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The PowerPC 603 MICroprocessor

In October 1993, Motorola and IBM unveiled the first low-power version of the PowerPC
family—the PowerPC 603 microprocessor. Measuring a mere 85mm? (7.4 x 11.5 mm) in

size, the 603 contains 1.6 million transistors and consumes less than 3 watts of power
when operating at 80MHz. With estimated performance values of 75 SPECInt92 and 85
SPECp92, the 603 is comparable in performance to present-day high-end personal

computer and workstation processors. This member of the PowerPC family is designed

to bring high-performance and low-power capabilities to the laptop and low-cost desktop

computer markets.

Following closely on the heels of its
predecessor, the PowerPC 601 micro-
processor [1], the 603 microprocessor
was developed at the joint Motorola/
IBM/Apple Somerset Design Center
in Austin, Texas. The 603 microarchi-
tecture evolved from Apple, IBM,
and Motorola's collective experience
on several past designs. The similar-
ity of the POWER and PowerPC ar-
chitectures permitted the use of sam-
ple traces generated by RISC
System/6000 machines for evaluation
of design trade-offs. The compiler
groups also provided their insight to
ensure the traces from the past gen-
eration of processors and compilers,
with their own specific peculiarities,
did not misguide the 603’s microar-
chitecture definition, and that trade-
offs selected were appropriate for the
next generation of compilers.

To accelerate the design and test
process, engineers emploved a formal

VLSI design methodology derived
from the best of both IBM and Moto-
rola’s CAD tools. These tools enable
both the rapid design and dense
packing capability necessary to pro-
duce very high-volume, high-yield
microprocessors for the commercial
market. The 603 design team em-
ployed a combination of custom cir-
cuitry (for arrays), library compo-
nents (for data paths), and standard
cell place and route {for random
logic) to accomplish the 603 design.

Using the best tools and methodol-
ogy available, the design team took
the 603 from concept to working sili-
con in 18 months. Ongoing design
evaluation and debugging, including
simulation of 28 billion processor cy-
cles prior to tape-out, provided fully
functional first-pass silicon that ran at
the design target speed of B0MHz.

The PowerPC 603 microprocessor
is manufactured by Motorola in Aus-
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tin, Texas, and by IBM in Burlington,
Vt. Motorola and IBM both fabricate
the 603 using a 0.5um, 4-level metal,
3.3VDC CMOS process with design
rules compatible with both compa-
nies’ semiconductor processes. The
die is designed to be packaged
in either a 240-pin ceramic quad flat
pack or a ball-grid array package. Fig-
ure 1 is a photograph of the 603 die.

Functional Overview

The 603 is the first processor in the
PowerPC family to fully support the
PowerPC Architecture. It incorpo-
rates five execution units: branch, in-
teger, floating-point, load/store, and
system register; and a pair of on-chip
8KB instruction and data caches.

Flgure 1. PowerPC 603 micropro-
cessor die photograph
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Since the 603 is a super-scalar micro-
processor, it 1s capable of issuing and
retiring as many as three instructions
per clock to these execution units.
For increased performance, the 603
allows instructions to be executed
out-of-order. Additionally, the 603
provides programmable power re-
duction modes that permit systems
designers the flexibility of imple-
menting a variety of power manage-

ment techniques. A block diagram of

the 603 is shown in Figure 2.

Instructions are dispatched
order to one of the five execution
units. If there are no operand depen-
dencies, execution occurs immedi-
ately. The integer unit executes mosl
instructions in  one cycle. The
floating-point unit is pipelined and
executes both single and double pre-
cision  floating-point  operations.
Branch resolution is handled by the
branch unit. If the branch conditions
are available, branches are immedi-
ately resolved; otherwise, instruction
execution continues speculatively.
Instructions that modify the proces-
sor control registers are executed by
the system register unit. Finally, data
movement between the data cache
and the general-purpose and
floating-point registers is handled by
the load/store unit.

In case of cache misses, the caches
access main memory through a 64-bit
high-performance bus similar to that
of the MC88110 [8]. To maximize
throughput and thus increase overall
performance, the cache communi-
cates with memory mostly via burst
operations that allow a cache line to
be filled in one transaction.

After an instruction finishes execu-

n-

ton in an execution unit, its results
are forwarded to a completion buffer,
and then subsequently written to the
appropriate register file set when the
instruction is retired from the com-
pletion buffer. To avoid register con-
tention, the 603 provides separate
32-entry integer general-purpose
registers (GPRs) and floating-point

register (FPRs) sets for the storage of

operands.
The following sections discuss in

Figure 2. Block diagram of the
PowerPC 603 microprocessor

The

more detaill the tactors that contrib-
ute to the efficient flow of instructions
and data through the 603.

Instruction Pipeline

Figure 3 shows the 603’s instruction
pipelines for several types of mstruc-
tions.

Fetch stage. During this stage, the
instruction fetcher retrieves two in-
structions at a time from the instruc-
tion cache (regardless of alignment),
unless the address points to the last
word of a cache line, in which case

Making o F the Powerpc

detects that an instruction is tagged as
having caused an exception, it flushes
the pipeline and initiates exception
processing. Otherwise, it retires com-
pleted instructions and removes
them f{rom the completion buffer.
Because the completion logic retires
all instructions in program order, all
exceptions are fully precise.

Functional Units

Dispatch unit. The instruction flow
diagram is shown in Figure 4. In-
structions are fetched two per cycle

only a single word is returned. from the instruction cache, and
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Decode/Source stage. During this
stage, the dispatcher and branch unit
decode instructions, allocate rename
registers, read available source oper-
ands, and dispatch instructions to
their respective execution units (or
reservation stations).

Execute stage. During this stage,
the execution units execute instruc-
tions and write results back o the
destination rename registers. If the
data i1s needed as a source operand
for another instruction, the data is
forwarded immediately to the re-
questing unit. When the execution
unit finishes with an instruction it
notifies the completion buffer thar
the instruction is finished and tags
the instruction if any exceptions
occurred.

Completion stage. During this final
stage, the completion buffer logic
writes the contents of any renamed
registers into the architectural regis-
ters. It then deallocates rename regis-
ters and returns them to the pool for
future use. If the completion logic

Figure 3. PowerPC 603 micropro-
cessor master instruction pipe-
line

placed in a instruction
queue. On arrival at the instruction
queue, branch instructions are imme-
diately forwarded to the branch pro-
cessing unit for resolution. All other
instructions are issued from the in-
struction queue at the rate of two per
cycle if there is no resource conten-
tion (for example, a busy execution
unit, or a full completion queue).

The instruction dispatcher de-
codes the bottom two entries of the
queue and dispatches up to two in-
structions per cycle, in program
order, to either the integer unit,
floating-point unit, load/store unit, or
system unit. If the instruction dis-
patcher finds an execution unit busy,
it does not dispatch the instruction
and stalls. There are several mecha-
nisms in the 603 to avoid dispatch
stalls.

SIX-CNLry
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To avoid dispatch stalls due to op-
erand dependencies, the 603 has
single-entry zero-latency reservation
stations associated with each execu-
tion unit. The reservation station
holds the instruction until all oper-
ands are available. This allows the
dispatcher to dispatch subsequent
instructions to other execution units
without stalling the instruction
queue.

In addition to dispatching instruc-
tions, the dispatcher allocates rename
buffers and coordinates pipeline
stalls. Rename buffers provide tem-
porary storage for the results of an
instruction’s execution. Register re-
naming helps avoid stalls on register
write-after-write and write-after-read
hazards. In addition, the rename
buffers simplify exception recovery
by allowing the 603 to invalidate re-
sults of speculative instruction execu-
tion without affecting the contents
of the general registers, floating-
point registers, and processor control
registers.

When the instruction queue is rela-
tively full, the branch unit decodes
instructions upstream from those
being decoded by the dispatcher. For
taken branches, the instruction queue
usually contains enough instructions
to keep the dispatcher busy until the
new instruction stream is fetched.
Thus, from the dispa[cher’s perspec-
tive this allows basic blocks to be con-
nected without ever seeing the
branch instruction or the fetch pen-
alty. Once dispatched, the dispatcher
transters control of the instruction’s
execution to the execution unit, and
control of the overall instruction
stream to the completion buffer logic.

Execution units. The branch unit
decodes the fetched instructions and
executes most branch instructions in
a single clock. It also retires and elim-
inates from the instruction queue
(branch folding) branches that do not
modify branch-related resources such
as the Link or Count registers. The
Link register contains the return
address from a branch instruction.
The Count register is a loop counter
that is used by some branch instruc-
tions.

The branch unit has its own facili-
ties for calculating the branch target
address. Conditional branches in the
PowerPC Architecture depend on a

the Powerpc

counter-register (CTR) value and/or
any one of 32 condition register (CR}
bits.

If the CTR value is unavailable, the
branch unit and instruction fetching
is stalled (not likely to occur very
often). If a CR bit is unavailable, the
branch unit predicts either the taken
or fallthrough path based on bits in
the branch opcode. These predicted
instructions are tagged as speculative
and proceed down the pipeline nor-
mally. The unavailable CR bit that
initiated speculative execution is
checked each cycle. When the CR bit
becomes available and the branch re-
solves, the branch unit flushes all
speculative tagged instructions from
the pipeline if the branch was mispre-
dicted, or simply clears all speculative
tags if the branch was correctly pre-
dicted. The branch unit can only re-
solve a single CR bit at a time, thus it
can only speculate down one condi-
tional branch path at a time.

The integer unit processes integer
arithmetic, logical, and bit-field in-
structions. All integer instructions are

single cycle with the exception of

multiply and divide, which requires 2
to 6 (data-dependent) and 37 proces-
sor clock cycles respectively.

The load/store unit handles load and
store instructions to and from both
the integer and floating-point regis-
ters. It contains a dedicated adder for
the calculation of effective addresses,
and the logic required for data align-
ment to and from the cache.

The load/store unit is fully pipe-
lined so that loads can be dispatched
at the rate of one per clock cycle.
Loads have a two-clock-cycle latency,
a half cycle to compute the effective
address, one cycle to access the data

cache and MMU, and another half

cycle to write the result into the re-
name register,

Since the load/store unit cannot
write to the cache until after checking
for memory protection violations, it
does not execute store instructions in
a fully pipelined manner. During the
execution stage, the load/store unit
calculates the effective address and
translates the address to check for
memory protection violations. On the
next clock cycle, the store advances to
a holding buffer, where it waits for
the completion logic to retire the in-
struction and enable writing data to
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the cache.

The 603 takes advantage of the
PowerPC Architecture’s weakly or-
dered memory model and allows load
instructions to bypass pending stores
in order to minimize stalls due to load
data hazards. (Of course, loads which
may potentially access the same loca-
tion as the pending store are not al-
lowed to bypass in order to preserve
correct program operation.)

The floating-point unit is fully pipe-
lined with single-cycle throughput
and three-clock-cycle latency for all
single-precision instructions (except
divide) and double-precision adds,
subtracts, and compares. The first
stage of the pipeline performs oper-
and alignment and multiplication,
the second stage performs addition,
and the third stage rounds and nor-
malizes the result. For double-preci-
sion multiplies and multiply-adds,
the first pipeline stage is iterated
twice, providing two-clock-cycle
throughput and four-clock-cycle la-
tency. Divides are nonpipelined and
stall the floating-point unit for 18
clock cycles for single-precision oper-
ations and 33 clock cycles for double-
precision operations.

The floating-point unit supports
denormalized numbers in hardware.
Since denormalized results require
more time to process, a special non-
IEEE mode provides a means to co-
erce denormalized results to zero.
This eliminates data-dependent in-
struction execution time that would
disrupt real-ime data processing.

The primary function of the system
register unit is to process the condi-
tion-register-logical instructions and
the move operations to or from the
SPRs. These instructions execute in
one to three cycles, and are serializ-
ing in nature (that is, all preceding
instructions must have been com-
pleted and retired). As a result they
have somewhat less performance
than might otherwise be expected.
However, given the relatively infre-
quent use of instructions executed by
the system register unit, the trade-off
was made in favor of reduced com-
plexity and silicon costs.

Completion buffer. The completion

Figure 4. PowerPC 603 micropro-
cessor instruction flow



PO i Rl
| b |- '
P .| Branch unit
—————— ] '
y - '
2
: : Instruction Queue
Aty 1 (In Program Order)
[,
C letion Buffer Assignment
i._......oT.p ______ gy e Ao Dispatch
|
|
|
: FPU
| Co T !
} LSU -
|
Bttt LAy ot - ' re i -
| ; ! : :
I "{‘ ¥ SYSu U ==1-"
e U e i [ ' " ' y 0T T ' y T " |
l : ] 1 ! ] I I 1
| S , P | [ Y | b e == =4 [ YR———_ |
! N
|
| Store Queue
| l Finish
[ \ J
| ===
I ' :
——————————————— e B
Lo ! Completion Buffer
: (In Program Order)

¢ l Complete (Retire)

CommumEnTIons o8 Ty Aem Junc 1994/Vol.37, No6 39



603 Features

Superscalar Instruction Processor

¢ 2 instructions fetched per clock
* 5 independent execution units

—branch, integer, floating-point, load/store, and system
* 3 instructions issued per clock (2 dispatched plus 1 branch)
* 2 instructions retired per clock plus branch folding

32, 32-bit general registers and 32, 64-bit floating-point registers
3-stage pipelined floating-point unit

—floating-point denorm support in hardware

» 2-stage pipelined load-store unit
—Iloads bypass stores
—single entry store buffer

« Static branch prediction and speculative execution

Memory System:

* 8K, 2-way set associative, 32-bytes/line, instruction cache

« 8K, 2-way set associative, 32-bytes/line, copyback data cache

* Support for big-endian and little-endian addressing

* 64-entry, 2-way set associative, instruction TLB

* 64-entry, 2-way set associative, data TLB
—hardware-assisted software table walk for TLB reloads

« 4 instruction block address translation registers (IBAT)

* 4 data block address translation registers (DBAT)

* 16 segment registers

* 64-bit, pipelined, split transaction, burstable external bus with parity

* 32-bit data bus option

» Internal clock multiplier 1x, 2x, 3x, 4x

System Features:

« Power Down modes (DOZE, NAP, SLEEP)

* JTAG Interface
* On-chip hardware debug support

buffer tracks instruction execution,
retires fimshed instructions, and con-
trols writing of the contents of re-
named registers to the architectural
registers.  The completion  buffer
tracks up to five instructions at a time
and can retire up to two nstructions
each clock cycle. Because instructions
may execute out of order, the com-
pletion buffer provides an ordering
that

completion appear sequential, and

mechanism makes instruction
provides a mechanism for precise
exception handling for PowerPC 603
MICTOPrOCEssSOr systems.

Memory Subsystem

The memory subsystem provides the
mstructions  for the nstructon
fetcher and darta
unit.  Efficient

for the load/store
access  between  the
caches and memory systems is pro-
vided by the MMU, and the external

bus interface.

Caches and Memory Management

The 603 incorporates two 8KB,

2-way set associative, 32-byte per line
on-chip caches, one lor instructions
and one for data. On a cache hit, the
instruction cache can provide 2 in-
structions per cycle to the instruction
queue, and the data cache can pro-
vide up to a double-word of data to
the load/store unit per cycle.

I'he data cache supports copy-back
or write-through Both
caches use aleast recently used (LRU)

policies.

replacement policy. On a cache miss,
the 603°s cache blocks are filled in
four beats of 64 bits each. The burst
fill is performed as a ‘critical-double
word-lirst” operation; the critical dou-
ble word is simultancously written to
the cache and forwarded to the re-
questing unit, thus minimizing stalls

due to cache fill latency. In the case of

the data cache, the burst operation is
also used to write-back a moditied
cache line to memory.

Since the 603 was not specifically
targeted for multiprocessing applica-
tions, the 603 design restricted cer-
tain aspects of data cache coherency
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in order to save silicon area. Although
the data cache only supports a three-
state. MEI (modified, exclusive, in-
valid) cache coherency protocol, it is
compatible with full MEST (modified,
exclusive, shared, invalid) caches on
the same bus. Additionally, the data
cache implements only a single set of
cache tags which must be arbitrated
for between snooping operations and
load/store activity, with priority given
Lo SNOOp Operatons.

The load/store unit provides the
data transfer interface between the
data cache and the GPRs and the
FPRs. In addition the load/store unit
provides all logic required to calcu-
late effective addresses, handles data
alignment to and from the data
cache, and provides sequencing for
load-and-store string and multiple
operations. The caches provide a 64-
bit interface to the instruction fetcher
and load/store unit.

For faster translation of addresses,
the 603 provides two four-entry, fully
associative block address translation
registers, and two 64-entry, 2-way set
associative  translation  look-aside
buffers (TLBs) for instructions and
data. The 603 uses software to per-
TLB hash
function is used for the replacement
policy. When a TLB miss occurs, the

form 1‘cplu(:cmenls. A

processor takes a special exception to
the software tablewalk handler. This
handler walks through the page ta-
bles to locate and reload the neces-
sary page table entry into the TLB.
Additionally, the 603 has dedicated
scratch pad registers that can be used
to shadow general-purpose registers
during software tablewalks. Through
hardware assist, the entire tablewalk
routine fits in two cache lines of mem-
ory and provides a low-cost, flexible,
and fairly fast TLB reload capability.

External Bus Interface

The 603’s external bus is compatible
with the 601 [1], which was derived
from Motorola’s 88110 multiproces-
sor bus [8]. The 603’s bus interface
unit (BIU) receives requests for bus
operations from the instruction and
data caches, and executes the opera-
tions per the 603 bus protocol. Mem-
ory accesses can occur in single-beat
(1 to 8 bytes) and four-beat burst (32
bytes) data transfers when the bus is
configured as 64 bits, and in single-
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With the flexibility built into the PowerPC Architecture, we expect to

deliver a wide range of microprocessors all the way from low-cost

embedded controllers through massively parallel supercomputers.

beat (1 w 4 bytes), two-beat (8 bytes),
and eight-beat (32 bytes) data trans-
fers when the bus is configured as 32
bits.

The BIU provides address queues,
and prioritization and bus control
logic. It consists of an independently
arbitrated 32-bit address and 64-bit
data buses (the data bus can option-
ally be configured as 32 bits). The
603’s bus transaction consists of sepa-
rate address and data tenures. This
allows a variety of bus arbitration
schemes to be supported. Specifically,
the 603 supports address pipelining,
where the address tenure of a new
transaction is allowed to begin before
the data tenure of the current trans-
action has completed. The 603’s bus
interface also supports split transac-
tions, where the address and data
tenures can be arbitrated for and con-
trolled by different masters; and en-
veloped transactions, where the ad-
dress and data tenures of a new
transaction can occur after the ad-
dress tenure of a previous transaction
has ended, but before the data tenure
for the previous transaction has
begun. Enveloped transactions can
be used for deadlock prevention in
hierarchical bus environments, and
to speed snoop push operations.

The 603 bus protocol also supports
an address retry capability to support
an efficient snooping protocol for
memory coherency across the system.
In a multiple processor system, the
address retry can be used by a snoop-
ing master to interrupt another mas-
ter’s transaction on the bus. This be-
comes necessary when a bus master
begins a transaction to access data
that has been locally modified in the
603’s cache. The 603 (referred to as
the snooping 603) detects the access
to this modified memory region, and
uses the retry capability to force the
first master to abort its transaction
and retry it later. This enables the

snooping 603 to write back the modi-
fied data to memory for use later by
the bus master that has been retried.
The 603 bus interface also contains a
clock multiplier that enables the pro-
cessor to run at twice, three times, or
four times the external bus clock
speed.

Debug Features

The 603 incorporates a JTAG/IEEE
1149.1 boundary scan interface to
facilitate board-level testing. The 603
also incorporates a special interface
(accessible through the |TAG port)
that allows an external service proces-

sor to read or write memory or any of

the 603’s internal registers. A special
mode allows pipeline status informa-
tion to be displayed for tracking the
instruction stream in real tme. Addi-
tionally, a programmable instruction
address breakpoint is provided to as-
sist in software debugging.

Conclusion
The combined efforts of Apple, IBM,
and Motorola have been focused. on
creating PowerPC, a new RISC archi-
tecture that will form the basis of a
whole new generation of high-perfor-
mance, low-cost computers. With the
flexibility built into the PowerPC Ar-
chitecture, we expect to deliver a
wide range of microprocessors all the
way from low-cost embedded control-
lers through massively parallel super-
computers. The 603 is the first in a
series of PowerPC microprocessors
targeted at high-volume, low-cost,
portable and desktop personal com-
puters. It provides performance
heretofore available only in signifi-
cantly higher-priced, higher-cost,
and higher-powered processors. @
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