
algorithm: IDAPro does not identify procedures that are called exclusively
via indirect calls. In such cases, VSA can invoke IDAPro’s procedure-finding
algorithm explicitly, to force a sequence of bytes from the executable to
be decoded into a sequence of instructions and spliced into the IR for
the program. (At present, this technique has not been incorporated in our
implementation.)

3.7 Context-Sensitive Interprocedural Value-Set Analysis

The VSA algorithm discussed so far is context-insensitive, that is, at each
node in a procedure it does not maintain different abstract states for different
calling contexts. Merging information from different calling contexts can re-
sult in a loss of precision. In this section, we discuss a context-sensitive VSA
algorithm based on the call-strings approach [Sharir and Pnueli 1981]. The
context-sensitive VSA algorithm distinguishes information from different call-
ing contexts to a limited degree, thereby computing a tighter approximation of
the set of reachable concrete states at every program point.

Call-strings. The call-graph of a program is a labeled graph in which each
node represents a procedure, each edge represents a call, and the label on an
edge represents the call-site corresponding to the call represented by the edge.
A call-string [Sharir and Pnueli 1981] is a sequence of call-sites (s1s2 . . . sn) such
that call-site s1 belongs to the entry procedure, and there exists a path in the
call-graph consisting of edges with labels s1, s2, . . . , sn. CallString is the set of all
call-strings for the executable. CallSites is the set of call-sites in the executable.

A call-string suffix of length k is either (c1c2 . . . ck) or (∗c1c2 . . . ck), where c1,
c2, . . . , ck ∈ CallSites. (c1c2 . . . ck) represents the string of call-sites c1c2 . . . ck.
(∗c1c2 . . . ck), which is referred to as a saturated call-string, represents the set
{cs ∈ CallString | cs = πc1c2 . . . ck, π ∈ CallString, and |π | ≥ 1}. CallStringk is the
set of saturated call-strings of length k, plus nonsaturated call-strings of length
≤k. Consider the call-graph shown in Figure 13(a). The set CallString2 for this
call-graph is {ε, C1, C2, C1C3, C2C4, *C3C5, *C4C5, *C5C4}.

The following operations are defined for a call-string suffix.
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—cs �cs c: Let cs ∈ CallStringk and c ∈ CallSites. cs �cs c returns a new
call-string suffix c′ ∈ CallStringk as follows.

c′ =
{

(c1c2 . . . cic) if cs = (c1c2 . . . ci) ∧ (i < k)
(∗c2c3 . . . ckc) if cs = (c1c2 . . . ck)

—cs1�cscs2: Let cs1 ∈ CallStringk and cs2 ∈ CallStringk. (cs1�cscs2) evaluates to
TRUE if cs1 leads to cs2, that is, if ∃c ∈ CallSites such that (cs1 �cs c) = cs2;
otherwise, it evaluates to FALSE.

Context-sensitive VSA algorithm. The context-sensitive VSA algorithm
[Balakrishnan 2007] associates each program point with an AbsMemConfig.

AbsMemConfig = (CallStringk → AbsEnv⊥)

That is, at every program point, VSA maps each call-string to a different
AbsEnv, thereby possibly distinguishing the information obtained from dif-
ferent call-sites to a limited extent.

3.7.1 Memory-Region Status Map. Recall from case 2 of Figure 4 that, for
an a-loc that belongs to the AR of a recursive procedure, it is only possible to
perform a weak update during intraprocedural VSA. During context-sensitive
VSA, on the other hand, it is possible to perform a strong update in certain
cases. For instance, we can perform a strong update for a-locs that belong to
a recursive procedure, if recursion has not yet occurred in the given calling
context. During VSA, all abstract transformers are passed a memory-region
status map that indicates which memory-regions, in the context of a given call-
string cs, are summary memory-regions. Whereas the Global region is always
nonsummary and all malloc-regions are always summary, to decide whether a
procedure P’s memory-region is a summary memory-region, first call-string cs
is traversed, and then the call graph is traversed, to see whether the runtime
stack could contain multiple pending activation records for P. Figure 13(b)
shows the memory-region status map for different call-strings of length 2.

The memory-region status map provides one of two pieces of information
used to identify when a strong update can be performed. In particular, an
abstract transformer can perform a strong update if the operation modifies
(a) a register, or (b) a nonarray variable11 in a nonsummary memory-region.

3.8 Soundness of VSA

Soundness would mean that, for each instruction in the executable, value-set
analysis would identify an AbsMemConfig that overapproximates the set of all
possible concrete stores that a program reaches during execution for all possible
inputs. This is a lofty goal; however, it is not clear that a tool that achieves this
goal would have practical value. (It is achievable trivially, merely by setting
all value-sets to �vs.) There are less lofty goals that do not meet this standard,
but may result in a more practical system. In particular, we may not care if the

11The semi-naı̈ve algorithm described in Section 2 does not recover information about arrays.
However, the a-loc recovery algorithm described in Section 4 is capable of recovering information
about arrays.
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system is sound, as long as it can provide warnings about the situations that
arise during the analysis that threaten the soundness of the results. This is
the path that we followed in our work.

Here are some of the cases in which the analysis can be unsound, but where
the system generates a report about the nature of the unsoundness.

—The program can read or write past the end of an AR. A report is generated
at each point at which LocalGuard or FormalGuard could be read from or
written to.

—The control-flow graph and call-graph may not identify all successors of in-
direct jumps and indirect calls. Report generation for such cases is discussed
in Section 3.6.

—A related situation is a jump to a code sequence concealed in the regular
instruction stream; the alternative code sequence would decode as a legal
code sequence when read out-of-registration with the instructions in which
it is concealed. The analysis could detect this situation as an anomalous
jump to an address that is in the code segment, but is not the start of an
instruction.

—With self-modifying code, the control-flow graph and call-graph are not avail-
able for analysis. The analysis can detect the possibility that the program
is self-modifying by identifying an anomalous jump or call to a modifiable
location, or by a write to an address in the code region.

3.9 Dynamically Loaded Libraries (DLLs)

In addition to statically linked libraries, application programs also use dynam-
ically loaded libraries (DLLs) to access common APIs. Unlike statically linked
libraries, the code for a DLL is not included with the executable. Therefore, to
be sound, CodeSurfer/x86 has to find and include the code for the DLLs during
the analysis. It is relatively simple for CodeSurfer/x86 to deal with DLLs that
are known at link time. Information about such DLLs is available in the ex-
ecutable’s header, and therefore, CodeSurfer/x86 has to simply mimic the OS
loader.

Executables may also load DLLs programmatically. A typical API sequence12

used to load a DLL and invoke an API method in the newly loaded DLL is as fol-
lows: (1) invoke LoadLibrary with the name of the DLL as an argument, (2) ob-
tain the address of the required API method by invoking GetProcAddress with
the name of the API method as an argument, and (3) use the address obtained
from GetProcAddress to make the API call. Information about such DLLs is
not known until CodeSurfer/x86 analyzes the corresponding LoadLibrary call.
Furthermore, the calls to APIs in DLLs that are loaded programmatically ap-
pear as indirect function calls in the executable. We deal with such DLLs in a
way similar to how indirect jumps and indirect calls are handled. Whenever a
LoadLibrary call is encountered, instead of loading the DLL right away, only
the information about the new DLL is recorded. When VSA reaches a fixpoint,
the newly discovered DLLs are loaded, and VSA is restarted. This process is

12The Windows API sequence is presented here. The techniques are not OS specific.
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repeated until no new DLLs are discovered. Section 5 describes this iteration
loop in detail.

4. IMPROVED TECHNIQUES FOR DISCOVERING (PROXIES FOR)
VARIABLES

In this section, we return to the issue that was discussed in Section 2.2; namely,
how to identify variable-like entities (“a-locs”) that can serve as proxies for the
missing source-level variables in algorithms for further analysis of executables,
such as VSA.

IDAPro’s semi-naı̈ve algorithm for identifying a-locs, described in
Section 2.2, has certain limitations. IDAPro’s algorithm only considers accesses
to global variables that appear as “[absolute-address]”, and accesses to local
variables that appear as “[esp + offset]” or “[ebp − offset]” in the executable.
It does not take into account accesses to elements of arrays and variables that
are only accessed through pointers, and sometimes cannot take into account ac-
cesses to fields of structures, because these accesses are performed in ways that
do not match any of the patterns that IDAPro considers. Therefore, it generally
recovers only very coarse information about arrays and structures. Moreover,
this approach fails to provide any information about the fields of heap-allocated
objects, which is crucial for understanding programs that manipulate the heap.

The aim of the work presented in this section is to improve the state-of-
the-art by using abstract interpretation [Cousot and Cousot 1977] to replace
local analyses with ones that take a more comprehensive view of the operations
performed by the program. We present an algorithm that combines Value-Set
Analysis (VSA) as described in Section 3 and Aggregate Structure Identification
(ASI) [Ramalingam et al. 1999], which is an algorithm that infers the substruc-
ture of aggregates used in a program based on how the program accesses them,
to recover variables that are better than those recovered by IDAPro. As ex-
plained in Section 4.4, the combination of VSA and ASI allows us (a) to recover
variables that are based on indirect accesses to memory, rather than just the
explicit addresses and offsets that occur in the program, and (b) to identify
structures, arrays, and nestings of structures and arrays. Moreover, when the
variables that are recovered by our algorithm are used during VSA, the pre-
cision of VSA improves. This leads to an interesting abstraction-refinement
scheme; improved precision during VSA causes an improvement in the qual-
ity of variables recovered by our algorithm, which, in turn, leads to improved
precision in a subsequent round of VSA, and so on.

Our goal is to subdivide the memory-regions of the executable into variable-
like entities (which we call a-locs, for “abstract locations”). These can then
be used as variables in tools that analyze executables. Memory-regions are
subdivided using the information about how the program accesses its data.
The intuition behind this approach is that data-access patterns in the program
provide clues about how data is laid out in memory. For instance, the fact that
an instruction in the executable accesses a sequence of four bytes in memory-
region M is an indication that the programmer (or the compiler) intended to
have a four-byte-long variable or field at the corresponding offset in M. First,
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we present the problems in developing such an approach, and the insights
behind our solution, which addresses those problems. Details are provided in
Section 4.4.

4.1 The Problem of Indirect Memory Accesses

The semi-naı̈ve algorithm described in Section 2.2 uses the access expressions
of the forms “[absolute-address]”, “[esp + offset]”, and “[ebp −offset]” to recover
a-locs. This approach produces poor results in the presence of indirect memory
operands.

Example 4.1. The program shown next initializes the two fields x and y of
a local struct through the pointer pp and returns 0. pp is located at offset -12,13

and struct p is located at offset -8 in the activation record of main. Address
expression “ebp-8” refers to the address of p, and address expression “ebp-12”
refers to the address of pp.

typedef struct {
int x, y;

} Point;

int main(){
Point p, *pp;
pp = &p;
pp->x = 1;
pp->y = 2;
return 0;

}

proc main
1 mov ebp, esp
2 sub esp, 12
3 lea eax, [ebp-8]
4 mov [ebp-12], eax
5 mov [eax], 1
6 mov [eax+4], 2
7 mov eax, 0
8 add esp, 12
9 ret

Instruction 4 initializes the value of pp. (Instruction “3 lea eax, [ebp-8]” is
equivalent to the assignment eax := ebp-8.) Instructions 5 and 6 update the
fields of p. Observe that, in the executable, the fields of p are updated via eax,
rather than via the pointer pp itself, which resides at address ebp-12.

In Example 4.1, -8 and -12 are the offsets relative to the frame pointer (i.e.,
ebp) that occur explicitly in the program. The semi-naı̈ve algorithm would say
that offsets -12 through -9 of the AR of main constitute one variable (say var 12),
and offsets -8 through -1 of AR of main constitute another (say var 8). The
semi-naı̈ve algorithm correctly identifies the position and size of pp. However,
it groups the two fields of p together into a single variable because it does not
take into consideration the indirect memory operand [eax+4] in instruction 6.

Typically, indirect operands are used to access arrays, fields of structures,
fields of heap-allocated data, etc. Therefore, to recover a useful collection
of variables from executables, one has to look beyond the explicitly occur-
ring addresses and stack-frame offsets. Unlike the operands considered in
the semi-naı̈ve algorithm, local methods do not provide information about
what an indirect memory operand accesses. For instance, an operand such as

13Recall that we follow the convention that the value of esp (the stack pointer) at the beginning of
a procedure marks the origin of the procedure’s AR-region.
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“[ebp − offset]” (usually) accesses a local variable. However, “[eax+4]” may ac-
cess a local variable, a global variable, a field of a heap-allocated data structure,
etc., depending upon what eax contains.

Obtaining information about what an indirect memory operand accesses
is not straightforward. In this example, eax is initialized with the value of a
register (minus a constant offset). In general, a register used in an indirect
memory operand may be initialized with a value read from memory. In such
cases, to determine the value of the register, it is necessary to know the contents
of that memory location, and so on. Fortunately, Value-Set Analysis (VSA),
described in Section 3, can provide such information.

4.2 The Problem of Granularity and Expressiveness

The granularity and expressiveness of recovered variables can affect the pre-
cision of analysis clients that use the recovered variables as the executable’s
data objects.

As a specific example of an analysis client, consider a data-dependence ana-
lyzer which answers such questions as: “Does the write to memory at instruction
L1 in Example 2.1 affect the read from memory at instruction 14”. Note that in
Example 2.1 the write to memory at instruction L1 does not affect the read
from memory at instruction 14 because L1 updates the x members of the ele-
ments of array pts, while instruction 14 reads the y member of array element
pts[0]. To simplify the discussion, assume that a data-dependence analyzer
works as follows: (1) annotate each instruction with used, killed, and possibly-
killed variables, and (2) compare the used variables of each instruction with
killed or possibly-killed variables of every other instruction to determine data
dependences.14

Consider three different partitions of the AR of main in Example 2.1:

VarSet1. As shown in Figure 3(c), the semi-naı̈ve approach from Section 2.2
would say that the AR of main has three variables: var 44 (4 bytes), var 40
(4 bytes), and var 36 (36 bytes). The variables that are possibly killed at L1 are
{var 40, var 36}, and the variable used at 14 is var 36. Therefore, the data-
dependence analyzer reports that the write to memory at L1 might affect the
read at 14. (This is sound, but imprecise.)

VarSet2. As shown in Figure 3(c), there are two variables for each ele-
ment of array pts. The variables possibly killed at L1 are {pts[0].x, pts[1].x,
pts[2].x, pts[3].x, pts[4].x}, and the variable used at instruction 14 is
pts[0].y. Because these sets are disjoint, the data-dependence analyzer re-
ports that the memory write at instruction L1 definitely does not affect the
memory read at instruction 14.

14This method provides flow-insensitive data-dependence information; flow-sensitive data-
dependence information can be obtained by performing a reaching-definitions analysis in terms of
used, killed, and possibly-killed variables. This discussion is couched in terms of flow-insensitive
data-dependence information solely to simplify the discussion; the same issues arise even if one
uses flow-sensitive data-dependence information.
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VarSet3. Suppose that the AR of main is partitioned into just three vari-
ables: (1) py, which represents the local variable py, (2) pts[?].x, which is a
representative for the xmembers of the elements of array pts, and (3) pts[?].y,
which is a representative for the y members of the elements of array pts.
pts[?].x and pts[?].y are summary variables because they represent more
than one concrete variable. The summary variable that is possibly killed at in-
struction L1 is pts[?].x and the summary variable that is used at instruction 14
is pts[?].y. These are disjoint; therefore, the data-dependence analyzer reports
a definite answer, namely, that the write at L1 does not affect the read at 14.

Of the three alternatives presented before, VarSet3 has several desirable
features.

—It has a smaller number of variables than VarSet2. When it is used as the set
of variables in a data-dependence analyzer, it provides better results than
VarSet1.

—The variables in VarSet3 are capable of representing a set of noncontigu-
ous memory locations. For instance, pts[?].x represents the locations cor-
responding to pts[0].x, pts[1].x, . . . , pts[4].x. The ability to represent
noncontiguous sequences of memory locations is crucial for representing a
specific field in an array of structures.

—The AR of main is only partitioned as much as necessary. In VarSet3, only
one summary variable represents the x members of the elements of array
pts, while each member of each element of array pts is assigned a separate
variable in VarSet2.

A good variable-recovery algorithm should partition a memory-region in such
a way that the set of variables obtained from the partition has the desirable
features of VarSet3. When debugging information is available, this is a trivial
task. However, debugging information is often not available. Data-access pat-
terns in the program provide information that can serve as a substitute for
debugging information. For instance, instruction L1 accesses each of the four-
byte sequences that start at offsets {−40, −32, . . . , −8} in the AR of main. The
common difference of 8 between successive offsets is evidence that the offsets
may represent the elements of an array. Moreover, instruction L1 accesses ev-
ery four bytes starting at these offsets. Consequently, the elements of the array
are judged to be structures in which one of the fields is four bytes long.

4.3 Background: Aggregate Structure Identification (ASI)

Ramalingam et al. [1999] observe that there can be a loss of precision in the
results that are computed by a static-analysis algorithm if it does not dis-
tinguish between accesses to different parts of the same aggregate (in Cobol
programs). They developed the Aggregate Structure Identification (ASI) algo-
rithm to distinguish among such accesses, and showed how the results of ASI
can improve the results of dataflow analysis. This section briefly describes the
ASI algorithm. (In Section 4.4, we show how to use the information gathered
during VSA to harness ASI to the problem of identifying variable-like entities
in executables.)
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Fig. 14. Data-Access Constraint (DAC) language. UInt is the set of nonnegative integers; UInt+
is the set of positive integers; and ProgVars is the set of program variables.

ASI [Ramalingam et al. 1999] is a unification-based, flow-insensitive algo-
rithm to identify the structure of aggregates in a program (such as arrays, C
structs, etc.). The algorithm ignores any type information known about aggre-
gates, and considers each aggregate to be merely a sequence of bytes of a given
length. The aggregate is then broken up into smaller parts depending on how
it is accessed by the program. The smaller parts are called atoms.

The data-access patterns in the program are specified to the ASI algorithm
through a data-access constraint language (DAC). The syntax of DAC programs
is shown in Figure 14. There are two kinds of constructs in a DAC program:
(1) DataRef is a reference to a set of bytes, and provides a means to specify how
the data is accessed in the program; (2) UnifyConstraint provides a means to
specify the flow of data in the program. Note that the direction of data flow is
not considered in a UnifyConstraint. The justification for this is that a flow of
data from one sequence of bytes to another is evidence that they should both
have the same structure. ASI uses the constraints in the DAC program to find
a coarsest refinement of the aggregates.

There are three kinds of data references.

—A variable P ∈ ProgVars refers to all the bytes of variable P.
—DataRef[l:u] refers to bytes l through u in DataRef. For example, P[8:11]

refers to bytes 8..11 of variable P.
—DataRef\n is interpreted as follows: DataRef is an array of n elements and

DataRef\n refers to the bytes of an element of array DataRef. For example,
P[0:11]\3 refers to the sequences of bytes P[0:3], P[4:7], or P[8:11].

Instead of going into the details of the ASI algorithm, we provide the intuition
behind the algorithm by means of an example. Consider the source-code pro-
gram shown in Example 2.1. The data-access constraints for the program are
as following.

pts[0:39]\5[0:3] ≈ a[0:3];
pts[0:39]\5[4:7] ≈ b[0:3];
return main[0:3] ≈ pts[4:7];

i[0:3] ≈ const 1[0:3];
p[0:3] ≈ const 2[0:3];

py[0:3] ≈ const 3[0:3];

The first constraint encodes the initialization of the x members, namely,
pts[i].x = a. The DataRef pts[0:39]\5[0:3] refers to the bytes that
correspond to the x members in array pts. The third constraint corresponds
to the return statement; it represents the fact that the return value of main is
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Fig. 15. (a) ASI DAG, (b) ASI tree, and (c) the struct recovered for the program in Example 2.1.
(To avoid clutter, global variables are not shown.)

assigned bytes 4..7 of pts, which correspond to pts[0].y. The constraints re-
flect the fact that the size of Point is 8 and that x and y are laid out next to each
other.

The result of the ASI atomization algorithm is a DAG that shows the struc-
ture of each aggregate as well as relationships among the atoms of aggregates.
The DAG for Example 2.1 is shown in Figure 15(a). An ASI DAG has the
following properties.

—A node represents a set of bytes.
—A sequence of bytes that is accessed as an array in the program is represented

by an array node. Array nodes are labeled with
⊗

. The number in an array
node represents the number of elements in the array. An array node has one
child, and the DAG rooted at the child represents the structure of the array
element. In Figure 15(a), bytes 8..39 of array pts are identified as an array
of four 8-byte elements. Each array element is a struct with two fields of
4 bytes each.

—A sequence of bytes that is accessed like a C struct in the program is repre-
sented by a struct node. The number in the struct node represents the length
of the struct; the children of a struct node represent the fields of the struct.
The order of the children in the DAG represent the order of the fields in
the struct. In Figure 15(a), bytes 0..39 of pts are identified as a struct with
three fields: two 4-byte scalars and one 32-byte array.

—Nodes are shared if there is a flow of data in the program involving the corre-
sponding sequence of bytes either directly or indirectly. In Figure 15(a), the
nodes for the sequences of bytes return main[0:3] and pts[4:7] are shared
because of the return statement in main. Similarly, the sequence of bytes
that correspond to the y members of array pts, namely pts[0:39]\5[4:7],
share the same node because they are all assigned the same constant at the
same instruction.

The ASI DAG is converted into an ASI tree by duplicating shared nodes. The
atoms of an aggregate are the leaves of the corresponding ASI tree. Figure 15(b)
shows the ASI tree for Example 2.1. ASI has identified that pts has the
structure shown in Figure 15(c).

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 6, Article 23, Pub. date: August 2010.



23:42 • G. Balakrishnan and T. Reps

4.4 Recovering A-Locs via Iteration

The atoms identified by ASI for Example 2.1 are close to the set of variables
VarSet3 that was discussed in Section 4.2. One might hope to apply ASI to
an executable by treating each memory-region as an aggregate and determin-
ing the structure of each memory-region (without using VSA results). How-
ever, one of the requirements for applying ASI is that it must be possible to
extract data-access constraints from the program. When applying ASI to pro-
grams written in languages such as Cobol this is possible: the data-access
patterns (in particular, the data-access patterns for array accesses) are appar-
ent from the syntax of the Cobol constructs under consideration. Unfortunately,
this is not the case for executables. For instance, the memory operand [eax]
can either represent an access to a single variable or to the elements of an
array.

Fortunately, the results of VSA provide information that can be used to
generate suitable data-access constraints for an executable. A value-set is an
overapproximation of a set of offsets in each memory-region. We use VSA results
to interpret each indirect memory operand to obtain an overapproximation of
the set of locations that the operand may access. Together with the information
about the number of bytes accessed (which is available from the instruction),
this provides the information needed to generate data-access constraints for
the executable.

Some of the features of VSA that are useful in a-loc recovery are the following.

—VSA provides information about indirect memory operands: For the program
in Example 4.1, VSA determines that the value-set of eax at instruction 6
is (∅,0[−8,−8]), which means that eax must hold the offset −8 in the AR-
region of main. Using this information, we can conclude that [eax+4] refers
to offset −4 in the AR-region of main.

—VSA provides data-access patterns: For the program in Example 2.1, VSA
determines that the value-set of eax at program point L1 is (∅,8[−40,−8]),
which means that eax may hold the offsets {−40,−32, . . . ,−8} in the AR-
region of main. (These offsets are the starting addresses of field x of elements
of array pts.)

—VSA tracks updates to memory: This is important because, in general, the
registers used in an indirect memory operand may be initialized with a value
read from memory. If updates to memory are not tracked, we may neither
have useful information for indirect memory operands nor useful data-access
patterns for the executable.

Furthermore, when we use the atoms of ASI as a-locs in VSA, the results of VSA
can improve. Consider the program in Example 4.1. Recall from Section 4.1
that the length of var 8 is 8 bytes. Because value-sets are only capable of
representing a set of 4-byte addresses and 4-byte values, VSA recovers no
useful information for var 8: it merely reports that the value-set of var 8 is
�vs (meaning any possible value or address). Applying ASI (using data-access
patterns provided by VSA) results in the splitting of var 8 into two 4-byte a-
locs, namely, var 8.0 and var 8.4. Because var 8.0 and var 8.4 are each four

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 6, Article 23, Pub. date: August 2010.



WYSINWYX: What You See Is Not What You eXecute • 23:43

bytes long, VSA can now track the set of values or addresses in these a-locs.
Specifically, VSA would determine that var 8.0 (i.e., p.x) has the value 1 and
var 8.4 (i.e., p.y) has the value 2 at the end of main.

We can use the new VSA results to perform another round of ASI. If the
value-sets computed by VSA are improved from the previous round, the next
round of ASI may also improve. We can repeat this process as long as desired,
or until the process converges (see Section 5).

Although not illustrated by Example 4.1, additional rounds of ASI and VSA
can result in further improvements. For example, suppose that the program
uses a chain of pointers to link structs of different types, for example, variable
ap points to a struct A, which has a field bp that points to a struct B, which
has a field cp that points to a struct C, and so on. Typically, the first round of
VSA recovers the value of ap, which lets ASI discover the a-loc for A.bp (from
the code compiled for ap->bp); the second round of VSA recovers the value of
ap->bp, which lets ASI discover the a-loc for B.cp (from the code compiled for
ap->bp->cp); etc.

To summarize, the algorithm for recovering a-locs is as follows.

(1) Run VSA using a-locs recovered by the semi-naı̈ve approach
(2) Generate data-access patterns from the results of VSA
(3) Run ASI
(4) Run VSA
(5) Repeat steps 2, 3, and 4 until there are no improvements to the results of

VSA.15

Because ASI is a unification-based algorithm, generating data-access con-
straints for certain kinds of instructions leads to undesirable results (see
Section 4.8 for more details). Fortunately, it is not necessary to generate data-
access constraints for all instructions in the program that contain memory-
access expressions because VSA generates sound results for any collection of
a-locs with which it is supplied.16 For these reasons, ASI is used only as a
heuristic to find a-locs for VSA. (If VSA is supplied with very coarse a-locs,
many a-locs will be found to have the value �vs at most points; however, by
refining the a-locs in use, more precise answers can generally be obtained.)

In short, our abstraction-refinement principles are as follows.

(1) VSA results are used to interpret memory-access expressions in the
executable.

15Or, equivalently, until the set of a-locs discovered in step 3 is unchanged from the set previously
discovered in step 3 (or step 1).
16Soundness is relative to the presence of error reports issued to warn the user about the kinds of
issues discussed in the description of CodeSurfer/x86 in Section 1. Our point here is that the choice
of a-locs per se is not an additional threat to soundness: even if the set of a-locs used on a given
round does not match well with the memory operations performed, because the algorithm used
during VSA to interpret memory operations accounts for accesses (updates) that access (update)
only part of an a-loc, each a-loc a in use will always hold an abstract value that overapproximates
the actual values held by the memory locations that a represents.
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(2) ASI is used as a heuristic to determine the structure of each memory-region
according to information recovered by VSA.

(3) Each ASI tree reflects the memory-access patterns in one memory-region,
and the leaves of the ASI trees define the a-locs that are used for the next
round of VSA.

ASI alone is not a replacement for VSA. That is, ASI cannot be applied to
executables without the information that is obtained from VSA; namely value-
sets.

In the rest of this section, we describe the interplay between VSA and ASI:
(1) we show how value-sets are used to generate data-access constraints for
input to ASI, and (2) how the atoms in the ASI trees are used as a-locs during
the next round of VSA.

4.5 Generating Data-Access Constraints

This section describes the algorithm that generates ASI data-references for
x86 operands. Three forms of x86 operands need to be considered: (1) register
operands, (2) memory operands of form “[register]”, and (3) memory operands
of the form “[base + index × scale + offset]”.

To prevent unwanted unification during ASI, we rename registers using
live-ranges. For a register r, the ASI data-reference is rlr[0 : n− 1], where lr
is the live-range of the register at the given instruction and n is the size of the
register (in bytes).

In the rest of the section, we describe the algorithm for memory operands.
First, we consider indirect operands of the form [r]. To gain intuition about
the algorithm, consider operand [eax] of instruction L1 in Example 2.1. The
value-set associated with eax is (∅,8[−40,−8]). The stride value of 8 and the
interval [−40,−8] in the AR of main provide evidence that [eax] is an access
to the elements of an array of 8-byte elements in the range [−40,−8] of the AR
of main; an array access is generated for this operand.

Recall that a value-set is an n-tuple of strided intervals. The strided interval
s[l, u] in each component represents the offsets in the corresponding memory-
region. Figure 16 shows the pseudocode to convert offsets in a memory-region
into an ASI reference. Procedure SI2ASI takes the name of a memory-region
r, a strided interval s[l, u], and length (the number of bytes accessed) as argu-
ments. The length parameter is obtained from the instruction. For example, the
length for [eax] is 4 because the instruction at L1 in Example 2.1 is a four-byte
data transfer. The algorithm returns a pair in which the first component is an
ASI reference and the second component is a Boolean. The significance of the
Boolean component is described later in this section. The algorithm works as
follows: If s[l, u] is a singleton (i.e., it represents just a single value, and thus
s = 0 and l = u), then the ASI reference is the one that accesses offsets l to
l+ length− 1 in the aggregate associated with memory-region r. If s[l, u] is not
a singleton, then the offsets represented by s[l, u] are treated as references to
an array. The size of the array element is the stride s whenever (s ≥ length).
However, when (s < length) an overlapping set of locations is accessed by the
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Fig. 16. Algorithm to convert a given strided interval into an ASI reference.

indirect memory operand. Because an overlapping set of locations cannot be
represented using an ASI reference, the algorithm chooses length as the size
of the array element. This is not a problem for the soundness of subsequent
rounds of VSA because of refinement principle 2. The Boolean component of
the pair denotes whether the algorithm generated an exact ASI reference or
not. The number of elements in the array is �(u− l)/size� + 1.

For operands of the form [r], the set of ASI references is generated
by invoking procedure SI2ASI shown in Figure 16 for each nonempty
memory-region in r’s value-set. For Example 2.1, the value-set associated
with eax at L1 is (∅,8[−40,−8]). Therefore, the set of ASI references is
{AR main)[(-40:(-1)]\5[0:3]}.17 There are no references to the Global region
because the set of offsets in that region is empty.

The algorithm for converting indirect operands of the form [base + index ×
scale + offset] is given in Figure 17. One typical use of indirect operands of the
form [base + index × scale + offset] is to access two-dimensional arrays. Note
that scale and offset are statically known constants. Because abstract values
are strided intervals, we can absorb scale and offset into base and index. Hence,
without loss of generality, we only discuss memory operands of the form [base+
index]. Assuming that the two-dimensional array is stored in row-major order,
one of the registers (usually base) holds the starting addresses of the rows and
the other register (usually index) holds the indices of the elements in the row.
Figure 17 shows the algorithm to generate an ASI reference, when the set of
offsets in a memory-region is expressed as a sum of two strided intervals as
in [base + index]. Note that we could have used procedure SI2ASI shown in
Figure 16 by computing the abstract sum (+si ) of the two strided intervals.
However, doing so results in a loss of precision because strided intervals can

17Offsets in a DataRef cannot be negative. Negative offsets are used for clarity. Negative offsets
are mapped to the range [0, 231 − 1]; nonnegative offsets are mapped to the range [231, 232 − 1].
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Fig. 17. Algorithm to convert the set of offsets represented by the sum of two strided intervals
into an ASI reference.

only represent a single stride exactly, and this would prevent us from recov-
ering the structure of two-dimensional arrays. (In some circumstances, our
implementation of ASI can recover the structure of arrays of 3 and higher
dimensions.)

Procedure TwoSIsToASI works as follows: First, it determines which of the
two strided intervals is used as the base because it is not always apparent from
the representation of the operand. The strided interval that is used as the base
should have a stride that is greater than the length of the interval in the other
strided interval. Once the roles of the strided intervals are established, the
algorithm generates the ASI reference for base followed by the ASI reference
for index. In some cases, the algorithm cannot establish either of the strided
intervals as the base. In such cases, the algorithm computes the abstract sum
(+si ) of the two strided intervals and invokes procedure SI2ASI.

Procedure TwoSIsToASI generates a richer set of ASI references than pro-
cedure SI2ASI shown in Figure 16. For example, consider the indirect memory
operand [eax+ecx] from a loop that traverses a two-dimensional array of type
char[5][10]. Suppose that the value-set of ecx is (∅, 10[−50,−10]), the value-set
of eax is (1[0, 9],∅), and length is 1. For this example, the ASI reference that is
generated is “AR[-50:-1]\5[0:9]\10[0:0]”. That is, AR is accessed as an array
of five 10-byte entities, and each 10-byte entity is accessed as an array of ten
1-byte entities. In contrast, if we performed (∅, 10[−50,−10]) +vs (1[0, 9],∅) =
(∅, 1[−50,−1]) and applied SI2ASI, the ASI reference that would be generated
is “AR[-50:-1]\50[0:0]”; that is, AR is accessed as an array of fifty 1-byte
entities.
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4.6 Interpreting Indirect Memory References

This section describes a lookup algorithm that finds the set of a-locs accessed
by a memory operand. The algorithm is used to interpret pointer-dereference
operations during VSA. For instance, consider the instruction “mov [eax], 10”.
During VSA, the lookup algorithm is used to determine the a-locs accessed by
[eax] and the value-sets for the a-locs are updated accordingly. In Section 3, the
algorithm to determine the set of a-locs for a given value-set is trivial because
each memory-region in Section 3 consists of a linear list of a-locs generated
by the semi-naı̈ve approach. However, after ASI is performed, the structure of
each memory-region is an ASI tree.

Ramalingam et al. [1999] present a lookup algorithm to retrieve the set of
atoms for an ASI expression. However, their lookup algorithm is not appropri-
ate for use in VSA because the algorithm assumes that the only ASI expressions
that can arise during lookup are the ones that were used during the atomization
phase. Unfortunately, this is not the case during VSA, for the following reasons.

—ASI is used as a heuristic. As will be discussed in Section 4.8, some data-
access patterns that arise during VSA should be ignored during ASI.

—The executable can access fields of structures that have not yet been bro-
ken down into atoms. For example, the initial round of ASI, which is based
on data-access constraints generated using the semi-naı̈ve approach, will
not have performed atomization based on accesses on fields of structures.
However, the first round of VSA may have to interpret such field accesses.

We will use the tree shown in Figure 15(b) to describe the lookup algorithm.
Every node in the tree is given a unique name (shown within parentheses). The
following terms are used in describing the lookup algorithm.

—NodeFrag is a descriptor for a part of an ASI tree node and is denoted by a
triple 〈name, start, length〉, where name is the name of the ASI tree node,
start is the starting offset within the ASI tree node, and length is the length
of the fragment.

—NodeFragList is an ordered list of NodeFrag descriptors, [nd1, nd2, . . . , ndn].
A NodeFragList represents a contiguous set of offsets in an aggregate. For
example, [〈a3, 2, 2〉, 〈a4, 0, 2〉] represents the offsets 2..5 of node i1; offsets
2..3 come from 〈a3, 2, 2〉 and offsets 4..5 come from 〈a4, 0, 2〉.

The lookup algorithm traverses the ASI tree, guided by the ASI reference for
the given memory operand. First, the memory operand is converted into an
ASI reference using the algorithm described in Section 4.5, and the result-
ing ASI reference is broken down into a sequence of ASI operations. The task
of the lookup algorithm is to interpret the sequence of operations working
left-to-right. There are three kinds of ASI operations: (1) GetChildren(aloc),
(2) GetRange(start, end), and (3) GetArrayElements(m). For example, the
list of ASI operations for “pts[0:39]\10[0:1]” is [GetChildren(pts),
GetRange(0,39), GetArrayElements(10), GetRange(0,1)]. Each operation
takes a NodeFragList as argument and returns a set of NodeFragList values.
The operations are performed from left to right. The argument of each operation
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comes from the result of the operation that is immediately to its left. The a-locs
that are accessed are all the a-locs in the final set of NodeFrag descriptors.

The GetChildren(aloc) operation returns a NodeFragList that contains
NodeFrag descriptors corresponding to the children of the root node of the tree
associated with the aggregate aloc.

GetRange(start, end) returns a NodeFragList that contains NodeFrag de-
scriptors representing the nodes with offsets in the given range [start : end].

GetArrayElements(m) treats the given NodeFragList as an array of m el-
ements and returns a set of NodeFragList lists. Each NodeFragList list rep-
resents an array element. There can be more than one NodeFragList for the
array elements because an array can be split during the atomization phase and
different parts of the array might be represented by different nodes.

The following examples illustrate traces of a few lookups.

Example 4.2. Lookup pts[0:3]

[〈i1, 0, 40〉]
GetChildren(pts) ⇓

[〈a3, 0, 4〉, 〈a4, 0, 4〉, 〈i2, 0, 32〉]
GetRange(0,3) ⇓

[〈a3, 0, 4〉]
GetChildren(pts) returns the NodeFragList [〈a3, 0, 4〉, 〈a4, 0, 4〉, 〈i2, 0, 32〉]. Ap-
plying GetRange(0,3) returns [〈a3, 0, 4〉] because that describes offsets 0..3 in
the given NodeFragList. The a-loc that is accessed by pts[0:3] is a3.

Example 4.3. Lookup pts[0:39]\5[0:3]
Let us look at GetArrayElements(5) because the other operations are sim-

ilar to Example 4.2. GetArrayElements(5) is applied to [〈a3, 0, 4〉, 〈a4, 0, 4〉,
〈i2, 0, 32〉]. The total length of the given NodeFragList is 40 and the num-
ber of required array elements is 5. Therefore, the size of the array ele-
ment is 8. Intuitively, the operation unrolls the given NodeFragList and
creates a NodeFragList for every unique n-byte sequence starting from the
left, where n is the length of the array element. In this example, the un-
rolled NodeFragList is [〈a3, 0, 4〉, 〈a4, 0, 4〉, 〈a5, 0, 4〉, 〈a6, 0, 4〉, . . . , 〈a5, 0, 4〉,
〈a6, 0, 4〉]. The set of unique 8-byte NodeFragLists has two ordered lists:
{[〈a3, 0, 4〉, 〈a4, 0, 4〉], [〈a5, 0, 4〉, 〈a6, 0, 4〉]}.

[〈i1, 0, 40〉]
GetChildren(pts) ⇓

[〈a3, 0, 4〉, 〈a4, 0, 4〉, 〈i2, 0, 32〉]
GetRange(0,39) ⇓

[〈a3, 0, 4〉, 〈a4, 0, 4〉, 〈i2, 0, 32〉]
GetArrayElements(5) ⇓

[〈a3, 0, 4〉, 〈a4, 0, 4〉],
[〈a5, 0, 4〉, 〈a6, 0, 4〉]

GetRange(0,3) ⇓
[〈a3, 0, 4〉],
[〈a5, 0, 4〉]
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Example 4.4. Lookup pts[8:37]\5[0:5]
This example shows a slightly complicated case of the GetArrayElements

operation. Unrolling of [〈i2, 0, 30〉] results in four distinct representations for 6-
byte array elements, namely, [〈a5, 0, 4〉, 〈a6, 0, 2〉], [〈a6, 2, 2〉, 〈a5, 0, 4〉], [〈a6, 0, 4〉,
〈a5, 0, 2〉], and [〈a5, 2, 2〉, 〈a6, 0, 4〉].

[〈i1, 0, 40〉]
GetChildren(pts) ⇓

[〈a3, 0, 4〉, 〈a4, 0, 4〉, 〈i2, 0, 32〉]
GetRange(8, 37) ⇓

[〈i2, 0, 30〉]
GetArrayElements(5) ⇓

[〈a5, 0, 4〉, 〈a6, 0, 2〉], [〈a6, 2, 2〉, 〈a5, 0, 4〉],
[〈a6, 0, 4〉, 〈a5, 0, 2〉], [〈a5, 2, 2〉, 〈a6, 0, 4〉]

GetRange(0, 5) ⇓
[〈a5, 0, 4〉, 〈a6, 0, 2〉], [〈a6, 2, 2〉, 〈a5, 0, 4〉],
[〈a6, 0, 4〉, 〈a5, 0, 2〉], [〈a5, 2, 2〉, 〈a6, 0, 4〉]

Handling an access to a part of an a-loc. The abstract transformers for
VSA as shown in Figure 4 handle partial updates to a-locs (i.e., updates to
parts of an a-loc) very imprecisely. For instance, the abstract transformer for
“∗(R1 + c1) = R2 + c2” in Figure 4 sets the value-sets of all the partially ac-
cessed a-locs to �vs. Consider “pts[0:1] = 0x10”.18 The lookup operation for
pts[0:1] returns [〈a3, 0, 2〉], where 〈a3, 0, 2〉 refers to the first two bytes of a3.
The abstract transformer from Figure 4 “gives up” (because only the first two
bytes of a3 are affected) and sets the value-set of a3 to �vs, which would lead
to imprecise results. Similarly, a memory read that only accesses a part of an
a-loc is treated conservatively as a load of �vs (refer to case 3 of Figure 4).
The abstract transformers for VSA are modified as outlined shortly to handle
partial updates and partial reads more precisely.

The value-set domain [Reps et al. 2006] provides bit-wise operations such
as bit-wise and (&vs), bit-wise or (|vs), left shift (�vs), right shift (�vs), etc. We
use these operations to adjust the value-set associated with an a-loc when a
partial update has to be performed during VSA. Assuming that the underlying
architecture is little-endian, the abstract transformer for “pts[0:1] = 0x10”
updates the value-set associated with a3 as follows.

ValueSet′(a3) = (ValueSet(a3) &vs 0xffff0000) |vs (0x10).
(A read that only accesses a part of an a-loc is handled in a similar manner.)

4.7 Hierarchical A-locs

The iteration of ASI and VSA can overrefine the memory-regions. For instance,
suppose that the 4-byte a-loc a3 in Figure 15(b) used in some round i is parti-
tioned into two 2-byte a-locs, namely, a3.0, and a3.2 in round i + 1. This sort of
overrefinement can affect the results of VSA; in general, because of the prop-
erties of strided-intervals, a 4-byte value-set reconstructed from two adjacent
2-byte a-locs can be less precise than if the information was retrieved from a

18Numbers that start with “0x” are in C hexadecimal format.
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Fig. 18. Hierarchical a-locs.

4-byte a-loc. For instance, suppose that at some instruction S, a3 holds either
0x100000 or 0x110001. In round i, this information is exactly represented by
the 4-byte strided interval 0x10001[0x100000, 0x110001] for a3. On the other
hand, the same set of numbers can only be overapproximated by two 2-byte
strided intervals, namely, 1[0x0000, 0x0001] for a3.0, and 0x1[0x10,0x11] for
a3.2 (for a little-endian machine). Consequently, if a 4-byte read of a3 in round
i+1 is handled by reconstituting a3’s value from a3.0 and a3.2, the result would
be less precise.

ValueSet(a3)= (ValueSet(a3.2) �vs 16)|vsValueSet(a3.0)
= {0x100000, 0x100001, 0x110000, 0x110001}
⊃ {0x100000, 0x110001}.

We avoid the effects of overrefinement by keeping track of the value-sets for
a-loc a3 as well as a-locs a3.0 and a3.2 in round i + 1. Whenever any of a3, a3.0,
and a3.2 is updated during round i + 1, the overlapping a-locs are updated as
well. For example, if a3.0 is updated then the first two bytes of the value-set of
a-loc a3 are also updated (for a little-endian machine). For a 4-byte read of a3,
the value-set returned would be 0x10001[0x100000, 0x110001].

In general, if an a-loc a of length≤ 4 gets partitioned into a sequence of a-locs
[a1, a2, . . . , an] during some round of ASI, in the subsequent round of VSA, we
use a as well as {a1, a2, . . . , an}. We also remember the parent-child relationship
between a and the a-locs in {a1, a2, . . . , an} so that we can update a whenever
any of the ai is updated during VSA and vice versa. In our example, the ASI
tree used for round i + 1 of VSA is identical to the tree in Figure 15(b), except
that the node corresponding to a3 is replaced with the tree shown in Figure 18.

One of the sources of overrefinement is the use of union types in the program.
The use of hierarchical a-locs allows at least some degree of precision to be
retained in the presence of unions.

4.8 Pragmatics

ASI takes into account the accesses and data transfers involving memory, and
finds a partition of the memory-regions that is consistent with these transfers.
However, from the standpoint of accuracy of VSA and its clients, it is not always
beneficial to take into account all possible accesses.

—VSA might obtain a very conservative estimate for the value-set of a register
(say R). For instance, the value-set for R could be �vs, meaning that register
R can possibly hold all addresses and numbers. For a memory operand [R],
we do not want to generate ASI references that refer to each memory-region
as an array of 1-byte elements.

—Some compilers initialize the local stack frame with a known value to aid
in debugging uninitialized variables at runtime. For instance, some versions
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of the Microsoft Visual Studio compiler initialize all bytes of a local stack
frame with the value 0xC. The compiler might do this initialization by using
a memcpy. Generating ASI references that mimic memcpy would cause the
memory-region associated with this procedure to be broken down into an
array of 1-byte elements, which is not desirable.

To deal with such cases, some options are provided to tune the analysis.

—The user can supply an integer threshold. If the number of memory loca-
tions that are accessed by a memory operand is above the threshold, no ASI
reference is generated.

—The user can supply a set of instructions for which ASI references should
not be generated. One possible use of this option is to suppress memcpy-like
instructions.

—The user can supply explicit references to be used during ASI.

4.9 Experiments

In this section, we present the results of our experiments, which were designed
to answer the following questions:

(1) How do the a-locs identified by abstraction refinement compare with the
program’s debugging information? This provides insight into the usefulness
of the a-locs recovered by our algorithm for a human analyst.

(2) How much more useful for static analysis are the a-locs recovered by an
abstract-interpretation-based technique when compared to the a-locs re-
covered by purely local techniques?

In this section, we highlight the important results from the experiments; the
experiments are presented in more detail in Balakrishnan and Reps [2007],
Balakrishnan [2007, Chapter 5], and Reps and Balakrishnan [2008].

The experiments were carried out on a 32-bit desktop equipped with an Intel
P4 3.0 GHz processor and 4GB of physical memory, running Windows XP.

4.9.1 Comparison of A-locs with Program Variables. To measure the
quality of the a-locs identified by the abstraction-refinement algorithm, we
used a set of C++ benchmarks collected from Aigner and Hölzle [1996] and
Pande and Ryder [1996]. The characteristics of the benchmarks are shown in
Table I. These programs make heavy use of inheritance and virtual functions,
and hence are a challenging set of examples for the algorithm.

We compiled the set of programs using the Microsoft VC 6.0 compiler with
debugging information, and ran the a-loc-recovery algorithm on the executa-
bles produced by the compiler until the results converged. After each round
of ASI, for each program variable v present in the debugging information, we
compared v with the structure identified by our algorithm (which did not use
the debugging information), and classified v into one of the following categories.

—Variable v is classified as matched if the a-loc recovery algorithm correctly
identified the size and the offsets of v in the corresponding memory-region.
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Table I. C++ Examples Used to Evaluate Improved A-Loc
Recovery

Instructions Procedures Malloc Sites
NP 252 5 2
primes 294 9 1
family 351 9 6
vcirc 407 14 1
fsm 502 13 1
office 592 22 4
trees 1299 29 10
deriv1 1369 38 16
chess 1662 41 24
objects 1739 47 5
simul 1920 60 2
greed 1945 47 1
ocean 2552 61 13
deriv2 2639 41 58
richards 3103 74 23
deltablue 5371 113 26

—Variable v is classified as overrefined if the a-loc recovery algorithm parti-
tioned v into smaller a-locs. For instance, a 4-byte int that is partitioned into
an array of four char elements is classified as over refined.

—Variable v is underrefined if the a-loc recovery algorithm identified v to be
a part of a larger a-loc. For instance, if the algorithm failed to partition
a struct into its constituent fields, the fields of the struct are classified as
underrefined.

—Variable v is classified as incomparable if v does not fall into one of the
preceding categories.

The results of the classification process for the local variables and fields of
heap-allocated data structures are shown in Figure 19(a) and Figure 19(b),
respectively. The leftmost column for each program shows the results for the
a-locs recovered using the semi-naı̈ve approach, and the rightmost bar shows
the results for the final round of the abstraction-refinement algorithm.

On average, our technique is successful in identifying correctly over 88% of
the local variables and over 89% of the fields of heap-allocated objects (and was
100% correct for fields of heap-allocated objects in over half of the examples).
In contrast, the semi-naı̈ve approach recovered 83% of the local variables, but
0% of the fields of heap-allocated objects.

In several of the programs, only one round of ASI was required to identify all
the fields of heap-allocated data structures correctly. In some of the programs,
however, it required more than one round to identify the fields of heap-allocated
data structures. Those programs that required more than one round of ASI-
VSA iteration used a chain of pointers to link structs of different types, as
discussed in Section 4.4.

Most of the example programs do not have structures that are declared
local to a procedure. Consequently, the semi-naı̈ve approach identified a large
fraction of the local variables correctly. However, when programs had structures

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 6, Article 23, Pub. date: August 2010.



WYSINWYX: What You See Is Not What You eXecute • 23:53

F
ig

.1
9.

B
re

ak
do

w
n

(a
s

pe
rc

en
ta

ge
s)

of
h

ow
a-

lo
cs

m
at

ch
ed

w
it

h
pr

og
ra

m
va

ri
ab

le
s:

(a
)

lo
ca

lv
ar

ia
bl

es
,a

n
d

(b
)

fi
el

ds
of

h
ea

p-
al

lo
ca

te
d

da
ta

st
ru

ct
u

re
s.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 6, Article 23, Pub. date: August 2010.



23:54 • G. Balakrishnan and T. Reps

Table II. Windows Device Drivers (top) and Executables (bottom)

Program Procedures Instructions n Time
src/vdd/dosioctl/krnldrvr 70 2824 3 21s
src/general/ioctl/sys 76 3504 3 37s
src/general/tracedrv/tracedrv 84 3719 3 1m
src/general/cancel/startio 96 3861 3 26s
src/general/cancel/sys 102 4045 3 26s
src/input/moufiltr 93 4175 3 4m
src/general/event/sys 99 4215 3 31s
src/input/kbfiltr 94 4228 3 3m
src/general/toaster/toastmon 123 6261 3 5m
src/storage/filters/diskperf 121 6584 3 7m
src/network/modem/fakemodem 142 8747 3 16m
src/storage/fdc/flpydisk 171 12752 3 31m
src/input/mouclass 192 13380 2 1h 51m
src/input/mouser 188 13989 3 40m
src/kernel/serenum 184 14123 3 38m
src/wdm/1394/driver/1394diag 171 23430 3 28m
src/wdm/1394/driver/1394vdev 173 23456 3 23m

mplayer2 172 14270 2 0h 11m
smss 481 43034 3 2h 8m
print 563 48233 3 0h 20m
doskey 567 48316 3 2h 4m
attrib 566 48785 3 0h 23m
routemon 674 55586 3 2h 28m
cat 688 57505 3 0h 54m
ls 712 60543 3 1h 10m

(n is the number of VSA-ASI rounds.)

that are local to a procedure, such as primes and fsm, Figure 19(a) shows that
our approach identifies more local variables correctly.

4.9.2 Usefulness of the A-Locs for Static Analysis. The aim of this exper-
iment was to evaluate the quality of the variables and values discovered as a
platform for performing additional static analysis. In particular, because res-
olution of indirect operands is a fundamental primitive that essentially any
subsequent analysis would need, the experiment measured how well we can
resolve indirect memory operands not based on global addresses or stack-frame
offsets (e.g., accesses to arrays and heap-allocated data objects).

We ran several rounds of VSA on the collection of commonly used Windows
executables and Windows device drivers listed in Table II, as well as the set
of C++ benchmarks mentioned in Section 4.9.1. The executables for the Win-
dows device-driver examples in Table II were obtained by compiling the driver
source code along with the harness and OS environment model used in the SDV
toolkit [Ball et al. 2006]. (See Section 6 for more details.) For the programs from
Section 4.9.1 and the drivers in Table II, we ran VSA-ASI iteration until con-
vergence. For the executables listed in the bottom third of Table II, we limited
the number of VSA-ASI rounds to at most three. Round 1 of VSA performs
its analysis using the a-locs recovered by the semi-naı̈ve approach; all subse-
quent rounds of VSA use the a-locs recovered by the abstraction refinement
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Fig. 20. Properties of a strongly trackable memory operand.

algorithm. After the first and final rounds of VSA, we classify each memory
operand as follows.

—A memory operand is strongly trackable (see Figure 20) if
—the lvalue evaluation of the operand does not yield �vs, and
—each lvalue obtained refers to a 4-, 2-, or 1-byte a-loc.

—A memory operand is weakly-trackable if
—the lvalue evaluation of the operand does not yield �vs, and
—at least one of the lvalues obtained refers to a 4-, 2-, or 1-byte a-loc.

—Otherwise, the memory operand is untrackable; that is, either
—the lvalue evaluation of the operand yields �vs, or
—all of the lvalues obtained refer to an a-loc whose size is greater than

4 bytes.

VSA tracks value-sets for a-locs whose size is less than or equal to 4 bytes,
but treats a-locs greater than 4 bytes as having the value-set �vs. Therefore,
untrackable memory operands are ones for which VSA provides no useful in-
formation at all, and strongly trackable memory operands are ones for which
VSA can provide useful information.

We refer to a memory operand that is used to read the contents of memory
as a use-operand, and a memory operand that is used to update the contents
of memory as a kill-operand. VSA can provide some useful information for a
weakly trackable kill-operand, but provides no useful information for a weakly
trackable use-operand. To understand why, first consider the kill-operand [eax]
in “mov [eax], 10”. If [eax] is weakly trackable, then VSA may be able to up-
date the value-set) (to a value other than�vs) of those a-locs that are (i) accessed
by [eax] and (ii) of size less than or equal to 4 bytes. (The value-sets for a-locs
accessed by [eax] that are of size greater than 4 bytes already hold the value
�vs.) In contrast, consider the use-operand [eax] in “mov ebx, [eax]”; if [eax]
is weakly trackable, then at least one of the a-locs accessed by [eax] holds the
value �vs. In a mov instruction, the value-set of the destination operand (ebx
in our example) is set to the join (�vs) of the value-sets of the a-locs accessed
by the source operand ([eax] in our example); consequently, the value-set of
ebx would be set to �vs, which is the same as what happens when [eax] is
untrackable.

We classified memory operands as either direct or indirect. A direct memory
operand is a memory operand that uses a global address or stack-frame offset.
An indirect memory operand is a memory operand that uses a nonstack-frame
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Table III. Percentages of Trackable Memory Operands in the First and Final Rounds

Percentages of Trackable Memory Operands
Strongly-Trackable Strongly-Trackable Weakly-Trackable
Indirect Uses (%) Indirect Kills (%) Indirect Kills (%)

Test Suite First Final First Final First Final
C++ Examples 8 46 3 80 4 83
Windows Device Drivers 19 29 8 30 9 33
Windows Executables 2 6 6 19 6 22

The numbers reported for each test suite are the geometric means of the percentages measured for that test
suite.

register (e.g., a memory operand that accesses an array or a heap-allocated
data object).

Direct memory operands. For direct use-operands and direct kill-operands,
both the semi-naı̈ve approach and our abstract-interpretation-based a-loc re-
covery algorithm perform equally well: for all three test suites, almost 100% of
the direct uses and kills are strongly trackable.

Indirect memory operands. For indirect memory operands, the results are
substantially better with the abstraction-interpretation-based method. Ta-
ble III summarizes the results. (Note that the “Weakly Trackable Indirect
Kills” are a superset of the “Strongly Trackable Indirect Kills”.)

We were surprised to find that the semi-naı̈ve approach was able to provide
a small amount of useful information for indirect memory operands. On closer
inspection, we found that these indirect memory operands access local or global
variables that are also accessed directly elsewhere in the program. (In source-
level terms, the variables are accessed both directly and via pointer indirection.)
For instance, a local variable v of procedure P that is passed by reference to
procedure Q will be accessed directly in P and indirectly in Q.

Our abstract-interpretation-based a-loc recovery algorithm works well for
the C++ examples, but the algorithm is not so successful for the Windows
device-driver examples and the Windows executables. Several sources of im-
precision in VSA prevent us from obtaining useful information at many of the
indirect memory operands in those executables. One source of imprecision is
widening [Cousot and Cousot 1977]. VSA uses a widening operator during ab-
stract interpretation to accelerate fixpoint computation (see Section 3.4). Due
to widening, VSA may fail to find nontrivial bounds for registers that occur in
indirect memory operands that implement (source-level) array-access expres-
sions; such indirect memory operands will be classified as untrackable.

The fact that the VSA domain is nonrelational amplifies this problem. (To
a limited extent, we overcome the lack of relational information by obtaining
relations among the values of the x86 registers using an additional analysis
called affine-relation analysis; see Balakrishnan [2007, Chapter 7] for details.)
The widening problem is actually orthogonal to the issue of finding a suitable
set of a-locs. Even if an a-loc recovery algorithm were to recover all of the
source-level variables exactly, imprecision due to widening would still be an
issue.
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Table IV. Percentages of Trackable Memory Operands in the Final Round For the Windows
Device-Driver Examples

Percentages of Trackable Memory Operands
Strongly-Trackable Strongly-Trackable Weakly-Trackable
Indirect Uses (%) Indirect Kills (%) Indirect Kills (%)

Without GMOD-based merging 29 30 33
With GMOD-based merging 81 85 90

In Balakrishnan [2007, Section 7.5] and Reps and Balakrishnan [2008],
we described a technique, called GMOD-based merging, that increases the
precision of abstract interpretation of procedure calls and also reduces the
undesirable effects of widening.19 As shown in Table IV, when GMOD-based
merging was used for the Windows device-driver examples, the percentage of
trackable memory operands in the final round improved dramatically: from
29%, 30%, and 33% to 81%, 85%, and 90%, respectively.

These measurements show that the results of VSA are significantly better
when a-locs identified using abstract interpretation and abstraction refinement
are used in place of the a-locs identified by the semi-naı̈ve algorithm, which
uses purely local techniques.

5. ITERATIVE REFINEMENT IN CODESURFER/X86

This section describes the abstraction refinement loop used in CodeSurfer/x86.
The refinement loop runs repeated phases of ASI, ARA,20 and VSA. The goal of
the loop is not only to improve precision, but also to invoke the analysis compo-
nents that allow CodeSurfer/x86 to overcome the lack of any initial information
about a program’s variables.

The order in which the analyses are applied is

Dis ASI0 ARA VSA ( DisDLL ASI ARA VSA )n,

where “Dis” is the disassembler phase (our implementation uses IDAPro []),
which includes creating the initial IRs for DLLs known at link time; ASI0 is
a “minimal” ASI that uses the disassembler results as input, and implements
the semi-naı̈ve approach to identifying a-locs; DisDLL disassembles the DLLs
discovered from arguments to LoadLibrary during the most recent phase of

19The GMOD algorithm that we use is standard, except that the analysis is couched in terms of
sets of a-locs, rather sets of variables. Immediate-modification (IMOD) information is obtained by
using the VSA information for each node n to identify the set of all a-locs that the instruction at n
could possibly modify. GMOD is computed from IMOD by the standard algorithm which propagates
GMOD information over the program’s call-graph [Cooper and Kennedy 1988].

See Balakrishnan [2007, Section 7.5] and Reps and Balakrishnan [2008, Section 4] for a descrip-
tion of changes that must be made to the interprocedural VSA algorithm so that GMOD-based
merging is sound in the presence of indirect jumps and indirect calls.
20ARA refers to affine-relation analysis [Müller-Olm and Seidl 2005]. An affine relation is a linear-
equality constraint between int-valued variables. ARA is used in CodeSurfer/x86 to identify affine
relations among x86 machine registers. ARA is also performed over certain collections of registers,
global a-locs, and local a-locs. The information from ARA is used to overcome the lack of relational
information during VSA due to the nonrelational nature of the VSA domain (see Lal et al. [2005],
Balakrishnan [2007, Chapter 7, Section 2], and the discussion of “ARA → VSA” below).
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VSA, and creates initial IRs for them. (. . . )n denotes n repetitions of the paren-
thesized expression, where n can be controlled by the user.

The first round of VSA can uncover memory accesses that are not explicit
in the program, for example, due to operands that have forms other than
“[absolute-address]”, “[esp + offset]”, and “[ebp −offset]”, which allows ASI to
refine the a-locs for the next round of VSA, and may, in turn, produce more
precise value-sets because it is based on a better set of a-locs. Similarly, sub-
sequent rounds of VSA can uncover more memory accesses, and hence allow
ASI to refine the a-locs. The refinement of a-locs cannot go on indefinitely be-
cause in the worst case, an a-loc can only be partitioned into a sequence of
1-byte entities. However, in practice, the refinement process converges before
the worst-case partitioning occurs.

When the data structures in a program are more complex, more rounds
of the refinement loop will (in general) be required to analyze them. Roughly
speaking, each round of the loop will resolve one layer of indirection in program
data structures: ASI refines the a-locs that can be determined from previously
identified structures and memory accesses, and then VSA uses these a-locs to
determine value sets whose contents may include pointers that ASI will use in
the next round.

Determining the targets of library function calls and indirect jumps is
closely related to determining the contents of memory locations, and also takes
place in the refinement loop. A program with more levels of library function
calls and/or indirect jumps will (in general) require more rounds of the re-
finement loop for full analysis than a program with fewer levels. The itera-
tion process converges when the set of a-locs, and the set of targets for in-
direct function calls and indirect jumps does not change between successive
rounds.

Most of the analyses in CodeSurfer/x86 are interdependent. The refinement
loop is a relatively simple way to allow the results of one analysis to improve
the results of the other analyses. The analyses influence one another in the
following ways.
ASI → VSA: ASI results are useful to VSA in two important ways.

—The a-locs discovered by ASI represent the collection of containers whose
values will be tracked by VSA.

—The size and structure of a-locs are also important to VSA. Value sets only
represent values up to 4 bytes (for a 32-bit machine). Therefore, if an a-loc
is larger than 4 bytes and does not have any identifiable substructure, VSA
cannot determine a value set other than “unknown” (�vs) to represent the
values it might hold. Once ASI has subdivided such an a-loc into 1-, 2-, or
4-byte subcomponents, VSA is generally able to produce more precise value
sets for the subcomponents.

VSA → ASI: ASI determines the location and structure of a-locs based on
memory access patterns within the program. If a memory access is indirect, its
destination must be determined before ASI can use it to identify an a-loc. VSA
provides the value sets needed to compute these addresses.
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ARA→ VSA: There are two opportunities for incorporating information about
affine relations during VSA.

—If an affine relation r is known to hold between two a-locs at a particular
program point, it is possible to make use of r to determine a more precise
value-set for one or both of the a-locs by performing semantic reduction
[Cousot and Cousot 1979] of the VSA AbsEnv with respect to r. Because the
VSA domain is based on strided intervals, upper and lower bounds of strided
intervals represent inequality facts. In essence, semantic reduction with
respect to an affine relation (e.g., b = a+10) allows a known simple-inequality
fact between an a-loc and a constant (e.g., a ≤ 10) to be propagated to another
a-loc (e.g., b ≤ 20). The technique is particularly valuable at the heads of
loops: ARA can provide information about induction-variable relationships
in loops; the semantic-reduction technique allows VSA to recover information
about array sizes when one a-loc is used to sweep through an array under
the control of a second a-loc that serves as the loop index.

—Affine relations can be used to strengthen the widening “up to” technique
of Halbwachs et al. [1997], which (in essence) uses guesses about possible
invariants to restrain the amount of widening performed. During VSA, the
program’s branch conditions are used to generate such candidate invariants.
Because these are often inequalities, when an affine relation is known to hold
at a widening point, it can be used in conjunction with existing candidate
inequality-invariants to infer additional candidate inequality-invariants for
use in widening “up to”.

Our implementation of VSA incorporates both of these uses of affine relations.
VSA → DisDLL: The value sets refined by VSA may include the targets of
indirect jumps and/or indirect function calls. Resolving these targets may result
in new control-flow edges added to the CFG, new call edges added to the call-
graph, and initial IRs created for the DLLs discovered from arguments to
LoadLibrary during the most recent phase of VSA.
VSA and DisDLL → ARA: After new targets of indirect jumps and/or indirect
function calls have been identified, or initial IRs have been created for newly
discovered DLLs, ARA must be rerun so that this new information can be taken
into account in the affine relations computed for the program’s instructions.
ASI→ ARA: ARA is also performed over certain collections of registers, global
a-locs, and local a-locs. Because ASI refines the set of a-locs in each round, this
ARA information must be recomputed for the refined set of a-locs.

6. CASE STUDY: ANALYZING WINDOWS DEVICE DRIVERS

A device driver is a program in the operating system that is responsible for
managing a hardware device attached to the system. In Windows, a (kernel-
level) device driver resides in the address space of the kernel, and runs at a
high privilege level; therefore, a bug in a device driver can cause the entire
system to crash. The Windows kernel API [Oney 2003] requires a program-
mer to follow a complex set of rules: (1) a call to the functions IoCallDriver
or PoCallDriver must occur only at a certain interrupt request level, (2) the
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function IoCompleteRequest should not be called twice with the same parame-
ter, etc.

The device drivers running in a given Windows installation are one of the
sources of instability in the Windows platforms: according to Swift et al. [2005],
bugs in kernel-level device drivers cause 85% of the system crashes in Windows
XP. Because of the complex nature of the Windows kernel API, the probability
of introducing a bug when writing a device driver is high. Moreover, drivers are
typically written by less-experienced or less-skilled programmers than those
who wrote the Windows kernel itself.

Several approaches to improve the reliability of device drivers have been
previously proposed [Ball et al. 2006; Ball and Rajamani 2001; Chou et al. 2001;
Swift et al. 2005]. Swift et al. [2004, 2005] propose a runtime approach that
works on executables; they isolate the device driver in a lightweight protection
domain to reduce the possibility of whole-system crashes. Because their method
is applied at runtime, it may not prevent all bugs from causing whole-system
crashes. Other approaches [Ball et al. 2006; Ball and Rajamani 2000, 2001;
Henzinger et al. 2002] are based on static program analysis of a device driver’s
source code. Ball et al. [2006, 2001] developed the Static Driver Verifier (SDV),
a tool based on model checking to find bugs in device-driver source code. A
kernel API usage rule is described as a finite-state machine (FSM), and SDV
analyzes the source code for the driver to determine whether there is a path in
the driver that violates the rule.

In our work, we extended the algorithms developed for CodeSurfer/x86
to create a static analysis tool for checking properties of stripped Windows
device-driver executables. With this tool, called Device-Driver Analyzer for
x86 (DDA/x86), neither source code nor symbol-table/debugging information
need be available (although DDA/x86 can use debugging information, such as
Windows .pdb files, if it is available). Consequently, DDA/x86 can provide in-
formation that is useful in the common situation where one needs to install a
device driver for which source code has not been furnished.

Microsoft has a program for signing Windows device drivers, called Windows
Hardware Quality Lab (WHQL) testing. Device vendors submit driver executa-
bles to WHQL, which runs tests on different hardware platforms with different
versions of Windows, reviews the results, and, if the driver passes the tests,
creates a digitally signed certificate for use during installation that attests
that Microsoft has performed some degree of testing. However, there is anecdo-
tal evidence that device vendors have tried to cheat [WHQL 2004]. A tool like
DDA/x86 could allow static analysis to play a role in such a certification process.

Even if one has a driver’s source code (and can build an executable) and also
has tools for examining executables equipped with symbol-table/debugging in-
formation, this would not address the effects of the optimizer. If one wants
to look for bugs in an optimized version, one would have a kind of “partially
stripped” executable, due to the loss of debugging information caused by op-
timization. This is a situation where our techniques for analyzing stripped
executables should be of assistance.

A skeptic might question how well an analysis technique can perform on
a stripped executable. Section 6.2 presents some quantitative results about
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Fig. 21. (a) SDV trace; (b) DDA/x86 trace. The three shaded areas in (b) correspond to those in (a).

how well the answers obtained by DDA/x86 compare to those obtained by SDV;
here we will just give one example that illustrates the ability of DDA/x86 to
provide information that is qualitatively comparable to the information ob-
tained by SDV. Figure 21 shows fragments of the witness traces reported by
SDV (Figure 21(a)) and DDA/x86 (Figure 21(b)) for one of the examples in
the test suite. Figure 21 shows that in this case the tools report comparable
information: the three shaded areas in Figure 21(b) correspond to those in
Figure 21(a).

Although not illustrated in Figure 21, because of the WYSINWYX phe-
nomenon it is possible for DDA/x86 to provide higher-fidelity answers than
tools for analyzing device-driver source code. In particular, compilation effects
can be important if one is interested in better diagnoses of the causes of bugs,
or in detecting security vulnerabilities. For instance, a Microsoft report about
writing kernel-mode drivers in C++ recommends examining “. . . the object code
to be sure it matches your expectations, or at least will work correctly in the
kernel environment” [WHDC 2007].
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Fig. 22. An FSM that encodes the rule that pointer p should not be dereferenced if it is NULL.

This section describes the design and implementation of DDA/x86, and
presents a case study in which we used it to find problems in Windows de-
vice drivers by analyzing the drivers’ stripped executables. The key idea that
allows DDA/x86 to achieve a substantial measure of success was to combine
VSA with the path-sensitive method of interpreting property automata from
ESP [Das et al. 2002]. The resulting algorithm explores an overapproximation
of the set of reachable states, and hence can verify correctness by determining
that all error configurations are unreachable. The contributions of the work
include the following.

—DDA/x86 can analyze stripped device-driver executables, and thus provides a
capability not found in previous tools for analyzing device drivers [Ball and
Rajamani 2000; Henzinger et al. 2002].

—Our case study shows that this approach is viable. DDA/x86 was able to iden-
tify some known bugs (previously discovered by source-code-based analysis
tools) along with useful error traces, while having a reasonably low false-
positive rate: On a corpus of 17 device-driver executables, 10 were found
to pass the PendedCompletedRequest rule (definitely no bug), 5 false posi-
tives were reported, and 2 were found to have real bugs, for which DDA/x86
supplied feasible error traces.

—We developed a novel, low-cost mechanism for instrumenting a dataflow
analysis algorithm to provide witness traces.

One of the challenges that we faced was to find ways of coping with the dif-
ferences that arise when property checking is performed at the machine-code
level, rather than on an IR created from source code. In particular, the do-
mains of discourse (the alphabets of actions to which the automata respond)
are different in the two situations. This issue is discussed in Section 6.2.

6.1 Property Checking in Executables Using VSA

This section describes the extensions that we made to our IR recovery algorithm
to perform path-sensitive property checking. Figure 22 shows an FSM that
checks for violations of the memory-safety property “pointer p should not be
dereferenced if its value is NULL”. One approach to determining if there is a
null-pointer dereference in the executable is to start from the initial state
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(UNSAFE) at the entry point of the executable, and find an overapproximation
of the set of reachable states at each statement in the executable. This can be
done by determining the states for the successors at each statement based on
the transitions in the FSM that encodes the memory-safety property.

Another approach is to use abstract interpretation to determine the abstract
memory configurations at each statement in the routine, and use the results to
check the memory-safety property. For executables, we could use the informa-
tion computed by the IR recovery algorithms of CodeSurfer/x86. For instance,
for each instruction I in an executable, VSA determines an overapproximation
of the set of memory addresses and numeric values held in each register and
variable when I executes.

Suppose that we have the results of VSA and want to use them to check the
memory-safety property; the property can be checked as follows.

If the abstract set of addresses and numeric values computed for p possibly
contains NULL just before a statement, and the statement dereferences p,
then the memory-safety property is potentially violated.

Unfortunately, the approaches described before would result in a lot of false
positives because they are not path sensitive. To overcome the limitations of
the two approaches described before, DDA/x86 follows Das et al. [2002] and
Fischer et al. [2005], who showed how to obtain a degree of path sensitivity
by combining the propagation of automaton states with the propagation of
abstract-state values during abstract interpretation. Let State denote the set of
property-automaton states. The path sensitive VSA algorithm [Balakrishnan
2007; Balakrishnan and Reps 2008] associates each program point with an
AbsMemConfigps-cs value.

AbsMemConfigps-cs = CallStringk × State× State → AbsEnv⊥
 CallStringk → (State× State → AbsEnv⊥)

In the pair of property-automaton states at a node n, the first component refers
to the state of the property automaton at the enter node of the procedure to
which node n belongs, and the second component refers to the current state of
the property automaton at node n. If an AbsEnv entry for the pair 〈cs, s0, scur〉
exists at node n, then n is possibly reachable from call-context suffix cs with
the property automaton in state scur from a memory configuration at the enter
node of the procedure in which the property automaton was in state s0.

In addition to distinguishing AbsEnvs at a node based on the call-string
suffix, the path-sensitive context-sensitive VSA algorithm also distinguishes
AbsEnvs according to the states of the property automaton. Technically, the
extension amounts to using reduced cardinal power [Cousot and Cousot 1979]
of the edges in the transitive closure of the automation’s transition relation and
the original VSA domain; that is, we perform context-sensitive interprocedural
value-set analysis (Section 3.7), but use the domain (State×State → AbsEnv⊥)
in place of AbsEnv⊥ (see also Balakrishnan [2007] and Balakrishnan and Reps
[2008]).
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6.2 Experiments

This section presents a case study in which we used DDA/x86 to analyze the
executables of Windows device drivers. The study was designed to test how well
different extensions of the VSA algorithm could detect problems in Windows
device drivers by analyzing device-driver executables, without accessing source
code, symbol-tables, or debugging information. In particular, if DDA/x86 were
successful at finding the bugs that the Static Driver Verifier (SDV) [Ball et al.
2006; Ball and Rajamani 2001] tool finds in Windows device drivers, that would
be powerful evidence that our approach is viable, that is, that it will be possible
to find previously undiscovered bugs in device drivers for which source code is
not available, or for which compiler/optimizer effects make source-code analysis
unsafe. We selected a subset of drivers from the Windows Driver Development
Kit (DDK) [Windows DDK 2003] release 3790.1830 for the case study. For each
driver, we obtained an executable by compiling the driver source code along
with the harness and the OS environment model [Ball et al. 2006] of the SDV
toolkit. (Thus, as in SDV and other source-code analysis tools, the harness and
OS environment models are analyzed; however, DDA/x86 analyzes the machine
code that the compiler produces for the harness and the models. This creates
certain difficulties, which are discussed next.)

A device driver is analogous to a library that exports a collection of subrou-
tines. Each subroutine exported by a driver implements an action that needs to
be performed when the OS makes an I/O request (on behalf of a user application
or when a hardware-related event occurs). For instance, when a new device is
attached to the system, the OS invokes the AddDevice routine provided by the
device driver; when new data arrives on a network interface, the OS calls the
DeviceRead routine provided by the driver; etc. For every I/O request, the OS
creates a structure called the “I/O Request Packet (IRP)”, which contains such
information as the type of the I/O request, the parameters associated with the
request, etc.; the OS then invokes the appropriate driver’s dispatch routine. The
dispatch routine performs the necessary actions, and returns a value that indi-
cates the status of the request. For instance, if a driver successfully completes
the I/O request, the driver’s dispatch routine calls the IoCompleteRequest API
function to notify the OS that the request has been completed, and returns the
value STATUS SUCCESS. Similarly, if the I/O request is not completed within the
dispatch routine, the driver calls the IoMarkPending API function and returns
STATUS PENDING.

A harness in the SDV toolkit is C code that simulates the possible calls to the
driver that could be made by the OS. An application generates requests which
the OS passes on to the device driver. Both levels are modeled by the harness.
For the drivers used in our experiments, the harness defined in the SDV toolkit
acts as a client that exercises all possible combinations of the dispatch routines
that can occur in two successive calls to the driver. The harness that was used
in our experiments calls the following driver routines (in the order given next).

(1) DriverEntry: initializes the driver’s data structures and the global state.
(2) AddDevice: simulates the addition of a device to the system.
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(3) The plug-and-play dispatch routine (called with an IRP MN START DEVICE
I/O request packet): simulates the starting of the device by the OS.

(4) Some dispatch routine, deferred procedure call, interrupt service routine,
etc.: simulates various actions on the device.

(5) The plug-and-play dispatch routine (called with an IRP MN REMOVE DEVICE
I/O request packet): simulates the removal of the device by the OS.

(6) Unload: simulates the unloading of the driver by the OS.

The OS environment model in the SDV toolkit consists of a collection of
functions (written in C) that conservatively model the API functions in the
Windows DDK. The models are conservative in the sense that they simulate
all possible behaviors of an API function. For instance, if an API function Foo
returns the value 0 or 1 depending upon the input arguments, the model for Foo
consists of a nondeterministic if statement that returns 0 in the true branch
and 1 in the false branch. Modeling the API functions conservatively enables a
static-analysis tool to explore all possible behaviors of the API.

Adapting the SDV harness and OS models. The harness and OS models
obtained from the SDV toolkit are intended to be used by a particular source-
level analyzer [Ball and Rajamani 2001] whose abstract domain is based on
predicate abstraction [Graf and Saı̈di 1997]. Such domains have limitations on
their precision, and hence it is not necessary for SDV to have harnesses and
OS models that are entirely faithful to the source-level semantics. In contrast,
we needed a harness and OS models that could be compiled (and used in
compiled form) with the various different abstract domains incorporated in
DDA/x86. DDA/x86’s domains also have limitations on their precision, but they
are different than those of the domain used by SDV. Consequently, we had to
make some changes to the harness and OS models obtained from SDV.

For instance, each driver has a device-extension structure that is used to
maintain extended information about the state of each device managed by the
driver. The number of fields and the type of each field in the device-extension
structure is specific to a driver. However, in SDV’s OS model, a single integer
variable is used to represent the device-extension object. Therefore, in a driver
executable built using SDV’s models, when the driver writes to a field at offset
o of the device-extension structure, it would appear as a write to the memory
address that is offset o bytes from the memory address of the integer that
represents the device-extension object.

SDV’s OS models use a function named SdvMakeChoice to represent nonde-
terministic choice. However, the body of SdvMakeChoice contains just a single
statement: “return 0;”.21 Consequently, instead of exploring all possible behav-
iors of an API function, DDA/x86 would explore only a subset of the behaviors
of the API function. We had to modify SDV’s OS environment model to avoid
such problems.

Case study. We chose the following “PendedCompletedRequest” rule for our
case study.

21According to T. Ball [2006], the C front end used by SDV treats SdvMakeChoice specially.
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Fig. 23. Finite-state machine for the rule PendedCompletedRequest.

Table V. Variants of the VSA Algorithm Used in the Experiments

Config. A-locs Property Automaton
� IDAPro-based algorithm Figure 23
� ASI-based algorithm Figure 23
� ASI-based algorithm Cross-product of the automata in Figure 23 and 25

A driver’s dispatch routine should not return STATUS PENDING on an I/O
Request Packet (IRP) if it has called IoCompleteRequest on the IRP, unless
it has also called IoMarkIrpPending.

Figure 23 shows the FSM for this rule.22

We used the three different variants of the VSA algorithm listed in Ta-
ble V for our experiments; Table VI presents the results. The experiments
were carried out on a Dell Precision 490 Desktop, equipped with a 64-bit Intel
Xeon 5160 3.0 GHz dual-core processor and 16GB of physical memory, run-
ning Windows XP. (Although the machine has 16GB of physical memory, the
size of the per-process virtual user-address space for a 32-bit application is
limited to 4GB.) The column labeled “Result” indicates whether the VSA al-
gorithm reported that there is some node n at which the ERROR state in the
PendedCompletedRequest FSM is reachable, when one starts from the initial
memory configuration at the entry node of the executable.

Configuration “�” uses an algorithm that is similar to the one used in IDAPro
to recover variable-like entities. That algorithm does not provide variables
of the right granularity and expressiveness, and therefore, not surprisingly,
configuration “�” reports many false positives for all of the drivers.23

Configuration “�”, which uses only the PendedCompletedRequest FSM, also
reports a lot of false positives. Figure 24 shows an example that illustrates
one of the reasons for the false positives in configuration “�”. As shown in the
right column of Figure 24, the set of values for status at the return statement

22According to the Windows DDK documentation, IoMarkPending has to be called before
IoCompleteRequest; however, the FSM defined for the rule in SDV is the one shown in Figure 23.
We used the same FSM for our experiments.
23In this case, a false positive reports that the ERROR state is (possibly) reachable at some node n,
when, in fact, it is never reachable. This is sound (for the reachability question), but imprecise.
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Fig. 24. An example illustrating false positives in device-driver analysis.

Fig. 25. Finite-state machine that tracks the contents of the variable status.

(P3) for the property-automaton state COMPLETED contains both STATUS PENDING
and STATUS SUCCESS. Therefore, VSA reports that the dispatch routine possibly
violates the PendedCompletedRequest rule. The problem is as follows: because
the state of the PendedCompletedRequest automaton is the same after both
branches of the if statement at P1 are analyzed, VSA merges the information
from both of the branches, and therefore the correlation between c and status
is lost after the statement at P2.

Figure 25 shows an FSM that enables VSA to maintain the correlation
between c and status. Basically, the FSM changes the abstraction in use, and
enables VSA to distinguish paths in the executable based on the contents of
the variable status. We refer to a variable (such as status in Figure 25) that is
used to keep track of the current status of the I/O request in a dispatch routine
as the status-variable. To be able to use the FSM in Figure 25 for analyzing an
executable, it is necessary to determine the status-variable for each procedure.
However, because debugging information is usually not available, we use the
following heuristic to identify the status-variable for each procedure in the
executable.

By convention, eax holds the return value in the x86 architecture. There-
fore, the a-loc (if any) that is used to initialize the value of eax just before
returning from the dispatch routine is considered to be the status-variable.
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Configuration “�” uses the automaton obtained by combining the PendedCom-
pletedRequest FSM and the FSM shown in Figure 25 (instantiated using the
preceding heuristic) using a cross-product construction. As shown in Table VI,
for configuration “�”, the number of false positives is substantially reduced.

It required substantial manual effort to find an abstraction that had suffi-
cient fidelity to reduce the number of false positives reported by DDA/x86. To
create a practical tool, it would be important to automate the process of refin-
ing the abstraction based on the property to be checked. The model-checking
community has developed many techniques that could be applicable, although
the previous discussion shows that the definition of a suitable refinement can
be quite subtle.

As a point of comparison, SDV also found the bugs in both “moufiltr” and
“kbfiltr”, but had no false positives in any of the examples. However, one should
not leap to the conclusion that machine-code analysis tools are necessarily
inferior to source-code analysis tools.

—The basic capabilities are different: DDA/x86 can analyze stripped device-
driver executables, which goes beyond the capabilities of SDV.

—The analysis techniques used in SDV and in DDA/x86 are incomparable:
SDV uses predicate-abstraction-based abstractions [Graf and Saı̈di 1997],
plus abstraction refinement; DDA/x86 uses a combined numeric-plus-pointer
analysis (VSA), together with a different kind of abstraction refinement (it-
eration of ASI and VSA). Thus, there may be examples for which DDA/x86
outperforms SDV.

Moreover, SDV is a multiple man-year effort, with a professional team at Mi-
crosoft devoted to its development. In contrast, the prototype DDA/x86 was
created in only a few man-months (although multiple man-years went into
building the underlying CodeSurfer/x86 infrastructure).

Property automata for the analysis of machine code. Property automata for
the analysis of machine code differ from the automata used for source-level
analysis. In particular, the domain of discourse (the alphabet of actions to which
an automaton responds) is different when property checking is performed at
the machine-code level, rather than on an IR created from source code.

In some cases, it is possible to recognize a source-level action based on infor-
mation available in the recovered IR. For instance, a source-code procedure call
with actual parameters is usually implemented as a sequence of instructions
that evaluate the actuals, followed by a call instruction to transfer control
to the starting address of the procedure. The IR recovery algorithms used in
CodeSurfer/x86 will identify the call along with its arguments.

In other cases, a source-level action is not identifiable. One contributing fac-
tor is that a source-level action can correspond to a sequence of instructions.
Moreover, the instruction sequences for two source-level actions could be inter-
leaved. We did not have a systematic way to cope with such problems except to
rewrite the automaton of interest based on instruction-level actions.

Fortunately, most of the instruction-level actions that need to be tracked boil
down to memory accesses/updates. Because VSA is precise enough to interpret
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many memory accesses (Section 4.9), it is possible for DDA/x86 to perform
property checking using the extended version of VSA sketched in Section 6.1
[Balakrishnan 2007; Balakrishnan and Reps 2008]. In our somewhat limited
experience, we found that for many property automata it is possible to rewrite
them based on memory accesses/updates so that they can be used for the anal-
ysis of executables.

Finding a witness trace. If the VSA algorithm reports that the ERROR state
in the property automaton is reachable, it is useful to find a sequence of in-
structions that shows how the property automaton can be driven to ERROR.
Rather than extending the VSA implementation to generate and manage ex-
plicitly the information required for reporting witness traces, we exploited the
fact that the standard algorithms for solving reachability problems in push-
down systems (PDSs) [Bouajjani et al. 1997; Finkel et al. 1997] provide a
witness-trace capability to show how a given (reachable) configuration is reach-
able.

The algorithm sketched in Section 6.1 was augmented to emit the rules of
a PDS on-the-fly. The PDS constructed is equivalent to a PDS that would be
obtained by a cross-product of the property automaton and a PDS that models
the interprocedural control-flow graph, except that, by emitting the PDS on-
the-fly as VSA variant “�” is run, the cross-product PDS is pruned according
to what the VSA algorithm and the property automaton both agree on as being
reachable. The PDS is constructed as follows.

PDS rules Control flow modeled
〈q, [n0, s]〉 ↪→ 〈q, [n1, s′]〉 Intraprocedural CFG edge from node n0 in state s

to node n1 in state s′

〈q, [c, s]〉 ↪→ 〈q, [enterP, s][r, s′]〉 Call to procedure P from c in state s that returns
〈q[xP,s′], [r, s′]〉 ↪→ 〈q, [r, s′]〉 to r in state s′.
〈q, [xP, s′]〉 ↪→ 〈q[xP,s′], ε〉 Return from P at exit node xP in state s′

In our case, to obtain a witness trace, we merely use the witness trace re-
turned by the PDS reachability algorithm to determine if a PDS configuration
〈q, [n, ERROR]〉—where n is a node in the interprocedural CFG—is reachable
from the configuration 〈q, entermain〉.

Because the PDS used for reachability queries is based on the results of
VSA, which computes an overapproximation of the set of reachable concrete
memory states, the witness traces provided by the reachability algorithm may
be infeasible. In our experiments, only for configuration “�” were the witness
traces for kbfiltr and moufiltr feasible. (Feasibility was checked by hand.)

This approach is not specific to VSA; it can be applied to essentially any
worklist-based dataflow analysis algorithm when it is extended with a property
automaton, and provides a conceptually low-cost mechanism for augmenting
such algorithms to provide witness traces.

7. RELATED WORK

To confine the scope of the article, we have not discussed several additional
techniques that are used in CodeSurfer/x86.
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—The use of affine relations [Müller-Olm and Seidl 2005] over registers to
obtain more precise value-sets for registers used in a loop. In particular,
if VSA identifies constraints on the value of a register that is used as a
loop-index variable, affine relations over registers can be used to propagate
these constraints to other registers used in the loop (see Lal et al. [2005] and
Balakrishnan [2007, Chapter 7, Section 2]).

—The use of affine relations over registers, global a-locs, and local a-locs to find
more precise value-sets for registers, global a-locs, and local a-locs used in a
loop.

—A technique, called GMOD-based merging [Balakrishnan 2007, Chapter 7;
Reps and Balakrishnan 2008], that increases the precision of abstract inter-
pretation of procedure calls.

—An abstraction of heap-allocated storage, called the recency abstraction
[Balakrishnan and Reps 2006]. This involves using more than one memory-
region per call-site on malloc, and overcomes some of the imprecision that
arises due to the need to perform weak updates, that is, accumulate infor-
mation via join, on fields of summary malloc-regions.

Information about memory accesses in executables. There is an extensive
body of work on techniques to obtain information from executables by means
of static analysis, including Amme et al. [2000], Backes [2004], Bergeron et al.
[2001, 1999], Cifuentes and Fraboulet [1997a, 1997b], Cifuentes et al. [1998],
Debray et al. [1998], Guo et al. [2005], Larus and Schnarr [1995], and Mycroft
[1999]. However, previous work on analyzing memory accesses in executables
has dealt with memory accesses very conservatively: generally, if a register
is assigned a value from memory, it is assumed to take on any value. VSA
does a much better job than previous work because it tracks the integer-valued
and address-valued quantities that the program’s data objects can hold; in
particular, VSA tracks the values of data objects other than just the hardware
registers, and thus is not forced to give up all precision when a load from
memory is encountered.

The work that is most closely related to VSA is the alias analysis algorithm
for executables proposed by Debray et al. [1998]. The basic goal of the algorithm
proposed by Debray et al. is similar to that of VSA: for them, it is to find an
overapproximation of the set of values that each register can hold at each
program point; for us, it is to find an overapproximation of the set of values
that each (abstract) data object can hold at each program point, where data
objects include memory locations in addition to registers. In their analysis, a
set of addresses is approximated by a set of congruence values: they keep track
of only the low-order bits of addresses. However, unlike VSA, their algorithm
does not make any effort to track values that are not in registers. Consequently,
they lose a great deal of precision whenever there is a load from memory.

The two other pieces of work that are closely related to VSA are the algorithm
for data-dependence analysis of assembly code of Amme et al. [2000] and the al-
gorithm for pointer analysis on a low-level intermediate representation of Guo
et al. [2005]. The algorithm of Amme et al. performs only an intraprocedural
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analysis, and it is not clear whether the algorithm fully accounts for depen-
dences between memory locations. The algorithm of Guo et al. is only partially
flow-sensitive: it tracks registers in a flow-sensitive manner, but treats mem-
ory locations in a flow-insensitive manner. The algorithm uses partial transfer
functions [Wilson and Lam 1995] to achieve context-sensitivity. The transfer
functions are parameterized by unknown initial values (UIVs); however, it is
not clear whether the algorithm accounts for the possibility of called procedures
corrupting the memory locations that the UIVs represent.

The xGCC tool [Backes 2004] analyzes XRTL intermediate code with the aim
of verifying safety properties, such as the absence of buffer overflow, division by
zero, and the use of uninitialized variables. The tool uses an abstract domain
based on sets of intervals; it supports an arithmetic on this domain that takes
into account the properties of signed two’s-complement numbers. However,
the domain used in xGCC does not support the notion of strides, that is, the
intervals are strided intervals with strides of 1. Because on many processors
memory accesses do not have to be aligned on word boundaries, an abstract
arithmetic based solely on intervals does not provide enough information to
check for nonaligned accesses.

For instance, a 4-byte fetch from memory where the starting address is in
the interval [1020, 1028] must be considered to be a fetch of any of the follow-
ing 4-byte sequences: (1020, . . . , 1023), (1021, . . . , 1024), (1022, . . . , 1025), . . . ,
(1028, . . . , 1031). Suppose that the program writes the addresses a1, a2, and a3

into the words at (1020, . . . , 1023), (1024, . . . , 1027), and (1028, . . . , 1031), re-
spectively. Because the abstract domain cannot distinguish an unaligned fetch
from an aligned fetch, a 4-byte fetch where the starting address is in the inter-
val [1020, 1028] will appear to allow address forging: for example, a 4-byte fetch
from (1021, . . . , 1024) contains the three high-order bytes of a1, concatenated
with the low-order byte of a2.

In contrast, if an analysis knows that the starting address of the 4-byte fetch
is characterized by the strided interval 4[1020,1028], it would discover that
the set of possible values is restricted to {a1, a2, a3}. Moreover, a tool that uses
intervals rather than strided intervals is likely to suffer a catastrophic loss of
precision when there are chains of indirection operations: if the first indirec-
tion operation fetches the possible values at (1020, . . . , 1023), (1021, . . . , 1024),
. . . , (1028, . . . , 1031), the second indirection operation will have to follow nine
possibilities, including all addresses potentially forged from the sequence a1,
a2, and a3. Consequently, the use of intervals rather than strided intervals in
a tool that attempts to identify potential bugs and security vulnerabilities is
likely to cause a large number of false alarms to be reported.

Static analysis of machine code is also a key component of tools to bound
the worst-case execution time (WCET) of programs [Wilhelm et al. 2008]. The
execution time of a program depends upon multiple factors, including the time
required for each instruction, the number of times an instruction executes, the
structure of the pipeline in the architecture, the number of cache misses at
each instruction, etc. To bound the WCET of a program as precisely as possible,
it is necessary to gather information about the possible execution behaviors of
the program. To analyze data-cache behavior (in particular, to determine how a
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given memory access in an instruction can change the state of the cache, which
is used to determine whether an access is always a cache hit or could be a cache
miss) an analyzer needs information about what concrete addresses could be
read from or written to.

Ferdinand et al. [2001] present a value-analysis algorithm to determine
the contents of registers and memory locations. Because the algorithm of
Ferdinand et al. needs concrete addresses to be able to track the state of the
data cache, their problem is mostly incompatible with the techniques that we
use in the VSA algorithm (Section 3), that is, tracking the values of a-locs (Sec-
tions 2.2 and Section 4) in terms of an abstract model of memory (Section 2.1).
As discussed in Section 2.1, the use of concrete memory addresses instead of
a-locs can sometimes be problematic for accesses to local variables.

In Ferdinand et al. [2001], the abstract domain for representing a set of con-
crete addresses is based on intervals. As discussed earlier, an abstract arith-
metic based solely on intervals does not provide enough information to check
for nonaligned accesses, which is why VSA is based on strided intervals (see
Section 3.1 and Balakrishnan and Reps [2004], and Reps et al. [2006]). Since
2006 [Ferdinand 2009], the aiT tool [] has used an abstract domain similar to
our strided-interval domain [Grewe 2008].

Xu et al. [2000, 2001] created a system that used theorem-proving tech-
niques to analyze executables in the absence of symbol-table and/or debugging
information. The goal of their system was to establish whether or not cer-
tain memory-safety properties held in SPARC executables. Similarly, there has
been other work based on logic to deal with self-modifying code [Cai et al. 2007],
embedded code pointers [Ni and Shao 2006], aliases [Brumley and Newsome
2006], and stack-based control abstractions [Feng et al. 2006].

Decompilation. Past work on decompiling assembly code to a high-level lan-
guage [Cifuentes et al. 1998; Chang et al. 2006] is also peripherally related to
our work. However, the decompilers reported in the literature are somewhat
limited in what they are able to do when translating assembly code to high-level
code. For instance, the work of Cifuentes et al. [1998] primarily concentrates
on recovery of (a) expressions from instruction sequences, and (b) control flow.
We believe that decompilers would benefit from the memory-access analysis
method described in this article, which can be performed prior to decompilation
proper, to recover information about numeric values, address values, physical
types, and definite links from objects to virtual-function tables [Balakrishnan
and Reps 2006]. By providing methods that expose a rich source of information
about the way data is laid out and accessed in executables, our work raises
the bar on what should be expected from a future best-of-breed decompilation
tool.

Analysis of source code. Dor et al. [2003] present a static analysis technique
(implemented for programs written in C) whose aim is to identify string ma-
nipulation errors, such as potential buffer overruns. In their work, they use a
flow-insensitive pointer analysis followed by a linear-relation analysis [Cousot
and Halbwachs 1978] to identify potential buffer overruns in string manip-
ulation operations. Rugina and Rinard [2005] have also used a combination
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of pointer and numeric analysis to determine information about a program’s
memory accesses.

There are several reasons why these algorithms were not suitable for the
problem that we faced. In our work, we are interested in discovering fine-
grained information about the structure of memory-regions. As already dis-
cussed in Section 3.1, it is important for the analysis to discover alignment
and stride information so that it can interpret indirect-addressing opera-
tions that implement field-access operations in an array of structs or pointer-
dereferencing operations. Because we need to represent nonconvex sets of num-
bers, linear-relation analysis is not appropriate. For this reason, the numeric
component of VSA is based on strided intervals, which are capable of repre-
senting certain nonconvex sets of integers.

Our analysis combines pointer analysis with numeric analysis, whereas the
analyses of Rugina and Rinard [2005] and Dor et al. [2003] use two separate
phases: pointer analysis followed by numeric analysis. An advantage of com-
bining the two analyses is that information about numeric values can lead to
improved tracking of pointers, and pointer information can lead to improved
tracking of numeric values. In our context, this kind of positive interaction is im-
portant for discovering alignment and stride information (refer to Section 3.1).
Moreover, additional benefits can accrue to clients of VSA; for instance, it can
happen that extra precision will allow VSA to identify that a strong update,
rather than a weak update, is possible (i.e., an update can be treated as a kill
rather than as a possible kill; refer to case two of Figure 4). The advantages of
combining pointer analysis with numeric analysis have been studied by Pioli
and Hind [1999]. In the context studied by Pioli and Hind, combining the two
analyses only improves precision. As discussed at the beginning of Section 3,
a combined analysis is essential because numeric and address-dereference op-
erations are inextricably intertwined in even simple instructions, such as one
that loads a local variable into a register: mov eax,[ebp-12].

Analysis in the presence of additional information. Several platforms have
been created for manipulating executables in the presence of additional in-
formation, such as source code and debugging information, including ATOM
[Srivastava and Eustace 1994], EEL [Larus and Schnarr 1995], Phoenix [],
and Vulcan [Srivastava et al. 2001]. Several people have also developed tech-
niques to analyze executables in the presence of such additional information
[Bergeron et al. 2001, 1999, Rival 2003]. Analysis techniques that assume ac-
cess to such information are limited by the fact that it must not be relied on
when dealing with programs such as viruses, worms, and mobile code (even if
such information is present).

Identification of structures. Aggregate Structure Identification (ASI) was
devised by Ramalingam et al. to partition aggregates according to a Cobol pro-
gram’s memory-access patterns [Ramalingam et al. 1999]. A similar algorithm
was devised by Eidorff et al. [1999] and incorporated in the Anno Domini sys-
tem. The original motivation for these algorithms was the year 2000 problem;
they provided a way to identify how date-valued quantities could flow through
a program.
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In our work, ASI complements VSA: ASI addresses the issue of identifying
the structure of aggregates, whereas VSA addresses the issue of overapprox-
imating the contents of memory locations. ASI provides an improved method
for the variable identification facility of IDAPro, which uses only much cruder
techniques (and only takes into account statically known memory addresses
and stack offsets). Moreover, ASI requires more information to be on hand
than is available in IDAPro (such as the range and stride of a memory-access
operation). Fortunately, this is exactly the information that is available after
VSA has been carried out, which means that ASI can be used in conjunction
with VSA to obtain improved results: after each round of VSA, the results of
ASI are used to refine the a-loc abstraction, after which VSA is run again,
generally producing more precise results.

Mycroft gives a unification-based algorithm for performing type reconstruc-
tion, including identifying structures [Mycroft 1999]. For instance, when a
register is dereferenced with an offset of 4 to perform a 4-byte access, the al-
gorithm infers that the register holds a pointer to an object that has a 4-byte
field at offset 4. The type system uses disjunctive constraints when multiple
type reconstructions from a single usage pattern are possible.

Mycroft points out several weaknesses of the algorithm due to the absence of
information about interprocedural side-effects, strides, and sizes of arrays. Fur-
thermore, Mycroft excludes from consideration programs in which addresses of
local variables are taken. This is a problematic restriction because it is a com-
mon idiom: in C programs, addresses of local variables are frequently used as
explicit arguments to called procedures (when programmers simulate call-by-
reference parameter passing), and C++ and Java compilers can use addresses
of local variables to implement call-by-reference parameter passing. It should
be possible to make use of Mycroft’s techniques in conjunction with those used
in CodeSurfer/x86. In particular, some of the issues discussed earlier could
be addressed using information obtained by the techniques described in this
article.

Miné [2006] describes a combined data-value and points-to analysis that, at
each program point, partitions the variables in the program into a collection of
cells according to how they are accessed, and computes an overapproximation
of the values in these cells. Miné’s algorithm is similar in flavor to the VSA-ASI
iteration scheme in that Miné finds his own variable-like quantities for static
analysis. However, Miné’s partitioning algorithm is still based on the set of vari-
ables in the program (which our algorithm assumes will not be available). His
implementation does not support analysis of programs that use heap-allocated
storage. Moreover, his techniques are not able to infer from loop-access patterns
(as ASI can) that an unstructured cell (e.g., unsigned char z[32] has internal
array substructures (e.g., int y[8]; or struct {int a[3]; int b;} x[2];).

In Miné’s work, cells correspond to variables. The algorithm assumes that
each variable is disjoint and is not aware of the relative positions of the vari-
ables. Instead, his algorithm issues an alarm whenever an indirect access goes
beyond the end of a variable. Because our abstraction of memory is in terms of
memory-regions (which can be thought of as cells for entire activation records),
we are able to interpret an out-of-bound access precisely in most cases. For
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instance, suppose that two integers a and b are laid out next to each other.
Consider the sequence of C statements “p = &a; *(p+1) = 10;”. For the access
*(p+1), Miné’s implementation issues an out-of-bounds access alarm, whereas
we are able to identify that it is a write to variable b. (Such out-of-bounds ac-
cesses occur commonly during VSA because the a-loc recovery algorithm can
split a single source-level variable into more than one a-loc, e.g., array pts in
Example 2.1.)

DDA/x86. DDA/x86 is the first known application of program analysis/
verification techniques to stripped industrial executables. Among other
techniques, it combines the IR recovery algorithms from CodeSurfer/x86
[Balakrishnan 2007; Balakrishnan and Reps 2004, 2007] with the path-
sensitive method of interpreting property automata from ESP [Das et al. 2002].

A number of algorithms have been proposed in the past for verifying prop-
erties of programs when source code is available [Ball et al. 2006; Ball and
Rajamani 2001; Blanchet et al. 2003; Das et al. 2002; Fischer et al. 2005;
Henzinger et al. 2002]. Among these techniques, SDV [Ball et al. 2006;
Ball and Rajamani 2001] and ESP [Das et al. 2002] are closely related to
DDA/x86. SDV builds a Boolean representation of the program using predi-
cate abstraction; it reports a possible property violation if an error state is
reachable in the Boolean model. In contrast, DDA/x86 uses value-set analysis
[Balakrishnan and Reps 2004; Balakrishnan 2007] (along with property simu-
lation) to over approximate the set of reachable states; it reports a possible
property violation if the error state is reachable at any instruction in the exe-
cutable. To eliminate spurious error traces, SDV uses counter-example-guided
abstraction refinement, whereas DDA/x86 leverages path sensitivity obtained
by combining property simulation and abstract interpretation. In this respect,
DDA/x86 is more closely related to ESP; in fact, the algorithm in Section 6.1 was
inspired by ESP. However, unlike ESP, DDA/x86 provides a witness trace for a
possible bug, as described in Section 6.2. Moreover, DDA/x86 uses a different
kind of abstraction refinement (see Sections 4 and Section 5).

Although combining the propagation of property-automaton states and ab-
stract interpretation provides a degree of path sensitivity, it was not always
sufficient to eliminate all of the false positives for the examples in our test
suite. Therefore, we also distinguished paths based on the abstract state (us-
ing the automaton shown in Figure 25) in addition to distinguishing paths
based on property-automaton states. While the results of our experiments are
encouraging, it required a lot of manual effort to reduce the number of false
positives: spurious error traces were examined by hand, and the automaton in
Figure 25 was introduced to refine the abstraction in use. For DDA/x86 to be
usable on a day-to-day basis, it would be important to automate the process of
reducing the number of false positives. Several techniques have been proposed
to reduce the number of false positives in abstract interpretation, including
trace partitioning [Mauborgne and Rival 2005], qualified dataflow analysis
[Holley and Rosen 1981], and the refinement techniques of Fischer et al. [2005]
and Dhurjati et al. [2006]. All of these techniques are potentially applicable in
DDA/x86.
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Shared data structures. The use of shared data structures to reduce the space
required for program analysis has a long history; it includes applicative shared
dictionaries [Myers 1984; Reps et al. 1983], shared set representations [Pugh
1988], and binary decision diagrams [Bryant 1986; Burch et al. 1990]. Recent
work that discusses efficient representations of data structures for program
analysis includes Blanchet et al. [2003] and Manevich et al. [2002].

8. CONCLUSIONS

In recent years, the topic of improving programmer productivity and software
reliability has become one of the main focal points of programming language
and compiler research. However, most analysis efforts have focused on pro-
grams for which source code is available; the problem of analyzing executables
has received much less attention. The methods presented in this article help to
fill that gap.

The main focus of this article is on algorithms that recover intermediate
representations (IRs) from an executable that are similar to the ones that would
be obtained by a compiler if we had started from source code. Just as the IRs
created by a compiler form the backbone of tools for analyzing source code, the
IRs recovered using our algorithms form the backbone of tools for performing
further analysis of executables. Moreover, because the IRs recovered by our
algorithms are similar to the IRs created by a compiler, it is also possible to
leverage techniques from source-code analysis to the analysis of executables,
making adaptations as needed.

There are multiple challenges when the goal is to recover suitable IRs from
an executable. In this article, we outlined the challenges and presented our so-
lutions that address these challenges. Section 2 presented an abstract memory
model for analyzing executables, and introduced variable-like entities, referred
to as a-locs, which serve as proxies for the program’s actual variables. Section 3
presented various algorithms to obtain information about memory accesses
in an executable. Section 4 presented an improved a-loc recovery algorithm.
Section 5 presented an abstraction refinement algorithm, which iteratively
improves both the set of a-locs in use, as well as the precision of the results
obtained via the algorithms presented in Section 3. Not all of our techniques
could be presented in this article; references to enhancements and variations
are given in several places (e.g., see Footnote 6 and the list at the beginning of
Section 7).

Overall, the techniques that we developed are reasonably successful at pro-
viding a foundation for performing a variety of analyses on executables. In
particular, the experiments reported on in Section 4.9 showed that there was
substantial agreement between the a-locs discovered for an executable and the
variables of the original source-level program. With the additional techniques
presented elsewhere [Balakrishnan 2007, Chapter 7], we were able to recover
information that is useful for static analysis at over 80% of the indirect memory
accesses in an executable.

Moreover, our techniques opened up new opportunities for analyzing exe-
cutables. Prior to our work, several analysis problems on executables had not
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been addressed using principled static analysis techniques; only ad hoc solu-
tions had been proposed. For instance, Cifuentes and Fraboulet [1997b] give
an algorithm to identify an intraprocedural slice of an executable by following
the program’s use-def chains. However, their algorithm makes no attempt to
track values that are not in registers, and hence cuts short the slice when a
load from memory is encountered. In contrast, we used our analyses to cre-
ate CodeSurfer/x86 [Balakrishnan et al. 2005a], the first program-slicing tool
for executables that can help with understanding dependences across memory
updates and memory accesses.

As described in Section 6, we were able to extend CodeSurfer/x86 to cre-
ate DDA/x86 [Balakrishnan and Reps 2008], which represents the first auto-
matic program verification tool for stripped executables. DDA/x86 allows one
to check that a stripped executable conforms to an API-usage rule specified
as a finite-state machine. The experiments reported on in Section 6.2 showed
that DDA/x86 was able to verify the absence of bugs for the majority of our
test cases. In the test cases that had real bugs, it was able to find a useful
counterexample sequence in the executable.

The CodeSurfer/x86 platform has been used for a number of other appli-
cations as well, including extracting file formats from executables [Lim et al.
2006] and determining summaries for library functions [Gopan and Reps 2006].
It has also been used by other researchers to identify the propagation mecha-
nisms and payloads of worms [Brown et al. 2007].

Despite these successes, there is room for improvement. When implementing
the abstract transformers for CodeSurfer/x86’s various static-analysis compo-
nents (VSA, ASI, ARA, etc.), it was a major headache to maintain consistency
among the various abstract semantics. Both the size of the x86 instruction set
and the complexity of the abstract domains involved contributed to the prob-
lem. Furthermore, to port CodeSurfer/x86 to a new instruction set, for each
abstract semantics it would have been necessary to hand-code new abstract
transformers for the new set of instructions. Overall, to support m abstract do-
mains and n instruction sets (each of size is, to simplify matters), the amount
of work involved is m× n× is.

To address this problem, Lim and Reps [2008] developed the Transformer
Specification Language (TSL) system. With TSL, one specifies (i) the concrete
semantics of each instruction set (using an ML-like language to write an inter-
preter for each instruction set), along with (ii) a description of each abstract do-
main. From these inputs, the TSL system generates consistent abstract trans-
formers for each abstract domain automatically. Therefore, instead of writing
m× n× is transformers, the TSL user only needs to perform m+ n× is work:
he must provide n× is concrete transformers to specify the concrete semantics
of n instruction sets, and also write the specifications of m abstract domains.
Consequently, TSL considerably reduces the effort required to create multi-
ple versions (for different instruction sets) of a system, like CodeSurfer, that
contains multiple analysis components.

Another area in which there is room for improvement concerns the nature
of the VSA domain. Unlike abstract domains such as the polyhedral domain
[Cousot and Halbwachs 1978], the VSA domain does not track intervariable
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relationships. One of the main issues that we faced in our work is the loss of
precision due to the nonrelational nature of the VSA domain. We overcame
some of the precision loss by (i) using information from auxiliary analyses,
such as affine-relation analysis [Müller-Olm and Seidl 2005; Lal et al. 2005]
and GMOD analysis [Cooper and Kennedy 1988; Reps and Balakrishnan 2008],
and (ii) splitting abstract states at each program point based on an automaton
(see Section 6.1). However, in all of these cases it required a lot of manual
effort to identify the right combination of analyses and partitioning of the VSA
states to achieve the desired level of precision. It would be useful to automate
the process of tuning the analyzer based on the analysis problem at hand.
Abstraction-refinement techniques, such as those of Henzinger et al. [2004],
Fischer et al. [2005], and Dhurjati et al. [2006], have been successfully used in
source-code analysis tools. We believe that CodeSurfer/x86 would be even more
useful if such abstraction-refinement techniques are combined with the VSA
algorithm and the other analyses already incorporated in CodeSurfer/x86.
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