> Richard C. Waters and Elliot Chikofsky, Guest Editor.

Check for
Updates

http://crossmark.crossref.org/dialog/?doi=10.1145%2F175290.175291&domain=pdf&date_stamp=1994-05-01

everse engineering encompasses a wide array of tasks related to
understanding and modifying software systems. Central to these
tasks is identifving the components of an existing software svstem
and the relationships among them. Also central is creating high-
level descriptions of various aspects of existing systems. In line
with this, the heart of research on reverse engineering is the
development of tools and techniques for the analysis and repre-
sentaton of information about software systems.

The term “reverse engineering” is borrowed from hardware
development, where it is typically applied to the process of discov-
ering how other people’s systems work. However, in software
engineering, the term is used to describe the process of discover-
ing how your own systems work.

At first glance, the need to reverse engineer one’s own systems
seems 1o be an admission of failure, If our systems did what we
wanted them to, we would not need to change them, and so we
would not need reverse engineering if we had sufficiently com-
plete records of how our systems work.

Perhaps because of this negative aura, reverse engineering was
a neglected part of software engineering for a long time. Under
the banner ol “get it right the first time,” the focus for many
years has been on software productivity tools to aid in the con-
struction of new software systems.

However, there is a fatal flaw in the build-it-right-the-first-time
approach. While it is alwavs good o ry and do a good job, it is
not possible to get a system permanently correct, because it is not
possible to predict now what you will want the svstem to do five,
or even two, vears from now. This is particularly true in a climate

Hlustrations: Rico Lins Studio

in which the cost of computers is dropping so fast that every vear
opens new horizons for what a system will be able to do. Further,
while it is certainly valuable to capture information about how a
svstem works for future use, it is not possible o predict now every
question you are going to ask about the system in the future.

In any event, no matter what we might wish to be the case, the
undeniable reality of software svstem development is that vear
after year the lion’s share of effort goes into modifving and
extending preexisting systems, about which we usually know little,
That is to say, while many of us mav dream that the central busi-
ness of software engineering is creating clearly understood new
systems, the central business is really upgrading poorlv under-
stood old systems. By implication, reverse engineering is
arguably one of the most important parts of software engineer-
ing, rather than being a peripheral concern.

Over the past few vears a general recognition of the impor-
tance of reverse engineering seems to have emerged, with work
in the field growing by leaps and bounds. One outgrowth of this
burgeoning interest was the convening in May 1993 of the first
research conference devoted solely to reverse engineering.
Under the sponsorship of the ACM and the IEEE Computer
Society, this Working Conference on Reverse Engineering
(WCRE), brought together academic and industrial researchers
from around the world. The proceedings, available from IEEE
CS Press, is the most comprehensive collection of work on
reverse engineering to date. This issue of Communications
contains revised versions of several of the best articles from the
conference.

COMMUNICATIONS OF THE AcM My 199430l 37 No 5 23

24 May 1994/Vol.37, No.j) COMMUNICATIONS OF THE ACM

n This Issue

Reverse engineering attacks a range of problems [rom recovering
the high-level architecture of a svstem, to understanding the
details of the algorithms used, to ferreting out the business rules
embodied in a program. It is applied for a variety of reasons
from obtaining the information needed for rational svstem modi-
fication, to detecting the defects, to recovering components for
potential later reuse.

The articles chosen for this issue were selected to show the
breadth and potential of the field. Each one focuses on a partic-
ular aspect of reverse engineering, showing what can be done
and how it can be valuable. Although no one article surveys the
field as a whole, taken together, the authors in this special sec-
tion give a broad feel for the kinds of work being done.

Any particular application of reverse engineering occurs with-
in an organizational context and is needs-driven. Where a tradi-
tional collection of research papers would place articles on
applications at the end, if they appeared at all, in this issue we
take the opposite approach. Aiken, Muntz, and Richards exam-
ine the complexity of legacy systems within the U.S. Department
of Defense and lessons learned from the reengineering of data
requirements.

The central activity of reverse engineering is recovering infor-
mation of a wide varietv of types. Premerlani and Blaha explore
the analysis of existing relational database structures to identify
the underlying data model in an object notation. Ning,
Engberts, and Kozaczynski describe a technique for identifying
and extracting functional pieces of a Cobol program. For the
general reader, the keyv importance of these articles is their pre-

h"“"‘J“ ‘\u“-\ . .|-“\ 1\| y]“.1;”“-.“‘.\ -,.| wra ;,.._.-\l [T u_lw.n R e

sentation ol various kinds of tools that can be used to extract
information from programs.

A theme that runs through much reverse engineering work is
program improvement. Markosian, Newcomb, Brand, Burson,
and Kitzmiller describe the generation of smaller, functionally
cquivalent modules from large Cobol programs. Their work
demonstrates applving a tailorable commercial product to a par-
ticular reengineering strategy.

Most approaches to reverse enginceering are semi-automatic in
nature, Tools extract information, but people have to guide the
tools and decide what information to look for. Biggerstalf,
Mithander, and Webster discuss some of the problems of relating
implementation artifacts to the conceptual model of the human
obscrver, and how these issues influence the direction tools need
to take.

Under the rubric of program understanding, artificial intelli-
gence rescarchers seek to create fully automated reverse engi-
neering systems. Quilici examines an approach to recognition of
detailed programming plans (patterns) that combines top-down
and bottom-up strategies.

Richard C. Waters 15 a senior vesearch scientist al Mitsubishi Electvic Research Laboratories in

Cambridge. Mess, He may be veached ad (61710 621-7508; emarl: dick@merl com

Elliot J. Chikofsky is a principal at the DMR group in Waltham, Mass, and « lecturer in industrial
enganeering and mformation systems af Northeastern University in Boston. He may be veached at (617)
272-0046; emeail: chikofshy@comouter.org

