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SystemC is a system-level modeling language that offers a wide range of features to describe
concurrent systems at different levels of abstraction. The SystemC standard permits simulators
to implement a deterministic scheduling policy, which often hides concurrency-related design flaws.
We present a novel compiler for SystemC that integrates a very precise formal race analysis by

means of Model Checking. Our compiler produces a simulator that uses the outcome of the
analysis to perform partial order reduction. The key insight to make the Model Checking engine
scale is to apply it only to tiny fractions of the SystemC model. We show that the outcome of the

analysis is not only valuable to eliminate redundant context switches at runtime, but can also be
used to diagnose race conditions statically. In particular, our analysis is able to reveal races that
can remain undetected during simulation and is able to formally prove the absence of races.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verifi-

cation; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs

General Terms: Algorithms, Verification
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1. INTRODUCTION

Time-to-market requirements have pushed the Electronic Design Automation (EDA)
industry towards design paradigms that permit a very high level of abstraction.
This high level of abstraction can shorten the design time by enabling the creation
of fast executable verification models. This way, bugs in the design can be dis-
covered early in the design process. As part of this paradigm, an abundance of
C-like system design languages has emerged. A key feature of these languages is
joint modeling of both the hardware and software component of a system using a
language that is well-known to engineers. A promising candidate for an industry
standard is SystemC [IEEE Std 2005].
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SystemC offers a wide range of language features such as hierarchical design,
arbitrary-width bit-vector types, and concurrency with related synchronization
mechanisms. SystemC permits different levels of abstraction, ranging from a very
high-level specification with big-step transactions down to the gate level. The exe-
cution model of SystemC is driven by events, which start or resume processes. In
addition to communication via shared variables, processes can exchange informa-
tion through predefined communication channels such as signals and FIFOs.

SystemC programs make use of a C++ template library. SystemC modules are
therefore plain C++ classes, which are compiled and then linked to a runtime
scheduler, which is part of the library. Simulation of the system is performed by
execution of the compiled binary, which is simple and efficient.

The concurrency model of SystemC differs from that of SpecC or Handel-C. The
methods of a SystemC module may be designated as threads or processes. Interleav-
ing between those threads is only performed at pre-determined program locations,
e.g., at the end of a thread or when the wait() method is called. When multiple
threads are ready for execution, the ordering of the threads is nondeterministic.
Nevertheless, the SystemC standard [IEEE Std 2005] allows simulators to adopt
a deterministic scheduling policy. Consequently, the simulators might not explore
a problematic schedule, which often prevents the discovery of concurrency-related
design flaws.

When describing synchronous circuits at the register transfer level, system design-
ers can prevent races by restricting inter-process communication to deterministic
communication channels, offered by the SystemC library. However, the elimina-
tion of races from the high-level model is often not desirable. In practice, sys-
tem designers use constructs that yield races in order to model nondeterministic
choices implicit in the design. In particular, SystemC programs containing stan-
dard transaction-level modeling (TLM) are frequently subject to race phenomena.
TLM designs usually consist of components sharing communication resources and
competing for access to them. An example is a FIFO with two clock domains: the
races model the different orderings of the clock events that can arise. The current
industrial practice is to manually instrument the SystemC model with statements
that attempt to randomize the schedule chosen by the SystemC scheduler.

Contribution. Due to the combinatorial explosion of process interleavings, testing
methods for concurrent software alone are unlikely to detect bugs that depend on
subtle interleavings. Therefore, we propose a very precise method based on Model
Checking to statically precompute state predicates that predict race conditions,
and to use this information subsequently during the simulation run to prune the
exploration of irrelevant concurrent behaviors.

The literature suggests the use of light-weight static analysis as a prelude to sim-
ulation. For instance, Kundu et al. [2008] propose to compute the sets of variables
that are read or written by the processes. Owing to the use of a much more precise
analysis technique, we obtain process dependency conditions that are significantly
more accurate than read/write sets, and can result in a substantially reduced num-
ber of explored interleavings. The remaining interleavings are so few that they
can often be simulated exhaustively. We can control the degree of precision of our
analysis to trade precision for computational cost in a sound way.
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Precise process dependency conditions have applications that go beyond simula-
tion. Dependency conditions point to the exact source of interference between two
processes, and therefore provide valuable insights into the design. Our technique
can prove or refute process dependencies in cases that are easily missed by the
engineer or go undetected during simulation.

We have implemented this technique in Scoot [Blanc et al. 2008], a novel re-
search compiler for SystemC. The static computation of the dependency conditions
relies on a Model Checker, but the technique we propose is independent of the
specific formal analysis engine. We have performed our experiments using Sat-

Abs [Clarke et al. 2005], a SAT-based Model Checker implementing predicate ab-
straction, and CBMC [Clarke et al. 2003], a SAT-based bounded Model Checker.
Our experimental results indicate that precise dependency conditions can be com-
puted statically at reasonable cost, and often result in a simulation speedup of a
factor of ten or better.

Outline. We discuss related work in Section 2. Then we provide an overview
of the concurrency model of SystemC and background on partial-order reduction
in Sections 3 and 4, respectively. Details of our implementation are reported in
Section 5. Experimental results are reported in Section 6. We provide a formaliza-
tion of the semantics of SystemC by means of fixed-points in Appendix A.1. Using
this semantics, we present a condition for soundness of partial-order reduction for
SystemC in Appendix A.2.

2. RELATED WORK

Concurrent threads with nondeterministic interleaving semantics may give rise to
races. A data race is a special kind of race that occurs in a multi-threaded appli-
cation when several processes enter a critical section simultaneously [Netzer and
Miller 1992]. Flanagan and Freund [2000] use a formal type system to detect race-
condition patterns in Java. Eraser is a dynamic data-race detector for concurrent
applications [Savage et al. 1997]. It uses binary rewriting techniques to monitor
shared variables and to find failures of the locking discipline at runtime. Other
tools, such as RacerX [Engler and Ashcraft 2003] and Chord [Naik et al. 2006],
rely on classic pointer-analysis techniques to statically detect data races.

Model Checkers are frequently applied to the verification of concurrent applica-
tions, and SystemC programs are an instance; see [D’Silva et al. 2008] for a survey
on software Model Checking. Vardi [2007] identifies formal verification of SystemC
models as a research challenge. Prior applications of formal analysis to SystemC or
similar languages are indeed limited. We therefore briefly survey recent advances in
the application of such tools to system-level software. DDVerify is a tool for the
verification of Linux device drivers [Witkowski et al. 2007]. It places the modules
into a concurrent environment and relies on SatAbs for the verification. KISS is
a tool for the static analysis of multi-threaded programs written in C [Qadeer and
Wu 2004]. It reduces the verification of a concurrent application to the verification
of a sequential program with only one stack by bounding the number of context
switches. The reduction never produces false alarms, but is only complete up to a
specific number of context switches. KISS uses Slam [Ball and Rajamani 2002],
a Model Checker based on Predicate Abstraction [Graf and Säıdi 1997; Ball and
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Rajamani 2000], to verify the sequential model.
Verisoft is a popular tool for the systematic exploration of the state space

of concurrent applications [Godefroid 2005] and could, in principle, be adapted to
SystemC. The execution of processes is synchronized at visible operations, which
are system calls monitored by the environment. Verisoft systematically explores
the schedules of the processes without storing information about the visited states.
Such a method is, therefore, referred to as a stateless search. Verisoft’s support
for partial-order reduction relies exclusively on dynamic information to achieve the
reduction. In a recent paper, Sen et al. [2008] propose a modified SystemC scheduler
that aims to detect design flaws that depend on specific schedules. The scheduler
relies on dynamic information only, i.e., the information has to be computed dur-
ing simulation, which incurs an additional run-time overhead. In contrast, Scoot

statically computes the conditions that guarantee independence of the transitions.
The simulator can then test these conditions at runtime to detect reduction oppor-
tunities with little overhead.

Flanagan and Godefroid [2005] describe a stateless search technique with sup-
port for partial-order reduction. Their method runs a program up to completion,
recording information about inter-process communication. Subsequently, the trace
is analyzed to detect alternative transitions that might lead to different behaviors.
Alternative schedules are built using happens-before information, which defines a
partial-order relation on all events of all processes in the system [Lamport 1978].
The procedure explores alternative schedules until all relevant traces are discov-
ered. Helmstetter et al. [2006] present a partial-order reduction technique for Sys-
temC. Their approach relies on dynamic information and is similar to Flanagan
and Godefroid’s technique [2005]. Their simulator starts with a random execution,
and observes visible operations to detect dependencies among the processes and to
fork the execution. In contrast, our technique performs an extremely precise static
analysis that is able to discover partial-order reduction opportunities not detectable
using dynamic information alone. In addition, static analysis can reveal races that
are not exercised during simulation and is able to formally prove the absence of
races.

Kundu et al. [2008] propose to compute read/write dependencies between Sys-
temC processes using a path-sensitive static analysis. At runtime, their simulator
starts with a random execution in a way similar to Flanagan and Godefroid [2005]
and detects dependent transitions using the static information computed previously.
The novelty of our approach is to enhance this conventional, light-weight static anal-
ysis with Model Checking to compute sufficient conditions over the global variables
of the SystemC model that guarantee commutativity of the processes.

Wang et al. [2008] introduce the notion of guarded independence for pairs of
transitions. Their idea is to compute a condition (or guard) that holds in the states
where two specific transitions are independent. Our contribution in this context is
to compute these conditions for SystemC using a Model Checker.

3. THE SYSTEMC SCHEDULER

In this section, we first provide an informal review of the different phases of the
SystemC scheduling algorithm. A formalization of the relevant aspects of the con-
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currency model of SystemC using a fixed-point semantics is in Appendix A.1.
The dominating concurrency model for software permits asynchronous interleav-

ings between threads, that is, the scheduler can preempt processes. SystemC is
different as it is designed for modeling both asynchronous and synchronous sys-
tems. Its scheduler has a co-operative multitasking semantics, meaning that the
execution of processes is serialized by explicit calls to a wait() method, and that
threads are not preempted.

The SystemC scheduler tracks simulation time and delta cycles. The simulation
time is a positive integer value (the clock). Delta cycles are used to stabilize the
state of the system. A delta cycle consists of three phases: evaluate, update, and
notify.

(1) The evaluation phase selects a process from the set of runnable processes and
triggers or resumes its execution. The process runs immediately up to the
point where it returns or invokes the wait function. During the execution of
a process, immediate notification can generate additional runnable processes.
The evaluation phase is iterated until the set of runnable processes is empty.
The SystemC standard allows simulators to choose any runnable process, as
long as the policy is consistent between runs.

(2) In order to simulate synchronous executions, processes can delay change-of-
state effects by scheduling update requests. After the evaluation phase ter-
minates, the kernel executes any pending update request. This is called the
update phase. Signal assignments are typically implemented using the update
mechanism. Therefore, signals keep their value for an entire evaluation phase.

(3) Finally, during the delta-notification phase, the scheduler determines which
processes are sensitive to events that have occurred, and adds all such processes
to the set of runnable processes.

The scheduler executes delta cycles until the set of runnable processes is empty
at the beginning of the evaluation phase. Subsequently, it updates the simulation
time and notifies processes waiting for the time event.

4. PARTIAL-ORDER REDUCTION FOR SYSTEMC

4.1 A Motivating Example

Program 1 serves as running example and illustrates the need for a combination of
Model Checking and partial-order reduction. The module m declares two processes
guard and increment. The process guard watches the value of shared variable
pressure, which shall not exceed the value PMAX and is incremented by process
increment. Both processes are sensitive to the clock signal clk. The semantics
of the SystemC scheduler guarantees that a method process is executed without
interruption up to the point where it returns. Thus, the scheduler has to choose
either the scheduling sequence (guard; increment) or (increment; guard) each time
the clock is updated. Consequently, the pressure can exceed the limit if its value
reaches PMAX and process increment is triggered before guard. It is clear that the
number of traces grows exponentially with the number of clock cycles. As a result,
systematic exploration of all interleavings rapidly becomes unmanageable, and the
bad behavior might go unnoticed.
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Program 1 A SystemC module with a race condition

SC_MODULE (m){

sc_clock clk; int pressure ;

void guard() {

if( pressure == PMAX ) pressure = PMAX -1;

}

void increment (){ pressure ++; }

SC_CTOR (m) {

SC_METHOD (guard); sensitive << clk;

SC_METHOD (increment ); sensitive << clk;

}

};

A conventional static analysis can discover that guard reads the pressure and that
increment modifies the pressure, concluding that the processes are indeed depen-
dent and that all interleavings must be explored. In a similar way, a conventional
dynamic analysis can observe at runtime that guard reads the pressure and that
increment modifies the pressure, concluding that the alternative schedule needs to
be explored. However, such analyses fail to detect that guard and increment are
commutative in most cases. Our tool uses a Model Checker to compute the weakest
predicate over the pre-state variables that guarantees the absence of races between
the processes. In this example, it is easy to see that the execution of increment and
guard is commutative if and only if

pressure 6= PMAX − 1 ∧ pressure 6= PMAX

holds. Scoot generates a simulator for the systematic exploration of the state
space that checks this condition at runtime to avoid exploring redundant schedules.

4.2 Background on Partial-Order Reduction

Partial-order reduction is a technique to explore the state space of concurrent sys-
tems in a way that preserves the soundness of the verification result [Peled 1993;
1994; Godefroid 1996]. The key idea is to exploit commutativity of transitions to
obtain a subset of all possible interleavings from a state such that the reduced state
graph retains a representative behavior for each behavior that is removed. Scoot

uses partial-order reduction to generate a simulator that explores only necessary
interleavings. We briefly survey the standard definitions from the literature in this
section [Godefroid 1996].

The literature distinguishes between partial-order reduction based on persistent
sets and reduction based on sleep sets. The two approaches are orthogonal and
achieve better results when combined. Both techniques compute a subset of the
runnable transitions for each visited state and restrict future exploration to transi-
tions in this set.

We denote the set of states and the set of processes of the system by S and θ,
respectively. As explained above, we denote the set of enabled (runnable) processes
(transitions) in a state s by Enabled(s), i.e., Enabled is a mapping from S to P(θ).
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α

γ β
s0 γ β

α α α

γ β γ β

α

(1) Exploration using persistent sets

α

γ β
s0 γ β

α α α

γ β γ β

α

(2) Exploration using sleep sets

Figure 1: Example of partial-order reduction using persistent sets (1) and sleep
sets (2). The reduced state graph contains only the transitions depicted with solid
lines.

Definition 4.1. [Wang et al. 2008] Two transitions α and β are guarded inde-
pendent with respect to a guard φ ⊆ S if and only if for all s ∈ φ and t ∈ S the
following hold:

1. α ∈ Enabled(s) ∧ s
α
→ t ⇒

β ∈ Enabled(s) ⇔ β ∈ Enabled(t)

2. β ∈ Enabled(s) ∧ s
β
→ t ⇒

α ∈ Enabled(s) ⇔ α ∈ Enabled(t)
3. α, β ∈ Enabled(s) ⇒

〈s, t〉 ∈ α ◦ β ⇔ 〈s, t〉 ∈ β ◦ α

The first two conditions guarantee that α and β cannot disable nor enable each
other in s, while the third condition requires α and β to be commutative in s.
Composition α ◦ β of relations α and β is defined in the usual way. Transitions α
and β are independent in s if and only if α, β are guarded independent with respect
to the guard {s} [Godefroid 1996].

Scoot uses heavy-weight techniques such as Model Checking to compute the
condition φ. In addition, we also compute dependency relations between processes
using a (comparatively) light-weight data-flow analysis. It is important to note
that these dependency relations guarantee commutativity in any reachable state,
as formalized by Godefroid [1996]:

Definition 4.2. Let D ⊆ θ×θ be a symmetric and reflexive relation over the
transitions of the system. The relation D is a valid dependency relation for θ if and
only if (α, β) 6∈ D implies that α, β are independent in all reachable states.

The persistent-set reduction technique computes a set of runnable transitions in
each visited state and restricts the future exploration to transitions in this set
only [Godefroid 1996].

Definition 4.3. Let (S, S0, θ) be a transition system, and s0 ∈ S denote one of
its states. A set of transitions T ⊂ Enabled(s0) is persistent in s0 if and only if for

all β ∈ T and all sub-traces s0
α0→ s1

α1→ s2 . . . sn
αn→ sn+1 using transitions αi 6∈ T ,

β and αi are independent in si.

Persistent sets are usually computed using information from a preliminary light-
weight static analysis. The effects of the persistent-set technique are illustrated in
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Figure 2: Overview of Scoot

Figure 1.1. In state s0, the exploration uses the persistent set T = {α} to avoid
visiting some of the states. In contrast, the sleep-set technique maintains a set
of runnable transitions that can be skipped during the exploration (the sleep set).
The method is concerned with branching information from the past. Figure 1.2
shows a typical exploration using sleep sets. Unlike the persistent-set approach,
the sleep-set technique only reduces the number of explored transitions and has no
effect on the number of explored states. The exploration backtracks early when the
sleep set contains all runnable transitions. We formalize a soundness criterion for
partial-order reduction on SystemC models in Appendix A.2.

5. A SYSTEMC SIMULATOR WITH PARTIAL-ORDER REDUCTION

5.1 Overview of Scoot

Figure 2 provides a high-level overview of Scoot. We use an in-house C++ front-
end to translate the SystemC source files into a control flow graph (CFG). The front-
end of Scoot accepts a large subset of C++ including inheritance, overloading,
virtual functions, and many forms of templates.

Scoot abstracts implementation details of the SystemC library by using simpli-
fied header files that declare only relevant aspects of the API and omit the actual
implementation. Subsequently, Scoot uses static analysis techniques to discover
the module hierarchy, the sensitivity list of processes, and the port bindings. The
next step is to compute the process dependencies – we elaborate on this step in
Section 5.3. Finally, Scoot translates the CFG back to a flat C++ program, which
no longer requires the SystemC library. We use g++ to compile the C++ file and
to obtain an executable simulator.

We forbid dynamic creation of processes and dynamic modifications of sensitivity
lists (next trigger functions). The support for SystemC currently comprises static
creation of processes, static sensitivity lists, waiting using sensitivity lists, waiting
for a specific event, waiting for a certain amount of time, immediate notification,
delta notification, time notification, and communication channels such as sc signals,
sc fifos, and tlm fifos. We have a broad support for the general features of C++;
e.g., our support for STL container classes is described in [Blanc et al. 2007].
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Algorithm 1 Evaluation Phase: the call to guarded_independent() returns the
independence condition for pi and pj . This predicate, which is computed at compile
time using Model Checking, is evaluated at runtime by the function eval().

1 void evaluation_phase ()

Set sleeps := ∅;
3 while(runnable () 6= ∅) do

persistents := get_pers ();

5 awakes := persistents \ sleeps;

if(awakes= ∅) then exit (0);

7 Map next_sleeps ; // Process -> Set

for all (Process pi ∈ awakes) do

9 for all (Process pj ∈ sleep) do

if(eval ( guarded_independent (pi, pj )))

11 next_sleeps [pi] := next_sleeps [pi] ∪{pj};
end for

13 sleep := sleep∪{pi};
end for

15 Process p := nondet_select (awakes );

run(p);

17 sleeps := next_sleeps [p];

end while

Algorithm 2 Computation of persistent sets. The call to guarded_independent()

returns the independence condition for pi and pj , which is computed at compile
time using Model Checking. On line 7, the algorithm checks if this predicate is
syntactically different from “true”.

1 Set get_pers ()

Set persistents := runnable ();

3

for all(Process pi ∈ Runnable ()) do

5 Bool pers := false;

for all(Process pj) do

7 if(guarded_independent (pi, pj) 6= "true ") then

pers := true ; break;

9 end for

11 if(pers = false)

persistents := persistents \{pi};
13 end for

15 if( persistents = ∅) then

return select_first (runnable ());

17

return persistents ;
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5.2 A Scheduler with Partial-Order Reduction

Algorithm 1 is Scoot’s implementation of the evaluation phase. Our algorithm
performs partial-order reduction using persistent sets and sleep sets, and is a varia-
tion of techniques presented by Godefroid [1996]. In contrast to Helmstetter et al.
[2006], evaluation_phase() schedules runnable processes using information col-
lected statically to reduce the number of interleavings explored.

The evaluation phase terminates once the set of runnable processes is empty
(line 3). The scheduler calls get_pers() to compute the set persistents of persis-
tent processes (line 4). The subsequent part of the algorithm uses the set sleeps,
declared outside the main loop on line 2, to perform partial-order reduction. On
line 5, the set awakes consists of the persistent processes not in sleeps. If the set of
processes that are awake is empty (line 6), then other traces are covering all subse-
quent behaviors, and therefore, the simulator stops the execution. Otherwise, the
scheduler computes the sleep sets for the next iteration using the map next sleeps,
which maps processes to a set of processes (lines 7–14). One line 10, the call to
guarded_independent() returns the independence guard for the processes pi and
pj . This predicate, over the visible state of the system, is evaluated at runtime by
the function eval().

Scoot relies on Model Checking to compute a conservative condition that guar-
antees independence of the processes in the current state. The details of this pre-
computation are presented in the following subsection. In contrast, traditional
approaches need to rely on either executing the processes to determine which tran-
sitions are independent in the current state or on an imprecise data-flow analysis.

Finally, in lines 15–17, the scheduling algorithm nondeterministically runs a pro-
cess from the set awakes and computes the sleep set for the next iteration.

Algorithm 2 sketches the function get_pers(), which computes the set of per-
sistent processes1. On line 2, the set persistents of persistent processes is initialized
with the set of runnable processes (the enabled transitions). Subsequently, the al-
gorithm removes all independent processes, i.e., processes without dependencies,
from persistents to defer their execution, thus reducing the nondeterminism of the
system. On line 7, the algorithm checks if the independence guard for pi and pj

that is returned by guarded_independent() is different from “true”. If persistents
is empty at the end of the computation, the algorithm deterministically returns
a runnable process using the function select_first(). Otherwise, persistents is
returned.

5.3 Computing the Process Commutativity Conditions

We present an iterative technique to compute the commutativity condition for a
given pair of processes p1 and p2 based on formal analysis. The condition is checked
during simulation by Alg. 1. We reduce the definition of guarded independence
(Def. 4.1) to process commutativity by treating processes as always enabled (if a
process is not enabled then its execution simply does not modify the state). In
general, SystemC processes need not terminate, and thus computing the weakest
possible commutativity condition for a given pair of processes p1 and p2 is undecid-

1In addition, our actual implementation exploits invariant properties of the evaluation phase, e.g.,

signal values, to further reduce the set of persistent processes.
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Program 2 Harness for the analysis of race conditions for a given pair of processes
p1 and p2. The pre-condition φ is true initially, and is iteratively strengthened by
the algorithm in Fig. 3.

1 assume(φ);

s0 := current_state ;

3 p1(); p2();

s1,2 := current_state ;

5 current_state := s0;

p2(); p1();

7 s2,1 := current_state ;

assert(s1,2 6= s2,1);

able. We compute a conservative under-approximation by applying a verification
engine to the harness given as Program 2.

The basic idea of the harness is to run p1(); p2(), and compare the result with
the result of running p2(); p1() on the same initial state. The harness operates as
follows: Initially, φ is set to true. The assume statement in the first line restricts the
search to states that satisfy φ. The initial values of the visible variables are stored
in s0, the pair of processes p1(); p2() is run, and the resulting state is stored in s1,2.
The state is restored to s0, and p2(); p1() is run. The resulting state is stored in
s2,1. The assertion compares the states generated by the two process orderings.2

Note that SystemC distinguishes between method processes and threads. A
method process is executed without interruption up to completion, whereas a Sys-
temC thread can suspend its execution using wait statements. The construction of
the harness presented in Program 2 is straightforward for method processes, as no
context switch is taking place. We present a conversion technique to handle threads
in a similar way as method processes in Appendix B.

Scoot passes the harness to a verification engine to check the reachability of the
last line, which is modeled by means of an assertion. If the Model Checker returns
a counterexample, we have a trace π with an initial state satisfying the initial
condition φ, passing through both processes, and ending in a state that violates
the assertion. The path therefore begins in a state in which the two processes
are commutative. Scoot then computes the weakest precondition of s1,2 = s2,1

alongside that path. Let Pπ denote this condition. Observe that if s satisfies Pπ,
then the executions of p1(); p2() and p2(); p1() from the state s

(1) terminate and

(2) yield an equal state.

Consequently, Pπ is an under-approximation of the commutativity condition for p1

and p2. Scoot then strengthens φ using ¬Pπ, yielding φ′. This blocks any trace
that goes through the control locations of π. Scoot iterates this process until the
verification engine stops reporting counterexamples. At this point, the predicate
P =

∨

π Pπ represents the weakest condition such that the executions of p1(); p2()
and p2(); p1() terminate and that p1 and p2 are commutative.

2As an optimization, we restrict the state comparison to the memory regions that are modified
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Counterexample

Program

π

End

φ′

No trace
Model Checking

Strengthening φ

Figure 3: Iterative computation of the process commutativity condition using
a verification engine. The loop strengthens φ until the verification engine stops
reporting counterexamples.

5.4 The Running Example

We illustrate the execution of the strengthening loop presented in Figure 3 on
Program 1. In the first iteration, the verification engine verifies Program 3.1, and
reports a counterexample π following the lines 1, 2, 3, 5, 6, 7, 8, 9, 11.

Program 3 Harnesses verified during the first and second strengthening iteration
in Figure 3. Initially, the pre-condition φ over pressure is true. In the second
iteration, the pre-condition is set to pressure + 1 = PMAX ∨ pressure = PMAX .

1 assume(true );

2 s0 := pressure ;

3 if(pressure = PMAX )

4 pressure := PMAX -1;

5 pressure := pressure + 1;

6 s1,2 := pressure ;

7 pressure := s0;

8 pressure := pressure + 1;

9 if(pressure = PMAX )

10 pressure := PMAX -1;

11 s2,1 := pressure ;

12 assert(s1,2 6= s2,1);

(1) Initial harness.

1 assume(pressure + 1 = PMAX ∨
pressure = PMAX );

2 s0 := pressure ;

3 if(pressure = PMAX )

4 pressure := PMAX -1;

5 pressure := pressure + 1;

6 s1,2 := pressure ;

7 pressure := s0;

8 pressure := pressure + 1;

9 if(pressure = PMAX )

10 pressure := PMAX -1;

11 s2,1 := pressure ;

12 assert(s1,2 6= s2,1);

(2) Harness in the second strenghtening
iteration.

Subsequently, we compute the weakest pre-condition of s1,2 = s2,1 alongside π.
We use the following axiom schemata for assignments and assume statements, in

by the processes. These locations are determined by means of a standard data-flow analysis.
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backward reasoning style [Hoare 1969; Floyd 1967]:

{P [x/E]} x := E; {P}
R0

{P ∧ C} assume(C); {P}
R1

Figure 4 demonstrates the computation of the pre-condition Pπ alongside π. The
proof starts from line 11 with the condition s1,2 = s2,1.

1 assume(true);

{pressure + 1 6= PMAX ∧ pressure 6= PMAX}
2 s0 := pressure; R0

{pressure + 1 = s0 + 1 ∧ s0 + 1 6= PMAX ∧ pressure 6= PMAX }
3 assume(pressure 6= PMAX); R1

{pressure + 1 = s0 + 1 ∧ s0 + 1 6= PMAX }
5 pressure := pressure + 1; R0

{pressure = s0 + 1 ∧ s0 + 1 6= PMAX}
6 s1,2 := pressure; R0

{s1,2 = s0 + 1 ∧ s0 + 1 6= PMAX }
7 pressure := s0; R0

{s1,2 = pressure + 1 ∧ pressure + 1 6= PMAX}
8 pressure := pressure + 1; R0

{s1,2 = pressure ∧ pressure 6= PMAX}
9 assume(pressure 6= PMAX); R1

{s1,2 = pressure}
11 s2,1 := pressure; R0

{s1,2 = s2,1}

Figure 4: Computation of the pre-condition Pπ
∆
= pressure + 1 6= PMAX ∧

pressure 6= PMAX . The proof starts from line 11 with the post-condition s1,2 =
s2,1.

The algorithm then strengthens the set of initial sates in Program 3.2 with ¬Pπ to
block any counterexample alongside the same path. In this example, the strength-

ening loop terminates after one iteration, yielding the predicate P
∆
= pressure+1 6=

PMAX ∧ pressure 6= PMAX . Given a state s, this predicate evaluates to true if the
processes guard and increment are independent in s. Observe that our technique
enumerates only a subset of the feasible paths.

5.5 Implementation of the Strengthening Loop

In the following, we elaborate on our integration of the strengthening loop into
two Model Checkers, SatAbs and CBMC. Note that our approach is independent
of the particular verification engine. The general idea can be extended in different
directions: In Figure 3, we use the verification engine to compute terminating paths.
In a similar spirit, we can adapt the strengthening loop to operate on infinite traces
using a Model Checker for liveness properties such as Terminator [Cook et al. 2006],
or we can replace the Model Checker with a testing engine to discover terminating
traces, at the cost of precision.
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Strengthening using Predicate Abstraction. Predicate Abstraction is a technique
that abstracts a transition system by mapping sets of concrete states to a new,
smaller abstract state space in a way that conserves the relevant behaviors of the
system [Graf and Säıdi 1997; Ball and Rajamani 2000]. Each predicate in the
abstract model is represented by a Boolean variable, while the original variables
are removed. The abstract program is created using existential abstraction, which
is conservative for reachability properties. If the property holds on the abstract
model, it also holds on the original program. In case a trace in the abstract model
violates the property, the feasibility of the counterexample must be tested in the
concrete model. If the counterexample can be simulated on the original program, it
is reported to the user. The counterexample is called spurious if it does not corre-
spond to a concrete trace. In that case, a refinement procedure adds new predicates
in a way that removes the spurious trace from the abstract model. This process is
automated by Counterexample Guided Abstraction Refinement (CEGAR) [Clarke
et al. 2000] and promoted by the Model Checker Slam [Ball and Rajamani 2002].
Predicate abstraction has been applied to SpecC [Clarke et al. 2007] and Sys-
temC [Kroening and Sharygina 2005]. Figure 5 shows the integration of our tech-
nique into SatAbs. After strengthening, SatAbs retains the abstract model for
the following iterations.

φ′

trace

Abstract
prog.

New predicates

π
Spurious
trace

Concrete

Abstract trace
End

No trace
Concrete

program

Simulation

Model Checking

Refinement Strengthening φ

Abstraction

Figure 5: Iterative computation of the process commutativity condition using
predicate abstraction.

Strengthening using BMC. In Bounded Model Checking (BMC), a program and
a specification are jointly unwound up to a given bound k to form a formula that
is satisfiable if and only if the program paths with length k can violate a safety
specification [Biere et al. 1999]. This formula is then passed to a SAT solver. In
case the formula is satisfiable, the Model Checker constructs a counterexample for
the original program from the satisfying assignment. The method is complete only
if k exceeds the completeness threshold [Kroening and Strichman 2003].

We use CBMC as Bounded Model Checker [Clarke et al. 2003]. In some cases, the
symbolic simulator within CBMC is able to determine a sufficient depth automat-
ically; otherwise, it inserts assertions to verify that k is sufficiently large. CBMC
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combines bounded Model Checking with slicing techniques to remove statements
unrelated to the property that is checked.

Figure 6 illustrates the integration of our technique into CBMC. First, CBMC

unrolls the harness (Program 2) and builds a CNF formula for checking the reach-
ability of the assertion on the last line. Upon discovery of a counterexample π, we
compute the weakest precondition Pπ alongside π and strengthen the set of initial
states by adding blocking clauses to the Boolean formula.3

Counterexample

No Trace

Program

New Blocking Clauses
SAT Formula

EndStrengthening φ SAT Solver

Unrolling

φ′

π

Figure 6: Iterative computation of the process commutativity condition using
bounded Model Checking.

6. EXPERIMENTAL EVALUATION

In this section, we evaluate the benefits of integrating our partial-order reduc-
tion into a simulator that examines all schedules exhaustively using a backtracking
search. We define the precision of the dependency analysis in terms of the bound
that is set on the number of strengthening iterations. “Precision 0” indicates that
no iterations are performed, i.e., only the result of the light-weight analysis is used.
“Precision 1” means that one strengthening iteration is performed, and so on. “Full
Precision” stands for no strengthening limit. We also quantify the cost of the com-
putation of the commutativity condition using Model Checking.

The experiments that we present are difficult instances. Commutativity of pro-
cesses depends on control flow and data, and the computation of the condition is
susceptible to the state-space explosion problem. As a first step, our tool performs
a light-weight data-flow analysis to detect independent processes. This reduces the
burden on the heavy-weight verification engines. As a result, Scoot needs to run a
Model Checker only on very few pairs of processes per design. All our results are ob-
tained using a quad-core machine equipped with 3 GHz Intel Xeon processors (4 MB
cache per core), 8 GB of RAM, and Linux 2.6.20. We make the benchmarks and the
tool available for experimentation by other researchers at www.cprover.org/scoot/ .

3The SAT solver is operated in an incremental fashion, which allows it to retain all the clauses

learned in previous iterations.
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Figure 7: Total time and number of traces explored at runtime as a function of
the number of simulation steps, for the running example.

6.1 The Running Example

We continue our running example (Program 1). Figure 7 depicts the number of
explored traces as a function of the number of simulation steps using iterative
strengthening (“Full Precision”). We set PMAX to 10. The number of explored
traces corresponds to the number of backtracks. Our simulator performs a stateless
search, that is, backtracking is performed by restoring the initial state and replaying
the necessary transitions.

Using our technique, the number of traces explored during simulation grows
only quadratically with the number of steps, instead of exponentially. Note that
there is always a data dependency between the processes guard and increment at
runtime: Process guard always reads pressure and process increment always writes
to pressure. Consequently, traditional dynamic partial order reduction techniques
always need to fully explore the alternative schedule.

6.2 State Machine Benchmarks

Program 4 Skeleton of Benchmark B1
1 bool locked; int op;

void process_client () {

3 if (! locked ){ op=get_pid (); locked=true ;}

}

5 void process_server (){

switch(state) {

7 ...

case Idle : {switch(op) {...} break;}

9 case End: {state = Idle ; locked = false;}

}

11 }

State machines are a typical ingredient of SystemC models. We use two different
benchmarks of this kind.
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Figure 8: Performance effect of static partial-order reduction on B1
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Figure 9: Performance effect of static partial-order reduction on B2

The first benchmark (B1) consists of a synchronous model with three dependent
processes. One process plays the role of a server waiting for requests, while the
other two compete for access to the service. Program 4 contains the skeleton
of the benchmark. When triggered, the clients and the server execute functions
process client and process server, respectively. The clients communicate with the
server via two shared variables op and locked. If locked is set, then the server is
busy processing the request op. Otherwise, the clients compete for access to the
service. The processes are sensitive to a clock.

Figure 8 compares the number of explored traces (simulator backtracks), and the
total exploration time as a function of the number of simulation steps. We compare
the precision of the commutativity conditions obtained by the Model Checking
engines (“Full Precision”) and the light-weight static analysis (“Precision 0”). The
exploration time is limited to thirty minutes (1800 seconds).

We observe that our precise analysis results in a reduction of both the number of
explored traces and the exploration time by about two to three orders of magnitude.
Using our technique, the simulator can exhaustively cover all the relevant behaviors
up to fifteen simulation steps in less than thirty minutes, whereas the simulation
using the light-weight analysis already times out after seven simulation steps.
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Figure 10: Details of the strengthening process for the analysis of the memory
model (Program 5). Each figure corresponds to a distinct verification task and
gives the time for the individual strengthening iterations using SatAbs. The last
iteration proves the absence of any further counterexamples.
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Figure 11: Simulation runtime for the RISC-CPU model. The runtime is linear
in the number of steps.
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Figure 12: Impact of the precision of the static analysis on the performance of the
simulation on the RISC-CPU model. The precision of the analysis is measured in
terms of the bound on the number of strengthening iterations. “Precision 0” stands
for the light-weight static analysis. The highest precision on this model is six. In
this example, precision two is already sufficient to obtain an optimal simulation.
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Benchmark Jobs
SatAbs CBMC

#Strength. Time[s] #Strength. Time[s]
B1 Job0 2 2.51 2 < 1
B1 Job1 10 12.40 9 1.86
B1 Job2 10 11.61 9 1.88
B2 Job0 44 437.75 - TO
B2 Job1 19 84.67 4 13.37
B2 Job2 12 71.03 4 2246.48

Table I. Time to compute the race conditions for the state-machine benchmarks for each of the
process pairs (jobs) using SatAbs and CBMC. The timeout is set to sixty minutes.

Our second state-machine benchmark (B2) consists of two synchronous state
machines communicating via shared variables. The model has three interdependent
processes, which are sensitive to the clock. The state machines are implemented
using case switches. Figure 9 is a comparison of the simulation times and the
number of explored traces. The reduction is in the order of one magnitude.

We quantify the additional cost of obtaining the full precision dependency con-
ditions prior to simulation. For each pair of processes, Table I shows the number of
strengthening iterations and the time required for the static analysis running Sat-

Abs and CBMC. The difference in the number of strengthening iterations required
by SatAbs and CBMC is due to code transformations inherent to BMC.

The additional cost for B1 is negligible using either SatAbs or CBMC. The re-
sults for B2 indicate that the choice of the verification engine is important: CBMC

is faster than SatAbs on the second pair of processes, but times out on the first,
whereas SatAbs provides a result within two minutes. Note that the computation
of these conditions can be distributed onto multiple machines, as the computation
for each pair of processes is independent. Furthermore, the precision of the analysis
can be controlled by bounding the number of strengthening iterations, which yields
a conservative approximation. Finally, as demonstrated by the simulation runs, the
time required for a full exploration grows exponentially with the number of simu-
lation steps, and therefore, the time spent for a precise static analysis eventually
pays off.

6.3 An Asynchronous Dual-Port Memory

We present an instance that is difficult for any dependency analysis. Memory
modules are frequently modeled using nondeterminism, as the priorities of read and
write operations are often left unspecified. Memories are widely employed in system
designs to implement communication buffers, caches, and register files. We evaluate
our technique using a model of an asynchronous dual port memory. The model has
four processes. Program 5 illustrates the structure of the memory module. The
memory model is implemented as an array of unsigned integers (line 5). This array
is shared among the four processes rd0, wr0, rd1, and wr1 (lines 6 to 9). These
processes are sensitive to control signals that trigger the different operations. We
provide the body of the functions rd0 and wr1 on lines 13 and 18, respectively.
The functions rd1 and wr1 are implemented in a similar way.
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Program 5 A Model for Asynchronous Dual-Port Memory
1 SC_MODULE (ram) {

...

3 sc_in <bool > cs0 , cs1 , oe0 , oe1 , we0 , we1;

sc_inout <unsigned > data0 , data1;

5 sc_uint <DATA_WIDTH > mem [RAM_DEPTH ];

void rd0 ();

7 void wr0 ();

void rd1 ();

9 void wr1 ();

};

11

void ram :: rd0() {

13 if (cs0.read () && oe0.read () && !we0.read ())

data0 = mem[address0 .read ()];

15 }

17 void ram :: wr0() {

if(cs0.read () && we0.read ())

19 mem[address0 .read ()] = data0.read ();

}

21 ...

For each pair of processes, Table II shows the time required for the static analysis
using SatAbs and CBMC. Additionally, the second column indicates whether the
outcome of the analysis yields a predicate equivalent to true; that is, this column
indicates whether the processes are completely independent. This information pro-
vides valuable insight into the behavior of the memory. For instance, our static
analysis is able to show that the processes rd0 and wr0 are independent; the same
holds for the processes rd1 and wr1. In both cases, write accesses have priority
over read accesses. However, the processes rd0 and wr1 are not independent, and
neither are rd1 and wr0. Therefore, the effects of two concurrent read and write op-
erations using different ports may depend on the scheduling order of the processes.
Typically, this situation arises if both accesses address the same memory location,
in which case the read operation can either retrieve the old value or the new one.

Figure 10 depicts the time for each strengthening iteration using SatAbs. The
last strengthening iteration is used for proving the absence of additional counterex-
amples. Job1 and Job2 spend most of the time in the very last strengthening
iteration to prove that the assertion of the harness holds (finding a bug is usually
easier than proving correctness). Note that we have designed our algorithm to
compute a sequence of safe under-approximations of the commutativity condition.
Consequently, the user can stop any excessively long computation and proceed in
a sound way with partial results. This enables a trade-off between time and pre-
cision. Furthermore, skipping the last strengthening iteration results in no loss of
precision.

A proof of independence of processes requires a formal analysis. For instance, to
discover that the processes rd0 and wr0 are two mutually exclusive operations, a
static analyzer must prove that on lines 13 and 18, the guards of the if-statements
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Jobs Proc.
SatAbs CBMC

P ⇔ true #Strength. Time [s] P ⇔ true #Strength. Time [s]
Job0 wr0, rd0 yes 6 34.39 yes 6 204.08
Job1 wr0, rd1 no 13 344.14 no 13 203.53
Job2 wr1, rd0 no 13 339.26 no 13 219.24
Job3 wr1, rd1 yes 6 28.98 yes 6 203.97
Job4 wr1, wr0 no 10 221.24 no 10 501.96

Table II. Runtime and number of iterations required to compute the race conditions for each of
the process pairs. The column P ⇔ true indicates whether the processes are proven independent;
that is, whether condition P is equivalent to true.

Jobs
SatAbs CBMC

P ⇔ true #Strength. Time [s] P ⇔ true #Strength. Time [s]
Job0 no 7 42.02 no 7 3.41
Job1 no 7 42.02 no 7 3.42
Job2 yes 5 42.36 yes 5 4310.85
Job3 yes 5 42.34 yes 5 4253.48
Job4 yes 5 32.244 yes 5 3986.19

Table III. Runtime and number of iterations required to compute the race conditions for the
RISC-CPU model. The column P ⇔ true indicates whether the condition P is equivalent to true.

cannot be satisfied simultaneously; this is a fact that a verification engine based on
predicate abstraction can easily establish by tracking the value of signal we0.

6.4 A RISC Processor

We demonstrate the scalability of our race-analysis using an updated version of
the RISC-CPU model that is shipped with the SystemC library. The processor has
nine modules, which include an MMX and a floating-point unit. In total, the model
declares fourteen processes and contains 2153 lines of C++ code.

Table III quantifies the computational cost of the verification tasks that Scoot

generates. Out of 91 pairs of processes, light-weight static analysis can already
refute 86 dependencies, leaving only five pairs for the heavy-weight engine. Scoot

can prove that three out of these five remaining pairs are completely independent
and identifies the register file as a potential source of nondeterminism.

Comparing the performance of SatAbs and CBMC, we observe that the latter
is faster on the two first tasks, whereas SatAbs clearly outperforms CBMC on the
remaining ones. The bad performance of CBMC on these tasks is caused by a loop
in one of the processes.4 To solve this issue, CBMC can replace a loop with an
assume-false statement, which blocks any trace that reaches this location. CBMC

then returns a (conservative) condition that is almost as precise as the original
one within only 3 s and four strengthening iterations. The loss of precision has no
negative impact on the simulation performance in this example.

Figure 11 depicts the simulation performance. Using our precise conditions, the

4The loop sequentially resets all the entries of the register file.
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simulator explores only a single trace, and thus, the time for exhaustive simulation
is linear and optimal. The simulator is able to exhaustively search ten thousand
simulation steps in less than two seconds. In contrast, when relying exclusively on
light-weight static analysis, the number of traces grows exponentially (Figure 12).
This means that only shallow exploration is possible. We also quantify the precision
obtained by limiting the number of strengthening iterations. The number of traces
grows exponentially when the precision is set to zero or one. The experiments
indicate that a precision of two is already sufficient to achieve the maximal runtime
reduction for this model. The strengthening loop terminates after seven iterations.

7. CONCLUSION

We presented Scoot, a novel compiler for SystemC that integrates static analysis
and formal verification techniques in order to improve simulation performance. The
structure of the SystemC model (the hierarchy and the port bindings) is computed
at compile time by means of a data-flow analysis. We use a second data-flow analysis
to perform a light-weight detection of independent processes. The next step is
to invoke a modified software Model Checker on each pair of possibly dependent
transitions in order to compute a sufficient condition for commutativity of the
transitions. Our technique benefits from the fact that SystemC processes are not
preempted, and thus, only few such pairs have to be checked. Note that the Model
Checker is never applied to the entire model, but only to pairs of transitions – the
static part of the analysis is therefore typically polynomial in the size and number
of processes.

Scoot uses the commutativity condition during simulation in order to elimi-
nate unnecessary interleavings. Our analysis is fully automatic and requires no
annotation of the source code by the user. Using Model Checking, our analysis
is able to prove or refute process dependencies statically and to detect reduction
opportunities not discovered by other dynamic approaches.

The experimental results indicate that our formal race analysis produces valuable
information for pruning the state space at runtime. To the best of our knowledge,
this work uses the most precise conditions for commutativity of processes reported
in the literature. Furthermore, the trade-off between precision and computational
cost can be controlled, and the entire flow can be distributed on multiple machines.

Future Work. We have presented a technique to reduce the search space with
respect to interleavings explored; similar ideas apply to data nondeterminism as
well. Many testing tools employ decision procedures to perform a shallow search
with the goal of pruning the set of test-vectors that has to be considered. We plan
to explore the application of Model Checkers in this context.
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A. CORRECTNESS PROOF

A.1 A Formalization of the SystemC Scheduler

In this section, we provide a formal basis for analyzing SystemC models. The
SystemC standard defines the semantics of the concurrency model using informal
English. Ruf et al. [2001] give operational semantics for SystemC, Salem [2003] use
a denotational semantics, Kroening and Sharygina [2005] use Kripke structures,
Savoiu et al. [2005] use Petri-nets. In contrast to the related work, we propose to
formalize the concurrency model of SystemC using a fixed-point semantics. This
choice of style is motivated by the iterative nature of the scheduling algorithm (we
refer the reader to Slonneger and Kurtz [1995] for an introduction). We first recall
standard definitions from the literature:

Theorem A.1. If D is a finite set, D with ⊆ forms a complete partial order,
and f : D → D is monotone (and total), then f is also continuous.

Theorem A.2 Kleene fixed-point theorem. Let D with ⊆ be a complete
partial order, and let f : D → D be any continuous (and therefore monotone)
function. Then the least fixed point of f is the least upper bound of the ascending
chain ⊥ ≤ f(⊥) ≤ (f ◦ f)(⊥) ⊆ ... ⊆ fn(⊥) ⊆ ...

We formalize the behavior of SystemC programs by means of transition systems.

Definition A.3 Transition system. A transition system is a triple (S, S0, θ) with
a set of states S, initial states S0 ⊆ S, and a set of transitions θ ⊆ P(S × S). A
transition α ∈ θ is a relation on S.

SystemC processes are transitions. Note that the state of the system comprises
not only the data of the processes, but also of the data required for the scheduler
(process queue, event notifications). A process α ∈ θ is a relation between states,
that is, a process can exhibit both nondeterministic and non-terminating behavior.
Nondeterminism is typically caused by external inputs. The execution of the process
may not terminate due to an unbounded loop, or may simply abort with an error.
We assume then that the execution enters a special error state. For α ∈ θ, we write
s

α
→ t if 〈s, t〉 ∈ α. A transition α is enabled in a state s if there exists a state t

such that s
α
→ t, and we write α ∈ Enabled(s) to denote this fact – Enabled is a

mapping from S to P(θ). Otherwise, α is sleeping in s. In the context of SystemC,
an enabled process is usually called runnable.

In the subsequent definitions, we formalize the semantics of the evaluation and
delta phases in terms of functions from P(S) to P(S). Both phases are the least
solution f of a fixed-point equation of the form F (f) = f , where F :

(

P(S) →

P(S)
)

−→
(

P(S) → P(S)
)

is a higher-order function. We apply the usual
ordering for two functions fi, fj : P(S) → P(S):

fi ⊆ fj ⇒ ∀X ∈ P(S). fi(X) ⊆ fj(X) .

The set of all functions from P(S) to P(S) with this ordering forms a complete
partial order. Let ⊥ : P(S) → P(S) denote the minimum, i.e., ⊥(X) = ∅. Using
the Theorems A.2 and A.1 we make the usual observations: A least fixed point
exists if F is continuous – the application of F preserves the least upper bound. To
show that F is continuous, it is sufficient to prove that F is monotone and that the
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set of all functions from P(S) to P(S) is finite. Provided that F is continuous,
the least solution of F (f) = f can be computed iteratively by beginning with
f0 = ⊥, and applying the recurrence fn+1 = F (fn) until saturation. If the set of
all functions from P(S) to P(S) is infinite, then continuity has to be proven in a
different way.

We start with the formalization of the evaluation phase. Definition A.4 models
the evaluation phase ǫ : P(S) → P(S) as the least function that satisfies the
equation E(ǫ) = ǫ where E is the higher-order function given in the definition.

Definition A.4. Let E :
(

P(S) → P(S)
)

−→
(

P(S) → P(S)
)

denote the
following function:

E(f)
∆
= λX.

(

{s∈S|Enabled(s)=∅} ∪ f
(

⋃

s∈X

⋃

ρ∈Enabled(s)

ρ(s)
)

)

.

The evaluation phase ǫ : P(S) → P(S) is the least solution of the fixed-point
equation E(ǫ) = ǫ .

Note that this definition of ǫ models the choice of ordering of processes the scheduler
can make, as ǫ({s}) maps to a set of states.

Given two functions ǫi+1, ǫi : P(S) → P(S) such that ǫi+1 = E(ǫi), the function
ǫi+1 contains more information than ǫi in the sense that for any set of states X
in P(S), ǫi(X) is an under-approximation of ǫi+1(X). Informally, ǫi describes all
computations up to bound i, whereas ǫi+1 describes all computations up to bound
i + 1. Definition A.4 gives rise to Lemma A.5, which establishes the monotonicity
of E.

Lemma A.5. Function E (Def. A.4) is monotone: E(f) describes a function
smaller than E(g) if f describes a function smaller than g.

Proof. Let us we write A and B for “{s∈X|Enabled(s)=∅}” and “
⋃

s∈X

⋃

ρ∈Enabled(s)

ρ(s)”,

respectively. If f ⊆ g, then E(f)(X) =
(

A ∪ f(B)
)

⊆
(

A ∪ g(B)
)

= E(g)(X).
Thus, we conclude that E(f) is smaller than E(g).

From Lemma A.5 and Theorems A.1, A.2 we conclude that the evaluation phase
is well-defined if S is finite:

Theorem A.6. The evaluation phase ǫ is well-defined for models with bounded
memory.

Proof. We write P(S) → P(S) to denote the set of all (total) functions from
P(S) to P(S). As mention before, the set P(S) → P(S) together with the stan-
dard ⊆ operator forms a complete partial order. Since E is monotone (Lemma A.5),
it is sufficient to show that P(S) → P(S) is finite to prove that E is continuous
(Theorem A.1). Note that if S is finite then P(S) → P(S) is also finite – there
exists only a finite number of functions over P(S). Hence, E is continuous if S is
bounded. Finally, if E is continuous then Theorem A.2 guarantees the existence of
a least fixed point and provides an iterative method to compute it.

Additionally, we introduce Lemma A.7, which establishes that ǫ is additive, e.g.,
ǫ(X) =

⋃

s∈X ǫ({s}). The proof is by induction over the ascending chain of the
successive approximations of ǫ given by ǫi+1 = E(ǫi) and ǫ0 = ⊥.
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Lemma A.7. The evaluation phase ǫ is additive: ǫ(X ∪ Y ) = ǫ(X) ∪ ǫ(Y ) .

Proof. We demonstrate by induction that ǫn is additive for all functions in the
chain defined defined by ǫn+1 = E(ǫn) and ǫ0 = ⊥. The property holds for n = 0
as ǫ0(A ∪ B) = ⊥(A ∪ B) = ⊥(A) ∪ ⊥(B) = ǫ0(A) ∪ ǫ0(B). The case for n + 1
follows directly from the definition of E (Def. A.4) and the induction hypothesis
ǫn(A ∪ B) = ǫn(A) ∪ ǫn(B), so we conclude that the property holds for any ǫn.
In particular, this remains true when the computation of ǫn+1 reaches the fixed
point.

We continue with the formalization of the delta cycle in this style. Definition A.8
expresses the delta cycle as the least function δ : P(S) → P(S) that satisfies the
equation D(δ) = δ where D is the higher-order function given in the definition.

Definition A.8. Let Up : P(S) → P(S) denote the function that updates the
state and notifies the processes as described by the standard. The function D :
(

P(S) → P(S)
)

−→
(

P(S) → P(S)
)

is the following higher-order function:

D(f)
∆
= λX.

(

{s∈X|Enabled(s)=∅} ∪ (f ◦ Up ◦ ǫ)(X)
)

.

The delta cycle δ : P(S) → P(S) is the least solution of the fixed-point equation
D(δ) = δ .

Definition A.8 gives rise to Lemma A.9, which guarantees the monotonicity of
D. Subsequently, Theorem A.10 establishes that the delta phase is well defined if
S is finite.

Lemma A.9. Function D (Def A.8) is monotone.

Proof. Let us we write A and B for “{s∈X|Enabled(s)=∅}” and “(Up ◦ ǫ)(X)”,
respectively. If δi ⊆ δj , then E(δi)(X) =

(

A ∪ δi(B)
)

⊆
(

A ∪ δj(B)
)

= D(δj)(X).
Thus, we conclude that D(δi) is smaller than D(δj).

Theorem A.10. The least fixed point δ is well-defined for models with finite
memory.

The proof of this theorem uses the same argument as the proof of Theorem A.6.
We conclude the formalization of the concurrency model of SystemC with Defini-
tion A.11, which captures the simulation semantics of SystemC.

Definition A.11. Let N denote the set of positive integers, let S0 ⊆ S denote
the set of initial states, and let Uptime : P(S) → P(S) denote the function that
updates the simulation time and notifies the processes waiting for this event. The
execution semantics of SystemC is given by the function Sim : N → P(S), which
defines the states of the system as a function of the simulation time:

Sim(0) = S0, Sim(t + 1) = (δ ◦ Uptime ◦ Sim)(t) .

A.2 Correctness of Partial-Order Reduction Techniques for SystemC

Partial-order reduction techniques restrict the analysis of the behaviors of a concur-
rent system to a set of representative traces. For a specific class of properties, the
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reduction is sound: if the property of interest holds in the reduced model, it also
holds in the original one. In the context of this paper, we assume that the property
can be defined as a state predicate, which is evaluated at the end of the evaluation
phase.5 We formalize a condition for the soundness of partial-order reduction as
follows.

Definition A.12. Let ǫ : P(S) → P(S) denote the evaluation phase (Def. A.4),
and let ǫ̂ : P(S) → P(S) stand for a function that models the evaluation phase
when applying a reduction technique, e.g., by restricting the ordering of evaluation.
We say that ǫ̂ is sound for reachability if ǫ = ǫ̂.

Definition A.12 and Lemma A.7 yield the following theorem that provides a
method to show correctness of a partial-order reduction technique ǫ̂:

Theorem A.13. Let ǫ̂ : P(S) → P(S) denote a function that models the eval-
uation phase. The function ǫ̂ is sound for reachability if:

(1 ) ǫ̂(A ∪ B) = ǫ̂(A) ∪ ǫ̂(B),

(2 ) and for all s in S, ǫ({s}) = ǫ̂({s}).

We define the evaluation phase ǫ̂ as the least solution of a fixed-point equation, and
therefore, additivity is usually demonstrated by induction over the ascending chain
of ǫ̂i.

In the following, we illustrate our correctness criterion by means of definitions
of the persistent-set and sleep-set techniques in terms of a fixed-point semantics.
Both approaches preserve deadlock states, i.e., states without enabled (runnable)
transitions [Godefroid 1996].

Definition A.14. Let Persistent : S → P(θ) denote some function that returns
a set of persistent processes (Def. 4.3). Additionally, we require that Persistent(s)
is empty only if no process is runnable in s. We define ÊP :

(

P(S) → P(S)
)

−→
(

P(S) → P(S)
)

as the following higher-order function:

ÊP (f)
∆
= λX.

(

{s∈X|Enabled(s)=∅} ∪ f
(

⋃

s∈X

⋃

ρ∈Persistent(s)

ρ(s)
)

)

.

The persistent-set technique is the least solution ǫ̂P : P(S) → P(S) of the fixed-
point equation ÊP (ǫ̂P ) = ǫ̂P .

During exploration, techniques based on sleep sets maintain a set of enabled
transitions that can be skipped. Thus, we extend the states in S to carry sleep
sets, and we write Sleep(s) to denote the set of enabled processes in s that can
be skipped; that is, Sleep : S → P(θ). Additionally, let NextSleep : (S × θ) → S
denote a function that takes as argument a state s and a process α ∈ θ and returns
a state equal to s except that (Sleep ◦ NextSleep)(s, α) describes the next sleep set,
i.e., the sleep set for the states in α(s). Definitions A.15 and A.16 formalize this
technique.

Definition A.15. Sleep ◦NextSleep(s, α) is a sleep set if and only if α ∈ Enabled(s)
and β ∈ (Sleep ◦ NextSleep)(s, α) implies that the following holds:

5Assertions within an atomic block are verified by considering their post-image.
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(1) β ∈ Enabled(s),

(2) α and β are independent in s, and

(3) α ∈ (Sleep ◦ NextSleep)(s, β) ⇒ β ∈ Sleep(s).

Definition A.16. Let NextSleep(s, ρ) denote a function that computes sleep sets
(Def. A.15). We define ÊS :

(

P(S) → P(S)
)

−→
(

P(S) → P(S)
)

as the
following function:

ÊS(f)
∆
= λX.

(

{s∈X|Enabled(s)=∅} ∪ f
(

⋃

s∈X

⋃

ρ∈Enabled(s)\Sleep(s)

(ρ ◦ NextSleep)(s, ρ)
)

)

.

The sleep-set technique is the least solution ǫ̂S : P(S) → P(S) of the fixed-point
equation ÊS(ǫ̂S) = ǫ̂S .

B. MODEL CHECKING SYSTEMC THREADS

SystemC distinguishes between method processes and threads. Technically, a method
process is a C++ method that is executed up to completion and is forbidden to call
synchronization routines. In contrast, a SystemC thread can suspend its execution
using wait statements. The scheduler must then preserve the local state and the
current program location of the running thread.

The construction of the harness presented in Program 2 is straightforward for
method processes, as no context switch is taking place. We present a technique
to implement the context switches in SystemC threads with goto statements. This
approach enables us to handle SystemC threads in the same way as method pro-
cesses.

For each thread, our conversion technique proceeds as follows:

(1) Static Memory Allocation: Scoot substitutes the local variables of the thread
by fresh ones with static storage duration. During this process, Scoot re-
cursively expands functions containing wait statements. These statements are
converted in the next phase.

(2) Conversion of Wait/Return Statements: Scoot implements context switches
with goto statements. It first creates a program counter variable to hold the
location of the context switch. Subsequently, each wait/return statement is
converted into an assignment followed by a goto statement. The assignment
saves the current program location, while the goto statement returns control
back to the scheduler.

(3) Branching Code: Finally, Scoot inserts branching instructions at the begin-
ning of the thread to control where the execution shall resume.

Program 6.1 and Program 6.2 show the code of a thread before and after conver-
sion, respectively. Program 6.1 declares a unique local variable i. After conversion,
the variable is declared with static storage duration. Additionally, Program 6.2
introduces a program counter pc and sets its initial value to zero to indicate that
the process is triggered for the first time. On lines 4 to 6, the program counter
is used to decide where the execution shall resume. The wait statements in Pro-
gram 6.1 correspond to the assignments followed by a goto statement in Program 6.2
(lines 11 and 14).
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This conversion approach is applicable only if recursive functions are free of wait
statements. In practice, SystemC threads rarely execute recursive function calls
that contain synchronization routines.

Program 6 Example of conversion of a SystemC thread. Program 6.1 shows the
original code of the thread. Program 6.2 shows the code after conversion.

1 void run ()

{

3 int i = 0;

while(true ){

5 if(i < 10){

wait ();

7 i = i+1;

} else {

9 wait ();

i = 0;

11 }

}

13 return;

}

(1) Original thread

int i; int pc = 0;

2 void run ()

{

4 if(pc == 1) goto PC1;

if(pc == 2) goto PC2;

6 if(pc == 3) goto EXIT ;

8 i = 0;

while(true ){

10 if(i < 10){

pc = 1; goto EXIT ;

12 PC1: i = i+1;

} else {

14 pc = 2; goto EXIT ;

PC2: i = 0;

16 }

}

18 pc = 3;

EXIT : ;

20 }

(2) Thread after conversion
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