
Self-tuning Schedulers for Legacy Real-Time Applications ∗

Tommaso Cucinotta Fabio Checconi

RETIS – Scuola Superiore Sant’Anna

Pisa, Italy

cucinotta@sssup.it fabio@gandalf.sssup.it

Luca Abeni Luigi Palopoli

DISI – University of Trento

Trento, Italy

luca.abeni@unitn.it palopoli@disi.unitn.it

Abstract

We present an approach for adaptive scheduling of soft real-

time legacy applications (for which no timing information is

exposed to the system). Our strategy is based on the com-

bination of two techniques: 1) a real-time monitor that ob-

serves the sequence of events generated by the application

to infer its activation period, 2) a feedback mechanism that

adapts the scheduling parameters to ensure a timely execu-

tion of the application. By a thorough experimental evalua-

tion of an implementation of our approach, we show its per-

formance and its efficiency.

Categories and Subject Descriptors D4.1 [Operating Sys-

tems]: Process Management—Scheduling

General Terms Experimentation, Performance, Measure-

ment

1. Introduction

We focus on soft real-time applications for which occasional

violations of the timing constraints are acceptable anomalies

as far as they are under control. Multimedia streaming is a

perfect example of this kind. The compliance with temporal

constraints of an application like this in multi-task systems is

a challenging problem. The most effective strategies require

a converging effort from application developers and oper-

ating system designers. The operating system has to provide

applications with an adequate support in terms of scheduling

algorithms and of resource management policies. The appli-

cation developer has to use the real-time mechanisms of the
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kernel through a specialised API and to appropriately select

the scheduling parameters to enforce timing constraints.

The scheduling support for real-time applications, in gen-

eral purpose operating systems (GPOS), is typically limited

to fixed priorities, known to be unfit for soft real-time appli-

cations. A better alternative is offered by such soft real-time

schedulers as the resource reservations [24], available in

real-time variants of the Linux kernel and in other real-time

operating systems (RTOS). These algorithms ensure a cor-

rect temporal partitioning of the system resources whereby

each application is guaranteed a fraction of the CPU time.

Roughly speaking, if one knows the timing parameters of a

task, it is possible to dimension the reservation parameters to

achieve a given probability of a deadline miss [1] or prevent

deadline misses altogether. When application requirements

are scarcely known or time-varying, an interesting possibil-

ity is to adapt the scheduling parameters while the applica-

tion runs [3, 4]. The idea is that if an application is struc-

tured as a (typically periodic) stream of jobs and if it notifies

by appropriate API calls the start and termination of each

job, a feedback controller can be used to monitor the differ-

ence between the actual execution of the job and its tempo-

ral constraints and take corrective actions as needed (i.e., to

increase the reserved CPU time in presence of delayed exe-

cutions or to reduce it for early terminations). An API of this

kind is the one developed for the AQuoSA project1.

The use of a specialised API is relatively easy for appli-

cations developed from scratch. When the source code of the

application is available, it is possible to review the code in-

serting the appropriate API calls. This re-factoring is not ef-

fortless and software producers are not often inclined to take

the risk of this development. In other cases, the source code

of the application is simply unavailable. In this paper, we use

the term legacy applications with reference to applications

that are characterised by some temporal constraints, but are

not developed using a specific API. Therefore, developers of

legacy applications contrive (or contrived) to achieve an ac-

ceptable timing behaviour by a large range of heuristic solu-

tions (including a generous use of buffering). The robustness

of this solution (and often its responsiveness) is, in this way,

1 The project website: http://aquosa.sourceforge.net



at a serious risk of being compromised. In contrast, we make

the point that even for legacy applications the best way to

obtain an acceptable timing behaviour is by operating at the

scheduling level. The greatest obstacle along this way is how

to design an effective policy for the selection of the schedul-

ing parameters. Indeed, when dealing with legacy applica-

tions, we do not know the exact timing requirements asso-

ciated with each task in advance because the information on

the structure of the application is unavailable or difficult to

reconstruct. Neither are we able to infer these requirements

adaptively because the application does not use specific API

calls that identify the start and the end of a job [2].

In this paper, we propose a comprehensive solution to

the problem of real-time scheduling of legacy applications

that develops and substantiates a preliminary idea presented

in [8]. Our approach is: 1) to infer as much information as

possible on the timing requirements of the application from

the “black box” observation of the kernel events it gener-

ates, and 2) to adapt the scheduling parameters online from

measurements related to the real-time behaviour of the ap-

plication. More in detail, the first contribution that we re-

port in the paper is a kernel-level tracing mechanism, which

records the events generated by each task. This mechanism

is not intrusive: it introduces a negligible overhead and it can

be used for any legacy application (for instance, it does not

require the use of a debugger that would breach the license

of some applications). The second contribution is the design

of an event analyser based on signal processing theory that

identifies the activation parameters of the tasks (i.e., the pe-

riods) and, hence, their timing requirements. In order for the

tasks to be able to fulfil these requirements, it is required that

they receive an allocation of CPU time sufficient to satisfy

their computation request in due time. The third contribution

is then a feedback scheduler that identifies the bandwidth

requirements based on the temporal behaviour of the task.

Since the application does not pro-actively supply any infor-

mation on its deviation from the ideal timing behaviour, the

feedback scheduler performs an indirect assessment of this

quantity by sampling the state variables of the scheduler. The

whole machinery has been implemented in the Linux kernel

and has been validated extensively applying the framework

to a variety of legacy multimedia applications.

The paper is organised as follows. Section 2 reviews

the related work in the literature. Section 3 introduces the

problem of identifying optimum scheduling parameters for

legacy multimedia applications. Section 4 presents the gen-

eral proposed methodology for addressing the problem,

while Section 5 presents its experimental evaluation con-

ducted on a Linux-based implementation. Section 6 contains

a road-map for further research on the topic, along with a few

concluding remarks.

2. Related Work

In the last years, there has been a considerable amount of

research on how to associate temporal constraints to appli-

cations, and to guarantee that such constraints are respected.

For example, some solutions derived from real-time theory,

such as reservation-based schedulers [1, 21, 24] have been

proposed. Such algorithms enable a fine-grained control on

the CPU bandwidth devoted to each application but the point

remains open of how to properly choose the scheduling pa-

rameters if the computation requirements are not known

and/or change in time.

A popular solution to this problem is the use of some

adaptation mechanism. A first possibility of this kind is to

perform application-level adaptation. The idea is that in re-

sponse to the (possibly fluctuating) availability of resources,

the application changes its mode to re-scale the workload

it generates. In this paper, we take the complementary ap-

proach: resource allocation is adaptively tuned to fit the ap-

plication requirements (application-level adaptation).

The problem of dynamically adapting the amount of CPU

time reserved to an application can be addressed by apply-

ing feedback control to real-time scheduling, as shown by

several authors [3–5, 12, 18]. In such approaches, while the

applications execute, their real-time behaviour is monitored

and corrective actions are taken changing the scheduling pa-

rameters so that specified QoS related objectives are met.

Computing models that represent an alternative to the

real-time tasking model have been proposed by different au-

thors. An interesting example is offered by the Timely Com-

puting Base - TCB - model proposed by Verissimo et al. [28].

The authors proposed an interesting combination of the TCB

with an application-level QoS adaptation [6] mechanism.

However, all of the approaches mentioned above mandate

the use of some kind of specialised API within the applica-

tion, and it is not easy to apply them to applications which

have not been explicitly developed to use such APIs. The use

of a specialised API is assumed by several authors propos-

ing an operating system support for multimedia and time-

sensitive applications [13, 14, 17].

A piece of work that bears some resemblance with this

paper is the one proposed by Steere et.al. [26], who propose

a reservation scheme (based on fixed priorities) implemented

in the Linux kernel, and a feedback-based controller to au-

tomatically set the scheduling parameters. The authors point

out the need for detecting the period, but they do not propose

any solution other than the choice of default values. More

importantly, their work is based on so called “symbiotic” in-

terfaces, a sort of API used by applications in order to allow

external components to monitor their progress. A similar ap-

proach is proposed by Eide et al. [10], in the context of the

QuO framework [15]. Although the authors claim a “non-

invasive” introduction of the adaptation logic for the applica-

tions, their approach is clearly targeted at applications con-

structed using the RT-Corba middleware (in fact an API),



which simplifies the interaction with a resource allocation

module. In contrast, in our work, the adaptation mechanism

in entirely transparent to the applications.

The problem of providing QoS guarantees for legacy ap-

plications has been also explored in the networking commu-

nity. Tstetekas et al. [27] propose the use of proxy servers to

determine the network requirements of Internet applications.

The approach is not applicable to CPU allocation.

To the best of our knowledge, the first work providing

system support for unmodified (an possibly uncooperative)

applications that do not use any specialised API is Red-

line [29], which is based on a reservation-based scheduler

and uses some lightweight specifications to associate the

scheduling parameters to applications. The work presented

in this paper is orthogonal to Redline, proposing an adap-

tive mechanism for automatically inferring the specifications

from the applications at run time (note that the specifications

required by Redline are system dependent, and can also de-

pend on the applications’ input - for example, the reservation

period for a video player depends on the video frame rate).

From the scheduling point of view, the first technique de-

veloped explicitly to support adaptive scheduling of legacy

applications is the so called Legacy Feedback Scheduler

(LFS) [2]. In the LFS scheme, the scheduler samples for

each task a binary variable that simply says whether the task

received enough computation in the last period or not. Al-

though we have taken inspiration from this scheme for the

scheduler presented in this paper (not surprisingly called

LFS++), we use a finer grain for the feedback information

(the “sensor” inside the kernel measures the amount of CPU

consumed by the task), and the estimation of the period al-

lows us to come up with a more precise estimate for the re-

quired bandwidth. Therefore, the application of LFS++ nec-

essarily produces a better QoS.

As far as the problem of reconstructing the task period

is concerned, important reference points are the approaches

developed in the literature of digital processing of sound

signals, where different approaches have been developed to

extract the pitch and identify the fundamental frequency [11,

20]. Such techniques served as a good starting point for our

analyser, but we had to adapt them to the analysis of a time-

series of events.

3. The Problem

In this paper, we are concerned with legacy applications that

do have real-time requirements but do not possess a struc-

ture that makes them fit into the classical real-time tasking

model. Before going into the details of the specific issues re-

lated to this kind of applications, it is useful to provide some

background information on the real-time tasking model and

on the scheduling algorithm that underlies our work.

3.1 Background

The Real-Time Tasking Model. In the real-time schedul-

ing theory, a system is by and large modelled as a set Γ =
{τi} of real-time tasks. The term task is used to denote ei-

ther a process (owning a private memory space) or a thread

(sharing the memory space with other threads). A task τi is

modelled as a sequence of jobs and is described by a pair

(Ci, Pi): Ci is the worst-case execution time for the indi-

vidual jobs of τi, and Pi is the minimum inter-arrival time

between two consecutive jobs (or the task period in case of

periodic tasks). Every job should terminate before the arrival

of the next job, an implicit deadline.

The CBS Scheduler. The scheduling algorithm that we use

in this paper belongs to the family of the so called resource

reservation schedulers. A resource reservation scheduler al-

lows one to allocate to each task τi (or to each set of tasks)

a computation budget of Qs
i time units in every reservation

period T s
i . This way, not only can the execution rate be con-

trolled (the task receives a fraction Qs
i /T s

i of the CPU time)

but also the granularity of the CPU allocation can be decided

for every single task by the reservation period T s
i .

The particular algorithm used in this work to implement

the reservation behaviour is the Constant Bandwidth Server

(CBS) [1], which implements CPU reservations building on

top of an Earliest Deadline First (EDF) scheduler. The basic

CBS idea is to schedule tasks based on their scheduling

deadlines ds
i , with ds

i increased by T s
i every time τi executes

for a time Qs
i . The scheduling deadline is used to decide the

CPU assignment according to an EDF policy. The reader is

referred to the cited paper for a longer discussion.

3.2 Selecting the Scheduling Parameters

When we use a reservation-based scheduler to schedule a

real-time task, the problem arises of how to choose the

scheduling parameters so that real-time constraints are met.

The problem has easy solutions if the timing parameters

of the task are known a priori. In particular, if we use a

CBS to schedule a periodic task having period Pi and if we

know its worst case execution time Ci, we can simply set

T s
i = Pi and Qs

i = Ci and the task provably meets all of its

deadlines [1]. Alternatively, if we know the distribution of

the inter-arrival and execution times, the server parameters

T s
i and Qs

i can be set so that the task misses its deadlines

with a given probability. If a single server is used to schedule

multiple tasks, hierarchical scheduling analysis [22] can be

used to properly assign the scheduling parameters (as far as

the timing requirements of all the tasks scheduled through

the server are known).

The problem with legacy applications is that we cannot

rely on any such prior knowledge of the scheduling parame-

ters. A tentative choice of the parameters can lead to severe

malfunctioning of the application. This is particularly evi-

dent for the choice of the budget Qs
i . Indeed, even assuming

a perfect knowledge of the application period, if we choose
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Figure 1. Fraction of CPU Qs
i /T s

i required to correctly schedule

a real-time task with 20% utilisation C = 20 ms, P = 100 ms.

too small a value for Qs
i (compared to the average CPU util-

isation of the task), the application is likely to receive a very

bad Quality of Service. Likewise, choosing a large value of

Qs
i affects adversely the behaviour of the other applications

and the possibility to admit new applications.

Much less obvious but equally relevant can be the detri-

mental effects of a bad choice for the reservation period T s
i .

This problem was discussed in our previous work [8] us-

ing an analysis technique inspired to the supply bound func-

tion [16]. It is very illustrative to report here the correct val-

ues of the budget QS
i (and hence of the bandwidth Bs

i ) re-

quired to schedule a simple periodic task with Ci = 20ms,

Ti = 100ms. As it is possible to see in Figure 1, the required

bandwidth ranges from the correct value (20%) to very high

values (more than 60%) if the server period is chosen too

small or too large. The correct bandwidth (20%) is required

choosing T s
i equal to the task period or to a sub-multiple of

the task period. However, the choice T s
i = Pi is the most

robust, in that moderate errors in the choice of the period do

not lead to an excessive waste of bandwidth. On the contrary

if we choose, for instance, T s
i = Pi

3
= 33ms, then even an

error of a few milliseconds in the choice of the period easily

raises the required bandwidth to a value close to 30% (with

an over-allocation of bandwidth close to 50% w.r.t. the task

utilisation). These considerations suggest a possible ineffi-

ciency in scheduling real-time periodic tasks by a class of

algorithms (such as the Proportional Share algorithms), for

which the scheduling period is not explicitly considered.

If we schedule multiple tasks in the same server, things

are far less obvious. This choice has natural motivations if

we use the CBS to schedule a multi-task application or to im-

plement a machine virtualisation scheme with performance

guarantees but it raises important issues as well. As an illus-

trative example, consider a task-set composed of three real-

time tasks with parameters: C1 = 3.0ms, P1 = 15.0ms,

C2 = 5.0ms, P2 = 20.0ms, C3 = 5.0ms, P3 = 30.0ms.

Suppose that the three tasks are scheduled in the same reser-

vation and, inside the reserved time, the allocation is decided

using a fixed priority schedule. The priorities are chosen pro-

portionally to the activation rate, the famous Rate Mono-

tonic assignment [19]. Applying the theory of hierarchical

scheduling [9, 22, 25], we are able to identify, for each server

period, the minimum budget to ensure the respect of timing

constraints (and hence the bandwidth). We show this mini-
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Figure 3. Scheme of the proposed approach.

mum bandwidth in Figure 2. For the reader convenience, we

report in the same plot the cumulative utilisation of the three

tasks. The figure lends itself to the following considerations:

1) in this case, there is not an obvious connection between

the “best” server period and the periods of the tasks, 2) even

with the best choice of the service period the efficiency is

way below the one that we can get with a separate server

for each thread (62%). Indeed, with a single reservation the

waste of bandwidth is between 6% and 41%. On the con-

trary, if we schedule each task in a dedicated server and if the

period of the tasks is correctly identified, we can schedule

the three tasks with a total assignment of bandwidth equal to

their cumulative utilisation, the theoretical lower bound.

4. Our Approach

The approach proposed in this paper is pictorially described

in Figure 3. The legacy real-time tasks are scheduled through

a CBS scheduling mechanism implemented in the Linux ker-

nel. A task controller is associated with each CBS server to

the purpose of identifying the correct parameters (Qs
i , T s

i )
for the task scheduled in the server. More specifically, the

controller formulates a request for a couple of parameters

Qrep
i , T s

i . The request is submitted to the supervisor com-

ponent whose purpose is to enforce the schedulability con-



dition
N

∑

i=1

Qs
i

T s
i

≤ 1. (1)

Namely, if the requests from the task controllers do not sat-

urate the total available bandwidth, requests can be entirely

granted Qs
i = Qreq

i . Otherwise they have to be curbed to

fit in the bound. More information on the supervisor, along

with implementation details, can be found in [23]. From now

on, we focus on how to design the task controllers for legacy

applications.

The task controller is activated periodically and is com-

posed of two blocks. The first block (period analyser) con-

structs an estimation of the task period from a sequence of

events traced in the kernel. The second block (feedback con-

troller) samples the state of the scheduler to compute the

CPU time utilised by the application during the last sampling

period. This information is combined with the estimated pe-

riod to identify a correct pair of reservation parameters.

The design of the tracer mechanism, of the feedback con-

troller and of the period analyser is a challenging design ac-

tivity tapping different disciplines. In this section, we will

discuss the most important theoretical and architectural is-

sues underlying each one of these components.

4.1 System Call Tracer

A periodic task typically executes some operations (the task

body) and then switches to a “blocked” scheduling condi-

tion as a result of the execution of a blocking system call

(such as clock nanosleep()). In a simplified view, if we

knew exactly the primitive used by the task to block itself,

we could in principle trace its execution instants and eval-

uate the interval of time between two subsequent calls to

estimate the period. In fact, for a legacy application things

are more complicated because we do not know which call is

used to block the task, and the same call could be used for

different purposes. For this reason, we need to trace all the

system calls generated by the application. As an example, in

Figure 4, we show a statistic of all the different system calls

recorded for a three minutes execution of mplayer repro-

ducing a video file. Most calls are ioctl() calls, which are

needed for dealing with the audio device via the Linux ALSA

sound subsystem (through the libasound library).

From this very complex sequence of events, we extract

the dominant periodic pattern using the algorithm illustrated

in Section 4.2. In this section, our primary concern is to

show how to perform the tracing operation minimising the

overhead incurred in recording the events.

A standard tool used in Linux to perform the tracing

operation is strace, based on the ptrace() system call.

This tool was mainly developed for debugging purposes

and the overhead can be unsustainable in a “production”

use. In our previous work [8] we proposed an alternative to

strace, called qosstrace that features, in our evaluation,

a remarkable overhead reduction w.r.t. strace. However,

Figure 4. Statistics of the system calls performed by

mplayer

even qostrace suffers an important limitation inherent to

the very use of ptrace(). Indeed, using ptrace(), the

monitored process is blocked on each system call. The tracer

process is woken up to inspect the context of the monitored

process (or to get the current time) before returning the

execution to the monitored process. Hence, the system has

to execute two context switches whose duration is a lower

bound for the overhead of any solution based on ptrace().

To overcome this limitation, we introduce here a novel

solution based on two components:

1) a kernel patch, which, upon entry and exit points of

a system call at the kernel-level, records the timestamps

associated with the start and the termination of the call;

2) a user-space program, which, operating through a char-

acter device, downloads a batch of time instants associated

to the system call executed in the last sampling period and

forwards it to the period analyser.

The data structure used to log the timestamps is a stat-

ically allocated circular buffer. The kernel patch can selec-

tively trace a specified subset of system calls for a speci-

fied subset of running processes. This information is passed

to the patch through the character device. In this way, it is

possible to avoid the tracing of system calls that are totally

unrelated with the scheduling events (avoiding unnecessary

noise for the analyser) and the use of too large buffers.

4.2 The Period Analyser

To reconstruct the period, we make the reasonable assump-

tion that the real-time application generates periodic bursts

of system calls and that the bursts are mostly concentrated at

the beginning and at the end of the period to perform the I/O

operations. To show that this assumption is well founded,

consider the excerpt of a trace recorded for a real applica-

tion and reported in Figure 5.(a), where each event is rep-

resented as a vertical line. As it is possible to see most of
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Figure 5. A) a sequence of events associated to a segment of exe-

cution of an application, B) The mathematical model as a sequence

of Dirac Deltas (δ).

the events are indeed accumulated at the beginning and at

the end of the period. A possible way for modelling this be-

haviour is to conceptually associate each event (system call)

with a Dirac delta (δ). Therefore, if si symbolically repre-

sents a system call (e.g., clock nanosleep), the sequence

of events associated with this call can be modelled as a train

of Dirac δ: si(t) =
∑∞

h=−∞ δ(t − φi + hP ), where φi is

the temporal offset (phase) of the call event inside the pe-

riod. A trace can then be modelled as the sum of all signals

si: s(t) =
∑K

i=1
si(t), K being the total number of system

calls called by the task. An example of a trace that adheres

to this pattern is displayed in Figure 5.(b). Because of the

bursty nature of the events, phases are very close to the start

time (0) and to the finishing time (P ) of each job.

The Fourier Transform of the signals is:

S(ω) = F(s(t)) = 2π
P

∑K

i=1

∑∞
n=−∞ e−jnω0φiδ(ω − nω0).

where, ω0 = 2π/P .Now, suppose that the observation hori-

zon H is limited to L sampling periods (H = LP ). We can

model this effect multiplying the signal s(t) by GH(t− H
2

),
where:

GH(t) =

{

1 if |t| ≤ H/2

0 Otherwise.

Applying standard arguments of signals and systems theory,

we get:

S(ω) = 2πH
P

e−jωH/2

K
X

i=1

∞
X

n=−∞

e−jnω0φi sinc((ω − nω0)
H

2
).

(2)

where sinc(x) = sin(x)/x.

The equation above consists of a sum of complex vectors

with amplitude sinc((ω−nω0)
H
2

) and phase given by the di-

rection of the complex number e−jnω0φi . Because the values

of the phases φ are close to 0 or to P , the vectors are almost

“collinear” and the amplitude of the sum is approximatively

equal to the sum of the amplitudes. Considering that each

sinc function has the highest peak when its argument is equal

to 0, the amplitude spectrum of the signal has the peaks in

ω = nω0. Hence, the distance between ω0 = 2π/P can be

used to estimate the period of the task. To summarise, the

problem of identifying the period of the task amounts to: 1)

computing the spectrum of the signal s(t), 2) estimating its

peaks and their distance.

4.3 Computation of the spectrum

The spectrum is computed in the range of frequency [ωmin,
ωmax] with a step δω. This computation can be made itera-

tively. Indeed, whenever we record the ith event at time ti,
we can model it as a Dirac δ(t−ti) whose contribution to the

spectrum is F
(

δ(t − ti)
)

= e−jωti = cos(ωti)−j sin(ωti).
The number of samples to be computed for each of these

components of the spectrum is given by ωmax−ωmin

δf
. There-

fore, the number O of complex exponentiations to perform

is:

O =
ωmax − ωmin

δω
N ≡

ωmax − ωmin

δω

H

P
K, (3)

where H is the observation time horizon, P is the application

period and K is the number of events (system calls) recorded

in each application period.

This very simple approach is much more convenient than

the application of algorithms computing the Fast Fourier

Transform (FFT). Indeed, the latter requires the specification

of a sampling time that in our case should be very small (in

the order of nanoseconds) because events can take place at

any point in time and are recorded with a very high precision

in the kernel. The resulting signal would be null most of the

time. Hence, the computation of the FFT would be utterly

inefficient.

4.3.1 Peak Detection Heuristic

Instrumental to the determination of the period is a heuristic

algorithm to detect the peaks in the computed spectrum. The

algorithm is structured as follows:

1. compute a sampling of the amplitude spectrum S(ω) of

the signal s(t)GH(t − H/2) (the modulus of its Fourier

Transform) in the frequency range [ωmin, ωmax], with



step δω, as discussed above:

|S(ω)| =

∣

∣

∣

∣

∣

N
∑

i=1

e−jωti

∣

∣

∣

∣

∣

; (4)

2. identify a first set of peaks ω1, . . . , ωm as the local max-

ima of the amplitude spectrum in the range (ordered by

frequency);

3. discard all peaks ωi for which S(ωi) is lower than α times

its average value S (with α configurable);

4. if the resulting set of candidate values is empty, then

declare the application as non-periodic and terminate;

5. for each candidate frequency ωi, compute the sum Σi

of the amplitude spectrum in correspondence of at most

kmax integer multiples of ωi, (set to 10 in the experi-

ments) with a tolerance of ǫ, i.e.,

Σi =
∑

ωj∈[hωi−ǫ,hωi+ǫ]

j∈1,...,10,ωj≤ωmax

|S(ωj)|.

6. select the frequency ωi with the highest Σi value.

The rationale of this algorithm is explained next. In the

computation of the spectrum, due to the behaviour of the

sinc function and to the inexact adherence of our model with

the real signal, we have got a combination of main peaks

and of secondary peaks. Our objective is then to identify the

main peaks and estimate their distance. More simply, we can

identify the first main peak at a frequency greater then 0 and

take its value. Indeed, one of the main peaks is necessarily

at frequency 0 and therefore the value of the first non zero

main peak is itself the distance between two main peaks. The

first three steps allows us to identify the candidate peaks and

to rule out the evident secondary peaks using an empirical

threshold α. If no peak is left, we can conclude that the signal

does not possess any periodic structure. Otherwise, we carry

out a further analysis step considering that if we identified

the first main peak, then further main peaks are expected

to be at integer multiples of its frequency. Therefore, we

accumulate the spectrum of all these frequencies using a

tolerance ǫ (to account for the fact that the peak could not be

exactly at the expected frequency) and limiting the number

of considered frequencies to 10 (to prevent secondary peaks

from outweighing the main one due to their high number).

Heuristic Complexity. The complexity for the frequency

detection heuristic is expressed in terms of number of

frequencies over the computed transform that need to be

scanned. Let F , ωmax−ωmin

δω
be the number of computed

samples for |S(ω)|. The second and the third steps of the

algorithm require the analysis of all the samples. Then (step

5), for each candidate peak frequency ωi, the values of the

transform in correspondence of the integer multiples of ωi,
with a tolerance of ǫ, are summed up, up to ωmax. The num-

ber of sums to make is given by min
{

ωmax−ωi

ωi
, kmax

}

ǫ
δω

;

the final choice of the main peak is immediate and does

not have any impact on the complexity. Therefore, the num-

ber E of considered elements in the frequency transform is

bounded by:

E =
ωmax − ωmin

δω
+

∑

ωi∈Fmax

min

{

ωmax − ωi

ωi

, 10

}

ǫ

δω
,

(5)

where Fmax is the set of candidate peaks after step 3.

4.4 LFS++

The purpose of the LFS++ controller is to estimate the

CPU utilisation of the task and assign the bandwidth ac-

cordingly based on periodic measures of the computation

time of the task. To this end, we require the presence of

an appropriate “sensor” inside the kernel that measures the

CPU time consumed by the application in each interval.

This information may be fed to a “predictor” or “estima-

tor” component which may easily determine what is the

budget that best suites the application needs, based on the

observation of past computation times of the application.

For POSIX compliant systems (such as Linux) a sensor of

this kind is the clock gettime() system call that mea-

sures the so called CLOCK PROCESS CPUTIME ID and the

CLOCK THREAD CPUTIME ID clock values, providing us ex-

actly with the information we need at the granularity level

of the process or of the thread. In our specific case, we used

the API of the AQUOSA middleware and in particular the

system call qres get time(), which returns the CPU time

executed by a thread attached to a CBS, starting from a spec-

ified time in the past.

The sensor is sampled periodically and its reading is used

to estimate the duration of each job. More precisely, let P
denote the application period (estimated by the period anal-

yser), and let S denote the sampling period of the task con-

troller. For the sake of simplicity, assume that S is equal to

an integer multiple of P . Let Wk denote the measured time

at the kth activation of the feedback loop, Wk−1 denote the

time measured at the previous activation. Then, the new bud-

get Qk to be used in the next sampling interval is determined

as follows:

Qreq
k = (1 + x)P

P (Wk − Wk−1)

S
,

where x is called “spread factor” and is set usually between

10% and 20%, and P(·) is a prediction function returning the

computation time expected for the next sampling period. The

idea is to translate the expected application workload into

the bandwidth allocated by the reservation (the reservation

period is set equal to the task period, therefore Qk/P is the

bandwidth requested by the controller). The predictor P can

be implemented in different ways. In this paper, we propose

a “quantile estimator”, which basically takes a set of past

observed N samples, and outputs the estimated pth quantile

of the computation times distribution. This may be easily



accomplished for π values which are expressed as N−j
N

,
where j is an integer. For example, with N = 16, if p = 1.0
then one has to take the maximum over the last N samples.

For p = 0.9375 one has to take the second maximum, and

so forth. A few remarks are in order:

1. This mechanism does not actuate a “punctual” control

on the timing behaviour of each job. Indeed, assuming

even that the predictor returns the maximum of the past

N samples, the control law actually sets the bandwidth

to the maximum average utilisation time experienced by

S/T consecutive jobs over the last N observations. This

policy corresponds to a good job-wise bandwidth as-

signment if the computation time remains uniform over

the job. For a workload such as the one generated by

an MPEG video application with a fixed group of pic-

tures that generates periodic computation peaks for the

I frames and a much lower computation time for P and

B frames, this policy could determine delays for the job

corresponding to the I frames decoding. We conjecture

that a closer cooperation with the scheduler for detect-

ing budget exhaustion might help us cope with this issue

and provide this specific class of application with a better

support.

2. One might be tempted to set the sampling period S to

the estimated period P in order to perform a job-wise

adaptation. In fact, the result of such a choice would

be disappointing since the feedback would anyway op-

erate asynchronously w.r.t. the job release instants. Due

to the random interference undergone by the task, such

a choice simply determines a very unstable and fluctuat-

ing behaviour for the predicted computation time with no

apparent benefit.

3. The factor x (which is typically small) increases the

bandwidth assigned to the task from the “ideal” assign-

ment (the task utilisation). This factor is needed for two

reasons: 1) it enhances the robustness of the control ac-

tion with respect to prediction errors, 2) it increase the

responsiveness of the system to changes in the workload.

5. Experimental Results

An extensive experimental evaluation of the approach has

been performed, we using the Linux kernel 2.6.29 se-

ries, modified so as to include the AQuoSA real-time sched-

uler [23], the qtrace kernel-level tracer described in Sec-

tion 4.1, and a user-space application called lfs++ imple-

menting the spectrum analysis and feedback-based schedul-

ing algorithm itself. Furthermore, we used an implementa-

tion of the CBS in order to compare with our previous LFS

approach appeared in [2]. The machine used for the tests

is based on an Intel(R) Core(TM) 2 Duo CPU at 2.6 GHz,
with an operating frequency fixed at 800 MHz, running an

Ubuntu 9.04 Linux Operating System.

Tracer Average Relative Standard

(sec) average deviation (sec)

NOTRACE 21.0916 - 0.094951

QTRACE 21.2253 0.63% 0.143581

QOSTRACE 21.658 2.69% 0.221327

STRACE 22.2536 5.51% 0.140593

Table 1. Overhead introduced by various tracers, compared

to when no tracer is used (first row).

In the first set of experiments reported in this section, we

highlight the overhead of our technique and the correspond-

ing period analyser accuracy with respect to the available

parameters, and the real-time load possibly present on the

system. In a second set of experiments, we show the effec-

tiveness of the approach in providing scheduling guarantees

to multimedia applications by adopting an application-level

QoS metrics, i.e., the inter-frame times for a video player.

Many of the experiments have been performed by us-

ing mplayer2, a popular media player for Linux. How-

ever, the obtained results and especially the capability to

extract the period have been verified also on various other

players always on Linux, including (details omitted): vlc,

realplayer, sox. When an application-level QoS measure-

ment was needed, we used a custom video pla which records

the sequence of inter-frame times.

5.1 Period Analyser Overhead

Tracing overhead. The tracing overhead has been evalu-

ated by measuring the time spent by ffmpeg3 to transcode

a video, with various system-call tracers attached during the

entire run. Each run has been repeated 10 times, and the av-

erage and standard deviation of the total transcoding time

have been computed. Results are reported in Table 1. First,

we determined a baseline, running the transcoding process

without any tracer active, then we traced the program with

our qtrace tracer, described in Section 4.1.

The measured overhead includes both the time for log-

ging the system-call information within the kernel, which is

really negligible and hard to measure, and the one needed

by lfs++ to download the time stamps through a special de-

vice, which introduces a few context switches towards the

tracing process (much fewer than when using ptrace()-

based tools). Finally, for completeness, also the overhead ob-

tained while tracing the same program by using the standard

strace Linux tool and the qostrace tool presented in [8]

are reported. As it can be seen, the new presented tracer ex-

hibits an overhead close to 0.6%, relative to the application

computation time, far lower than the others.

Fourier Transform Overhead. The overhead due to the

Fourier transform computation is now evaluated. In the dis-

2 More information is available at http://www.mplayerhq.hu.
3 More information is available at http://www.ffmpeg.org.
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Figure 6. Time to compute the frequency transform (top),

and corresponding precision in frequency detection (bot-

tom), as a function of the observation time H and δf, at

fixed fmax = 100Hz and ǫ = 0.5Hz.

cussion we use the frequency f (in Hz) instead of the vari-

able ω = 2πf used in the previous section (expressed in

rad/s). Figures 6 (a) and 7 (a) shows the time needed to

compute the spectrum, as a function of the available param-

eters. The shown values are averaged through 100 execu-

tions of the algorithm while tracing the mplayer applica-

tion playing an mp3 song. The experiments confirm the the-

oretical expectations of Equation (3), the transform compu-

tation time being proportional to both the number of detected

events (which is in turn proportional to the observation time

horizon H), and to the number of frequency values in which

the transform is sampled (which is equal to fmax−fmin

δf
).

In Figures 6 (b) and 7 (b) we report the variability of the

period analyser result, as a function of the same parameters.

In Figure 6 (b), we can see that the detected frequency and its

precision is not affected sensibly by increasing the δf from

0.1 Hz to 0.5 Hz, which, on the contrary, has a big impact

the computation overhead, as displayed in Figure 6 (a). Also,

in Figure 7 (b) we can see that by increasing fmax we

generally increase the variability of the detected frequency,

Period Detection Heuristic. In Figure 8, the time needed

to extract the period from the given frequency transform is

shown. The measurement was repeated 100 times over dif-

ferent event sets coming from the same traced program under

the same conditions, and the average and standard deviation

values have been computed over the repetitions. Figure 8 (a)

corresponds to the heuristic trying all the possible frequen-

cies, while Figure 8 (b) uses the α threshold described at

the step 3 of the algorithm presented in Section 4.3.1, set

to α = 20%. The pictures highlight that the measured over-

head is basically in linear relationship with both the observa-

tion time H and the ǫ parameter, as foreseen in Equation (5).
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Figure 7. Time to compute the frequency transform (top),

and corresponding precision in frequency detection (bot-

tom), as a function of the observation time H and fmax, at

fixed δf = 0.5Hz and ǫ = 0.5Hz.

0

500

1000

1500

2000

2500

3000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
e

ri
o

d
 d

e
te

c
ti
o

n
 o

v
e

rh
e

a
d

 (
µ

s
)

ε

H=0.5 s
H=1.0 s
H=1.5 s
H=2.0 s

(a)

0

100

200

300

400

500

600

700

800

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
e

ri
o

d
 d

e
te

c
ti
o

n
 o

v
e

rh
e

a
d

 (
µ

s
)

ε

H=0.5 s
H=1.0 s
H=1.5 s
H=2.0 s

(b)

Figure 8. Period detection overhead, as a function of the

observation time H and the ǫ parameter.

Also, by comparing the top and bottom plots, it is possible to

appreciate the overhead decrease due to the cut of the local

candidate peaks due to the α threshold.

In Figure 9, we report the average and standard deviation

of the detected frequency, as a function of the observation

time H and the ǫ parameter. The plots reveals that the value

of the average is not overly affected by these parameters,

but the variance clearly is. More specifically, by increasing

the ǫ parameter from 0.1 to 0.5 and 0.6, a reduction of the

variance is generally achieved because the higher-order fre-

quencies are more easily accredited to the correct frequency

value. However, if the ǫ is increased too much, the algorithm
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Figure 9. Average (a) and standard deviation (b) of the

detected frequency, as a function of the observation time H
and the ǫ parameter.

does not distinguish very well between adjacent frequencies

and the variance increases.

5.2 Period Detection Precision and Tracing Time

The experimental results shown in this section highlight the

precision of the proposed period-detection technique when

varying the application tracing time. To this purpose, the

mplayer multimedia player for Linux has been launched

playing a set of mp3 files, which were traced for a different

time using our mechanism. At the end of the trace the de-

tected period was recorded. The plot of the amplitude spec-

trum obtained for different tracing time are reported in Fig-

ure 10. In order to enhance readability, values on the Y axis

have been normalised to the maximum of value of the am-

plitude spectrum (hence the highest peak is 1.0).

As the plots in Figure 10 (a) show, the periodic nature

of the application is evident already from a tracing time of

500ms, in which the peaks of the curve close to the 32.5,
65 and 97.5Hz frequencies are quite evident. However, the

plots in Figure 10 (b) show that the periodicity becomes

indisputable starting from 1s of tracing time, and beyond.

Each operation of tracing and period-detection with a

given tracing time has been repeated 100 times, and the PMF

curves of the detected frequency have been computed and

reported in Figure 11. In Figure 11 (a), it is shown that a

tracing time as short as 200ms may lead to a small error

in the detected frequency, that remains between 32.5Hz
and 35Hz most of the time, with a few occurrences on

the second harmonic at 97.5Hz (not shown on the plots

for enhancing readability). Increasing the tracing time, the

PMF becomes tighter around the 32.5Hz value, however

the relatively few occurrences (between 0 and 2 on the 100
repetitions) of the second harmonic persist.
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Figure 10. Normalized frequency-transform of the events

obtained by tracing mplayer at varying tracing time.
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Overall New Average Std Dev Max

load reservation freq (Hz) (Hz) (Hz)

0% - 32.69 6.60 98

15% (645,4300) 41.67 22.97 97

30% (1200,8000) 57.98 30.79 95

45% (1650,11000) 75.03 26.35 92

60% (2250,15000) 68.47 25.51 93

Table 2. Precision of the period detector with respect to

the real-time load in the system. Reservation budgets and

periods are in µs, average, standard deviation and maximum

values of the detected frequency are in Hz.
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Figure 12. Period detection precision (average frequency

+/- standard deviation in error-bars notation), as a function

of the background real-time load.

5.3 Period Detection Tolerance to Load

In this section, the robustness of the period detection tech-

nique is evaluated with respect to interference generated by

other real-time applications in the system on the produc-

tion of the time-stamps by the tracer. A running instance of

mplayer playing an MP3 song has been traced varying the

real-time load in the system. The latter has been syntheti-

cally generated by starting instances of a simple real-time

periodic application. In Table 2, each row is obtained when

adding to the system the real-time application with schedul-

ing parameters in the second column, generating the CPU

utilisation reported in the first column. Each run has been

repeated 100 times, and the average and standard deviation

of the detected frequency value have been measured. The

result is reported in Figure 12. As we can see, increasing

the background load we also increase the number of time

the period detector evaluates a frequency which is an integer

multiple of the actual one (at most three times, as seen in

the fifth column of the table). Thereby, the average detected

frequency (third column) increases with the workload. Also,

the reported standard deviation, shown as error bars in the

plot and reported as the fourth column in the table, shows

the extent of increase in the detected frequency variability as

a function of the real-time load on the system.

5.4 Evaluation of the New Feedback Mechanism

The performance improvements achieved by the LFS++ over

the LFS solution [2], have been evaluated in isolation (dis-

abling rate detection, to make the results more reliable) by

using mplayer as a test application. In particular, we mea-
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Figure 13. Inter-Frame times and reserved fraction of CPU

time for mplayer when LFS and LFS++ are used.

sured the time between the visualisation of two video frames

(inter-frame time) and the allocated CPU time.

A large number of experiments (with different videos)

have been performed, showing that the new feedback mech-

anism can adapt the reserved CPU time in a shorter time, and

generally produces more stable allocations than LFS. An ex-

ample (corresponding to mplayer reproducing a movie with

the video at 25fps) is shown in Figure 13, showing that LFS

is able to control the inter-frame times to less than 80ms (the

expected inter-frame time is 1000/25 = 40ms, and an inter-

frame time smaller than 80 indicates that the video frame has

not been dropped) only after more than 100 frames (4 sec-

onds). This behaviour is easily understandable by looking at

the allocated fraction of CPU time, which starts from a low

value and grows quite slowly. On the other hand, the new

feedback mechanism is able to adapt in a shorter time (al-

most immediately). Such different behaviours are easily no-

ticeable when looking at the standard deviation of the inter-

frame times (11.287ms for LFS and 4.6312ms for LFS++),

but since the system is underloaded the average values are

similar (39.992ms for LFS, and 40.925ms for LFS++). This

fact can also be appreciated by looking at the Cumulative

Distribution Functions (CDFs) of the inter-frame times and

reserved fraction of CPU time, which are shown in Fig-

ure 14: note that the CDF of the inter-frame times for LFS

has a longer tail, and the CDF of the reserved CPU time for

the new feedback indicates a smaller variance.

5.5 Complete Feedback Example

After measuring the overhead, tuning the rate detection algo-

rithm, and comparing the new feedback mechanism with the
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Figure 14. CDFs of the Inter-Frame times and reserved

fraction of CPU time for mplayer when LFS and LFS++

are used.

Periodic Workload Average IFT Std Dev

20% 40.966ms 6.995ms

30% 40.934ms 7.834ms

40% 40.924ms 10.943ms

50% 40.947ms 11.743ms

60% 40.959ms 16.570ms

70% 44.431ms 17.865ms

Table 3. Average values and Standard Deviations for the

Inter-Frame times with LFS++ under different real-time

workloads.

original one, the proposed LFS++ adaptation has been tested

on a real application (mplayer) when the system is loaded

with some periodic real-time tasks. Table 3 reports the inter-

frame times (used as a measure of the perceived QoS) mea-

sured when playing a 25fps video. The expected inter-frame

time is 1000/25 = 40ms. Note that when the system load

increases LFS++ is able to keep the inter-frames time under

control (the increasing workload affects the standard devia-

tion, but not the average) until the system is overloaded (with

a real-time load of 70%).

6. Future Work and Conclusions

In this paper, we have discussed a framework for scheduling

legacy real-time applications in general purpose operating

systems. In particular we have identified two mechanisms

whose concurrent application promises to disclose important

opportunities in scheduling this type of applications. The

first mechanism is a frequency domain analyser that uses

data collected in the kernel to infer important parameters of

the application. The second mechanism is a feedback sched-

uler that changes the reserved budget to track the compu-

tation requirement of the application. Experimental results

collected on a prototype implementation of this machinery

in the Linux Kernel show how the two technologies com-

bine nicely, overcoming the limitations of previous work by

the same authors that simply operated at the scheduler level.

We plan to work on various improvements to the pre-

sented mechanism. Concerning the tracer, the current mech-

anism may be improved on the side of security for usability

in a multi-user context. Indeed, the current implementation

relies on a single special device which needs to be acces-

sible by the lfs++ tool, a potentially weak solution from

a security standpoint. Another direction can be to trace the

transition between blocked and ready (or executing) state in

the kernel as an alternative to the system calls. Such infor-

mation may be collected by enabling tracing options such

as ftrace, available in recent versions of the Linux kernel,

and promises to be more closely related to the task temporal

behaviour.

The current LFS++ algorithm for bandwidth adaptation

is subject to improvements especially in those situations in

which the application undergoes sudden increases of the

workload. We envisage the use of a more sophisticated algo-

rithm base a tighter cooperation with the kernel-level sched-

uler, to cope with this problem. Finally, we plan to investi-

gate on optimal ways to deal with multi-threaded applica-

tions and multicore platforms. An interesting possibility is

to use a SMP real-time CPU scheduling policy, such as the

one presented by some of the authors [7]. In this context,

an open research issue is to design an optimised cooperation

between the load balancing mechanisms inside the kernel,

the real-time partitioning of the tasks between the cores and

the adaptive mechanisms proposed in this paper.
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