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This paper reports on the development of a utility-based mechanism for managing sensing and
communication in cooperative multi-sensor networks. The specific application on which we illus-
trate our mechanism is that of GlacsWeb. This is a deployed system that uses battery-powered
sensors to collect environmental data related to glaciers which it transmits back to a base station
so that it can be made available world-wide to researchers. In this context, we first develop a
sensing protocol in which each sensor locally adjusts its sensing rate based on the value of the data
it believes it will observe. The sensors employ a Bayesian linear model to decide their sampling
rate and exploit the properties of the Kullback-Leibler divergence to place an appropriate value
on the data. Then, we detail a communication protocol that finds optimal routes for relaying
this data back to the base station based on the cost of communicating it (derived from the op-
portunity cost of using the battery power for relaying data). Finally, we empirically evaluate our
protocol by examining the impact on efficiency of a static network topology, a dynamic network
topology, the size of the network, the degree of dynamism of the environment and the mobility
of the nodes. In so doing, we demonstrate that the efficiency gains of our new protocol, over the
currently implemented method over a 6 month period, are 78%, 133%, 100% and 93% respectively.
Furthermore, we show that our system performs at 65%, 70%, 63% and 70% of the theoretical op-
timal respectively, despite being a distributed protocol that operates with incomplete knowledge
of the environment.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network
Protocols—Routing Protocols; H.1.1 [Models and Principles]: Systems and Information The-
ory— Value of information; J.2 [Physical Sciences and Engineering]: Earth and atmospheric
sciences

General Terms: Algorithms, Performance
Additional Key Words and Phrases: Adaptive sampling, cost of communication, data gathering,
dynamic environment, energy efficiency, network lifetime, sensor networks

1. INTRODUCTION

Sensor networks are being deployed in a wide variety of application areas and, in
particular, they have recently been used for a number of environmental monitoring
applications [Martinez et al. 2004; Cerpa et al. 2001; Delin et al. 2003; Roure 2005;
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Lorincz et al. 2004; Steere et al. 2000]. Moreover, there is an increasing interest
in conceptualising these networks as a collection of interacting, autonomous agents
and then adopting techniques from the field of multi-agent systems [Lesser et al.
2003; Rogers et al. 2009] in order to control them in a decentralised fashion. In
this vein, we consider a particular sensor network, GlacsWeb [Martinez et al. 2004],
that we have deployed in the Briksdalsbreen glacier in Norway, and examine how it
can be modelled as a (cooperative) multi-agent system. In this case, the two main
tasks performed by the nodes (agents) are gathering data from the environment
and communicating it to a central sink node (i.e. an agent that harvests data from
all other agents). In general, the agents work towards the predefined system goal of
maximising data collection (hence the cooperative nature of the system). However,
they are invariably constrained in at least one of the following dimensions: their
available power, their communication bandwidth, their memory storage and/or
their processing capability. Of these, power is the most important in this context
since it is required for everything else. Thus, it directly influences the life-span of the
agents and, hence, that of the system as a whole. Given this, we focus on developing
an energy-aware sensing and communication protocol for the GlacsWeb network
which aims at maximising the information gathered about the glacial environment.
Nevertheless, the solution we develop is more broadly applicable; specifically, it is
suitable for any networks that have nodes with limited power supply.

In more detail, the purpose of the GlacsWeb sensor network is to monitor sub-
glacial behaviour in order to understand climatic change. Figure 1 shows Glac-
sWeb’s central base station that is located on top of the glacier and figure 2 shows
a typical GlacsWeb node on which the agents run. In the current system, each indi-
vidual node senses its own data and then communicates it directly to this sink node
in a single hop. As such, the system’s communication protocol is energy inefficient
since it lacks the energy savings that a multi-hop approach would provide [Woo
et al. 2003] (i.e. one in which agents relay data for one another). Furthermore,
at present, sensing in GlacsWeb is carried out at a pre-determined constant rate
which is insensitive to the actual variations in the environment. This decoupling
results in unnecessary sampling because, given the same energy expenditure, the
information gained by sensing a slowly varying environment is less than what could
be gained in a more dynamic situation.

Against this background, this paper develops a Utility-based Sensing And Com-
munication protocol (called USAC). This consists of a sensing and a routing protocol
that uses the cost of transmission and the value of observed data as utility metrics
in the agents’ decision-making process. In developing the protocol, we advance the
state of the art in the following ways :

—We develop a novel, decentralised mechanism for adaptive sampling. In this, each
agent locally adjusts its sensing rate depending on the valuation function that it
uses to value the observed data. This valuation is based on the combination of
Bayesian Linear Regresssion and the Kullback-Liebler Divergence [Kullback and
Leibler 1951] which gives it a sound information theoretic foundation.

—We devise a new multi-hop routing protocol that finds the cheapest cost route
from an agent to the centre. Here, the cost of a link from one agent to another
is derived using the opportunity cost of the energy spent relaying the data (i.e.
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Fig. 1. GlacsWeb base station Fig. 2. A GlacsWeb sensor probe

the value that a relay could have gained by using the energy for sensing instead
of relaying).

—We empirically evaluate the USAC protocol against four benchmark protocols;
including a theoretically optimal protocol, a greedy protocol, GlacsWeb’s original
protocol and a protocol employing the adaptive sampling mechanism alone. We
show that against the latter three, USAC provides a significantly higher gain
in information, whilst reducing power consumption. Furthermore, it compares
favourably with the optimal protocol which is based on unrealistic assumptions
such as the nodes having prior knowledge of their entire future observations and
the best path to route data via over lifetime.

The remainder of this paper is organised as follows. Section 2 provides the
basic background on GlacsWeb and a discussion of related work in the area of
sensor networks modelled as multi-agent systems. We then detail the sensing and
the routing aspect of USAC in section 3. Section 4 discusses the computational
feasibility of the GlacsWeb node and section 5 discusses the routing protocol. The
protocol is then empirically evaluated in section 6. We conclude in section 7.

2. BACKGROUND AND RELATED WORK

GlacsWeb is a deployed pervasive sensor network that directly monitors sub-glacial
movement to determine how it is affected by climatic changes. In order to do this,
it uses a network of sub-glacial nodes that are placed at different locations inside
the glacier as shown in figure 3. The protocol currently followed by GlacsWeb is a
simple one in which the nodes sample the glacier every four hours and then transmit
these readings directly to the base station located at the top of the glacier daily.
The on-board sensors measure temperature, resistivity, case stress, tilt angle and
water pressure. At the time of writing, there are twenty nodes in the glacier with
an additional batch of ten deployed every summer'. However, as a result of the
hostile environment (due to the low temperatures, the strain resulting from moving

IThe glacier has subsequently melted, as predicted by the researchers (BBC news reported this and
a real player recording of the news item can be viewed at http://news.bbc.co.uk/nolavconsole/
ifs_news/hi/newsid_6170000/newsid_6171300/nb_rm_6171392.stm). A new glacier in Iceland is
currently being surveyed for further deployment.
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Fig. 3. Architecture of the GlacsWeb network. The system is composed of sensor nodes embedded
in the ice and the subglacial sediment to monitor data and transmit it to the base station positioned
on the surface of the ice. The base station in turn accumulates additional information about the
weather and sends it to a Reference Station (approximately 2.5km away) that has access to mains
electricity and a phone connection. The data is finally uploaded to a Southampton-based server
through the Internet to be accessed by glaciologists for analysis.

ice and the englacial water bodies) and the power hungry protocol, there is a high
probe failure rate of around 50% per year. This provides the motivation for the
research carried out in this paper.

However, as previously stated, this protocol and the techniques we use within it
are more broadly applicable. We will now present the most salient research in the
two fields that are most closely related with work presented in this paper. The first
concerns that of adaptive sensing and the second deals with routing protocols.

2.1 Adaptive Sensing

In order to produce energy-aware protocols, a number of researchers have focused
on intelligent adaptive sensing [Deshpande et al. 2005; Willett et al. 2004; Jain
and Chang 2004; Popa et al. 2005]. Such work has demonstrated how a sensor’s
lifetime can be extended by sensing only during the most informative situations.
The key differences between the various approaches is how they select these most
informative situations. We now discuss three different adaptive sensing protocols
which are representative of the main approaches used for sensing intelligently.
The BBQ model [Deshpande et al. 2005] is an adaptive sensing protocol which is
similar to our sensing protocol, despite the fact that it is developed for a query-based
sensor network (one where data can be classified and the base station propagates
interests among the nodes to gather it). In this model, Deshpande et al. [2005]
study how to best sample from the environment given correlations (that can be
learnt using a Kalman filter (KF') approach) between the observation vectors of the
different sensors. The sensor network architecture incorporates statistical models
of real-world processes which provide robust interpretations of sensor readings by
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accounting for biases in spatial sampling, identifying faulty nodes and extrapolating
the values of node readings that have gone missing or are no longer operational.
This then provides a framework for optimising the acquisition of sensor readings.
Specifically, nodes are used to acquire data only when the model itself is not suffi-
ciently rich to answer the query with acceptable confidence. This yields an optimal
sensing schedule for each of the nodes. However, the nodes act under a centralised
control regime within this architecture and it is thereby inadequate for a distributed
environment where communication between nodes incurs a substantial cost and the
topology is constantly changing.

The second approach, also a statistical protocol for adaptive sampling, is dis-
cussed by [Jain and Chang 2004]. This is one of the very few adaptive sampling
techniques where each node adapts to the streaming-data characteristics. Here, in
contrast to the BBQ model, the nodes autonomously decide their sampling rate
within a given range using the KF estimation error. When the desired sampling
rate violates the range, a new sampling rate is requested from the base station.
Here, the base station allocates new sampling rates under the constraint of avail-
able resources such that the KF estimation error over all the active streaming nodes
is minimised. Note that in this case the sensors transmit all their sensed data to
the base station, however this is undesirable in our context because our objective
is to minimise transmission, in addition to minimising the sensing activity for the
energy starved nodes.

A third approach is that of Backcasting [Willett et al. 2004]. This is based on
a hierarchical structure, such as LEACH [Heinzelman et al. 2000] or PEGASIS
[Lindsey and Raghavendra 2002], in which small subsets of sensor nodes communi-
cate their observations to a fusion centre. This centre, in turn, provides an initial
estimate of the environment being sensed. Based on this coarse estimate, the cen-
tre then determines which regions of the field may contain boundaries or sharply
varying behaviour and activates additional sensor nodes in those regions. These
additional nodes, in turn, provide finer resolution estimates and the refined esti-
mates are communicated to the fusion centre. The key idea in this approach is that
the initial estimate detects correlations in the environment, indicating that most
of the sensors may not need to be activated by the fusion centre. However, this
hierarchical approach again suffers from a high computational load for the fusion
centres, a high communication cost for coordination sensing actions, and it is not
robust to a constantly changing topology.

The focus in all of the above systems is on information fusion/data aggregation
and, in general, they do not consider how to communicate efficiently to the base
station. Given this, we next provide an overview of research that does address the
problem of routing data to the base station.

2.2 Routing Protocols

A number of routing protocols have been investigated to enhance the performance
of wireless sensor networks and these are generally classified under one of three
categories. Namely, data-centric, hierarchical or location-based. For the purposes
of this research, we can discount the last category as most protocols falling under
it are not energy aware. Therefore, we focus the remainder of this sub-section on
the other two.
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Traditionally, nodes were queried based on their pre-assigned unique address.
However, this is not feasible for networks with a large number of randomly placed
nodes, because it is likely to result in redundant data which is highly energy in-
efficient. In order to address this shortcoming, data-centric protocols, in which
sensors are identified based on the data they sense rather than their address, were
developed. These protocols are thus query-based and depend on attribute-based
naming of desired data (to specify particular properties of the data), in order to
eliminate redundant transmissions. One of the most common techniques employed
in data-centric protocols is flooding [Downey and Cardell-Oliver 2004] where each
agent receives an item of data and then repeats it by broadcasting unless the des-
tination of the packet is the agent itself. Although, this reactive technique does
not require costly topology maintenance or complex route discovery algorithms, it
causes the undesired effects of data implosion and/or data overlap. In an attempt
to refine this methodology, the SPIN [Heinzelman et al. 1999] protocol considers
data negotiation between agents to eliminate redundant data. It adopts a publish-
subscribe approach where agent nodes operate efficiently and conserve energy by
only sending meta-data describing the data, instead of sending the actual data.
Thus, this model is useful for those agents interested in the data advertised and is
an effective protocol to minimise energy spent in consumption until the actual data
is transmitted. However, it fails to place a limit on the energy consumed in wasted
advertisements (i.e. for which there are no subscribers for the data).

A conceptually converse approach is directed diffusion [Intanagonwiwat et al.
2000] which eliminates the unnecessary energy consuming operations of routing by
diffusing data through agent nodes using a naming scheme for data. It suggests the
use of attribute-value pairs (such as objects, intervals, durations and geographical
areas) for data queries which are disseminated through the network as interests.
This dissemination sets up several initial gradients (reply links to neighbours from
which interests were received). Each such gradient is characterized by the data
rate, duration and expiration time derived from the received interests fields. The
network then uses these properties to reinforce one or a small number of these
paths for data to flow through. This on-demand data querying approach does not
require maintaining a global network topology and agent nodes have the advantage
of carrying out data aggregation and caching of interests, in addition to sensing.
However, it is not employable in GlacsWeb because it does not continuously deliver
data to the base station, a pre-requisite set by the glaciologists. In addition, there
is still a significant communication overhead associated with the queries.

We now turn to hierarchical protocols that aim to cluster the agent nodes so
that cluster heads can do some aggregation and reduction of data in order to save
energy. Specifically, LEACH [Heinzelman et al. 2000], and its variants, is one of
the first hierarchical routing algorithms in sensor networks. In its basic form, it
forms clusters of agent nodes based on the received signal strength and uses local
cluster heads as direct routers to the base station. This saves energy since only
the cluster heads carry out long distance transmissions. To balance the energy
dissipation of nodes, cluster heads change randomly over time. However, the use of
single-hop routing is not applicable to networks deployed over large regions (such
as a glacier) because nodes further away might be physically unable to transmit
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to the base station. Moreover, this dynamic clustering introduces extra overhead
in organising the clusters and electing a head, both of which diminish the gain in
energy consumption.

To sum up, our research substantially differs from all the aforementioned ap-
proaches in that it reuses the value derived from the sensing protocol in the com-
munication protocol, thereby intertwining these two critical aspects. The proactive
task of amalgamating sensing and communication has also been proposed through
the RMR/IDEALS protocol in [Merrett et al. 2007; Byers and Nasser 2000] where
each node decides its individual network involvement based on its own energy re-
sources and the information contained in each data packet. However, these ap-
proaches are founded on a rigid residual energy model in which the cost of com-
munication remains constant. Our protocol, on the other hand, is based on the
concept of utility that provides a measure of the usefulness and scarcity of the re-
sources and can sense and communicate much better. Finally, the concept of utility
in sensor networks has also been addressed in [Dash et al. 2005; Rogers et al. 2005]
for selfish nodes that are owned by different stake holders. Specifically, these ap-
proaches show that it is possible to develop a distributed mechanism in which the
goals of the individual selfish components are aligned with the goals of the overall
system. In contrast, our work is based on a system where there is only one stake
holder (the University of Southampton) and we require consistent interactions be-
tween agent nodes to exchange information regarding communication to the base
station. Hence we deem selfishness in these nodes as an unnecessary attribute and
focus primarily on developing cooperative agent nodes which we believe will lead
to superior performance in this context.

3. USAC'S SENSING PROTOCOL

The sensing protocol dictates how an agent should schedule its future sensing ac-
tions based on its current knowledge. If the protocol is adaptive, the agent only
needs to decide when to next sense data. This is because, given the next sensed
data, it may then change its future sensing times. In this section, we therefore
discuss a generic framework for this decision-making process within the agent, and
explain how this can then be used in relation to the specifics of the GlacsWeb data.

In this context, the optimal time at which the next sampling should occur can
only be derived if the agent has knowledge about the future data. However, this
requirement is contradictory since in the case that the agent knows the future data,
it does not need to sense the environment. As a result, an agent can only find
an optimal sampling rate based on its forecast of the future data. Then, upon
observing previously predicted data, the agent gains information by reducing its
uncertainty about its model of the environment.

Thus, in order to decide when to sample, a metric is required to determine how
well a particular future sampling time is likely to do compared to another. The
metric we use in this case is derived from information-theory because this enables
us to have a principled means of obtaining the maximum information from the
environment under certain constraints as imposed by the application scenario (e.g.
power, bandwidth or other operational constraints). Such a principled approach is
important because it can help provide a generic framework for other applications
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of sensor networks.

In more detail, the sampling protocol we propose can be described by Figure 4.
The sensor first samples at some point and acquires the data x,, (Sample). This data
is then used to update its existing model (UpdateModel) of the environment which,
in turn, is employed to forecast data in the future. The magnitude of the change in
the updated model then determines the value of z,, (Evaluate Value(x,)). This
value, along with the updated model, is then stored in the model history which is
then passed on to the communication protocol discussed in section 5.

Furthermore, the sensing protocol needs to determine the next time the node
should sample from the environment. In order to do so, it runs an iterative algo-
rithm that compares the predicted value at future time steps? against a threshold
value. This threshold value is important since without it, the sampling would oc-
cur at each available opportunity®. It is determined by the model history and the
problem constraints, in conjunction with the domain knowledge (if available and
relevant). If the predicted value of the data at a certain future time step is lower
than the threshold value, then the algorithm prevents the sensor from sampling at
that point and computes the value at the following time step. Note that as a result
of basic information theory, the value of data at successive time steps increases
since it is less predictable. Thus, the iterative algorithm will continue calculating
the future predicted value until the time step where it surpasses the threshold. The
sensor is then instructed to sample at this point in the future.

We can thus observe that the crucial decisions when using this framework are:

(1) Choosing the framework that will be used to update the model which is then
employed for predicting future data.

(2) Deciding on the way of calculating the value of the next possible sampling of
data, 1.

(3) Setting the threshold value. This is primarily caused by the constraints in the
problem and is also dependent on the history of the sensing protocol, as well
as the domain knowledge available.

As can be observed from figure 4, the forecasting method chosen will impact
on the value of the data being measured by the sensor. In this work, we focus
on a Bayesian model for updating the model held by the sensor. However, this
model can be generalised to Gaussian processes as explained by Williams [1998]. In
our particular case, this generalisation is not required since we already have a fair
amount of prior knowledge about the data from the glaciers. Thus, the additional
computational load of Gaussian Process Regression is not warranted in this case.
In the next section, we give details of the framework of Bayesian regression which
is used in this paper.

3.1 Forecasting Data

This section describes a generic forecasting method that also provides an agent with
a means of rating the reliability of its forecast. This rating is important within our
framework since the agent has to value the data it measures as well as predict the

2The time step is determined by the maximum sampling frequency available to the sensor node.
3This is the information maximising sampling rate when no constraints are present.
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Fig. 4. Decision making process for sensing within an agent. The domain knowledge part may
not be present dependent on the application. When a sample is acquired, it is used to update
the existing model for forecasting future data. The updated model is then in turn used to place
a value on the acquired sample. Vipreshorq is calculated using the history of the model, domain
knowledge and other constraints. An iterative algorithm is then executed to compare the values
of successive predicted samples in the future against the threshold in order to decide the next
sampling time.

value of future data. We present the Bayesian linear regression analysis framework,
which can be extended in a straightforward manner to non-linear regression analysis
by modifying the input vector as described in [Box and Tiao 1992].

Within this context, a standard linear regression model with Gaussian noise can
be represented as:

v =tTw+e (1)

where x; is an observed value, t = {t1,...,t;,...,t)} is an input vector consisting
of M variables (e.g. time and location at which readings are taken), w represents
the weights assigned to each input variable ¢; within the input vector and e is
additive noise drawn from an independent and identically distributed Gaussian
distribution with zero mean and variance o2:

e~ N(0,0%) (2)

Suppose, we now have N readings from a single sensor, whereby @ denotes the
vector of the N observations (i.e. @ = {z1,22,...,2;,...,xn}) and T denotes the
corresponding input matrix (i.e. 7= {t1,%q,...,txn}). The objective within linear
regression is to find a homogeneous real valued function, g(t) = t"w, that best
interpolates the training set S = {(¢1,21), (t2,22),..., (N, 2N)}

Now, there are a number of error functions (based on various norms such as the
Manhattan or Mahanalobis distance) that could be used in order to characterise
this “best” interpolation. The one used in standard linear regression is that of root
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mean square error. In this case, the objective is to to choose the parameters w so as
to minimise the Euclidean distance between the projected data and the measured
data. That is, choose w* such that:

= arg minﬁ (zi — tT'w)2 (3)

By applying the first-order condition on equation 3, it can be calculated that* (refer
to Appendix A for the proof):

w* = (T°T) " 'T"x (4)

The above equation thus provides us with a way to find the most likely fit of
the data (the best linear unbiased estimate). However, it does not inform us about
the likeliness of this fit (i.e. it does not quantitatively tell us how well this model
explains the data as opposed to other models). This implies that we cannot then
easily provide a confidence bound on predictions based on this estimate. In order
to obtain such a quantitative assessment of our predictions, we turn to Bayes’
Theorem. In essence, Bayes’ Rule assigns a probability that an event F; occurs,
given we have observed an event Fs, as:

P(E; | E1)P(E)
P(E.) ®)

In our case, we want to predict the sensor’s next measurement (the F;) based
on all our observations so far (the F3). More mathematically, we want to obtain
the distribution p(@,41 | tnht1,T,2). This can be achieved by first finding the
probability distribution for all linear models and then averaging out over these
linear models:

P(Ey | Eq) =

P(nsr | tps, Tr ) = / P(@ns1 | tsr, wp(aw | T, a)dw (6)

We thus now need to find p(w | T, x). That is, the probability distribution of the
different linear models which can explain the data. In order to do so, we again apply
Bayes’ Rule. Assuming the prior distribution p(w) ~ N(0,%,) and marginalising
out p(x | T), the following can be derived (the proof of this is in Appendix B):

p(x | T, w)p(w)
p(z | T)

x p(x | T,w)p(w)

~N(@@,A™)

p(w|T,z) =

4A number of methods exist in order to reduce the computation load of finding the optimal
weights. However, in this paper, we do not consider such techniques since our focus is on placing
a value on the sensed data, rather than optimising the computations when calculating such a
value.
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where A = o7 2TT" + E;l and w = 0 2A~'Tz. Combining the result of equation
6 with that of equation 7, we obtain the following:

pansr [t Tox) = [ €1 wptw | Toa)dw
} (8)
= N(ﬁtz;_i_lA_lTﬁc, tz;_,'_lA_lth,_l)

Another useful term is the marginal likelihood (or evidence), p(x|T) which is
given by:

p(a|T) = / p(|T, w)p(w)dw (9)

For the prior used in this paper, it can be shown that the log of the above equation
reduces to [Rasmussen and Williams 2005]:

1 1
logp(x|T) = —QmT(K + 0%t — §log | K + 0T | —%log27r

where K =TT, T.

The Bayesian linear regression model discussed so far works under the assumption
of a linear model (i.e. the observed data x is linearly related to the input T).
This model can however be readily extended to a non-linear regression model by
projecting the input vector ¢ onto higher dimensions (called the feature space) to
give rise to a new input vector t = ¢(t). This gives rise to what are commonly
known as kernels or basis functions. Then, our model is given by:

i = o(t) w +e (10)

in contrast to the linear regression model given by equation 1. The results derived
so far are equivalently applicable to this new model with the only difference being
that « is replaced by ¢(t). So, for example, the data predicted at ¢,,11 is now given
by:

ponr [t To2) = [ ot wptw | T,2)dw
1 (1)
= N(§¢(tn+1)TA_l¢(T)m7 H(tni1)TA D(tny1))

An example of such a kernel regression is illustrated in figure 5 where the decrease
in variance of the model as the number of points sampled increases is evident.

Given this background, the Bayesian kernel regression model can be viewed as an
appropriate method of forecasting data when we are aware of some prior knowledge
about the data (for example, we believe that it is a piecewise linear function or a
sum of periodic functions). This knowledge is used in order to construct the kernels
which are then used for regression. However, if such knowledge is not present, then
we effectively need to produce a set of kernels on which to perform the regression. In
order to deal with this, we could turn to Gaussian processes which provide us with a
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Fig. 5. Example of Bayesian Kernel regression with a simple sinusoidal kernel

principled way of generalising the Bayesian linear regression model so as to generate
sets of (potentially infinite) kernel functions given more meta-level descriptions of
the input models (e.g. a squared exponential kernel is used to model the fact that
observations from geographically near sensors tend to be highly correlated). More
details about the Gaussian process regression are provided in [Williams 1998].

To summarise, this section has provided us with an overview of how to update
data models in order to forecast future data. In the next section, we explain how
to use these data models in order to value the data that is observed.

3.2 Valuing Data

This section addresses the problem of valuing data once it has been measured. An
information-theoretic approach to solving this problem is to evaluate the amount of
information that an observation provides. Now, following the Bayesian approach, a
new observation leads to an update of the original belief about the probability dis-
tribution of the data model. Thus, the information gain of a particular observation
is intuitively the difference between the prior and posterior probabilities. This can
be gauged by the Kullback-Leibler (KL) divergence measure [Kullback and Leibler
1951] (a.k.a. information gain or relative entropy) which quantifies the difference
between two probability distributions (f; and fo) as:

+oo
Scr(finf) = [ filo)log j;g’;

Using this measure, we can then assess the impact of an observation x, on
the prediction of the next data point x,+1 by means of equation 8 for the lin-
ear Bayesian regression model. Specifically, let x,,_; denote the set of observations
{z1,29,...,2y—1} and T;,_1 be the corresponding input matrix. Then, before ob-
taining observation z,,, the prior for estimating x,, 1 is:

(12)
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1 _ _
p(x’ﬂJrl | tn+17Tn*17 mnfl) = N(§t£+1Ani1Tn*1wn*1’tILJrlAniltﬂJrl)

where A, = 02T, \TF | + Z;l. Combining this with the posterior given by
equation 8, provides us with the value of the information contained within x,,, given
we have observed the vector x,,_1 as:

“+o0o
p(l‘n-&-l | tn-i—lzTn—lamn—l)
V(zn|xn— :/ p(x toi1,Th_1,,_1)l0
(@nfn-) _oo (@nt1 | foes, T, ) log P(@n1 [ o1, T, )

danrl

(13)
Now it is known that if f1 = N (uo, 3o) and fo = N (1, X1), then:

i (112 = (108 (o ) + (ST 500+ (1 = o)™ o o) = V)
(19

Thus, it is straightforward to calculate equation 13 using equation 14, thereby
yielding the value of the data. There are a few important and interesting points
to note about this measure. Firstly, the KL divergence is always greater than
or equal to zero, with 0k (f1,f2) = 0 when f; = fo. This implies that each
new observation will always provide us with some new information. Secondly,
the KL divergence does not satisfy the triangle inequality which implies that after
making an observation, the agent may revise its estimate of the value of the previous
observation [Kullback 2001]. Furthermore, observation of a data at a future time
step is more highly valued if the agent does not carry out an observation now. This
is a particularly useful property in the context of this work because it can help the
agent decide when it will next make an observation in the future based on some
threshold value. This is explained further in section 3.3

So far, we have shown how to value an observation based on a purely informa-
tion theoretic setting. This inherently assumes the equivalence of the information
gained at various input points without any contextual preference assigned to the
information. For example, an observation leading to an increased certainty that the
temperature model is around 5 degrees is equally valued as an observation caus-
ing the same change in certainty for a temperature model of around —5 degrees.
Whilst this is an appropriate model for GlacsWeb®, this may not be the case for
other sensor networks. For example, in a sensor network deployed for surveillance,
reducing the uncertainty in a model resembling a humanoid shape might be of far
greater value than reducing uncertainty in one resembling a cubic shape. Thus,
the challenge that arises in these types of sensor network is how to modify the
value of an observed data based on contextual information. This challenge can
be addressed within our framework (specifically within the box labelled “domain
knowledge” in figure 4) by using a Bayesian classifier [Rasmussen and Williams
2005] (or any other principled classifier), which assigns a probability to the data

5This has been confirmed by glaciologists working on the GlacsWeb project.
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belonging in a certain class®. The different classes are assigned weights according
to their importance which can be derived from the context in which the sensor net-
work is deployed. Then, using these weights and the probabilities derived from the
classifier, an expected value of the data can be calculated for these sensor networks.

3.3 Application to GlacsWeb Data

We now discuss how to apply the general principles of the sensing protocol explained
in the previous subsections to the specific GlacsWeb application. It should be noted
upfront that the data within GlacsWeb can be characterised as piecewise-linear
functions of time with added Gaussian noise since this impacts substantially on the
forecast model used. Thus, the model of the data can be represented as:

N(tywy,o?) if0<n<
(T | toy Wi, .. WE,OF, .. O%) ~ (15)
N(tnwK,O’%() if Bx_1 < n <Pk
where K is the number of different line segments comprising the overall model.
Furthermore, the input vector in the case of GlacsWeb consists only of time points,
thereby meaning that T consists only of the time vector ¢ = {t1,...,t,}. From

equation 15, it can therefore be observed that there are three major aspects of the
data which are unknown:

(1) The model parameters (i.e. wy,...,wk).

(2) The point at which a phase change occurs (i.e. {01, 52,...,0K}).

(3) The level of noise in the environment (i.e. o,...,0%).

From the model above, observe that each segment of data, {zg,_,,...,2g,}, poses

exactly the same problem as a normal linear regression problem, with the model of
the data changing at each breakpoint. Furthermore, a sensor only needs to consider
whether the current observation will cause the current model to be refined or trigger
the start of a new model. Hence, our explanation of the sensing protocol focuses
on how to regress two linear models around one phase change. Then, as new data
comes in, the sensor needs to decide whether it should refine its existing model of
the data or whether it should switch model.

In more detail, as the sensor obtains data, it needs to find out whether a phase
change has occurred and the point at which it has occurred. Let ! = {x;,...,z;}
and tz = {t;,...,t;} where j > 4. Then, the probability that a phase change
happened at time n can be calculated as:

p(Br = mp(@ " | 87 Dp(a) | ¢))
N-1 = =
Y i—s P(Be = n)p(xy ™t | 87 p(al | )
where p(0r = m) is the prior probability that the breakpoint occurs at n and

S is the training set described in section 3.1. We only concentrate on n being
between 3 and N — 1 since it is meaningless to consider less than two data points

p(Br=n|9)=

(16)

6An in-depth explanation is outside the scope of this paper and will be developed in future work.
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in each model. Furthermore, since we have no prior information about where the
breakpoint occurs, a flat prior is used (i.e. p(8x =n) = U[3, N —1]). Note that the
normalising constant, P(S|3 ) is the probability of explaining the data set given
a phase change:

N-1
P(SI3 Bx) = Y p(B = n)p(at ™" [ ¢ )p(=) | ) (17)
Br=3

Now in order to estimate whether a phase change has actually occurred, we divide
equation 17 by equation 9 (which can be interpreted as the probability of explaining
the data set without any phase changes).

Having thus updated its data model accordingly, the sensor then needs to cal-
culate the value of the data it has just sensed. This can be done using the KL
divergence method outlined previously (see equations 13 and 14). Notice that the
KL method automatically places a very high value on data which signals a phase
change (in equation 13 the denominator becomes very small if the new data does
not conform to an existing model).

Finally, based on the data it has observed so far, the sensor calculates the next
sampling time. In order to do so, it needs to calculate Vipreshotg first. This is
derived from the average of all data values (except the first two) in the current
model of the data and is given by:

S V(an)
n=3

1—n

V;threshold = (18)

where ¢ is the latest data sample in the current window. We do not incorporate
the first two samples in this calculation because their extremely high value (since
they indicate the start of new model) could set the threshold to an unreasonably
high value and thereby force the node to sample too far in the future. This can be
detrimental since the sensor may miss out on sampling important data. Figure 6
illustrates how the data collected using our sensing algorithm compares against real
data. We are aware that this algorithm (like any other discrete sampling algorithm)
may miss out ephemeral events. However, it should be noted that events that appear
ephemeral can also, in a number of cases, have early warning signs that could be
used and valued appropriately with a particular valuation function (as determined
by the experts on the phenomenon being studied). In the case of GlacsWeb, for
example, the changes in pressure over time within the glacier indicate an imminent
potential breakdown and thus the user could assign Vip,eshoid appropriately instead
of taking the moving average.

Having explained the sensing protocol, we now consider how feasible it is to carry
out the necessary computations on the GlacsWeb nodes in the next section.

4. COMPUTATIONAL FEASIBILITY

As we are seeking to develop a solution that can be used in practice, it is important
to consider the energy consumption and the time it takes to carry out the compu-
tations on the nodes. In more detail, a significant amount of computational load
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Real Data: mWater from August 2004 through till August 2005
90 1

70 4

50 4

oy

rvvvv!lvvvvvvlvvrrvvvvvrvvIvvvrvvrvvvvvvrvvrvvvvvvrvvv

1 2 3 4 5 6 7 8
2004 Month 2008

10

(a) Real data collected from Probe 8

Reconstructed Data: mWater from August 2004 through till August 2005
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(b) Probe 8’s data as sampled by the sensing algorithm

Fig. 6. Comparison of real data vs data sampled by the sensing algorithm
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is assigned to each sensor node by the processes described in section 3. Therefore
it is important to determine that these loads can actually be supported by the
underlying hardware. Specifically, each GlacsWeb node is installed with a 1MHz,
8-bit PIC18F4320 micro-controller which is responsible for controlling the sensors
and processing the data.

Now, the model used in our sensing protocol (equations 17, 13 and 14) performs
operations that are dominated by matrix exponential calculations, i.e. e where A
is some N x N matrix. This expression is calculated as follows:

0 k
A A

&
k=0

€

The above series always converges and therefore the exponential of A is well-
defined. However, in order to save computational time and energy, we only evaluate
the above expression from k£ = 0 to kK = 20 which provides us with a very good
estimate of the final value(s) upto 3 decimal places. Thus, if the matrix A were to
be of a generous size, say 20 x 20, it would take approximately 193734 instruction
cycles to evaluate the above expression. The PIC processor uses 4 clock cyles for
every instruction cycle. Therefore, the time ¢ taken to compute the above expression
would be:

193734 x 4
~ 1000000
Furthermore, the PIC consumes 110u A across 2V and therefore the total energy,
Ecompute, required to calculate this matrix exponential is given by:

~ 775ms

Ecompute = 110pA x 2V x 775ms = 170.5uJ

Whilst 775ms may seem a long time for some real time applications, latency is
not an over-riding factor within GlacsWeb, as long as nodes transmit their data
to the base station once a day. Furthermore, energy saving is of much greater
importance in this application and 170.5uJ is an excellent compromise for the time
it takes to carry out the heavy computations.

Building on this, we went one step further to simulate the average time and
energy needed to evaluate equations 13, 14 and 17 using a Microchip compiler and
our results show that the PIC micro-controller requires computation time between
15 — 20s, whilst consuming energy upto 4.27m.J. This is again entirely acceptable
for GlacsWeb, due to the extremely small amount of power consumption.

In more detail, Table I illustrates the different PIC micro-controller families and
the trade-off between processor speed and current consumption. As can be seen,
the PIC16 performs the calculation with the least amount of power, but does take
a significant amount of time. At the other extreme, the PIC32 requires the least
amount of time, but it does have a higher idle current. In this context, we decided
on a PIC18 micro-controller as a good compromise between idle and calculation
current that is well suited to the needs of GlacsWeb.

Having now explained the salient features of the sensing protocol, including ad-
justing the sampling rate, calculating the value of the data and evaluating the
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Table I. PIC micro-controllers and their characteristics

PIC family | Width (bits) | Voltage | Current Speed
PIC16 8 2 0.018mA | 0.1MHz
PIC18 8 2 0.11mA 1MHz
PIC24 16 2 2.6mA 8MHz
PIC32 32 55mA 8MHz

computational feasibility of deriving it, we now need to consider how this value can
be used by the communication protocol to transmit data to the base station.

5. USAC'S ROUTING PROTOCOL

Once a sensor has collected data from the environment, it needs to transmit it
towards the base station. In the initial version of the system this was done by
direct transmission to the centre [Padhy et al. 2005]. However, as discussed in
section 2, this is inefficient since the power required to transmit data from one
node to another is proportional to the square of the distance between the nodes
(from basic radio transmission theory [Bertoni 1999]). As a result, the total energy
spent by transmitting data directly to the centre via a single hop is more than the
energy spent when the data is relayed via successive intermediaries to the centre.
In order to see this effect, consider the example shown in figure 7. Here, sensor 1
could transmit data to the base station (bs) via the following three routes: 1 —
2 — 3 — bs (bold), 1 — 3 — bs (grey) and 1 — bs (broken line). The total energy
consumed for the transmission of one packet of data would then be 12 (4 +4 + 4),
20 (16 + 4) and 36 respectively, thereby suggesting the use of route 1 — 2 — 3 —
bs. This approach is often known as topology control [Ramanathan and Rosales-
Hain 2000; Wattenhofer et al. 2001; Pan et al. 2003] since it aims to control the
topology of networks for the purpose of maintaining some global graph property
(such as connectivity), while reducing energy consumption and/or interference that
are strictly related to the nodes’ transmitting range. Our communication protocol
also takes advantage of the capability of GlacsWeb nodes to adjust tranmission
power transmission.

@ sensor

[ base station

transmission
range
sender—o1ver 2 3 base
1 4 16 36
2 X 4 16
3 4 X 4

Fig. 7. Three possible routes via which sensor 1 can transmit its data to the base station. The
concentric semi-circles show the range of sensor 1 with three power levels chosen such that the
range grows linearly. The table shows the energy required for a sensor to transmit a packet directly
to another.
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However, such an approach based solely on the re-adjusting transmission power
is too nalve since it disregards the two following aspects:

(1) The opportunity cost of the energy used by each sensor. If a sensor does
not relay data, it could then use that energy in order to carry out additional
sensing (which contributes towards the value of the network). Since each sensor
is in a different local environment (due to the different placement of the sensors
in the glacier), they derive different values by sensing the environment. Hence,
it might be preferable for a sensor to transmit its data via a more energy-
consuming route if a lower energy-consuming route contains a sensor in a highly
dynamic environment.

(2) The total power required to transmit along a particular route. The
transmission of data also requires the receiving node to be in a listening mode
(i.e. the agent needs to switch on its antenna for receiving data which also
consumes power). Thus the route 1 — 2 — 3 — bs requires both sensor 2 and
3 to additionally spend energy receiving the data.

We tackle these two problems by developing a utility-based communication pro-
tocol. This protocol is based on the value of the data to be routed to the base
station (which is derived according to methods detailed in section 3.2) and the cost
of transmitting the data. We next detail how to calculate the cost of communi-
cation, before going onto the algorithm used for the communication protocol in
section 5.2.

5.1 The Cost of Communication

The network is modelled as a multi-agent system consisting of a number of agents,
T = {1,...,n}, that each have K different discrete power levels, {pt},... ptK},
(with ptf‘|r1 > pt¥) at which they can transmit. At each level, there is a set of
neighbours n;(pt¥) C T to which agent i can transmit data. Due to the nature of
radio transmission, n; (pt¥) C n;(ptF).

Thus, the direct communication of data from any agent ¢ to another agent j,
where j € n;(ptF) consumes a certain amount of energy Et! which is given by:

Et!(data) = pt¥* x t!(data)

where pt#* is the lowest power level at which j € n;(pt¥) and t{ (data) is the amount
of time a data packet takes to transmit. Now, in this scenario, the size of each sensed
data packet and the bandwidth available to each agent is the same, so t!(data) is
constant for all agents and sensed data packets. Therefore, by slight abuse of
notation, we shall hereafter refer to Et](data) as Et].

The cost of communication of an agent ¢ to another agent j is then the opportu-
nity cost of that decision. In this case, there are two particular scenarios to consider
when communicating data. If, on one hand, an agent is originating the data, then
its cost of communication is given by:

J
Et!
J sense
Et! + E
ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.
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where E?™*¢ is the energy spent by ¢ in sensing new data and vi°"*¢(t,) is the

value of the new data. On the other hand, if an agent is relaying data, then its cost
of transmission is given by:

Eti + E;‘eceive

cl(relay) = Et? -

v () (20)
where EI°“i¢ is the energy spent by the agent receiving the data which it then
relays.

Now, since it is not possible to assign vi¢"*¢(t,,) before actually carrying out the
observation, we need to estimate it. Due to the nature of the data (where sudden
changes are possible) we estimate vi¢"*¢(t,,) using a moving average with window

size w. Thus, at time ¢,, the estimated value of the data is given by:

n—1

1
Uisense(tn) — min(n’w) | Z Ufe"se(ti)
i=max(n—w,0)

We choose such a forecasting method since it evens out the changes in value that
random noise can introduce, whilst at the same time updating the value of the data
fairly quickly as time progresses. However, it should be noted that this forecasting
method (or for that matter any forecasting method) cannot guarantee to correctly
predict the value of the data all the time. Also, the moving average only starts
once the number of samples collected by the sensor is greater than w. Up to that
point, the estimated value is just an average.

Having thus explained how the cost of communication is calculated, we now detail
the algorithm followed by each agent when communicating data.

5.2 The Communication Algorithm

The algorithm we use for the communication protocol is given in figure 8. It consists
of four main steps, namely:

(1) Initialisation. In this phase, the network topology is discovered and each
agent is made aware of the power level it must transmit at in order to reach
each of its neighbours. For the purpose of simplification, the model assumes
symmetric links between nodes. Flooding is used for network discovery. Here,
the base station initiates the flooding by forwarding a message to all its neigh-
bors, each successive node forwarding it once. As the flooding proceeds, nodes
keep track of who they received messages from. This phase is run each time
a change in network topology is anticipated (either due to deployment of new
nodes in the glacier or because nodes have moved with the ice). This is again
application dependent. For GlacsWeb, this phase is executed once a day during
summer months (when ice movement is more dynamic) and every three to four
days during winter months.

(2) Update energy band of agent. This step is responsible for dividing the
agents into different power level groups with respect to the base station. This
segmentation is then used in the next step in order to update the cost of relaying
the data.
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ALGORITHM 1.
(1) Initialisation.

Run a network discovery protocol that establishes n; (ptf) Vk,i. Go to step 2.
(2) Update transmission power.

At predefined intervals of time, typdate (> 1/fmin), the centre broadcasts a message
msgo = (Pgr’l"S,POTEC) at the highest power level pté(, where Pgmns is the power at which
the centre has transmitted this message and Pj¢¢ is the minimum power at which the centre
can receive data. An agent can then calculate the minimum power required to transmit to
the centre as:
P_'min _ P(';“ecpé'rans
7 Pfec(msgo)

assuming that the dissipation of power is symmetric between 0 and i. From Pl-mm, an agent
can then determine the minimum power level ptf* (0) required to transmit to the base station

(since 0 € n;(ptF) if ptf > PMin ). It can then determine EtY(data) and thus cg(originate).
(3) Update cost of transmission to base.

Let I(kx) € 1 be the set of agents that require the minimum power level ptf* to

transmit to base (I(kx) = no(ptk*) —no(ptg*_l)))‘ Note that ptd = {0}. Agentsi € I(1) can

calculate their own cost of relaying data to the base station, c?(relay). Upon calculation,

they broadcast the message (c¥(relay)) at power level ptX.

Then for kx =2 to K do ]

—Agents i € I(kx) calculate the cost of relaying data c)(relay) to all agents j € I(k* —1).

—They also update their cost of transmission, c?(originate), as min(cé(originate) +
& (relay)) where | € Uk I (k% —a)

—They then broadcast the message (c?(relay)) at power level pt’ where ¢{(relay) =
min(cl(relay) + ¢ (relay)).

(4) Transmit data.

Send the data packet through the lowest cost path if Vi(data(ts)) > c2(originate).

Update c{ (originate), c{ (relay) from the value of newly sensed data. '
(5) Repeat Step.
If time to update transmission power levels,
then go to Step 2
else if time to update relay and originate costs
then go to Step 3

else sense data and go to step 4.

Fig. 8. The routing algorithm.
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(3) Update cost of transmission to base. This step is required so as to find the
minimum cost route from each agent to the centre. In order to do so, agents
in each power level group successively transmit the cost of their cheapest route
to the centre. This is similar to Adaptive Transmission Power Control (ATPC)
[Lin et al. 2006], where the nodes learn about the minimum power and link
quality of other nodes in their neighbourhood via a feedback mechanism. An
important difference between ATPC and USAC is that the latter finds the
lowest cost path to the base station, whereas the ATPC works on a greedy
optimisation of the path. Furthermore, ATPC nodes adjust their power levels
based on the white noise within the communication channel. USAC does not
focus on this aspect of link quality as it is outside the scope of this paper.
However, it should be noted that it would be straightforward to implement this
within the USAC protocol by incorporating a minimum Signal to Noise Ratio
for the nodes that would accept packets within the communication protocol.
Another way in which unreliable links are handled, is via blacklisting [Son
et al. 2004]. Here, links of poor quality are deselected as and when they are
discovered. USAC also adopts a similar policy whereby the power levels of
nodes are adjusted based on historic communication (as opposed to setting
these power levels at deployment).

(4) Transmit data. Having found the cheapest cost of transmission to the base
station, the agent then decides whether or not to transmit its observed data.

Our routing algorithm could be considered a variant of distance-vector based
routing [Perkins and Bhagwat 1994], where the cost function is analogous to dis-
tance. However, our protocol differs considerably in that the cost function is not
stand-alone and is strongly coupled with the value of the sensed data. Thus, having
detailed the communication aspect of USAC and how it intertwines with the sens-
ing protocol by considering the value of sensed data, we proceed to the next section
where we empirically evaluate its performance against some benchmark protocols.

6. EMPIRICAL EVALUATION

In this section, we empirically evaluate the performance of USAC through a series
of experiments. In particular, we compare it against four other alternative protocols
(discussed below) in networks with varying topology, agent numbers and degrees
of dynamism in the environment. We also benchmark against a theoretical opti-
mal strategy. This strategy assumes prior knowledge of the complete observation
environment of each node and then computes the best sampling points and com-
munication route to the base station such that the network achieves a theoretical
maximum lifetime. This is clearly impossible in practice, nevertheless, indicates
how effective our strategy is in absolute terms.

6.1 Experimental Setup and Performance Metrics

The benchmark strategies represent the dominant approaches available in the lit-

erature to deal with power-efficient routing:

(1) Infrastructure Based. This is the strategy originally employed in GlacsWeb.
Each agent transmits to the base station in a single hop. If the agent realises
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that the base station is outside its transmission range, it simply fails to transmit
the data. The plot for this strategy is labelled DIRECT.

(2) Forced Obligation. In exploratory uses of sensor networks, an a priori model
that best describes the sensor values being monitored is not always known.
Since data alone is the ground truth, physical scientists want to collect all data.
Therefore, in our simulations we employed this strategy in which each agent is
obliged to communicate all its sensed data, even if the cost of transmission is
higher than its worth. The plot for this strategy is labelled FORCED.

(3) MintRoute. This strategy is based on a metric to capture the end-to-end
capability of forwardness proposed in [Woo et al. 2003]. It is defined as the
expected number of transmissions (including re-transmissions) for a successful
end-to-end data forwarding. Specifically, it defines link quality as:

-
ps(l) x pr(l)

where py (1) is the forward probability of link [ and p,(I) is its reverse probability.
ps(l) is calculated as the ratio of successfully transmitted packets to the total
number of packets transmitted over I. p,(I) is the calculated as ps(l) where [
is the reverse link of {. The route metric of a n-hop path p is then calculated
as ETX (p) =Y., etz(l;). The plot for this strategy is labelled MINT.

(4) Optimal Sensing and Communication. This strategy represents an opti-
mum solution. It is executed by recasting the network as a centralized global op-
timization problem and using simulated annealing to gather information about
the entire network’s environmental data. It then calculates an optimal commu-
nication path between an agent and the base station such that the lifetime of
the network is maximised. However, because it assumes knowledge about each
agent’s data and how their opportunity costs will change over time, it is not
itself a viable solution to the problem. The plot for this strategy is labelled
OPTIMAL.

etx(l) =

It is obvious that adaptive sampling should result in significant energy savings
and, therefore, to avoid giving USAC an unfair advantage, all other protocols in
the simulation, with the exception of the OPTIMAL algorithm, were endowed with
the same adaptive sampling mechanism. We also decided to use a simple version of
the TDMA based protocol developed in our group [Elsaify et al. 2007] that limits
the communication of the nodes to one short window during the day. In doing so,
this MAC layer protocol helps eliminate the lower level problem of overhearing and
reduces the duty cycle of the nodes significantly.

In terms of measuring performance, we adopt the following definitions:

DEFINITION 1. Efficiency is the total value of the data received by the base
station divided by the total energy consumed by the entire network in collecting it.

DEFINITION 2. Network Lifetime is defined as the time taken for 50% of the
initial number of agent nodes in the network to die. 7

7A formal definition of network lifetime is not straightforward and depends on specifics of the
application scenario in which the network is used. Our simulations suggested that failure of
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We use a discrete even based simulator developed in Java. In the simulation, each
agent is allowed to take one of the following actions in a single time period: sense,
idle —listen (where an agent enables its antenna so that it is ready to receive data),
transmit a single packet, receive a single packet and sleep. With the exception of
transmit, all actions have a set energy consumption value affixed to them. Each
agent is provided with five different levels of transmission power to communicate
with other agents at five different transmission ranges. The energy consumption of
the transmit action is dependent on this variable transmission power of the agent
transmitter using the square law. We decided to ignore the processing action of
the agent due to its near negligible energy consumption. Specifically, table II shows
the typical energy consumption of each action based on the values obtained from
the fielded system. Furthermore, the initial energy capacity of the agent was set to
2000J and the confidence level within the sensing protocol was set to 10% (again
based on our experience with the fielded system).

Table II. Simulation Parameters

Parameter Value
Transmission per packet 0.0585J
Reception per packet 0.006435J
Idle transceiver per second 0.05J
Sense 0.015J
Sleep per second 105uJ
Packet Time 130ms (6 samples)
Transmission Ranges 14.14, 28.28, 42.426, 56.568, 70.71
Network Area 200m x 200m

The radio propagation model is assumed to be symmetric in which the energy to
transmit over a distance d is proportional to the square of this distance (energy o
d?). However, we are aware that radio irregularity is a common phenomenon which
arises from multiple factors, such as variance in RF sending power and different path
losses depending on the direction of propagation [Zhou et al. 2006; Zamalloa and
Krishnamachari 2007]. Therefore, in order to make our simulations more realistic,
we set the transmission link quality between any two nodes to 0.8. This value was
based on the real experience of deploying our system in the glacier where it was
discovered that the average rate of successful packet transmission drops down from
almost 100% in the winter months to 80% in the summer months when the en-
glacial water bodies start to attenuate the radio signals. See Figure 9 for a specific
example of this phenomena.

Finally, for statistical significance, we report average results and standard devi-
ations of 100 simulations in each of the experiments carried out. The data used
in our experiments is derived from segments of the data collected® by the fielded
probes over the last three years. In our graphs we show the standard error of the

approximately 50% of the nodes (almost all of them being intermediate i.e. closer to the base
station) led to little or no connectivity with the network. Hence, our definition refers to the
capability of the network to provide the services it was designed for (i.e gather data from the
nodes).

8http://leo.ecs.soton.ac.uk/GlacsWeb/plotter.php
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Fig. 9. Percentage of good probe packets received from Probe 8 over 16 months (10000 packets)

mean, as well as the 95% confidence intervals. Thus, error bars in our plots are in
the form: y e, implying that we are 95% confident that the true mean (i.e. aver-
age) lies within the range of values: y -e to y +e. Since the simulation instances
were conducted over a period of 6 months, the maximum lifetime of a network was
capped at 183 days.

6.2 Network Topology (Static Nodes)

In this experiment, we carried out simulations for a fixed number of agents (10)
randomly distributed around the centre. The sensed data model for each agent and
the number of agents in the networks were fixed for each instance of the simulation.
The purpose of this was to analyse how the protocols fared against each other on a
daily basis in light of different network topologies. The results of these simulations
are shown in Figure 10. Both plots show the superiority of USAC over the other
practical protocols. Specifically, sub-figure 10(a) shows how the total value of infor-
mation collected at the base station increases and then stagnates for each protocol
through the 6-month period. The point of stagnation (start in the flatness of the
lines) indicates when the batteries of 50% of the nodes are flat. The plot shows that
initially the MINT, DIRECT and USAC base stations manage to collect the same
value of information, whilst the FORCED base station manages to accummulate a
higher information gain. This is expected, as all samples sensed by the FORCED
agents are transmitted, as opposed to the selective data transmitted in the other
protocols. However, this approach is not the best in the long run as the inter-
mediate agents in the network are obliged to receive and forward data from other
agents and therefore drain their resouces quickly. In particular, MINT performs the
worst in terms of network lifetime and information gain. This validates the the-
ory that multi-hopping is not necessarily energy efficient in circumstances where
direct transmission is a possibility. On the other extreme, transmitting directly at
the highest transmission power can also having mitigating effects as seen as with
DIRECT. Therefore, a middle ground needs to sought which is provided in USAC.
In particular, Sub-figure 10(b) verifies this by plotting the daily efficiency of each
protocol. It can be seen that although USAC collects a lower value of information
at the start, it is almost three time more efficient than the others. Towards the
end of the 6-month period, USAC extracts an efficiency gain of 78% over DIRECT,
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74% over FORCED and upto 100% over MINT. In addition, USAC performs at
79% efficiency of the OPTIMAL protocol.

6.3 Dynamic Network Topology (Mobile Nodes)

We extended the previous experiment by introducing node mobility in the network
in order to simulate the effect of glacial movement. Based on the glaciologists’
advice and our own fielded system experience, agent nodes were programmed to
move randomly in one of three directions (left or right, but predominantly down
the slope of the glacier) at every time step. Like the previous experiment, the
sensed data model for each agent was fixed for each instance of the simulation. The
purpose of this was to analyse how the protocols fared against constant change in
topology during the network lifetime. The results of these simulations are shown
in figure 11. Again, the plots tells us that USAC performs significantly better than
MINT, DIRECT and FORCED, although their performance degrades slightly in
comparison to when agents are static. However, it can be noted from sub-figure
11(b) that in comparison to the OPTIMAL protocol, USAC still performs at 76% of
the efficiency of the OPTIMAL protocol, whilst the other protocols do not fare any
better than in the static topology case. This demonstrates USAC’s ability to better
adapt in hostile conditions, such as that of a glacier, where topology is constantly
changing and communication links are continuously breaking.

6.4 Network Size

In this experiment, we conducted simulations by varying the number of agents in
the network from 5 to 40. The aim here is to explore how well USAC adapts to
network scalability. To this end, Figure 12 illustrates the performance of all five
protocols as network size is increased. Due to the variability of the observation
environment, the value of data collected by the nodes and their efficiency changes
every day. For this reason, we concern ourselves with the average of the final total
of these attributes at the end of each simulation to ensure an effective comparison.
In more detail, sub-figure 12(a) shows how the network lifetime declines as more
agents participate in the network. This is because the amount of data that a node
might forward as a relayer increases with an increase in the number of nodes. This
in turn leads to a faster depletion of energy reserves. Whilst the graphs seem fairly
linear, the gap between USAC and the remaining practical protocols is actually
quite big. In particular, USAC is able to extend the network lifetime by almost
60% in comparison to FORCED, 100% in comparison DIRECT and by almost
200% in comparison to MINT. On average, the lifetime of a network employing
USAC is approximately 65% that of one employing the OPTIMAL protocol. This
is important because an extended lifetime means that a greater value of information
can be gathered at the base station.

In this case, however, a much better comparison metric is the total value of
information gathered at the base station for every joule of energy consumed in the
network. Thus, sub-figure 12(b) illustrates very nicely how this metric is affected
by the size of the network for each protocol. Specifically, the initial cheap cost
of communication for MINT agents ensures that those close to the base station
die quickly which makes communication more expensive for agents further away in
the longer run (since isolated agents are only left with the option of transmitting
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directly). DIRECT agents show marginal improvement in their network lifetime
over MINT agents. However, because their transmission is independent, agents
further away from the base station suffer a similar fate to that of the isolated MINT
agents. The FORCED agents choose the cheapest cost path to communicate their
data. However, because they send all their sensed data (not all of which provides
significant new information) its value is not significant for the amount of energy
expended in transmitting it.

In contrast, USAC agents manage to extract more worthwhile data over the
network’s lifetime for the same amount of energy used by the other protocols.
Their performance in obtaining a total value of information per Joule of energy
consumption is rated at 70% of that of the OPTIMAL.

6.5 Dynamism of the Environment

In this experiment, simulations were carried out by varying the data model (ob-
servation environment) of the agent nodes whilst keeping the topology and size of
the network constant. Here we define the degree of dynamism in the data model
to be the number of phase changes that occur in the piecewise linear data model
of the environment used by the agent. The aim in undertaking this experiment
was to evaluate how well the protocols reacted to the change in their observation
environment. This experiment was based on real traces of data collected from the
nodes in the field.

In more detail, sub-figure 13(a) shows how network lifetime for each protocol is
affected by increasing the number of phase changes from 4 through to 26. The initial
trend of each graph indicates that the lifetime decreases rapidly with an increase
in the dynamism. This can be attributed to the adaptive sampling mechansim,
because more phase changes imply that the agents have to perform more sensing
and this results in them acquiring larger amounts of data than usual that is valued
much higher. In this context, more valuable data allows agents to exploit cheaper
communication costs and indulge in more frequent transmission activity which con-
sequently leads to a quicker depletion of energy reserves. The sub-figure also shows
that following the initial linear decrease in lifetime, there comes a point for each
protocol at which its performance flattens out and no further decline takes place.
This suggests the concept of a minimum network lifetime (a lower bound on the
network lifetime) and can be seen as a period during which data collection from
the network is guaranteed. Specifically, the experiment shows that USAC increases
the minimum lifetime of a network by 112%, 97% and 183% over the DIRECT,
FORCED and MINT strategies respectively. The minimum lifetime of a USAC
network is 63% of the minimum lifetime of the OPTIMUM network.

Sub-figure 13(b) shows the efficiency plot for the different protocols. As can be
seen, an environment with twice as many phase changes, results in approximately
twice as much data being transmitted, for approximately twice as much enery
expenditure for the FORCED, DIRECT and MINT strategies. This explains the
reason for their constant efficiency (flat graph). In a FORCED network, agent nodes
transmit all data (both high and low valued). The cost of transmitting in a DIRECT
network is high and therefore only high valued data gets through to the base station,
clarifying why the efficiency is lower than that of the FORCED protocol. The
MINT protocol has the poorest efficiency because each node only observes the
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myopic cost of transmission and therefore manages to transmit most of its data
without realising that the overall energy expenditure in the path leading to the
base station may be very high. USAC nodes, on the other hand, are very selective
in transmitting their data and only do so when it is worthwhile (irrespective of the
type of environment they are in). Therefore the USAC plot shows an increasing
efficiency as the environment becomes more dynamic. The rate of USAC efficiency
increase is very simlar to that of the OPTIMAL protocol. Overall, USAC preforms
at an efficiency of 70% that of OPTIMAL.

7. CONCLUSIONS

The protocol we have described in this paper allows agents to act in a decentralised
manner, based on the nature of their local environment, while self-organising to form
a network whose performance is high in terms of minimising energy consumption
and maximising the value of data gained. It makes use of the localisation ability of
individual agents to determine the cheapest cost path to the sink and incorporates
the value of the observed data to calculate the cheapest path. We have shown that
our protocol is far superior to the one currently deployed in GlacsWeb and two other
benchmark protocols, even when the size of the network in terms of the number
agents, their distribution around the sink and the nature of observed environment
is varied. We have also shown that our protocol is robust in the face of node failure
and that its performance is much closer to the optimal protocol.

Whilst we have specifically considered evaluating the effectiveness of our protocol
in the GlacsWeb application, the challenges involved here are very similar to those
that occur in the design of many other sensor networks. For example, we are cur-
rently exploring the possibility of using it in the FloodNet system (a sensor network
for monitoring river levels in which the sensors are solar powered)®. Furthermore,
we propose a Bayesian linear regression approach (due to the piece-wise linearity
exhibited in the data collected from the GlacsWeb network nodes) for the agents to
formulate the model of their environment. However, this can easily be substituted
with the Gaussian process approach in cases where the model is highly non-linear
and there is uncertainty regarding its true functional form without affecting the
overall architecture of our sensing and communication protocol.

To date, USAC corresponds to a single agent sensing model in which each indi-
vidual makes decisions about when to sense independently of the other agents. As
a result, this approach works well when the models of the data sensed by each agent
are independent (or have a very low dependence between them). As part of our
future work, however, we would like to address issues concerning sensor networks
where data models from various agents are more highly correlated and this can be
used to infer useful information. For example, if the resistivity sensors of nodes in
a specific region of the glacier all observe a sudden decline, it may indicate that
the ice in that particular region has melted and turned into water. To do this, we
would need to extend USAC to a multi-agent sensing approach whereby the agents
coordinate their sensing actions to maximise the information they extract from the
environment. Furthermore, we would also like to evaluate how our adaptive sam-
pling mechanism compares individually with other state of the art sensing protocols

9http://envisense.org/floodnet/floodnet .htm
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within literature such as KF estimation error and Backcasting. Such a comparison
would be useful in assessing if there is potential for further energy savings through
the task of sensing.

Finally, although USAC performs better than the other protocols compared in
this paper, it is interesting to see that the efficiency of the scheme drops as network
size increases. This might suggest that there exists an optimal network size given a
fixed coverage area and it would be useful to evaluate the impact of network density
in the future. Furthermore, we are preparing to deploy USAC at a fresh glacier
site in Iceland which would help in accurately reflecting the real life effects of radio
connectivity amongst nodes. This would help obtain additional metrics from the
network and further refine the protocol.

A. BEST LINEAR UNBIASED ESTIMATE: PROOF

Linear regression attempts to find a homogeneous real valued function, g(t) = t"w,
that best interpolates the training set S = {(t1,21), (t2,22),..., (tn,2n)}. Now,
there are a number of error functions that could be used in order to characterise
this “best” interpolation. The one used in standard linear regression is that of
root mean square error. In this case, the objective is to to choose the parameters
w so as to minimise the Euclidean distance between the projected data and the

measured data. That is, choose w* such that w* = argur)nin% Dy (xl — t}w)z.

By applying the first-order condition on this equation, it can be calculated that
w* = (T™T)~'TTx. This section shows how this best linear unbiased estimate is
derived.

Table ITI. Data for Multiple Linear Regression

Observation i | Response x t1 to ce tv
1 1 tin | tiz | .. | tim
2 T2 tor | t22 tom
n Tn tn1 tn2 IR tnm
M
Z'i:w0+ E wj'tij+€i, i:1,2,...,n (21)
Jj=1

In more detail, the least square function is:

n

n M
S(wo,wl,wg, cen ,’LUM) = ZG? = Z($Z — Wy — ijtij)2
i j=1

i=1
The function S must be minimised with respect to wy,ws,...,wy;. The least-
squares estimators of wy,ws, ..., wys must satisfy:
5S n M
Whj\)()y@la-“vﬂ\}l\/l =-2 E :(xl — Wo — 2 :wjtij) =0
0 i=1 j=1
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and:

59 n M
ﬁ Iﬁ,o,ﬂ,lv_”’@MZ —2 Z(l‘l — @0 — Zﬂ}jtij)tij = 0, j = 1, 2, . ,M
J i=1 j=1

Simplifying the above equation, we obtain the least squares normal equations:

n n n n
mﬁo-i-lﬂg ti1+{0\2§ tz‘2+"'+@ME tiM:E Z;
i=1 i=1 i=1 i=1

n n n n n
Wo Ztil + Wy Z tfl + Wo Ztutm +- 4 WUy Z tinting = Ztilxi
i=1 i=1 i=1 i=1

i=1

n n n n n
Wo ZtiM + Wy Z tintin + Wo ZtthiQ +FWnp Z th = ZtiMl“i
i=1 i=1 i=1 i=1 i=1

Note there are P = M +1 normal equations, one for each of the unknown regression
coefficients. The solution to the normal equations will be the least square estimators
Wo, W1, Wy« -, Wpy-

To allow a very compact display of the model, data and results, it is more con-
venient to express the multiple regression models in matrix notation.

T 1 tll t12 th
T2 1 tgl t22 . tQM
xr = , T'= ..

Tn 1 tp1 the -0 tam
w1 €1
w2 €2

w = , €=

Wp €n

In matrix notation, the model given by equation 21 is:

r=Tw+e€

In general, x is an n x 1 vector of the observations, T' is an n X p matrix of the
levels of the regressor variables, w is a p X 1 vector of regression coefficients and €
is an n x 1 vector of random errors.

Here, the vector of least square estimators, @ that minimises S is given as:

n
— 2 _ T, T
S(w) = g e =€e=(x—Tw) (x —Tw)
=1
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=z’ —w'T 'z — w'Tw+ wT'Tw

=z"z — 2w'T 'z + w'T " Tw
Since w Tz is a 1 x 1 matrix, or a scalar, and its transpose (w'T x)" = z"Tw
is the same scalar. The least squares estimator must satisfy

5 _
%\@ = 2T ¢ 4+ 2T"T% = 0

which simplifies to:

T'Tw =Tz
= @=(T"T) T x

B. POSTERIOR DISTRIBUTION AS GAUSSIAN WITH MEAN AND COVARIANCE
MATRIX: PROOF

In our case, we want to predict the sensor’s next measurement based on all our
observations so far. More mathematically, we want to obtain the distribution
p(Znt1 | tre1, Tox). This can be achieved by first finding the probability dis-
tribution for all linear models and then averaging out over these linear models
which is given as p(zn41 | tnt1, T @) = [ p(@nt1 | tng1, w)p(w | T, x)dw. We thus
now need to find p(w | T, ). That is, the probability distribution of the different
linear models which can explain the data. In order to do so, we apply Bayes’ Rule.
Assuming the prior distribution p(w) ~ A(0,%,) and marginalising out p(z | T),
it can be shown that p(w | T,x) ~ N(w,A™") where A = 0 ?TT" + X! and
w=o02A"'Tx.
This appendix provides the derivation of this result.

Likelihood x Prior
Marginal Likelthood

Posterior =

p(@ | T, w)p(w)

p(x | T)
where p(w | T, x) is also known as the normalising constant which is independent of
the weights. The posterior in the above equation combines the likelihood and prior
and captures everything we know about the parameters. By writing only the terms
from the prior and likelihood which depends on weights and then completeing the
square the following is obtained:

p(w|T,z) =

1 T T T 1 2
plw | T,z) = @ TTWT@-TTW) —w

H
1 T T T

- L (x-1"w)T (x-TTw 1gpyTsi—1

B 57 ( ) ( )Xefgw stw

e—%(w—ﬁ)T(%ﬁTTTJrE;I)(w—E)

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.



36

where W = 0,,?(0,,*TT" + X, ')~ 'Ta. The form of the posterior distribution can
then be recognised as Gaussian with mean w and covariance matrix A~!

pw | T,x) = N(@,A™)
where A = 07 2TT" + E;l and W =0 2A 1 Tx.
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