Data Mining for Discrimination Discovery

SALVATORE RUGGIERI, DINO PEDRESCHI, FRANCO TURINI
Dipartimento di Informatica, Universita di Pisa, Italy

In the context of civil rights law, discrimination refers to unfair or unequal treatment of people
based on membership to a category or a minority, without regard to individual merit. Discrim-
ination in credit, mortgage, insurance, labor market, and education has been investigated by
researchers in economics and human sciences. With the advent of automatic decision support
systems, such as credit scoring systems, the ease of data collection opens several challenges to
data analysts for the fight against discrimination. In this paper, we introduce the problem of
discovering discrimination through data mining in a dataset of historical decision records, taken
by humans or by automatic systems. We formalize the processes of direct and indirect discrimina-
tion discovery by modelling protected-by-law groups and contexts where discrimination occurs in
a classification rule based syntax. Basically, classification rules extracted from the dataset allow
for unveiling contexts of unlawful discrimination, where the degree of burden over protected-by-
law groups is formalized by an extension of the lift measure of a classification rule. In direct
discrimination, the extracted rules can be directly mined in search of discriminatory contexts. In
indirect discrimination, the mining process needs some background knowledge as a further input,
e.g., census data, that combined with the extracted rules might allow for unveiling contexts of
discriminatory decisions. A strategy adopted for combining extracted classification rules with
background knowledge is called an inference model. In this paper, we propose two inference mod-
els and provide automatic procedures for their implementation. An empirical assessment of our
results is provided on the German credit dataset and on the PKDD Discovery Challenge 1999
financial dataset.

Categories and Subject Descriptors: H.2.8 [Database Applications|: Data Mining
General Terms: Algorithms, Economics, Legal Aspects

Additional Key Words and Phrases: Discrimination, Classification Rules

1. INTRODUCTION

The word discrimination originates from the Latin discriminare, which means to
“distinguish between”. In social sense, however, discrimination refers specifically
to an action based on prejudice resulting in unfair treatment of people on the basis
of their membership to a category, without regard to individual merit. As an ex-
ample, U.S. federal laws [U.S. Federal Legislation 2009] prohibit discrimination on
the basis of race, color, religion, nationality, sex, marital status, age and pregnancy
in a number of settings, including: credit/insurance scoring (Equal Credit Oppor-
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tunity Act); sale, rental, and financing of housing (Fair Housing Act); personnel
selection and wages (Intentional Employment Discrimination Act, Equal Pay Act,
Pregnancy Discrimination Act). Other U.S. federal laws exist on discrimination
in public programs or activities, such as public accommodations, education, health
care, academic programs, student services, nursing homes, adoptions, senior citizens
centers, hospitals, transportation. Several authorities (regulation boards, consumer
advisory councils, commissions) are settled to monitor discrimination compliances
in U.S., European Union and many other countries.

Concerning the research side, the issue of discrimination in credit, mortgage, in-
surance, labor market, education and other human activities has attracted much
interest of researchers in economics and human sciences since late ’50s, when a
theory on the economics of discrimination was proposed [Becker 1957]. The litera-
ture in those research fields has given evidence of unfair treatment in racial profiling
and redlining [Squires 2003], mortgage discrimination [LaCour-Little 1999], person-
nel selection discrimination [Holzer et al. 2004; Kaye and Aickin 1992], and wages
discrimination [Kuhn 1987].

The importance of data collection and data analysis for the fight against dis-
crimination is emphasized in legal studies promoted by the European Commission
[Makkonen 2007]. The possibility of accessing to historical data concerning deci-
sions made in socially-sensitive tasks is the starting point for discovering discrimi-
nation. However, if available decision records accessible for inspection increase, the
data available to decision makers for drawing their decisions increase at a much
higher pace, together with ever more intelligent decision support systems, capable
of assisting the decision process, and sometimes to automate such process entirely.
As a result, the actual discovery of discriminatory situations and practices, hidden
in the decision records under analysis, may reveal an extremely difficult task. The
reason for this difficulty is twofold.

First, personal data in decision records are highly dimensional, i.e., character-
ized by many multi-valued variables: as a consequence, a huge number of possible
contexts may, or may not, be the theater for discrimination. To see this point,
consider the case of gender discrimination in credit approval: although an analyst
may observe that no discrimination occurs in general, i.e., when considering the
whole available decision records, it may turn out that it is extremely difficult for
aged women to obtain car loans. Many small or large niches may exist that conceal
discrimination, and therefore all possible specific situations should be considered as
candidates, consisting of all possible combinations of variables and variable values:
personal data, demographics, social, economic and cultural indicators, etc. Clearly,
the anti-discrimination analyst is faced with a huge range of possibilities, which
make her work hard: albeit the task of checking some known suspicious situations
can be conducted using available statistical methods, the task of discovering niches
of discrimination in the data is unsupported.

The second source of complexity is indirect discrimination: often, the feature that
may be object of discrimination, e.g., the race or ethnicity, is not directly recorded
in the data. Nevertheless, racial discrimination may be equally hidden in the data,
for instance in the case where a red-lining practice is adopted: people living in a
certain neighborhood get frequently credit denial, and by demographic data we can
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learn that most of people living in that neighborhood belong to the same ethnic
minority. Once again, the anti-discrimination analyst is faced with a large space of
possibly discriminatory situations: how can she highlight all interesting discrimina-
tory situations that emerge from the data, both directly and in combination with
further background knowledge in her possession (e.g., census data)?

The goal of our research is precisely to address the problem of discovering discrim-
ination in historical decision records by means of data mining techniques. Generally,
data mining is perceived as an enemy of fair treatment and as a possible source of
discrimination, and certainly this may be the case, as we discuss below. Nonethe-
less, we will show that data mining can also be fruitfully put at work as a powerful
aid to the anti-discrimination analyst, capable of automatically discovering the pat-
terns of discrimination that emerge from the available data with stronger evidence.

Traditionally, classification models are constructed on the basis of historical data
exactly with the purpose of discrimination in the original Latin sense: i.e., dis-
tinguishing between elements of different classes, in order to unveil the reasons of
class membership, or to predict it for unclassified samples. In either cases, clas-
sification models can be adopted as a support to decision making, clearly also in
socially sensitive tasks. For instance, a large body of literature [Baesens et al.
2003; Hand 2001; Hand and Henley 1997; Thomas 2000; Viaene et al. 2001; Vojtek
and Kocenda 2006] refers to classification models as the basis of scoring systems
to predict the reliability of a mortgage/credit card debtor or the risk of taking up
an insurance. Furthermore, data mining screening systems have recently been pro-
posed for personnel selection [Chien and Chen 2008]. While classification models
used for decision support can potentially guarantee less arbitrary decisions, can
they be discriminating in the social, negative sense? The answer is clearly yes: it
is evident that relying on mined models for decision making does not put ourselves
on the safe side. Rather dangerously, learning from historical data may mean to
discover traditional prejudices that are endemic in reality, and to assign to such
practices the status of general rules, maybe unconsciously, as these rules can be
deeply hidden within a classifier. For instance, if it is a current malpractice to deny
pregnant women the access to certain job positions, there is a high chance to find a
strong association in the historical data between pregnancy and access denial, and
therefore we run the risk of learning discriminatory decisions. This use of classifica-
tion and prediction models may therefore exacerbate the risks of discrimination in
socially-sensitive decision making. However, as we show in this paper, data mining
also provides a powerful tool for discovering discrimination, both in the records of
decisions taken by human decision makers, and in the recommendations provided
by classification models, or any combinations thereof.

In this paper, we tackle the problem of discovering discrimination within a rule-
based setting, by introducing the notion of discriminatory classification rules, as
a criterion to identify and analyse the potential risk of discrimination. By mining
all discriminatory classification rules from a dataset of historical decision records,
we offer a sound and practical method to discover niches of direct and indirect
discrimination hidden in the data, as well as a criterion to measure discrimination
in any such contexts. This extends our KDD 2008 paper [Pedreschi et al. 2008]
in many respects: besides providing a detailed account of the theoretical aspects,
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under a conservative extension of the syntax of frequent itemsets, it offers: a new
perspective on the problem of discrimination discovery; an extended framework
for anti-discrimination analysis, including a new inference model based on negated
items; a more in depth experimental assessment; and a complexity evaluation of
the algorithms proposed. A precise account of the differences between this paper
and the KDD 2008 paper is provided in the Related Work section.

1.1 Plan of the Paper

The paper is organized as follows. In Sec. 2 we present a scenario for the analysis of
direct and indirect discrimination. In Sec. 3 some standard notions on association
and classification rules are recalled, and the measure of extended lift is introduced.
In Sec. 4, we formalize the scenario of Sec. 2 by introducing the notions of a-
protective and a-discriminatory classification rules, where « is a user threshold on
the acceptable level of discrimination. The two notions are refined for binary classes
to strong a-protection and strong a-discrimination. Direct discrimination checking
is presented in Sec. 5, with experimentation on the German credit dataset. Indirect
discrimination is considered in Sec. 6 and Sec. 7, where background knowledge is
adopted in two inference models. Experimentation on the German credit dataset is
reported as well. Further experimentation on the Discovery Challenge 1999 financial
dataset is presented in Sec. 8. Related work is reported in Sec. 9, while Sec. 10
summarizes the contribution of the paper. All proofs of theorems are reported in the
Appendix A, where a conservative extension of the standard notions of association
and classification rules is introduced. Computational complexity in time and space
of the procedures presented in this paper are discussed in the Appendix B.

2. DISCRIMINATION ANALYSIS

The basic problem we are addressing can be stated as follows. Given:

—a dataset of historical decision records,
—a set of potentially discriminated groups,

—and a criterion of unlawful discrimination;

find all pairs consisting of a subset of the decision records, called a context, and a
potentially discriminated group within the context for which the criterion of unlaw-
ful discrimination hold. In this section, we describe those elements and the process
of discrimination analysis in a framework based on itemsets, and on classification
rules extracted from the dataset. In the next section, the various elements are
formalized and the process is automated.

2.1 Potentially Discriminatory Itemsets

The first natural attempt to formally model potentially discriminated groups is
to specify a set of selected attribute values (or, at an extreme, an attribute as
a whole) as potentially discriminatory: examples include female gender, ethnic
minority, low-level job, specific age range. However, this simple approach is flawed,
in that discrimination may be the result of several joint characteristics that are not
discriminatory in isolation. For instance, black cats crossing your path are typically
discriminated as signs of bad luck, but no superstition is independently associated
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to being a cat, being black or crossing a path. In other words, the condition that
describes a (minority) population that may be the object of discrimination should
be stated as a conjunction of attributes values: pregnant women, minority ethnicity
in disadvantaged neighborhoods, senior people in weak economic conditions, and
so on. Coherently, we qualify as potentially discriminatory (PD) some selected
itemsets, not necessarily single items nor whole attributes. Two consequences of
this approach should be considered. First, single PD items or attributes are just a
particular case in this more general setting. Second, PD itemsets are closed under
intersection: the conjunction of two PD itemsets is a PD itemset as well, coherently
with the intuition that the intersection of two disadvantaged minorities is a, possibly
empty, smaller (even more disadvantaged) minority as well. In our approach, we
assume that the analyst interested in studying discrimination compiles a list of PD
itemsets with reference to attribute-value pairs that are present either in the data,
or in her background knowledge, or in both.

2.2 Modelling the Process of Direct Discrimination Analysis

Discrimination has been identified in law and social study literature as either direct
or indirect (sometimes called systematic) [U.K. Legislation 2009; Australian Leg-
islation 2009; Hunter 1992; Knopff 1986]. Direct discrimination consists of rules
or procedures that explicitly impose “disproportionate burdens” on minority or
disadvantaged groups.

We unveil direct discrimination through the extraction from the dataset of his-
torical decision records of potentially discriminatory (PD) rules defined as classi-
fication rules A,B — C that contain potentially discriminatory itemsets A in
their premises. A PD rule does not necessarily provide evidence of discriminatory
actions. In order to measure the “disproportionate burdens” that a rule imposes,
the notion of a-protection is introduced as a measure of the discrimination power
of a PD classification rule. The idea is to define such a measure as the relative
gain in confidence of the rule due to the presence of the discriminatory itemsets.
The « parameter is the key for unveiling the desired level of protection against
discrimination or, in other words, for stating the boundary between lawful and un-
lawful discrimination. PD classification rules are extracted (see Fig. 1 left) from
a dataset containing potentially discriminatory itemsets. This is the case, for in-
stance, when internal auditors, requlation authorities or consumer advisor councils
want to discover:

—discrimination malpractices; or
—positive policies — or affirmative actions [Holzer and Neumark 2006], that tend

to favor some disadvantaged categories;

that emerge from the historical decision records. They collect the dataset of past
transactions and enrich it, if necessary, with potentially discriminatory itemsets in
order to extract discriminatory PD classification rules.

2.3 Modelling the Process of Indirect Discrimination Analysis

Indirect discrimination consists of rules or procedures that, while not explicitly
mentioning discriminatory attributes, intentionally or not impose the same dispro-
portionate burdens. For instance, the information on a person’s race is typically not
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Fig. 1. Modelling the process of direct (left) and indirect (right) discrimination analysis.
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available (unless the dataset has been explicitly enriched) or not even collectable.
Still, the dataset may unveil discrimination against minority groups.

We unveil indirect discrimination through classification rules D,B — C that
are potentially non-discriminatory (PND), i.e., that do not contain PD itemsets.
They are extracted (see Fig. 1 right) from a dataset which may not contain PD
itemsets. While apparently unrelated to discriminatory decisions, PND rules may
unveil discrimination as well. As an example, assume that the PND rule “rarely
give credit to persons from neighborhood 10451 from NYC” is extracted. This may
be or may be not a redlining rule. In order to unveil its nature, we have to rely
on additional background knowledge. If we know that in NYC people from neigh-
borhood 10451 are in majority black race, then using the rule above is like using
the PD rule “rarely give credit to black-race persons from neighborhood 10451 of
NYC”, which is definitively discriminatory. Summarizing, internal auditors, regula-
tion authorities, and consumer advisory councils can unveil indirect discrimination
by identifying discriminatory PD rules through some deduction starting from PND
rules and background knowledge. The deduction strategy is called here an inference
model. In our framework, we assume that background knowledge takes the form of
association rules relating a PND itemset D to a potentially discriminatory itemset
A within the context B, or, formally, rules of the form D,B — A and A,B — D.
Examples of background knowledge include the one originating from publicly avail-
able data (e.g., census data), from privately owned data (e.g., market surveys) or
from experts or common sense (e.g., expert rules about customer behavior).

As a final note, this use case resembles the situation described in privacy-preserving
data mining [Agrawal and Srikant 2000; Sweeney 2001], where an anonymized
dataset coupled with external knowledge might allow for the inference of the iden-
tity of individuals.

2.4 An Example of Direct and Indirect Discrimination Analysis
As an example of the processes shown in Fig. 1, consider the rules:
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a. city=NYC b. race=black, city=NYC
==> class=bad ==> class=bad
-- conf:(0.25) -- conf: (0.75)

Rule (2) can be translated into the statement “people who live in NYC are assigned
the bad credit class” 25% of times. Rule (b) concentrates on “black people from
NYC”. In this case, the additional (discriminatory!) item in the premise increases
the confidence of the rule up to 3 times! a-protection is intended to detect rules
where such an increase is lower than a fixed threshold a.

In direct discrimination, rules such as (a) and (b) above are extracted directly
from the dataset of historical decision records. Given a threshold « of lawful dis-
crimination, all extracted PD rules, including (b), can be checked for a-protection
(see Fig. 1 left). For instance, if the threshold o = 3 is fixed by the analyst, rule
(b) would be classified as discriminatory, i.e., as unveiling discriminatory decisions.

Tackling indirect discrimination is more challenging. Continuing the example,
consider the classification rule:

c. neighborhood=10451, city=NYC
==> class=bad
-- conf:(0.95)

extracted from a dataset where potentially discriminatory itemsets, such as race=-
black, are NOT present (see Fig. 1 right). Taken in isolation, rule (¢) cannot
be considered discriminatory or not. Assume now to know from census data that
people from neighborhood 10451 are in majority black, i.e., the following association
rule holds:

d. neighborhood=10451, city=NYC
==> race=black
-- conf:(0.80)

Despite rule (c) contains no discriminatory item, it unveils the discriminatory
decision of denying credit to a minority sub-group (black people) which has been
“redlined” by its ZIP code. In other words, the PD rule:

e. race=black, neighborhood=10451, city=NYC
==> class=bad

can be inferred from (c) and (d), together with a lower bound of 94% for its
confidence. Such a lower bound shows a disproportionate burden (94% / 25%,
i.e., 3.7 times) over black people living in neighborhood 10451. We will show an
inference model, stated as a formal theorem, that allows us to derive the lower
bound « > 3.7 for a-protection of (e) starting from PND rules (a) and (c) and a
lower bound on the confidence of the background rule (d).

3. BASIC DEFINITIONS AND REFERENCE DATASET
3.1 Association and Classification Rules

We recall the notions of itemsets, association rules and classification rules from
standard definitions [Agrawal and Srikant 1994; Liu et al. 1998; Yin and Han 2003].
Let R be a relation with attributes aq,...,a,. A class attribute is a fixed attribute
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c of the relation. An a-item is an expression ¢ = v, where a is an attribute and
v € dom(a), the domain of a. We assume that dom(a) is finite for every attribute
a. A c-item is called a class item. An item is any a-item. Let I be the set of all
items. A transaction is a subset of I, with exactly one a-item for every attribute a.
A database of transactions, denoted by D, is a set of transactions. An itemset X
is a subset of I. We denote by 27 the set of all itemsets. As usual in the literature,
we write X,Y for XUY. For a transaction T, we say that T verifies X if X C T'.
The support of an itemset X w.r.t. a non-empty transaction database D is the ratio
of transactions in D verifying X with respect to the total number of transactions:
suppp(X) = { T € D | XCT }|/|D|, where | | is the cardinality operator. An
association rule is an expression X — Y, where X and Y are itemsets. X is
called the premise (or the body) and Y is called the consequence (or the head) of
the association rule. We say that X — Y is a classification rule if Y is a class item
and X contains no class item. We refer the reader to [Liu et al. 1998; Yin and Han
2003] for a discussion of the integration of classification and association rule mining.
The support of X — Y w.r.t. D is defined as: suppp(X — Y) = suppp(X,Y).
The confidence of X — Y, defined when suppp(X) > 0, is:

confp(X — Y) = suppp(X,Y)/suppp(X).

Support and confidence range over [0,1]. We omit the subscripts in suppp() and
confp() when clear from the context. Since the seminal paper by Agrawal and
Srikant [1994], a number of well explored algorithms [Goethals 2009] have been de-
signed in order to extract frequent itemsets, i.e., itemsets with a specified minimum
support, and valid association rules, i.e., rules with a specified minimum confidence.

The proofs of the formal results presented in the paper suggested a conservative
extension of the syntax of rules to boolean expressions over itemsets. The extension,
reported in Appendix A.1, allows us to deal uniformly with negation and disjunction
of itemsets. As a consequence of the improved expressive power of this language,
the formal results of this paper directly extend to association and classification rules
over over hierarchies [Srikant and Agrawal 1995] and negated itemsets [Wu et al.
2004].

3.2 Extended Lift

We introduce a key concept for our purposes.

DEFINITION 3.1. [Eztended lift] Let A,B — C be an association rule such that
conf(B — C) > 0. We define the extended lift of the rule with respect to B as:

conf(A,B — C)
conf(B — C)

We call B the context, and B — C the base-rule.

Intuitively, the extended lift expresses the relative variation of confidence due
to the addition of the extra itemset A in the premise of the base rule B — C.
In general, the extended lift ranges over [0, co[. However, if association rules with
a minimum support ms > 0 are considered, it ranges over [0,1/ms]. Similarly, if
association rules with base-rules with a minimum confidence mec > 0 are considered,
it ranges over [0,1/mc]. The extended lift can be traced back to the well-known
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measure of lift [Tan et al. 2004] (also known as interest factor), defined as:
liftp(A — C) = confp(A — C)/suppp(C).

The extended lift of A,B — C with respect to B is equivalent to liftg(A — C)
where B = {T' € D |BCT} is the set of transactions satisfying the context B.
When B is empty, the extended lift reduces to the standard lift. We refer the
reader to Appendix A.2 for proofs of these statements.

3.3 The German credit case study

Throughout the paper, we illustrate the notions introduced by analysing the public
domain German credit dataset [Newman et al. 1998], consisting of 1000 transactions
representing the good/bad credit class of bank account holders. The dataset include
nominal (or discretized) attributes on personal properties: checking account status,
duration, savings status, property magnitude, type of housing; on past/current
credits and requested credit: credit history, credit request purpose, credit request
amount, installment commitment, existing credits, other parties, other payment
plan; on employment status: job type, employment since, number of dependents,
own telephone; and on personal attributes: personal status and gender, age, resident
since, foreign worker.

4. MEASURING DISCRIMINATION
4.1 Discriminatory ltemsets and Rules

Our starting point consists of flagging at syntax level those itemsets which might
potentially lead to discrimination in the sense explained in Section 2.1. A set of
itemsets Z C 27 is downward closed if when A; € 7 and Ay € 7 then A, Ay € .

DEFINITION 4.1. [PD/PND itemset] A set of potentially discriminatory (PD)
itemsets Ty is any downward closed set. Itemsets in 21 \ Ty are called potentially
non-discriminatory (PND).

Any itemset X can be uniquely split into a PD part A and a PND part B = X\ A
by setting A to the largest subset of X that belongs to Zy'. A simple way of defining
PD itemsets is to take those that are built from a pre-defined set of items, that is to
reduce to the case where the granularity of discrimination is at the level of items.

EXAMPLE 4.2. For the German credit dataset, we fix Z;, = 24, where I is
the set of the following (discriminatory) items: personal_status=female div/-
sep/mar (female and not single), age=(52.6-inf) (senior people), job=unemp/-
unskilled non res (unskilled or unemployed non-resident), and foreign worker=-
yes (foreign workers). Notice that the PD part of an itemset X is now easily
identifiable as X N I, and the PND part as X \ 1.

It is worth noting that discriminatory items do not necessarily coincide with
sensitive attributes with respect to pure privacy protection. For instance, gender
is generally considered a non-sensitive attribute, whereas it can be discriminatory

INotice that A is univocally defined. If there were two maximal A; # Ao subsets belonging to
T4, then A1, Ao would belong to Z; as well since Z; is downward closed. But then Aj or A
would not be maximal.

ACM Journal Name, Vol. V, No. N, Month 20YY.



10 . S. Ruggieri and D. Pedreschi and F. Turini

in many decision contexts. Moreover, note that we use the adjective potentially
both for PD and PND itemsets. As we will discuss later on, also PND itemsets
may unveil (indirect) discrimination. The notion of potential (non-)discrimination
is now extended to rules.

DEFINITION 4.3. [PD/PND classification rule] A classification rule X — C is
potentially discriminatory (PD) if X = A, B with A non-empty PD itemset and B
PND itemset. It is potentially non-discriminatory (PND) if X is a PND itemset.

It is worth noting that PD rules can be either extracted from a dataset that contains
PD itemsets or inferred as shown in Fig. 1 right. PND rules can be extracted from
a dataset which may or may not contain PD itemsets.

ExXAMPLE 4.4. Consider Ex. 4.2, and the rules:

a. personal_status=female div/sep/mar
savings_status=no known savings
==> class=bad

b. savings_status=no known savings
==> class=bad

(a) is a PD rule since its premise contains an item belonging to I. On the contrary,
(b) is a PND rule. Notice that (b) is the base rule of (a) if we consider as context
the PND part of its premise.

4.2 «-protection

We start concentrating on PD classification rules as the potential source of discrim-
ination. In order to capture the idea of when a PD rule may lead to discrimination,
we introduce the key concept of a-protective classification rules.

DEFINITION 4.5. [a-protection] Let c = A,B — C be a PD classification rule,
where A is a PD and B is a PND itemset.

For a given threshold o > 0, we say that ¢ is a-protective if its extended lift with
respect to B is lower than a. Otherwise, ¢ is a-discriminatory.

In symbols, given:

v=conf(A,B — C) d=conf(B — C) >0,
we write elift(y,0) < a as a shorthand for ¢ being a-protective, where:

elift(y,8) = 7/6.
Analogously, c is a-discriminatory if elift(y,9) > a.

Intuitively, the definition assumes that the extended lift of ¢ w.r.t. B is a measure
of the degree of discrimination of A in the context B. a-protection states that
the added (potentially discriminatory) information A increases the confidence of
concluding an assertion C under the base hypothesis B only by an acceptable factor,
bounded by a.

ExXAMPLE 4.6. Consider again Ex. 4.2. Fix a = 3 and consider the classification
rules:
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a. personal_status=female div/sep/mar
savings_status=no known savings
==> class=bad
—-— supp: (0.013) conf:(0.27) elift:(1.52)

b. age=(52.6-inf)
personal_status=female div/sep/mar
purpose=used car
==> class=bad
—-- supp: (0.003) conf: (1) elift:(6.06)

Rule (a) can be translated as follows: with respect to people asking for credit
whose saving status were not known, then the bad credit class was assigned in past
to non-single women 52% more than the average. The support of the rule is 1.3%,
its confidence 27%, and its extended lift 1.52. Hence, the rule is a-protective. Also,
the confidence of the base rule:

savings_status=no known savings ==> class=bad

is 0.27/1.52 = 17.8%. Rule (b) states that senior non-single women that want to
buy a used car were assigned the bad credit class with a probability more than 6
times the average one for those that asked credit for the same purpose. The support
of the rule is 0.3%, its confidence 100%, and its extended lift 6.06. Hence the rule
is a-discriminatory. Finally, note that the confidence of the base rule:

purpose=used car ==> class=bad
is 1/6.06 = 16.5%.

A general principle in discrimination laws is to consider group representation
[Knopff 1986] as a quantitative measure of the qualitative requirement that people
in a group are treated “less favorably” [European Union Legislation 2009; U.K.
Legislation 2009] than others, or such that “a higher proportion of people without
the attribute comply or are able to comply” [Australian Legislation 2009] to a
qualifying criteria. We observe that (see Lemma A.9):

conf(B,C — A)
conf(B — A) ’

elift(~,90) =

namely the extended lift can be defined as the ratio between the proportion of
the disadvantaged group A in context B obtaining the benefit C over the over-
all proportion of A in B. This makes it clear how extended lift relates to the
principle of group over-representation in benefit denying, or, equivalently, of under-
representation in benefit granting.

4.3 Strong a-protection
When the class is a binary attribute, the concept of a-protection must be strength-

ened, as highlighted by the next example.

ExAMPLE 4.7. The following PD classification rule is extracted from the Ger-
man credit dataset with minimum support of 1%:

ACM Journal Name, Vol. V, No. N, Month 20YY.



12 . S. Ruggieri and D. Pedreschi and F. Turini

a-good. personal_status=female div/sep/mar
purpose=used car
checking_status=no checking
==> class=good
—— supp: (0.011) conf: (0.846)
-- conf_base:(0.963) elift:(0.88)

Rule a-good has an extended lift of 0.88. Intuitively, this means that the good
credit class is assigned to non-single women less than the average of people that
want to buy an used car and have no checking status. As a consequence, one can
deduce that the bad credit class is assigned more than the average of people in the
same context, as confirmed by the rule:

a-bad. personal_status=female div/sep/mar
purpose=used car
checking_status=no checking
==> class=bad
—-- supp: (0.002) conf:(0.154)
-- conf_base: (0.037) elift:(4.15)

It is worth noting that the confidence of rule a-bad in the example is equal to
1 minus the confidence of a-good, and the same holds for the confidence of base
rules. This property holds in general for binary classes. For a binary attribute a
with dom(a) = {v1,v2}, we write =(a = v;) for a = vy and —(a = vy) for a = v;.

LEMMA 4.8. Assume that the class attribute is binary. Let A, B — C be a
classification rule, and let:
v=conf(A,B — C) d=conf(B — C) < 1.
We have that conf(B — —C) > 0 and:
conf(A,B — -C) 1-—v
conf(B — -C) 1-6°
PRrROOF. See Appendix A.3. [

As an immediate consequence, the (direct) extraction or the (indirect) inference
of an a-protective rule A,B — C allows for the calculation of the extended lift of
the dual rule A,B — —C, and then for unveiling that it is a-discriminatory. We
strengthen the notion of a-protection to take into account such an implication.

DEFINITION 4.9. [Strong a-protection] Letc = A, B — C be a PD classification
rule, where A is a PD and B is a PND itemset, and let ¢ = A, B — —C.

For a given threshold o > 1, we say that c is strongly a-protective if both the
extended lifts of ¢ and ¢ with respect to B are lower than «. Otherwise, c is
strongly a-discriminatory.

In symbols, given:

v=conf(A,B — C) 0 =conf(B — C)>0.
we write glift(,d) < a as a shorthand for ¢ being strongly a-protective, where:

. _ (/s ify >4
glift(v,6) = { (1—-9)/(1—20) otherwise
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Analogously, ¢ is strongly a-discriminatory if glift(v,d) > a.

The glift() function ranges over [1,o0[, hence the assumption o > 1 on the
threshold «. If classification rules with a minimum support ms > 0 are considered,
it ranges over [1,1/ms]. Moreover, for 1 > ¢ > 0:

glift(v,d) = maz{elift(y,0),elift(1 —~,1—4)}.

Proofs of these statements are reported in Appendix A.3.

A different way of looking at strong a-discrimination is to consider Lemma 4.8
as the final part of an inference model where (an upper bound on) the confidence
of arule A,B — C isinferred first, and then such a value is used to show that the
dual rule A;B — —C is a-discriminatory. Def. 4.9 allows for unveiling that the
dual rule is a-discriminatory at the time the rule A,B — C is considered, hence
checking the final part of the inference model.

ExXAMPLE 4.10. Consider again Ex. 4.7 and assume the conditions of indirect
discrimination as modelled in Fig. 1 right. The rule a-good cannot be extracted,
since the dataset does not include PD itemsets. However, the base rule of a-good
is PND, and then its confidence 96.3% might be known. Suppose now that by some
inference model, such as the ones we will introduce in later sections, an upper bound
on the confidence of a-good is estimated in 88%. As an immediate consequence
of Lemma 4.8, a lower bound on the extended lift of a~-bad can be calculated as
(1 —0.88)/(1 —0.963) = 3.24. This allows for the conclusion that a-bad is 3.24-
discriminatory.

5. DIRECT DISCRIMINATION
5.1 Checking a-protection

Let us consider the case of direct discrimination, as modelled in Fig. 1 left. Given a
set of PD classification rules A and a threshold «, the problem of checking (strong)
a-protection consists of finding the largest subset of A containing only (strong)
a-protective rules. This problem is solvable by directly checking the inequality of
Def. 4.5 (resp., Def. 4.9), provided that the elements of the inequality are available.
We define a checking algorithm CheckAlphaPDCRY() in Fig. 3 that starts from
the set of frequent itemsets, namely itemsets with a given minimum support. This
is the output of any of the several frequent itemset extraction algorithms available
at the FIMI repository [Goethals 2009]. The procedure ExtractCR() in Fig. 2
extracts PD and PND classification rules by a single scan over the frequent itemsets
ordered by the itemset size k. For k-frequent itemsets that include a class item, a
single classification rule is produced in output. The confidence of the rule can be
computed by looking only at itemsets of length k—1. The rules in output are distin-
guished between PD and PND rules, based on the presence of discriminatory items
in their premises. Moreover, the rules are grouped on the basis of the size group of
the PND part of the premise. The output is a collection of PD rules PDg;,yp and
a collection of PND rules PN Dy,0up. The CheckAlphaPDCR() procedure can
then calculate the extended lift of a classification rule A,B — C € PDy;4yp from
its confidence and the confidence of the base rule B — C € PN Dypoup.

The computational complexity in both time and space of the procedures presented
in this paper is discussed in Appendix B.
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ExtractCR()
C = { class items }
PDgroup = PNDgyroup = 0 for group >0
ForEach k s.t. there exists k-frequent itemsets
Fir = { k-frequent itemsets }
ForEach Y € Fj with YNC # 0

c=YncC
X=Y\C
s = supp(Y)

s’ = supp(X) // found in Fr_q
conf = s/s'
A = largest subset of X in Zy4
group = |X\ A|
If|A|=0
add X — C to PN Dgroup with confidence con f
Else
add X — C to PDgyroup with confidence con f
EndIf
EndForEach
EndForEach

Fig. 2. Extraction of PD and PND classification rules.

CheckAlphaPDCR(«)
ForEach group s.t. PDgroup 7# 0
ForEach X — C € PDgroup
A = largest subset of X in Zy4
B=X\A
v =conf(X — C)
d =conf(B — C) //found in PN Dyroup
If elift(v,0) > « // resp., glift(v,0) > a
output A,B — C
EndIf
EndForEach
EndForEach

Fig. 3. Direct checking of a-discrimination.

5.2 The German credit case study

In this section, we analyze the reference dataset in search of direct discrimination.
We present the distributions of a-discriminatory PD rules at the variation of a
few parameters that one can use to control the set of extracted rules: minimum
support, minimum confidence, class item, and the set I; of PD itemsets.

Discrimination w.r.t. support thresholds. The top plot in Fig. 4 (resp., Fig. 5)
shows the distribution of a-discriminatory PD rules (resp., strong a-discriminatory
PD rules) for minimum supports of 1%, 0.5% and 0.3%. The figures highlight
how lower support values increase the number of PD rules and the maximum .
Notice that, for a same minimum support, « reaches higher values in Fig. 5 than
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Fig. 4. The German credit dataset. Top: distributions of a-discriminatory PD rules. Bottom:
contribution of setting minimum confidence for base rules.

in Fig. 4, since strong a-discrimination of a rule implicitly takes into account the
complementary class rule, which may have a support lower than the minimum (see
e.g., (a-bad) in Ex. 4.7). We report three sample PD rules with decreasing support
and increasing extended lift.

al. personal_status=

female div/sep/mar, employment=1<=X<4

property_magnitude=real estate, job=skilled

==> class=bad
-- supp: (0.011)

a2. age=(52.6-inf),
==> class=bad
-- supp: (0.005)

a3. age=(52.6-inf),
==> class=bad
-- supp: (0.002)

conf:(0.48) elift:(2.39)

employment=1<=X<4, existing_credits=(1.6-2.2]

conf: (1) elift:(3.60)

employment=1<=X<4, savings_status=>=1000

conf: (1) elift:(9)
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Fig. 5. The German credit dataset. Top: distributions of strongly a-discriminatory PD rules.
Bottom: contribution of setting minimum confidence for base rules.

Rule al states that among the people employed since one to four years, having a
real estate property and with skilled job, the status of being woman and not single
leads to having assigned the bad credit class 2.39 times more than the average. The
rule has confidence 48%, which means that the base rule has confidence 0.48/2.39 =
20%. Rule a2 states that senior people employed since one to four years, having
already two existing credits are assigned the bad credit class 3.6 times more than
the average. Finally, rule a3 reaches a lift of 9 when compared to the base rule:

employment=1<=X<4, savings_status=>=1000
==> class=bad
—-- supp: (0.002) conf:(0.11)

People with large savings are usually given good credit. However, only 2 cases out
of 18 (i.e., 11%) are assigned class=bad. Both of them are senior people!

Let us show next the elapsed time of the procedures ExtractCR() and Check-
AlphaPDCR() on a 32-bit PC with Intel Core 2 Quad 2.4Ghz and 4Gb main
memory. We also report the number (M=millions) of frequent itemsets in input
to ExtractCR() and the number of PD and PND rules yielded in output. For
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Fig. 6. The German credit dataset. Top: distribution of a-discriminatory PD rules for each class
item. Bottom: distribution of strongly a-discriminatory PD rules.

frequent pattern extraction, any system from [Goethals 2009] can be adopted. All
procedures reported in this paper are implemented in Java 6.

No. freq. ExtractCR() CheckAlphaPDCR()
minsup itemsets No. PD | No. PND | Time Time
1% 6.6M 1.45M 1.27TM 38s 13.5s
0.5% 26.8M 6.4M 5.3M 163s 55s
0.3% 79.0M 20.0M 15.9M 519s 165s

The elapsed times are consistent with the worst-case complexity analysis reported in
Appendix B and show good scalability along with the minimum support threshold.

Discrimination w.r.t. confidence thresholds. Another widely adopted parameter
for controlling rule generation is minimum confidence. The bottom plot in Fig. 4
shows how the confidence threshold of the base rule affects the distribution of a-
discriminatory PD rules. Higher confidence thresholds lead to fewer number of
discriminatory rules and lower maximum extended lift values. This is consistent
with the observation that the extended lift ranges over [0, 1/mc|, where mc is the
minimum confidence threshold of base rules.
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Fig. 7. The German credit dataset. Distributions of a-discriminatory PD classification rules for
I, = { personal status=male single, age=(41.4-52.6] }.

On the contrary, acting on minimum confidence of the base rule does not result
in an effective mechanism for unveiling additional strongly a-discriminatory rules,
as shown in Fig. 5 bottom plot.

Discrimination w.r.t. class item. The contribution of the class item to the dis-
tribution of discriminatory PD classification rules is shown in Figure 6, where the
minimum support is fixed to 1%. The top plot highlights that rules with class item
class=bad contribute mostly to higher values of extended lift. This confirms that
the set of PD itemsets I fixed so far (see Ex. 4.2) characterizes groups of people that
are discriminated rather than favored. Also, notice that when o < 1, the number of
PD rules with class item class=good becomes predominant. Since an extended lift
lower than 1 means group under-representation, this leads to the dual conclusion
that people characterized by I; are under-represented in benefit granting. Such a
dual behavior is explicitly taken into account by strong a-protection, which con-
siders at the same time both under-representation and over-representation — or, in
formal terms, extended lifts of both A, B — class=good and A, B — class=bad.
As shown at the bottom plot in Figure 6, PD rules A, B — class=good that al-
low for inferring discrimination of the complementary rule A, B — class=bad are
indeed the vast majority.

Discrimination w.r.t. the set of PD discriminatory itemsets. As highlighted by
Figure 6 top plot, the set of discriminatory itemsets fixed so far leads mainly to
discrimination against assigning credit. There are, however, cases where discrimi-
nation in favor of assigning credit is raised, as in the following:

personal_status=female div/sep/mar,
property_magnitude=no known property
employment=<1, other_parties=none
==> class=good

—-- supp:(0.005) conf:(1) elift:(2.14)
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Women who are recently employed, with no known property, and no supporting
party are assigned good credit score with a probability of 2.14 times the average one
of people in the same conditions. This might reveal a good practice of enforcement
of affirmative actions or other policies or laws in support of disadvantaged categories
[Holzer and Neumark 2006].

Discrimination in favor of assigning credit can also reveal a malpractice of un-
fair favoritism for certain categories. In order to illustrate this, however, we need
to switch to a different set of discriminatory itemsets. Let us fix I = {perso-
nal_status=male single, age=(41.4-52.6]}, namely we are now interested in
discrimination in favor of male single and/or people in their 40’s. Figure 7 shows
the distributions of a-discriminatory PD rules for each class item. Contrasted to
the Figure 6 top plot, classification rules with class item class=bad occur much
less frequently and with lower values of extended lift, while rules with class item
class=good occur slightly more frequently and with slightly higher values of ex-
tended lift. This can be interpreted as favoring credit to people which are single
man and/or in their 40’s.

6. INDIRECT DISCRIMINATION THROUGH BACKGROUND KNOWLEDGE
6.1 Motivating Example

Direct discrimination checking does not take into account PND classification rules,
since they do not explicitly contain PD itemsets. Formally, a PND rule is 1-
protective. In the case of indirect discrimination, as modelled in Fig. 1 right, one
assumes the extreme case that PD itemsets are not available at all in the underlying
dataset. Hence, only PND classification rules can be extracted. As discussed in
Sect. 2, contexts of discriminatory decisions can still be unveiled in the form of PD
classification rules by exploiting some additional background knowledge. Next we
highlights an example over the German credit dataset.

ExAMPLE 6.1. Consider again the German credit dataset, but assume now that
PD itemsets have been removed from it. Also, consider the following context:

B = credit_history=critical/other existing credit
residence_since=(2.8-inf)
savings_status=<100
checking_status=nochecking

The following PND classification rules can be extracted:

dbc. age=(-inf-30.2], B bc. B
==> class=bad ==> class=bad
-- conf:(0.167) -- conf:(0.027)

Rule (dbc) states that young people in the context B of people with critical credit
history, resident since 2.8 years at least, with savings at most for 100 units, and
with no checkings, were assigned the bad credit scoring with a confidence of 16.7%.
Rule (bc) is obtained from (dbc) by discarding the item age=(-inf-30.2] in the
premise, and it has a confidence of 2.7%. As discussed in Sect. 2, without any
further information, we cannot say whether rule (dbc) unveils any discrimination
or not. Assume now to know (by some background knowledge) that in the context
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B above, the set of persons satisfying age=(-inf-30.2] is somewhat related to
the set of persons satisfying the PD item personal_status=female div/sep/mar.
If the two sets were exactly the same, we could replace age=(-inf-30.2] in rule
(dbc) with the PD item above. This would lead us to the PD classification rule:

abc. personal_status=female div/sep/mar, B
==> class=bad

with ¢lift(0.167,0.027) = 6.19, which is considerably high.

In case the two sets of persons coincide only to some extent, we can still obtain
some lower bound for the gli ft() of (abc). In particular, assume that young people
in the context B, contrarily to the average case, are almost all non-single women:

dba. age=(-inf-30.2], B
==> personal_status=female div/sep/mar
-- conf:(0.95)

Is this enough to conclude that non-single women in the context are discriminated?
We cannot say that: for instance, if non-single women in the context are at 99%
older than 30.2 years, only the remaining 1% is involved in the decisions fired by
rule (dbc), hence women in the context cannot be discriminated by these decisions.
As a consequence, we need further information about the proportion of non-single
women that are younger than 30.2 years. Assume to know that such a proportion
is at least 70%, i.e. :

abd. personal_status=female div/sep/mar, B

==> age=(-inf-30.2]

-- conf:(0.7)
By means of the forthcoming Thm. 6.2, we can state that the rule (abc) is at
least 3.19-discriminatory. This unveils that non-single women in the context were
imposed a burden in credit denial of at least 3.19 times the average of people in
the context. Since the German credit dataset contains the PD items, we can check
how accurate is the lower bound by calculating the actual glift() value for (abc):
it turns out to be 3.37.

6.2 Inference Model

We formalize the intuitions of the example above in the next result, which derives
a lower bound for (strong) a-discrimination of PD classification rules given infor-
mation available in PND rules (v, ¢) and information available from background

rules (81, B2).
THEOREM 6.2. Let D,B — C be a PND classification rule, and let:
v=conf(D,B — C) d=conf(B — C)>0.
Let A be a PD itemset and let (31, B2 such that:
conf(A,B — D) >3 conf(D,B — A) > (3> > 0.
Called: 8
fla) =B +2-1)
B2
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elb(z, y) = { f(@)/y if f(z) >0

0 otherwise
£(&)/y it f(2) 2 y
glb(z,y) =< f(l—2)/(1-y) if f(l-2)>1-y
1 otherwise

we have:

(i) 1= f(1=7) = conf(A,B — C) = f(7),

(ii). for a > 0, if elb(y,0) > «, then the PD classification rule A,B — C is
a-discriminatory,

(iii). for a > 1, if glb(vy,0) > «, then the PD classification rule A,B — C is
strongly a-discriminatory. O

PRrROOF. See Appendix A4. [

Notice that the first two cases of the glb() function are mutually exclusive?

that there is no division by zero?.

The rule A,B — D establishes how much the discriminatory features A entail
D in the context B, and, on the other side, the rule DB — A says how much the
non-discriminatory features D entail A in the same context. Together they provide
the boundaries within which externally discovered discriminatory features can hide
behind the non-discriminatory ones, given a context B.

It is worth noting that §; and (2 are lower bounds for the confidence values
of AAB — D and D,B — A respectively. This amounts to stating that the
correlation between A and D in context B within the dataset must be known only
with some approximation as background knowledge. Moreover, as ($; and (32 tend
to 1, the lower and upper bounds in (i) tend to 7. Also, f(y) is monotonic w.r.t
both (7 and (2, but an increase of 3; leads to a proportional improvement of the
precision of lower and upper bounds, while an increase of 35 leads to a more than
proportional improvement.

, and

EXAMPLE 6.3. Reconsider Ex. 6.1. We have v = 0.167,§ = 0.027,3; = 0.7, and
B2 = 0.95. The lower bound for the glift() value of rule (abc) is computed as
follows. Called:

0.7

we have £(0.167) = 0.086 > 0.027, and gib(0.833,0.973) = £(0.167)/0.027 = 3.10.
Assume that the value of conf(A,B — D) is known with an approximation of
5%, i.e., 81 = 0.665, while (35 is unchanged. We have f(x) = 0.665/0.95(0.95+x—1),
and since f(0.167) = 0.082 > 0.027, we obtain ¢ib(0.833,0.973) = £(0.167)/0.027 =
3.03, i.e., the inferred lower bound is proportionally (5%) lower. Assume now that
conf(D,B — A) is known with an approximation of 5%, i.e., B2 = 0.9 and ; is

2By conclusion (i), 1 — f(1 —v) > f(v). When f(v) > 6, this implies 1 — f(1 —~v) > f(v) > 6 and
then f(1—+v) <1—0. When f(1—+)>1-—9, this implies 6 > 1 — f(1 —~) > f(7).

31f f() > 6 then the divisor is § > 0. Consider now the case f(1 —~) > 1 — § and assume, by
absurd, that 1 — ¢ = 0. Since 6 = 1 implies v = 1, we have f(1 —v) = 81/82(82—1) #0=1-4.
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unchanged. We have f(x) =0.7/0.9(0.9+ 2 — 1). Again f(0.167) = 0.052 > 0.027
implies ¢g1b(0.833,0.973) = f(0.167)/0.027 = 1.93, which is more than proportion-
ally lower than 3.19.

Recalling the redlining example from Sect. 2, an application of Thm. 6.2 allows us to
conclude that black people (race=black) are discriminated in a context (city=NYC)
because almost all people living in a certain neighborhood (neighborhood=10451)
are blacks (this is 82) and almost all black people live in that neighborhood (this is
(1). In general, this is not the case, since black people live in many different neigh-
borhoods. Moreover, in the redlining example we had to provide, as background
knowledge, only the approximation #s. However, notice that the conclusion of the
example is slightly different from the one above, stating that black people who live
in a certain neighborhood (race=black, neighborhood=10451) are discriminated
w.r.t. people in the context (city=NYC). Such an inference can be modelled as an
instance of Thm. 6.2 that strictly requires a downward closed set of itemsets.

EXAMPLE 6.4. Rules (a) and (c¢) from Sect. 2:

a. city=NYC c. neighborhood=10451, city=NYC
==> class=bad ==> class=bad
-- conf: (0.25) -- conf:(0.95)

are instances respectively of B — C and D,B — C in Thm. 6.2, with B =
city=NYC, D = neighborhood=10451 and C = class=bad. Hence, 7 = 0.95 and
0 = 0.25. What should be a set of PD itemsets for reasoning about redlining? Cer-
tainly, neighborhood=10451 alone cannot be considered discriminatory. However,
the pair A = race=black, neighborhood=10451 might denote a possible discrimi-
nation against black people in a specific neighborhood. In general, all conjunctions
of items of minorities and neighborhoods is a source of potential discrimination.
This set of itemsets is downward closed, albeit not in the form of 27 for a set of
items J. As background knowledge, we can now refer to census data, reporting
distribution of population over the territory. So, we can easily gather statistics

such as rule (d) from Sect. 2, which can be rewritten* as:

d. neighborhood=10451, city=NYC
==> race=black, neighborhood=10451
-- conf:(0.8)

This is an instance of D, B — A in Thm. 6.2. The other expected background rule
is A,B — D, which readily has confidence 100%, i.e., 31 = 1, since A contains D.
So, we have not to take it into account in this redlining example, which therefore
represents a simpler inference problem than the one considered in Thm. 6.2. By
the conclusion of the theorem, we obtain lower bounds for the confidence and the
extended lift of A,B — C, i.e., rule (e) from Sect. 2:

e. race=black, neighborhood=10451, city=NYC
==> class=bad

4Notice that, for an association rule X — Y, we admit X N'Y # (). The assumption X N'Y = 0
is typically required and motivated when considering the issue of rule extraction.
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CheckAlphaPNDCR(«)
Ry =0, for every g >0
ForEach g s.t. PN Dy # ()
Ryg={X - CePNDy |IX — A€ BR,}
ForEach X — C e Ry
v =conf(X — C)
V = (), generate = true // candidate contexts
ForEach X — A € BR, order by conf(X — A) descending
B2 = conf(X — A)
s = supp(X — A)
(i) Iffa>1—vor B>y
If generate // lazy generation of candidate contexts
ForEach B C X such that B — C € Ry with ¢ =|B| <g
6 =conf(B — C)
(ii1) If Bo(1—ad) >1—~or B2(1—a(l—19)) >~
YV =VU{(B,9d)}
EndIf
EndForEach
generate = false
EndIf
ForEach (B,d) € V
(i) If Bo(1—ad) >1—~or B2(l —a(l —9)) >~
B = s/supp(B — A) //found in BR, with ¢’ = |B|<g
If glb(~,8) > «
output A,B — C
EndIf
Else
YV =V\{(B,§)} //noneed to check it anymore
EndIf
EndForEach
EndIf
EndForEach
EndForEach
EndForEach

Fig. 8. Algorithm for checking indirect strong a-discrimination through background knowledge.
Here BRg is {X — A € BR | |X]| =g}

Confidence of (e) is at least 1/0.8(0.8 +0.95 — 1) = 0.9375, and then its extended
lift (w.r.t. the context city=NYC) is at least 0.9375/0.25 = 3.75. Summarizing, the
classification rule (e) is at least 3.75-discriminatory or, in simpler words, (c) is
a redlining rule unveiling a “disproportionate burden” (of at least 3.75 times than
the average of NYC people) over black-race people living in neighborhood 10451.

6.3 Checking the Inference Model

We measure the power of the inference model by defining the absolute recall at « as

the number of a-discriminatory PD rules that are inferrable by Thm. 6.2 starting

from the set of PND classification rules PAD and a set of background rules BR.
In order to test the proposed inference model, we simulate the availability of a
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large set of background rules under the assumption that the dataset contains the
discriminatory items, e.g., as in the German credit dataset. We define:

BR ={X — A | XPND,A PD,supp(X — A)>ms },

as the set of association rules X — A with a given minimum support. While rules of
the form A, B — D seem not to be included in the background rule set, we observe
that conf(A,B — D) can be obtained as supp(D,B — A)/supp(B — A), where
both rules in the ratio are of the required form. Notice that the set BR contains
the most precise background rules that an analyst could use, in the sense that the
values for 3 and B2 in Thm. 6.2 do coincide with the confidence values they limit.

A straight implementation of the inference model consists of checking the condi-
tions of Thm. 6.2 for each partition D, B of X, where X — C is a rule in PND.
Since there are 21! of such partitions, we will be looking for some pruning condi-
tions that restrict the search space. Let us start considering necessary conditions
for elb(vy,d) > a. If & = 0 the expression is always true, so we concentrate on the
case a > 0. By definition of elb(), elb(vy,d) > « > 0 happens only if f(y) > 0 and
f()/d > «, which can respectively be rewritten as:

(i) B2 > 1—7v (ii) Br(fB2 +v — 1) > adfo.

Therefore, (i) is a necessary condition for elb(vy,d) > «. From (i) and 5 < 1, we
can conclude elb(v,6) > a only if B2 +v — 1 > adfs, i.e.:

(iii) B2(1l — ad) > 1 — 7.

Therefore, (i) is a necessary condition for elb(y,d) > « as well. The selectivity
of conditions (%,7) lies in the fact that checking (i) involves no lookup at rules
B — C to compute 6 = conf(B — C); and checking (%i) involves no lookup at
the rule A, B — D to compute 8; = conf(A,B — D). Moreover, conditions
(i,4ii) are monotonic w.r.t 33, hence if we scan the association rules X — A ordered
by descending confidence, we can stop checking for a candidate context as soon as
they are false. Finally, we observe that similar necessary conditions can be derived
for glb(v,0) > a.

The generate&stest algorithm that incorporates the necessary conditions is shown
in Fig. 8. As a space optimization, we prevent keeping the whole set of PND rules
PND, needed when searching for § = conf(B — C), by keeping in R4 a PND rule
X — C only if there exists some background rule X — A € BR. Otherwise, we
could not even compute conf(B — A), needed for calculating 3;. Computational
complexity in both time and space of the CheckAlphaPNDCR/() procedure is
discussed in Appendix B.

6.4 The German credit case study

With reference to the presented test framework, Fig. 9 top plot shows the distri-
bution of the absolute recall of the proposed inference model, at the variation of
« and minimum support. Even for high values of a, the number of indirectly dis-
criminatory rules is considerably high. As an example, for minimum support of
0.3%, 390 PD classification rules that are strongly 4-discriminatory can be inferred
from PND rules. As one could expect, the absolute recall heavily depends on the
size of the background knowledge. Fig. 9 bottom plot shows the distribution of the
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Fig. 9. The German credit dataset. Top: absolute recall of the inference model through back-
ground knowledge at the variation of minimum support. Bottom: absolute recall at the variation
of maximum length of background rules’ premise. Here BR4 is {X — A € BR | |X]| =g}.

absolute recall at the variation of the maximum length of background rules’ premise
for a fixed minimum support of 0.3%. As an example, if we have background rules
X — A with |X| < 3, the best inference leads to two strongly 2.45-discriminatory
rules. Highly discriminatory contexts can then be unveiled only starting from very
fine-grained background knowledge.

We report below the execution times of the CheckAlphaPNDCR/() procedure
(on a 32-bit PC with Intel Core 2 Quad 2.4Ghz and 4Gb main memory) for rules in
PND and BR having minimum support of 1% and without/with the optimization
checks discussed earlier. The set PND consists of 1.27 millions of classification
rules, and the set BR consists of 2.1 millions of association rules. Notice that the
size of BR is exceptionally large, since it is obtained starting from a dataset which
already contains the PD itemsets. In real cases, only a limited number (in the order
of thousands) of background rules are available from statistical sources, surveys or
experts.
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without checks | with checks | ratio
a=2.0 434s 136s 31.3%
a=138 434s 139s 32.0%
a=1.6 434s 144s 33.2%
a=14 434s 158s 36.4%

Whilst there is a gain in the execution time in using the optimizations, up to
68.7%, the order of magnitude is the same. This can be explained by observing
that condition (%) allows for cutting generation&testing of candidates, but condition
(iii) allows for cutting only testing of candidates.

7. INDIRECT DISCRIMINATION THROUGH NEGATED ITEMS
7.1 Motivating Example

A limitation of the inference model based on background knowledge occurs when
dealing with a binary attribute a such that a = v is PD and its negated item
—(a =) is PND. The most common case consists of the PD item sex=female, and
the PND item sex=male. For D = sex = male, and A = sex = female, we have
that the assumption conf(D,B — A) =0 > (8 > 0 of Thm. 6.2 does not hold.
As a conclusion, the inference model based on background knowledge cannot derive
lower bounds for PND rules involving women starting from PD rules involving men.
Such an inference is instead quite natural in practice. Notice that in the German
credit dataset this case does not occur, since the attribute sex is not binary.

Let us show next an example involving the attribute foreign worker, for which
foreign worker=no is PND whilst foreign worker=yes is PD. A rule including
foreign worker=no in its premise is considered PND. However, by reasoning as
done for binary classes in Sect. 4.3, such a rule can unveil a-discrimination of the
PD rule obtained by replacing foreign worker=no with foreign worker=yes.

ExAMPLE 7.1. Consider again the German credit dataset, and assume that PD
itemsets have been removed from it. Also, consider the following itemset:

B = personal_status=male single
employment=1<=X<4
purpose=new car
housing=rent

The following PND classification rules can be extracted:

nbc. foreign worker=no, B bc. B
==> class=good ==> class=good
-- conf: (1) -- conf:(0.9)

Rule (nbc) states that national workers in the context B of people that are single
male, employed since one to four years, which intend to buy a new car, and have
their house for rent, are assigned a good credit scoring with confidence 100%. Rule
be states that the average confidence of people in context B is slightly less, namely
90%. It is quite intuitive that the increasing of confidence from 90% to 100%,
yet being a small one, has to be attributed to the omission of foreign workers.
Therefore, for the rule:
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abc. foreign worker=yes, B
==> class=good

we expect a decrease in confidence in comparison to (bc), or, by reverting to the
complementary class class=bad, an increase in confidence. In order to estimate the
level of strong a-discrimination of (abc), however, we need to know some further
information on the proportion of foreign workers in the context B. Assume to know
(by some background knowledge) that foreign workers are 50 £ 0.5% of the people
in the context B above, i.e., the rule:

ba. B ==> foreign worker=yes

has a confidence between 49.5% and 50.5%. By means of the forthcoming Thm. 7.2,
we can state that a lower bound for the glift() value of (abc) is 1.62. As a
consequence, the rule (abc) highlights a burden of 62% more for foreign workers
over the average of people in the context above. Since the German credit dataset
contains the PD itemsets, we can calculate the actual glift() value for (abc), which
turns out to be 2.0.

7.2 Inference Model

We formalize the intuitions of the example above in the next result, which derives a
lower bound for a-discrimination of PD classification rules given information avail-
able in PND rules (v, §) and information available from rules about the distribution
of binary attributes (81, B2).

THEOREM 7.2. Assume that the attribute of a PD item A is binary.
Let =A,B — C be a PND classification rule, and let:

v=conf(-A,B — C) §d =conf(B — C)>0.
and (1, B2 such that:
B2 > conf(B — A) >3 >0.

”1($):@+(1*E)$ n2(3€):a+(1*@)$
_ @)y ifna(z) >y
elb(z,y) = { O1 othérwise
ni(z)/y if ni(z) >y
glb(z,y) = ¢ (1 —n2(2))/(1 —y) ifna(z) <y
1 otherwise

we have:

(i). n2(y) 2 conf(A,B — C) > ni(7),

(ii). for a > 0, if elb(y,0) > «, then the PD classification rule A,B — C is
a-discriminatory,

(iii). for a > 1, if glb(vy,8) > «, then the PD classification rule A,B — C is
strongly a-discriminatory.
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CheckAlphaPNDNegated («)
N ={a=wv|a=wv €Iz and dom(a) = {vo,v1} }
Rgroup = 0, for every group > 0
ForEach group s.t. PN Dgroup # 0
ForEach X — C € PNDgroup s.t. XNN £
N=XnN
v =conf(X — C)
ForEach —-A € N
B=X\-A
0 =conf(B — C) //found in Rgroup—1
B =conf(B — A) //found in BRgroup—1
n=05/8+(1—1/8)n
If glift(n,d) > «
output A,B — C
EndIf
EndForEach
EndForEach
Rgroup = {X — C € PNDgrowp | 3 X — A € BRyroup}
EndForEach

Fig. 10. Algorithm for checking indirect strong a-discrimination through negated items. Here
BR, is {X — A€ BR | |X] = g}.

PRrROOF. See Appendix A.5. [

Notice that, since by (i) na(y) > ni(y), the two test conditions in the definition
of glb() do not overlap. Also, when §; = (2, i.e., confidence of conf(B — A)
is known exactly, then ni(vy) = na(7), elb(y,0) = elift(n1(y),d) and glb(v,0) =
glift(ni(v),d). This leads to the conclusion that (ii,44) are both necessary and
sufficient conditions for (strong) a-discrimination.

EXAMPLE 7.3. Reconsider Ex. 7.1. We have: v = 1, § = 0.9, 87 = 0.495,
B2 = 0.505. Since ny(y) = 0.9/0.495 + (1 — 1/0.505)1 = 0.838 < 0.9 = §, we have
glb(y,9) = (1 — 0.838)/(1 — 0.9) = 1.62. Therefore, the classification rule (abc) is
at least strongly 1.62-discriminatory. Since the German credit dataset contains the
PD items, we can check how accurate is the lower bound by calculating the actual
glift() value for (abc): it turns out to be 2.

In the case that the confidence of (ba) were known exactly, i.e., 1 = B2 = 0.5, we
have na(v) = ni(vy) = 0.9/0.54+(1—1/0.5) = 0.8 and glb(v,d) = (1-0.8)/(1—-0.9) =
2, which is the actual glift() value of (abc).

7.3 Checking the Inference Model

In order to test the proposed inference model, we simulate the availability of a large
and accurate set of background rules for datasets as done in Sect. 6.3. We recall
the definition of the background rule set:

BR={X — A|XPND,A PD,supp(X — A)>ms }.

The algorithm CheckAlphaPNDNegated() in Fig. 10 makes a single scan of
PND classification rules X — C ordered by the length of X. For each —A in
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Fig. 11. The German credit dataset. Top: absolute recall of the inference model through negated
items at the variation of minimum support. Bottom: absolute recall at the variation of maximum
length of background rules’ premise. Here BRg is {X — A € BR | |X]| =g}.

X that is the negation of a PD item, the conditions of Theorem 7.2 are checked
for B = X'\ A, by looking up the association rule B — A from the BR set of
background rules. As a space optimization, we prevent keeping the whole set of
PND rules PND, needed when searching for § = conf(B — C), by keeping in
Rgroup @ PND rule X — C only if there exists some background rule X — A €
BR. Otherwise, we could not even compute § = conf(B — A). Computational
complexity in both time and space of the CheckAlphaPNDNegated() procedure
is discussed in Appendix B.

7.4 The German Credit Dataset

With reference to the presented test framework, Fig. 11 shows the distribution of
the absolute recall of the inference model of Thm. 7.2, at the variation of minimum
support (top plot) and at the variation of the maximum length of background rules’
premise (bottom plot). We recall that the only item in I,; satisfying the hypothesis
of the inference model is foreign worker=yes. The figure reports then the absolute
count of PD rules of the form foreign worker = yes,B — C that can be shown
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to be strongly a-discriminatory starting from PND rules of the form foreign work-
er=no ,B — C and background rules of the form B — foreign worker =yes.

Contrasting the two plots to Fig. 9, we observe that for the minimum support of
1% the inference model based on negated items unveils strongly a-discriminatory
rules with higher values of «, while for lower minimum support thresholds the infer-
ence model based on background knowledge yields stronger conclusions. Moreover,
as in Fig. 9, the absolute recall of the inference model heavily depends on the size
of the background knowledge.

Sample executions times of the CheckAlphaPNDNegated() procedure are
reported in the table below. They are consistent with the worst-case complex-
ity analysis from Appendix B and show good scalability along with the minimum
support threshold.

No. PND || No. Back. || CheckAlphaPNDNegated()
minsup rules rules Time
1% 1.27TM 2.1M 9.6s
0.5% 5.3M 8.4M 47.8s
0.3% 15.9M 24.2M 143s

As for the inference model based on background knowledge, notice that the number
of background rules is exceptionally high due to the fact that they are obtained from
a dataset which already contains the PD itemsets.

8. CASE STUDY: ANALYSIS OF BAD LOANS

In the German credit case study, the underlying context of analysis is a dataset
of historical decisions on granting/denying credit to applicants. The framework
proposed in this paper warns us that discriminatory decisions are hidden in such
a dataset either directly or indirectly. Concerning the reasons behind those de-
cisions, economists distinguish between “taste-based” discrimination, tracing back
to early studies [Becker 1957], and “statistical” discrimination. The former is con-
cerned with dislike against protected-by-law groups. Becker’s studies lead to the
conclusion that, in a sufficiently competitive market, taste-based discrimination in
not employing good black workers is not profitable. Statistical discrimination, also
called rational racism in [Harford 2008, Chapter 6], occurs when employers refer
directly or indirectly to the average performance of the applicant’s racial group as a
decision element. Field experiments show [Riach and Rich 2002] that this approach
can be profitable, yet illegal.

In this section, we consider a dataset of behaviours, not decisions, namely of
persons who, once received a loan, were able or not to repay the loan without
problems, such as delays or default. The discrimination analysis still applies in such
a different context. Although there is no discriminatory decision to discover here,
the extraction of contexts where protected-by-law groups suffered from repaying
the loan can help isolating possible sources of statistical discrimination. Business
rules built on top of such contexts should be prevented.

The financial dataset from the PKDD 1999 Discovery Challenge [Berka 1999]
contains data about the clients of a bank, including personal data (sex and age),
demographic data on the district where the client lives (region name, number of
cities, rate of urban inhabitants, average salary, unemployment rate, entrepreneur
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Fig. 12. The PKDD 1999 dataset. Top: distribution of a-discriminatory PD rules. Bottom:
distribution of strongly a-discriminatory PD rules.

ratio, number of crimes), data on the client bank account (account age, account
type, credit card type) and data on the assigned loan (loan amount, loan duration).
The class attribute, status, assumes the values ok or ko on the basis whether the
loan was fully repaid or not, i.e., the bank was in credit at the end of the contract
or at the time of the analysis. In summary, the dataset consists of 827 cases and 15
attributes. Continuous attributes have been discretized by equal frequency binning.
As done for the German credit dataset in Ex. 4.2, we fix for the PKDD 1999 dataset
T4 = 24, where I; is now the set of the (discriminatory) items sex=FEMALE and
age=(56.5-inf).

Fig. 12 shows the distributions of a-discriminatory and strongly a-discriminatory
PD classification rules. While the absolute counts differ, the distribution shapes
look very similar to the ones of Fig. 4 and Fig. 5. Minimum support threshold
turns out to be mechanism for unveiling the a-level of (strongly) a-discriminatory
PD rules. As an example, the following two rules where extracted for minimum
support of 0.3%.

pl. age=(56.5-inf), crime_n=(5159.25-inf)
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Fig. 13. The PKDD 1999 dataset. Absolute recall of the inference model through background
knowledge. Notice that for minimum support of 1% the absolute recall is 0 for a > 1.05.

card_type=No, loan_duration=(30-42]
==> status=ko
—-— supp: (0.003) conf:(0.5) elift:(6.17)

p2. age=(56.5-inf), sex=FEMALE
avg_salary=(8764.5-9235], entrepeneurs_ratio=(108.5-125.5]
==> status=ko
—— supp: (0.003) conf:(0.43) elift:(3.47)

Rule (p1) states that among people living in districts with high crime index, having
no credit card, and with a loan of 30 to 42 months, older people had problems with
returning the loan 6.17 times the average. Rule (p2) states that among people
with average salary in the range 8764.5 — 9235 units and living in a region with
entrepreneurs index of 108.5 — 125.5, older female had problem with their loan 3.47
times the average. New business rules built on top of (p1) and (p2) could deny
loans to prospect applicants satisfying the premises of (p1) and (p2). Such rules
would be discriminatory for older people and for women.

Of course, even if the PD itemsets were removed from the dataset, indirectly dis-
criminatory contexts can be extracted and, unconsciously, applied in new business
rules. Fig. 13 shows the distribution of strongly a-discriminatory PD rules obtained
by the inference model of Sect. 6 under the same test condition of Sect. 6.3. Let us
show one of such rules. The following itemset B:

crime n=(5159.25-inf), unempl rate=(3.25-inf), loan_duration=(30-42]

describes people living in regions with the highest crime rate and unemployment
rate that were granted a loan whose duration is from 31 to 42 months. The follow-
ing rules can be extracted from the dataset without discriminatory items:

dbc. cities n=(-inf-2.5], B bc. B
==> status=ok ==> status=ok
-- conf:(0.75) -- conf:(0.94)
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Rule (dbc) states that people in the context B who live in a region with one or
two cities had no problem with returning the loan, with a confidence of 75%. Rule
(bc) states that people in the context had no problem in 94% of cases. As a conse-
quence, clients in the context who additionally satisfy cities_n=(-inf-2.5] show
problems with returning the loan 25% of times (1 — 0.75), which is 4.2 times more
than the average problem rate of clients in the context, namely 6% (1 — 0.94). So
the bank could be tempted to deny future loans to applicants satisfying B and
cities n=(-inf-2.5]. By looking at its records, however, the bank could discover
that, among all clients in context B, people satisfying cities n=(-inf-2.5] ap-
proximatively coincide with older people, or, more precisely, that:

dba. cities n=(-inf-2.5], B abd. age=(56.5-inf), B
==> age=(56.5-inf) ==> cities n=(-inf-2.5]
-- conf: (1) -- conf:(0.8)

By Thm. 6.2, the formal conclusion is that the rule:

abc. age=(56.5-inf), B
==> status=ok

is strongly 4.2-discriminatory.

The socially relevant conclusion of this example is is rule (dbc) unveils a possible
source of statistical indirect discrimination. If a decision system (either automatic,
human or mixed) is made aware of such a rule, it could run the risk to impose addi-
tional restrictions on prospect loan applicants that would result in a discriminatory
action against older people in the context B.

9. RELATED WORK
9.1 Discrimination Discovery and Discrimination Prevention

We highlight here the differences between the issues of discrimination discovery and
discrimination prevention. Discrimination discovery, which has been the subject of
this paper, consists of supporting the discovery of discriminatory decisions hidden,
either directly or indirectly, in a dataset of historical decision records, possibly
built as the result of applying a data mining classifier. Discrimination prevention
consists of inducing a classifier that does not lead to discriminatory decisions even if
trained from a dataset containing them. Whether or not a set of decisions taken by
a classifier is discriminatory can be checked by discrimination discovery methods.

This paper is the first to address the discrimination discovery problem by resort-
ing to data mining methods. As a subsequent work, we have studied in [Pedreschi
et al. 2009] the issue of assessing the statistical significance of the discovered rules.
In fact, statistical validation is customary in legal cases before courts [Gastwirth
1992], especially when cases covered by the discovered rules are very few [Piette
and White 1999].

Discrimination prevention has been recognized as an issue in the tutorial [Clifton
2003, Slide 19] where the danger of building classifiers capable of racial discrimi-
nation in home loans has been put forward, as a common discriminatory behavior
of many banks consists of mortgage redlining. The naive approach of deleting po-
tentially discriminatory itemsets or even whole attributes from the original dataset
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does not prevent a classifier to learn discriminatory actions, such as the classifica-
tion rule (c) in Sect. 2.4, in that it only shields against direct discrimination, not
against the indirect one. We foresee three non mutually-exclusive strategies towards
discrimination prevention. The first one is to adapt the preprocessing approaches
of data sanitization [Hintoglu et al. 2005; Verykios et al. 2004] and hierarchy-based
generalization [Sweeney 2002; Wang et al. 2005] from the privacy-preserving liter-
ature. Along this line, [Kamiran and Calders 2009] adopts a controlled distortion
of the training set. The second one is to modify the classification learning algo-
rithm (an in-processing approach), by integrating discrimination measures calcula-
tions within it. The third one is to post-process the produced classification model.
Along this line, in [Pedreschi et al. 2009] confidence-altering approach is proposed
for classification rules inferred by the CPAR algorithm [Yin and Han 2003].

9.2 Comparison with Previous Work

In this paper, we extended the preliminary results appeared in [Pedreschi et al.
2008] in several directions.

On the methodological side, we clarified the problem of discrimination discovery
and the approach of extracting classification rules as a means to discover contexts
of discrimination against protected-by-law groups of people.

On the theoretical side, we introduced an inference model based on negated
items (see Sect. 7) which complements the one based on background knowledge
(see Sect. 6) by covering one of the most common cases occurring in practice,
namely discrimination against women (and not against men). In Appendix A we
introduce a conservative extension of the standard definitions of association and
classification rules. The extension allows us to deal uniformly with negation and
disjunction of itemsets. As a consequence, the formal results of this paper directly
extend to the case where PD and PND classification rules over hierarchies [Srikant
and Agrawal 1995] (see Ex. A.1) and negated itemsets [Wu et al. 2004] (see Ex. A.2)
are extracted.

On the analytical side, we reported the analysis of the PKDD 1999 Discovery
Challenge financial dataset (see Sect. 8) and discussed its application context, which
differs from the one of the German credit case study. Moreover, a deeper analysis
of the German credit dataset is reported throughout the paper, e.g., by studing the
distributions of (strong) a-discriminatory PD rules w.r.t. the class item, w.r.t. the
set I of PD itemsets, and w.r.t. the size of the background knowledge.

On the computational complexity side, in Appendix B we study the space and
time worst-case complexity of the procedures proposed in this paper. The original
procedure CheckAlphaPNDCR() from the KDD 2008 paper has been improved
for what concerns space requirements. The procedure in this paper is linear in
the size of background knowledge multiplied by the number of class items. This is
typically negligible when compared to the size of PND rules, the space-complexity
of the original procedure. Finally, execution times over the German credit dataset
are also added throughout the paper.
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9.3 Extended Lift

Technically, we measured discrimination through generalizations and variants of
lift, a measure of the significance of an association rule [Tan et al. 2004]. We
refined the lift to cope with contexts, specified as PND itemsets: how much does a
potentially discriminatory condition A increase/decrease the precision when added
to the non-discriminatory antecedent of a classification rule B — C?

In this sense, there is a relation with the work of [Rauch and Simunek 2001], where
the notion of conditional association rules has been used to analyze a dataset of
loans. A conditional rule A < C/B denotes a context B in which itemsets A and C
are equivalent, namely where conf(A,B — C) =1 and conf(—-A,B — —-C) = 1.
However, we can say nothing about conf(B — C), and, consequently, about the
relative strength of the rule with respect to the base classification rule. In ad-
dition to <, the 4ft-Miner system [Rauch and Simunek 2001; 2009] allows for
the extraction of conditional rules with other operators. The “above average
dependence” operator defines rules A ~+ C/B such that supp(A,B,C) > ms,
where ms is the minimum support threshold, and liftg(A — C) > 1+ p, where
B ={T € D| BCT} is the set of transactions verifying B. This is equivalent
to check whether the extended lift of A,B — C is greater or equal than 1 + p,
i.e., whether the rule is 14p-discriminatory. However, the 4ft-Miner system assumes
that itemsets A, B and C are defined starting from specified sets of attributes, not
from sets of itemsets. Also, the system adopts a rule extraction algorithm that is
general enough to cope with operators defined on the 4-fold contingency table of
transactions satisfying or not satisfying A and/or C. On the one hand, that allows
for a general system of rule extraction w.r.t. several operators. On the other hand,
the procedure in Fig. 3 exploits the efficiency of the state-of-the art algorithms for
the extraction of frequent itemsets.

9.4 Relationship with Privacy-Preserving Data Mining

Finally, some methodological relationships with privacy-preserving data mining [Liu
2009; Vaidya et al. 2006] should be highlighted. A commonality is the attention,
in both cases, to key social impacts of data mining which, if not properly tackled,
hamper the dissemination and acceptance of the technology: both privacy intrusion
and unfair treatment are crucial factors, which call for trustable technologies. On
the other hand, the two techniques aim at shielding against two different kinds
of threats: privacy-preserving data mining aims at preventing the possibility of
learning private personal data by unauthorized (possibly malicious) people, while
our method aims at discovering unfair decisions or behaviours and, as a further step,
at preventing taking similar decisions by authorized (possibly unaware) people.
The issue of indirect discrimination through inference models resembles a privacy-
preserving problem, where simply hiding a subset of rules (here, simply having
datasets with no PD itemset) does not necessarily guarantee privacy protection from
an attacker (here, should not prevent the unveiling of discriminatory decisions). The
privacy-preserving literature contains several approaches to tackle this problem,
that are all confronted with the trade-off between providing accurate models and
preserving the privacy of individuals. It remains an open problem whether some of
the existing attack models and privacy-preserving approaches can be effective in our
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context as well, either for discrimination discovery or for discrimination prevention.

10. CONCLUSIONS

Civil rights laws prohibit discrimination in a number of settings, including credit
and insurance scoring, lending, personnel selection and wage, education and many
others. The influence of discriminative behaviors has been the subject of studies in
economics, law and social sciences.

In this paper, we have introduced the problem of discovering contexts of dis-
criminatory decisions against protected-by-law groups, and provided a knowledge
discovery process for solving it. Our approach is based on coding the involved
concepts (potentially discriminated groups, contexts of discrimination, measures
of discrimination, background knowledge, direct and indirect discrimination) in a
coherent framework based on itemsets, association rules and classification rules
extracted from a dataset of historical decision records.

Clearly, many issues in discrimination-aware data mining remain open for fu-
ture investigation, both on the technical and on the interdisciplinary side. On the
technical side, the proposed approach can be extended to deal with continuous
attributes, such as age and income; with continuous classes, such as wages and
interest rate; with mining models other than classification rules, such as Bayesian
models; with additional inference models. On the interdisciplinary side, it is im-
portant to pursue the interplay with legislation and regulatory authorities. In our
opinion, research in data mining can contribute by providing a methodology for
quantitative (self-)assessment and enforcement of discrimination in support of the
existing qualitative legislative and regulatory definitions.
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A. PROOFS

Proofs are provided in a general setting, which conservatively extends the standard
definitions of [Agrawal and Srikant 1994] recalled in Section 3, by admitting nega-
tion and disjunction of itemsets. The results stated in the paper hold then more
generally, e.g., for rules admitting negated itemsets and items over hierarchies.

A.1 Association and Classification Rules
A pattern expression X is a boolean expression over items. We allow conjunction (A)
and disjunction (V) operators, and the constants true and false. For a transaction
T, we say that T verifies X, and write T' = X, iff:

. X is a = v and a = v belongs to T’; or

. X is true; or

. Xis X; A Xy and both T | X; and T | Xo; or

. XiSXl \/XQ andT|:X1 OI'T':X.Q.

With this semantics, an itemset {i1,...,7,} can be interpreted as the pattern ex-
pression i1 A ... A i, (which reduces to true when n = 0). Moreover, since
the domains of attributes are finite, negated items such as —(a = v) (also writ-
ten, a # v) can be introduced as a shorthand for a = v; V...V a = v,, where
{vi,...,v,} = dom(a) \ {v}. Negation is extended to pattern expressions by the
De Morgan’s laws:

(X VY)is - X A Y,
(X AY)is -X VY,

. —true is false and —false is true.
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For any transaction T', we have that T' = =X iff T' = X does not hold®. A pattern
expression X is valid if T |= X for every transaction T. The support of a pattern
expression X w.r.t. a non-empty transaction database D is the ratio of transactions
in D verifying X:

suppp(X) =[{ T € D | T |= X }|/|D|

where | | is the cardinality operator. An association rule is an expression X — Y,
where X and Y are pattern expressions. X is called the premise and Y is called
the consequence of the association rule. We say that it is a classification rule if Y
is a class item and no class item appears in X.

The support of X — Y w.r.t. D is defined as:

suppp(X — Y) = suppp(X A Y).
The confidence of X — Y, defined when suppp(X) > 0, is:
confp(X — Y) = suppp(X A Y)/suppp(X).

Support and confidence range over [0,1]. We omit the subscripts in suppp() and
confp() when clear from the context. The formulation of association rules in terms
of pattern expressions (instead of itemsets, i.e., conjunctions of items) allows us
to model in a unified framework several extensions of standard association rules,
including negative association rules [Wu et al. 2004] and hierarchies [Srikant and
Agrawal 1995].

EXAMPLE A.1. (MODELLING HIERARCHIES) Consider a hierarchy on attribute
age with a level including values young, adult and elder; and a second level
mapping young in the domain values 0 ... 18, adult in the domain values 19 ... 60,
and elder into 61 ...99. While age = adult is not an item (since adult is not in
the domain of age), it can be considered as a shorthand for the expression age =
19 V...V age = 60.

EXAMPLE A.2. (NECATED ITEMS) Consider the attribute gender and assume
that its domain is binary, i.e.: dom(gender) = {male,female}. The expression
- gender = female is a syntactic abbreviation for gender = male. Assume now
that: dom(gender) = {male,female,null}. This assumption is realistic when
transactions admit unknown/unspecified values, or for variable-length transactions,
i.e., transactions that include at-most one a-item for every attribute a. In this case,
— gender = female is a shorthand for gender = male V gender = null.

We start by stating a general relation which comes from the third-excluded principle
of boolean logic.

LEMMA A.3. For X,Y pattern expressions, we have:

(1). supp(X) = supp(X AN Y) + supp(X A 1Y)
(i1). supp(X) > supp(X A Y).

5This holds since we assumed that a transaction includes exactly one a-item for every attribute a.
For variable-length transactions, where a transaction includes at-most one a-item, the conclusion
does not hold anymore, e.g., § [~ gender=male and ) j~ gender=female. Ex. A.2 shows how
variable-length transactions can be modelled.
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PRrROOF. (i) follows directly from observing that, for a transaction T, it turns out
tht TEXIfTEX A YorTEX A Y. (i) is an immediate consequence of

(). O

Let us now relate confidence of an association rule to the confidence of the rule
with negated consequence.

LEMMA A.4. Let X — Y be an association rule. We have:
conf(X — Y)=1-conf(X — YY)
PROOF. Let us calculate:
conf(X — Y) = supp(X ANY)/supp(X)
= { Lemma A.3 (i) }

(supp(X) — supp(X A =Y))/supp(X)
1 —supp(X A =Y)/supp(X)
1—conf(X — =Y).

O

We conclude by reformulating the well-known principle of Inclusion-Exclusion
[Knuth 1997] in the context of pattern expressions.

LEMMA A.5 INCLUSION-EXCLUSION PRINCIPLE. Let A, B, C, and D be pat-
tern expressions. Then:

supp(A) > supp(A A B) + supp(A N C) — supp(A A B A C).
PrOOF. We have:
supp(A AN B) = { Lemma A.3 (i) }
supp(A A B A C) + supp(A A B A =C)
{ Lemma A.3 (i) }
supp(A A B A C) + supp(A A —~C)
= { Lemma A.3 (i) }
supp(A A B A C) + supp(A) — supp(A A C).

IN

O

A.2  Extended Lift

The following lemma states the range of variability of the extended lift.
LEMMA A.6. Let A N B — C be an association rule such that:

supp(A AN B — C)>ms >0
vy=conf(A ANB — C) d=conf(B — C)>0.

We have that:

(i). /9 belongs to the range [0,1/ms],
(ii). if 6 > mec then v/§ belongs to [0,1/mc].
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PROOF. The lower-bounds of zero are immediate since v > 0,0 > 0. As for the

upper-bounds, for (i) we calculate:
/5 = supp(A AN B A C)/supp(A A B)
supp(B A C)/supp(B)

supp(A AN B A C)  supp(B)

supp(B A C)  supp(A A B)
{ Lemma A.3 (i) }
supp(B)/supp(A N B)
1/supp(A A B)
{ Lemma A.3 (i) }
1/supp(A AN B — C) < 1/ms.

Concerning (ii), we have: v/6 <1/6 <1/me. O

IN

IA A IA

The next result relates support and confidence of conjuncts in pattern expressions
and association rules to the underlying database of transactions.

LEMMA A.7. Let X, Y and B be pattern expressions. Then:

(i). suppp(X A B) = supps(X) suppp(B),
(ii). confp(X A B — Y)=confpg(X — Y).

where B={T € D | T = B}.
PRrROOF. We calculate:

confp(X ANB — Y)

suppp(X A B) _ suppp(X A B AY)
{TeD|TEX ABI} ~ suppp(X A B)
- D] ={@)}
_ {TeB|TEX}|B _ supps(X A Y)suppp(B)
|D||B] supps(X)suppp(B)
= suppp(X) suppp(B). = confpg(X — Y).
(i) (ii)

O

We are now in the position to relate extended lift to standard lift [Tan et al. 2004],
defined as: liftp(A — C) = confp(A — C)/suppp(C).
LEMMA A.8. Assuming that confp(B — C) > 0, we have:
confp(A AN B — C)
confp(B — C)
where B={T € D |T = B}.
Proor. We calculate:
confp(A AN B — C)
confp(B — C)
ACM Journal Name, Vol. V, No. N, Month 20YY.
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confp(A AN B — C)
supps(C)
{ Lemma A.7 (ii) }

confg(A — C) ; .
—suppB(C) =liftg(A C).

O

Finally, we show that the extended lift is symmetric with respect to A and C,
namely that the extended lifts of A A B — Cand C A B — A do coincide.

LEMMA A.9. Assuming that conf(B — C) > 0 and conf(B — A) > 0, we
have:

conf(A N B — C)
conf(B — C)
PRrROOF. We calculate:

_conf(CAB — A)
~ conf(B — A)

conf(ANB — C)  supp(A A B A C)supp(B)
conf(B — C) ~ supp(A A B) supp(B A C)
conf(CANB — A)

~ conf(B — A)

O

A.3 Strong a-protection

Let us show next (a generalization of) Lemma 4.8.

LEMMA A.10. Let A AN B — C be an association rule, and let:
vy=conf(A NB — C) d=conf(B — C) < 1.
We have conf(B — —C) > 0 and:

conf(ANB — -C) 11—y
conf(B — =-C)  1-4

PrROOF. By Lemma A.4, conf(B - -C) =1 —-conf(B - C)=1-6 >0
since § < 1. Moreover:

conf(ANB — -C)
conf(B = -C) { Lemma A4 }

1—conf(A N B — -C)
1—conf(B — -C)
_ 1=

1-46°

O

The following result shows that the glift() function of Definition 4.9 ranges over
[1,1/ms], where ms is the minimum support threshold.
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LEMMA A.11. Let A N B — C be an association rule such that:

supp(A AN B — C)>ms >0
v=conf(A ANB — C) d=conf(B — C)>0.

We have that: glift(v,d) € [1,1/ms], and for 1 > §:
glift(vy,0) = max{elift(~,d),elift(l —~,1—9)}.

PROOF. First, we observe that § = 1 implies v = 1. In fact, when supp(B A C) =
supp(B), i.e., all transactions verifying B also verify C, we have supp(A A B A C) =
supp(A A B), i.e.,, v = 1. As a consequence, when 6 = 1, we have glift(v,d) =
v/ =1 € [1,1/ms]. Consider now the remaining case 1 > ¢ > 0. Since the
following property holds by elementary algebra:

v/6>1 iff (1-7)/(1-9)<1,

we obtain glift(vy,0) > 1 and glift(y,d) = max{elift(~,d),elift(l —~,1—9)}.
Let us show now the upper bound for glift(). By Lemma A.6 (i), elift(y,0) <
1/ms. Moreover:

elift(1—v,1—0) = { Lemma A.10 }
supp(A N B A =C)/supp(A A B)
supp(B A —C)/supp(B)

supp(A A B A =C)  supp(B)
supp(B A =C)  supp(A A B)

{ Lemma A.3 (i) }

supp(B)/supp(A A B)

< 1/supp(A A B)

IN

= { Lemma A.3 (i) }
< 1/supp(A AN B — C) < 1/ms.

Summarizing, glift(vy,d) = max{elift(y,d),elift(1 —~v,1—8§)} < 1/ms. O

A.4 Indirect Discrimination through Background Knowledge

The next result provides upper and lower bounds for the confidence of an association
rule D — C given the confidence of A — C and some (background) knowledge
about D and A expressed as lower bounds on the confidences of D — A and
A — D. This is a weaker version of the inference model, where the context B is
empty.

LEMMA A.12. Let A,D, C be pattern expressions, and:
v=conf(D — C) conf(A — D) > p conf(D — A) > 33> 0.

We have that:

1- ﬁ(ﬁz —5)>conf(A — C) > &(52 +v-=1).
B2 B2
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PROOF. Let us call: §; = conf(A — D) and 3, = conf(D — A). We have:
_ supp(A A C)
conf(A — C) = ~sup(A)
supp(A N C A D)
supp(A)
= { B1/By = supp(D)/supp(A) }
@supp(A A C A D)
Bs supp(D)
> { Inclusion-Exclusion Lemma A.5 }
E (supp(D A A) + supp(D A C) — supp(D))
Bs supp(D)
By
= Bty -1
3, (B2 + )
{B125120,8,2p4>0127>0}
b1

E(ﬁz +7v-1).

v

Moreover:
supp(A A C)
supp(A)
< { Inclusion-Exclusion Lemma A.5 }
supp(A) + supp(A AN D A C) — supp(A A D)

supp(A)
supp(A A D) — supp(A A D A C)

supp(A)

= { B1/By = supp(D)/supp(A) }

531 supp(A A D) — supp(A A D A C)
By supp(D)
= { Lemma A.3 (%) }

By supp(A A D) — supp(D A C)
B supp(D)
- g;(ﬁz -7)
<{B12B5120,8>202>0,1>7>0}

Brig _
N (B2 — 7).

conf(A — C) =

=1

=1

<1

1—

O

The main result Theorem 6.2 follows.

THEOREM 6.2.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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PrROOF. Let B={T € D | T = B}. By Lemma A.7 (ii), we have:

7 =confs(D — C)  confs(A — D)2  confs(D — A)> B> 0.
By Lemma A.12, we obtain:
B
B2
which, by definition of f, can be rewritten as:

1= f(1—7)=confs(A — C) = f(7).
Again by Lemma A.7 (4i), this yields:
1= f(1=7)=conf(AANB — C)= f(y) (1)

This shows conclusion (3).

Consider now (iz). From (1), the inequality conf(A, B — C) > f(~) holds. By
dividing both sides by § = conf(B — C), we conclude that elb(y,d) is a lower
bound for the extended lift of A A B — C.

Finally, consider conclusion (iii). Let us call: 4 = conf(A A B — C). If
f(y) =6, by (1) we have: v/ > f(y) > ¢ and then:

glift(y',6) =~"/6 > f(7)/d = glb(7,9) > a

which implies that A A B — C is not strongly a-protective. If f(1 —v)>1-14,
again by (1) we have: 7/ <1— f(1 —v) < § and then:

glift(v',6) = (1 —=+")/(1 = 6) = f(1—7)/(1 - 3) = glb(7,0) > a

which implies that A A B — C is not strongly a-protective. The last case of glb()
is trivial since glift(',9) is always greater or equal than 1. [

1-— (ﬁ2_7)ZCORfB(A — C)Z%(52+7_1)7

A.5 Indirect Discrimination through Negated ltems

The following result is a special case towards Theorem 7.2, where 3; = (5.
LEMMA A.13. Let A, D, C be pattern expressions, and:
vy=conf(tFAANB - C) d=conf(B — C)>0 [=conf(B — A)>0.
We have that: conf(A AN B — C) = % +(1- %)7

PRrROOF. We calculate:

) 1
ﬁ+(1 ﬁ)v ={B=conf(B — A)}
supp(B) (supp(B ANA)— 8u;0p(13))7
supp(B N A) supp(B A A)
= { Lemma A.3 (i) }
supp(B) supp(B A -A)

supp(B A A)  supp(B A A) 7
= { Definition of 4,7 }
supp(B A C)  supp(-A A B A C)

supp(B A A) supp(B A A)
ACM Journal Name, Vol. V, No. N, Month 20YY.
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supp(B N C) — supp(—A A B A C)
supp(B A A)

{ Lemma A.3 (i) }

_ supp(A AN B A C)

 supp(B A A)

=conf(A NB — C).

O

Theorem 7.2 follows as a consequence.

THEOREM 7.2.

PRrROOF. Let 8 = conf(B — A). By definition of n(z), na(z), from Gy > 5 >
(1, we have, by elementary algebra:

na(y) > % + (1 - %)7 > ny (7).

Since by Lemma A.13, conf(A AN B — C) = % + (1 - %)’y, this amounts to

definition of a-protection and strong a-protection respectively. [

B. COMPUTATIONAL COMPLEXITY RESULTS

The complexity analysis of the algorithms presented in this paper is given as a
function of the size of the sets Fy, of frequent k-itemsets. The cost of generating Fy,
is exponential in the worst case with respect to the total number of items. Never-
theless, many algorithms with good performances in practice have been proposed
in the literature [Goethals 2009].

To simplify the notation, we set ny = |Frl, Nmaz = mazy ni and n = Xy ny =
| Uy Fi|. Intersection, difference and lexicographic comparisons between itemsets
are called basic operations. By assuming that a k-itemset is represented as an
ordered list of k items, it is readily checked that: (1) a basic operation between a
k-itemset and an h-itemset has time complexity O(k+ h); and (2) space occupancy
of a k-itemset is O(k). Also, we assume that finding “the largest subset A of X
in Z4” can be done in a constant number of basic operations. For instance, when
Ty = 2'4 for an itemset I, we have A = X N I; (see Example 4.2).

Let us start with the analysis of procedure ExtractCR() from Fig. 2.

THEOREM B.1. Procedure ExtractCR() has time complezity of O(nlog nmas)
basic operations and space complezity of O(nmay) itemsets.

PRrROOF. There is a single pass over the collection of frequent itemsets Fj. For
each itemset in Fj, there is a search in the collection of itemsets in the previous pass
Fr—1. The search can be performed in O(log ng—1) under the hypothesis that the
set Fi_1 is sorted at the beginning of the pass. Hence, the global cost of a single
pass is O(ng—1logng_1+nglogng_1). By summing up the cost over all the passes:

Ep ng—1 logng_1 +nlogng_1 = g (ng—1 + nx) log ng—1

A

> Ek (nk—l + nk) lOg Nmazx
< 2n lOg Nmaz,
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we conclude that the time complexity is O(n log maz )-
Concerning space complexity, we keep Fj, and Fi_1. Hence, the space occupancy
is O(Nmaz). O

Consider now procedure CheckAlphaPDCR() from Fig. 3. Again, to simplify
the notation we set pd, = |PDy|, pndy = |PNDy|, pndpmes = maxy pndy, and
nr = X pndy + pdy, = | Uy PN Dy U PDy|. Notice that pnd,nae < Minae, since all

rules in PA'D;, have a k-itemset in their premise. Similarly, we have nr < n.

THEOREM B.2. Procedure CheckAlphaPDCR() has time complexity of O(nr
log pndmaz) basic operations and space complexity of O(pndmaz) itemsets.

PRroor. There is a single pass over the collection of PD rules PD,. For each
rule, there is a search in the collection of PND rules in PA'D,. The search can be
performed in O(log pnd,) under the hypothesis that the set PA'D,, is sorted at the
beginning of the pass. Hence, the global cost of a single pass is O(pnd, log pnd, +
pdg log pndy). By summing up the cost over all the passes:

Yk (pndy + pdgy) log pnd,
< X (pndg + pdy) log prdmaz
S nr lOg pndm,ama

Xk pndy log pndg + pdg log pnd,,

we conclude that the time complexity is O(nr log pndmaz)-
Concerning space complexity, we keep PA'Dy only. Hence, the space occupancy
is O(pndqe) itemsets. O

Let us concentrate now on procedure CheckAlphaPNDCR() from Figure 8.
We recall that BRy, = {X — A € BR | |X| = g}. Let us denote bry = |[BRg],
brmez = mazxy bry and br = |[BR| = X br,. Moreover, let us define l,4, =
mazx {g | bry # 0} to be the maximum length of a rule’s premise in the back-
ground knowledge set. In a realistic setting, l,,4, is a tiny number (e.g., 4-6).
Finally, let us denote by n. the number of class items.

THEOREM B.3. Procedure CheckAlphaPNDCR() has time complexity of
O((pnd+2'ma=br-n.)(logpndmaz +10gbrmaz)) basic operations and space complexity
of O(min{n. - br,pnd}) itemsets.

PROOF. There is a single pass over the collection of PND rules in PN'D,. We
sort BR, at the beginning of the pass, with the cost of O(br, log bry) basic opera-
tions. R, is built during the pass by looking for the existence of X — A € BR,
given X — C € PND,. The search takes O(pnd, log br,). Also, we assume
Ry is stored in a heap data structure, hence it is ordered. Since filling the heap
requires O(pnd, log pnd,) basic operations, the total cost of building R, is then
O(pndgy(log bry + log pndy)).

Since for every X — A € BR, at most n. distinct C might be considered for
X — C € Ry, the two nested loops consist then of at most brg-n. steps. Each step
requires, in the worst case, the construction of the set V and the check of conditions
for each element in V. The cost of each step is O(2!ma=(log pndmaz + 109 brmaz))
basic operations, where:

—2lmaz ig the maximum number of subsets B C X,
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—1log pndmaz is needed to search for B — C in Ry, with ¢’ = |BJ, since Ry is
ordered,

—10g bmae is needed to search for B — A in BR/, since BRy is ordered.

Summarizing, the cost of a single pass is O(brq log br, + pnd,(log pnd, + log brg) +
Qlmaz brg - ne(log pndmas + 109 brmaz)), and since pnd, < pndimee and brg < brieq,
it is O((pndy + 2'ma=bry - ne)(log pndmaes + 10g brmaz)). By summing up the cost
over all the passes, we have that the overall time complexity is O((pnd + 2'me=by -
ne)(log pndmaz + 10g brmaz))-

Concerning space requirements, we must keep the sets of background rules BR,’s
and the set of PND rules R,’s. By noting that |R4| < n. - bry and, at the same
time, that |R4| < pnd,, complexity in space is O(min{n. - br,pnd}). O

Since in a realistic setting the size of the background knowledge is very limited,
i.e., br < pnd, and the class is a yes/no attribute, i.e., n. & 2, the space complexity
is simply O(n.-br), i.e., in the order of the size of the background knowledge. This
improves over the original version of the procedure reported in [Pedreschi et al.
2008], which is O(pnd).

Last, let us consider procedure CheckAlphaPNDNegated() from Figure 10.

THEOREM B.4. Procedure CheckAlphaPNDNegated() has time complexity
of O((br +lmaz -pnd) (logpndmaz +10gbrmaz)) basic operations and space complexity
of O(min{n¢ - brimaz, PNdmas }) itemsets.

PROOF. There is a single pass over the collection of PND rules PN'D,. Actually,
we can restrict to g < Il + 1, otherwise no suitable background rule can be
found for computing 3 in the procedure. We sort BR,_1 at the beginning of
the pass, with the cost of O(bry_1 log bry_1) basic operations. For each rule in
PND,, there are at most g searches in Ry_1 and in BR4_1, with an overall cost of
O(g(logpndy_1 +1logbry_1)). In addition, for each rule in PA'D,, there is a search
over BR, to build R, which is assumed to be stored in a heap data structure, hence
ordered. This requires then for each rule O(log bry + log pnd,) basic operations.

By summing up the cost of all passes:

Y g<imas Org logbrg + (g + 1) - pndg41(log pndg + log bry) +
+ pndg+1(log pndg41 + log brg41)
Y g<lman 07g 10g brmag + (g + 1) - pndgi1 (log pndimes + 10g brmaz) +
+ pndy 11 (log pndmaz + 109 brmaz)
Y g<iiman 07 10g Drimaz + (g + 2) - pndgi1(log pndmaz + 10g brpmaz)
br log brmae + (Imae + 2) - pnd(log pnd ez + 109 brmas),

IN

<
<

we conclude that the time complexity is O((br+lnaz -pnd) (logpndmaz +10gbrmaz ) )-

Concerning space complexity, we must keep BR,_1 and Ry—1. By noting that
|Rg—1| < ne-brg—q and, at the same time, that |Rgy_1| < pndy_1, complexity in
space is O(min{n. - brmaz, Pdmaz }). O
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