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1. INTRODUCTION

The Database Design and Evaluation Workbench (DDEW) is a graphical

database design system prototype built at Computer Corporation of America. 1

In this article, we describe how DDEWS facilities for conceptual and logical

design weave together both formally justified and heuristic tools.

The DDEW tool suite supports multiple design methodologies, including

synthetic and analytic techniques for design from scratch, reverse engineer-

ing of existing schemas, and pairwise integration of schemas. Conceptual

design is done in the Entity-Relationship (ER) model, and the system handles

multiple logical-level data models (relational, network, and hierarchical).

This breadth of coverage brought with it two challenges: keeping behavior

consistent and avoiding redundant development. Both representations and

design operations exploit the strong similarities between the conceptual and

logical models, and among the various logical models.

The user interface includes special features to help the design process. The

designer sees a graphical view of the history and derivation of a given design

in an on-screen design tree. Levels in the tree correspond to requirements

and to conceptual, logical, and physical designs. Clicking on a node at a

particular level opens the appropriate schema diagram. Additionally, several

mechanisms are provided to help the designer to cope with complexity and

with large designs. These include the use of color to identify missing or

dubious information, highlighting of arbitrary affinity groups of related

objects, and a miniature navigational aid for visualization of and movement

within large designs. We also introduced a new graphic notation to show

minimum and maximum participation in a relationship, without cluttering

the diagram.

Early user reaction to the DDE W prototype was quite positive.z Its hierar-

chy of windows from the navigational aid and design tree on down helped the

user to see the broad picture, to compare ER designs, and to deal with local

details. The multistep methodology was seen as both correct and important,

and the comprehensive and serious nature of the tool set was viewed as

critical in a database design workbench. Users’ favorite tools were the view

integration tools and the ER schema synthesizer; these were viewed as

providing extremely useful functionality. However, the transaction specifica-

tion language was too low-level, additional report generation capabilities

were requested, and there were some complaints about specific user interface

features and performance on very large schemas (hundreds of entities).

For a broad overview of DDEW, including the user interface, graphical
display of progress, design methodologies, and implementation considera-

tions, see Reiner et al. [ 1986]. The present article concent~’ates on three of the

unusual aspects of the system’s data models and tools: (1) a unified underly-

1DDEW was supported by Rome Air Development Center, USAF, under contract F30602-83-
CO073 to Computer Corporation of America. This article was written partly while A, Rosenthal
was at ETH-Zurich.
zInitial users were from Argonne National Laboratories, Syscon, the Joint Analysis Directorate
of the Pentagon. and the Carnegie-Mellon Software Engineering Institute.
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ing data model, (2) content-preserving schema transformations, and (3)

heuristic tools for initial design.

A major goal in writing this article was to illustrate the interaction of

theory and practice. The data model, tools, and underlying transformations

were considered successful because they simplified the design and implemen-

tation of a complex system which supports multiple data models and design

methodologies. We aim at two audiences: builders of database design systems

who might be tempted to utilize theory and theoreticians who want their

work to be accessible to system-building teams.

1.1 A Unified Underlying Data Model

DDEW users see different data models, depending on the design stage and

the target DBMS—an entity-relationship model for conceptual design and

relational, logical, or hierarchical models at other stages. All of these are built

over a single internal model, a simple ER extension (called ER + , created for

this project), which provides the internal representation, transformations,

and editing operations for designs. Thus, the same tool code runs under many

different circumstances, maximizing consistency and minimizing the learning

burden on users. Transformations are effectively shared among all of the

models, making it possible to meet a very large number of system needs,

while keeping model complexity and redundancy manageable.

1.2 Content-Preserving Schema Transformations

As a design progresses, details are accumulated, errors are fixed, and the

schema gradually reorganized. Ideally, each change makes the schema a

more accurate model of the external world. Once accuracy has been attained,

however, conceptual and logical schema changes are generally still necessary

for several reasons: convenience (so that schema objects will match organiza-

tional units or existing definitions), implementability (to use only the struc-

tures permitted in a target DBMS), and performance (since most DBMS’s

logical schemas partially determine physical implementation).

Schema transformations should not inadvertently introduce new errors

into the modeling of the real world. Most database design systems and

many published algorithms introduce unintended deviations, where designer-

supplied constraints do not hold on the output of a transformation. This is a

serious problem. If late transformations can introduce errors, correctness

rests only on the designer’s final check, instead of increasing throughout the

design process. DDEW shows the feasibility, utility, and costs of a more

rigorous approach: defining and exploiting transformations whose outputs

are guaranteed to be content-equivalent to their inputs.

As formalized below, the information content of a schema is defined by the

set of legal states of the database. Two schemas are called content equivalent

if there is an invertible (total, onto, 1:1, and attribute preserving [Hull 19841)
mapping between their possible instantiations. A rearrangement is a trans-
formation whose result is content equivalent to its input. The rearrange-

ments in DDE W were of the following types: replicating the attributes of an
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entity in related entities, and (inversely) eliminating such replication; con-

verting a complicated relationship to an entity and two simpler relationships;

inferring additional constraints, and (inversely) removing redundant con-

straints; creating keys; and replacing constructs not supported in a particular

logical data model. The combination of rigorous specification and a unified

data model enabled us to build many of our tools from a library of small

rearrangement modules.

1.3 Heuristic Tools for Initial Design

Early in the design process, schemas are sketchy, omitting many relation-

ships, attributes, and constraints. Content-preserving transformations that

rearrange the early information will not yield an accurate “real-world” model,

no matter how rigorously they are applied. Instead, heuristic tools are

needed. These guess possible improvements based on built-in assumptions

and defaults. The system then asks a designer to confirm proposed actions or

provides visual cues about decisions that are considered doubtful.

Heuristic tools in DDEW support a number of major design processes:

normalization during redesign of existing schemas, inference of relationships,

detection of redundant relationships, and integration of conflicting user

views. Errors from heuristic tools may be detected by human inspection,

aided by tool display conventions that identify error-prone decisions. It is left

to the designer to specify or select the corrections explicitly.

1.4 DDEW’S Tool Suite

Figure 1 shows how DDEWS tools and transformations support design

methodologies. Automated tools and their underlying transformations are

listed, with references in square brackets to the sections describing the

transformations. There were also a number of manual editing tools for lists

and diagrams available throughout the design process.

DDEW supports several methodologies, including reengineering and inte-

gration of existing databases. For example, a designer working from scratch

with functional dependencies might use the ER Schema Synthesizer to get

the initial ER schema, the ER Schema Refiner to simplify it, the ER-to-

Relational Translator, and various logical and physical design tools. A de-

signer who started by entering an ER schema might run the ER Schema

Refiner, the Normalizer, and various lower-level tools. A designer wishing to

extend an existing relational or network schema might use one or both of the

reverse-engineering tools to produce a conceptual schema, simplify it with the
ER Schema Refiner, integrate it through the View Analyzer/Synthesizer

tools with another ER schema derived from new requirements, and then

continue with logical and physical design tools on the new schema.

The individual methodologies are straightforward and are not described in

detail—the interest lies in how a relatively small set of modules was able to

assist users in applying them. For detailed overviews of research-oriented

and commercially oriented database design systems, see Ram [1992] and

Reiner [1991]; also see Reiner [1992] for a summary of issues.
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step Objects Accessed Automated Toole Provided

Requirements English descriptum Crose-Referenca Checker

Analysis Functional dependencies (FDs) (compsres sftributes in transacf!ons w!th those m FDs)

Transactions (against attributes)

Conceptual FDs and transactions Entity-Relationship Schema Synthesizer [4.1]

Dealgn (creates conceptual design from FDs:

wa normalization and entity creation [4.1], key creatkx [3.6],

relatmshlp aynthesls [4.2] and constraint mfarence [3 4])

ER schema dtagram ER Schema Refiner

and transactions against if (attribute removal [3.3], transaction analysls[42 1 (f)])

View Anelyzer and View Synthesizer [4.3]

Normalizer [4.1]

Reveres Englnearlng tool

(logical -> conceptual translator’ mvokas

relationship synthess [4.2] and constraint inference [3 4])

Logical ER schema diagram ER -a. Relstlonal Schema Transistor [3.7.1]

Design ER -> Network Schema Trsnsletor [3.7.2]

(attribute mpying [3.2], key copying [3.2], relatlonshlp-

to-ent!ty conversion [3.5], relatmnshlp constraint

inference [3.4], data model style transformations [3.~)

Relational, network, or hierarchical Log Ical Record Access tool

schema diagram and transactions Network -> Hiararchlcsl Schema Translator [3.7.3]

against It Schems Generators and Loaders

(Ingres, Troll/USE)

Reverss Engineering tool

(phys!cal --> logical translator)

Physical Relational, network, or hierarchical Physicsl Record Access tool

Design schema diagram augmanted by (index selection)

physmel spacrftcatmns, transactmns Scheme Generator (DMS/1 100)

Fig. 1. DDEWS automated tool suite.

1.5 Organization of the Remaining Sections

Section 2 describes salient aspects of DDEW’S unified underlying data model

and explains how it was shaped by the need to support multiple target

models and rigorous rearrangements. With this basis, Section 3 describes

content equivalence, rearrangements for conceptual design, and mapping to a

logical data model. Section 4 discusses how heuristics for normalization,

relationship refinement, and view integration are used to obtain good start-

ing schemas for further design. Section 5 comments on the contributions and

limitations of the theoretical literature as it related to building DDEW,

focusing on questions of comprehensibility, robustness, and graceful degrada-

tion. Section 6 gives conclusions. Preliminary versions of this work appeared

in Reiner et al. [1986] and Rosenthal and Reiner [1987; 1989].

2. THE ER+ DATA MODEL

A data model k a set of constructs for expressing how data is structured,

constrained, and manipulated. Different data models are required for differ-

ent types of designs: conceptual schemas, logical schemas (suited to a particu-
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lar data model or DBMS interface), and physical schemas that capture

implementation detail. A database design system needs to represent and

manipulate all of these, either as separate models or as special cases of a

more general model.

We took the latter approach and found substantial benefits. One model,

called ER + , provided the internal representation and semantics for all

conceptual and logical design activities. The constructs and operations in

ER + were obtained by taking the union of all features in the four visible

models (ER, relational, network, and hierarchical) and removing duplication.

As a result, the same tool code could be run under many different circum-

stances.

Below, Section 2.1 presents the model, and Section 2.2 describes the use of

model subsets for schema conversion. Section 2.3 explores the benefits and

costs of building over a unified underlying data model.

2.1 ER+ Description

ER + is in the Entity-Relationship family of data models. Its constraint

constructs are numerous and rather general; they constitute a minimal

collection that encompasses the constraints of the classical data models and

allows our schema transformations to preserve information content. In mod-

els that do not express constraints, content-preserving transformations can

do no more than (trivially) reorder attributes [Hull 1984].

ER + begins with conventional entities, attributes, and relationships (bi-

nary, without attributes). If time had been available, we would have included

generalization hierarchies, repeating groups, and possibly h-ary relationships

and attributes on relationships. ER + operations [Reiner and Gonzales 1985,

Sections 6.2 and 7.2] provided a general but primitive means for specifying

transactions. Of the constructs below, only value-determined relationships

and the treatment of null values are unusual.

Let A and B denote lists of attributes, for entity types E 1 and E2. The

corresponding projections are denoted E l[A] and E2[B], respectively. el[A]

denotes the tuple of attribute values in A for an instance el of El; e2[B] is

defined analogously; pairs of attribute lists correspond by position rather

than by name. R denotes a relationship between entities E 1 and E2. If R

includes the pair of entity instances (cl, e2), we say el and e2 are R-related.

We present the most interesting constraints first.

Value-Determined Relationship. To bridge the gap between ER and rela-
tional models, we allow a relationship to be determined by matches of
attribute values. A value-determined relationship represents a join path that

is either semantically interesting or else is useful as a carrier of constraints.

Formally, R is value determined by matching attributes A and B if R consists

exactly of the set of entity pairs (cl, e2) such that e l[A] = e2[B].

Value-determined relationships subsume foreign-key references and pro-

vide several additional conveniences. First, they allow a join path to be

associated unambiguously with a relationship name from the conceptual level

and to have attached constraints (e.g., inclusions, participations, and even
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English text). Also, the connection to particular attributes partially captures

the relationship’s semantics. This understanding can help reattach a relation-

ship when normalization splits an incident entity (the relationship follows its

determining attributes) and can help test whether one relationship is the

composition of two others (see Sections 4.1 and 4.2.2).

Example. The value-determined relationship WORKS-IN between EMP

and DEPT consists of {(e, d) I e[Dept#] = d[Dept#]}. Speaking loosely, we say

that the “same” attribute Dept# appears in both entities; actually, it is

values of the attribute that are replicated.

Example. Relationship MANAGES is determined by matching EMPIE#l

= EMP[Manager#].

Null-Not-Allowed. Tuple t has a null value for attribute set A if every

attribute in A is null, i.e., t[A] is nonnull if at least one attribute is nonnull.

The null-not-allowed constraint, applied to sets of attributes A, requires that

t[A] be nonnull.

Key. A is a key of El if and only if the values of attributes in A, if nonnull,

uniquely identify the instance of E 1. One key of E 1 whose attributes are

null-not-allowed may be declared primary. We allow primary keys to include

null-allowed attributes, as long as the entire key still provides unique identi-

fication, and no subset does so.

For example, consider a PART relation where ordinarily Part# (which is

null-not-allowed) suffices to identify a part, but some parts have multiple

variants. The primary key might then be [Part#, Variant#]. Formally this

problem can be resolved by splitting into separate entity types, but such a

split adds complexity to the schema.

Inclusion. El[A] includes E2[B] (denoted El[A] o E2[B]) if every nonnull

value e2[B] appears as the value of some el[A].

Example. DEPT[Dept#] o EMP[Dept#] implies that the Dept# value as-

sociated with an employee must also be associated with a department.

Minimum and Maximum Participation. E 1 has minimum (maximum)

participation of k in R if each el is related to at least (respectively, at most) k

instances of e2. E 1 has mandatory participation in R if its minimum partici-

pation is greater than O.

The notation “E l—(ml, Ml)—(R)—(m2, M2)—E2° is used in this article

to show (rein, max) participation by the entities on each side of relationship

R. Ignoring minimums, we loosely say that R is M2:M1. “Unknown” is a legal

value for min and max participation values.

In DDEWS screen displays, we introduced two new easy-to-visualize par-

ticipation notations. Maximum participations are displayed by splitting the
diamond in half and coloring the halves (see example below). Each half

represents the maximum participation of the connection with the closer

object and can be colored white (l), green (many), or red (unknown). Since

ACM Transactions on Database Systems, Vol. 19, No. 2, June 1994.



174 . A, Rosenthal and D, Reiner

minimum participations (i.e., minimum number of relationship instances in

which an entity participates) are seldom different from O or 1, we represent

them by a dotted green line (0), a solid green line (l), or a solid red line

(unknown). DDEW highlights places were more information is needed, yet

allows design to proceed based on partial information.

m“’r’’’”iiizl
Our display notations have several useful properties and are particularly

suited to large diagrams. They have little visual clutter. All participation

information can be seen in one place (near the diamond); additionally,

minimum participation is visible all along the lines.3 “Unknown” is conve-

niently represented. Finally, we conserve space near the entity nodes (unlike

multiple-arrow or crows-foot notations) and thus can display a large number

of incident relationships. Our display notations are used (with adaptations) in

Teorey [1990].

Set-Key. This construct models uniqueness constraints within a Codasyl

set. Suppose each el of E 1 is R-related to exactly one instance e2 of E2, and

that el[A] uniquely identifies el among the set of E 1 instances related to e2

(but uniqueness is not guaranteed among all El instances). Then El[Al is
called a set-key of E 1 with respect to R.

Relationship Parent. When creating a hierarchical schema from a net-

work schema, the designer may declare which entity incident to a 1:1

relationship should be treated as the parent. For a l:n relationship, the

parent is the entity on the 1 side,

Constraints as Logic Formulas. It is natural to ask what role a general

language like logic should play in expressing constraints. A database design

system ought to be able to capture constraints beyond the small list above, in

both English (for documentation) and logic (for evaluation, for determining

which objects are constrained, and for manipulation by a theorem prover).

However, the specific constructs above are still needed, to supply natural

higher-level concepts. Both users and transformation implementors find a

declaration “Key(E, K)” easier to handle than the equivalent logic assertion:

“Instance(e, E) and Instance (e’, E) and equal(e[K], e’[K]) = equal(e,e’).”

Even if transformations are performed in logic, a theorem prover must
rewrite the output using constructs that users understand.

2.2 LJsing Style Subsets of ER+ for Schema Conversion

Ideally, a database design system should capture, display, and transform

schemas in multiple models. Multimodal support widens a product’s market,

3Participation values other than O, 1, and, n can be viewed by zooming in on the relationship
icon.
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helps users to combine information from multiple sources, and—if done in an

open fashion—promotes further extension and customization. In our case, the

client specified that we support relational, network, and hierarchical models

for the logical DBMS interface, and an extended ER model for conceptual

design. The industry has changed since DDEW was completed, but support

for network and hierarchical models continues to be important for reengi-

neering.

In practice, there is often a need for multiple models at the conceptual as

well as the logical level. A large organization might want support for several

ER variants (e.g., from different CASE systems). In the future, object-oriented

models with support for inheritance and data abstraction will be increasingly

important. In Section 2.3.4 we examine how DDEWS approach (unified model

and reusable transformations) might fare if the system were extended to

better support such models.

A style subset of ER + is a set of ER + constructs that corresponds to

constructs appropriate for a target logical model. In the network style,

relationships are 1:1 or 1 :n, and they must connect distinct entity types.

(Repeating groups were outside our scope.) The hierarchical style is consid-
ered a subset of the network style, with the additional conditions that all

relationships have an identified parent entity (with participation mandatory

for the child entity), that no entity can be related to more than one parent,

and that there can be no relationship cycles of any length. In the relational

style, all relationships must be value determined; every entity must have a

primary key; and set-key declarations are prohibited. Note that relationships

in the relational style correspond to matching sets of attributes (i.e., join

paths) in the relational schema. Retaining them shows important connections

and participation constraints that cannot be seen in a simple list of relations.

Style subsets of ER + for relational and network models allow a two-step,

conceptual-to-logical model conversion rather than the more customary di-

rect, single-step translation. As illustrated in Figure 2, the first step in

converting a schema to a target DDL is to rearrange the schema to the

chosen style subset. This rearrangement may change the schema signifi-

cantly (e.g., migrating attributes and converting relationships to entities);

theory and code developed for other ER + purposes do most of the transform-

ing.

The second step is to perform a purely syntactic translation to the target

DDL. We designed the style subsets to minimize the distance covered by this

mapping. Constructs that cannot be translated are converted to comments on

the resulting schema and need to be enforced by application programmers. In

translating from relational-style ER + to relational DDL, constructs con-

verted to comments include relationships (now carried by attribute pairs),

relationship names, and minimum and maximum participation (which are

partly enforced by key and inclusion constraints). We do not address the

myriad approaches to enforcing referential integrity [Markowitz 1990].

Our network and relational style subsets are fully expressive, in the sense

that for any ER+ schema there exist equivalent network-style and rela-

tional-style schemas (see Section 3.7). The hierarchical-style subset is not
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I Schema in target style

ER+ constructs that Constructs without
correspond to constructs direct correspondence

in target DDL to target DDL

4 Generate DDL
with comments

1.

Fig. 2. Two-step data model conversion

fully expressive, since equivalence can be lost when multiparent entities are

reduced to single-parent ones or when cycles are arbitrarily broken (as was

done in DDEW).

2.3 Benefits of a Unified Underlying Model

All significant schema modifications in DDEW are expressed within the ER+

formal system, which can be regarded as providing a collection of abstract

data types, to be used in implementing the various user-visible models.

Transformations rearrange information in an ER + schema; import/export

utilities and several other tools perform syntactic translations and little else.

Building in this way over ER+ brought considerable benefits, as outlined

below.

2.3.1 Reusable Constructs and Operations. Major rearrangements, both

within and among style subsets, were written as compositions of small ER +

rearrangement modules. Nearly every ER + feature was reused in several

contexts, and such reuse substantially reduced development effort. We reused

data model constructs (data structures and associated editing and display

code) and schema transformations (code and detailed theory).

Reuse of Constructs. Entities in ER + are used to implement conceptual

entities, logical relations, logical entities (for an ER-based DBMS interface,

as in the IRDS standard), and Codasyl record types, all of which involve an

aggregate of attributes. Relationships in ER + provide an underlying abstrac-

tion for semantic connections and for attaching constraints; IS-A connections

could be implemented over relationships (see Section 3.8). Attributes are

defined in all models. Constraints and datatype declarations appear at multi-

ple levels.
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&
L )

A

[
Logical model L1

[
L2

Fig. 3. Possible transformations without a unified underlying model.

Reuse of Transformations. Copying attributes from one entity into a
related entity is important for generating keys in intermodel translation and

for producing useful redundancy in a physical or logical schema. It would also

be useful for forming an entity (or logical relation) that includes both local

and inherited attributes of a subclass. The reverse operation (deleting a

redundant attribute) is relevant when deriving a conceptual schema or when

reversing a decision to store an attribute redundantly. Another repeatedly

used ER + operation replaces a relationship by an entity and two new

relationships, adjusting constraints to preserve information content.

In a system with a single underlying model, one implements each transfor-

mation once. In contrast, Figure 3 shows the spaghetti-like potential for

redundancy and inconsistency with independent models.

An alternative would be to translate all schemas into the relational model,

transform then according to existing theory, and then translate them back.

Translation into the relational model would lose ancillary information about

a design (e.g., relationship names, diagrammatic layout, and textual annota-

tions). It is quite difficult to recover this information for the transformed

schema or to specify how it should be carried through relational transforma-

tions (as discussed briefly in Section 4.1.2).

Opportunities for reuse are limited—but still real—even in a more nar-

rowly targeted workbench. Markowitz and Shoshani [1989] describes a

workbench with a single extended ER conceptual model, no conceptual-to-

conceptual transformations, and a robust flavor of relational as the only

logical model.4 This was accompanied by an extensive theory about corre-

spondences between the conceptual and logical levels, for both constructs and

operations. For logical-level equivalence and normalization the existing re-

lational theory is used. Even in this situation, however, reformulating

intermodel correspondences over a single formal system would factor out

4The “stricter” relational model style of Markowitz and Shoshani [1989] can be captured by
imposing further constraints that all attribute values are nonnull and every value-determined
relationship includes a key of at least one entity.

ACM Transactions on Database Systems,Vol. 19, No. 2, June 1994.



178 . A. Rosenthal and D. Reiner

operations (such as attribute copying and deletion) that appear in both

intermodel and intramodel transformations.

2.3.2 Simplicity of Export/Import Utilities and Other Syntactic Transfor-

mation Tools. A database design system requires numerous schema export

and import utilities for its multiple target DBMSS. To generate a SQL variant

(such as Ingres DDL) directly from an ER schema, one needs code to migrate

key attributes and create relations for m:n relationships and appropriate

constraints. However, the export utilities themselves should be straightfor-

ward translators with no responsibility for improving design decisions in

their inputs. Hence, we first produce an ER diagram in the target style

subset (see Figure 2) and then restrict the export utility to a purely syntactic

translation.

Conversely, for tools that import foreign DDL we try to map each foreign

construct directly to an ER + construct (and ER + has received extensions

such as set-keys to permit this). If a source schema has redundancies, is

missing constraints, or is otherwise “bad,” it is still brought directly into

ER + by the import utility. A single ER + tool (“Schema Refiner”) then

detects problems and improves the schema.

Similarly, the View Synthesizer tool is responsible for obtaining a seman-

tically correct schema, but not for cleaning it up. The Normalizer tool

just creates a relational schema, represented as a set of entities with no

relationships.

2.3.3 Flexibility in Information Capture. Our modeling approach aims to

provide flexibility, since we cannot anticipate future design methodologies. In

some modeling approaches, information assigned to one phase of design (e.g.,

detailed constraints on data values, as part of logical design) cannot be

captured at other phases. In contrast, common ER + underpinnings allow the

same schema to contain information typically associated with different design

phases.5

Consequently, methodologies supported by DDEW may differ in the infor-

mation assigned to each phase. Also, users who discover some important

information “prematurely” (e.g., from reading existing documentation) may

be allowed to enter that information. This is preferable to making multiple

passes with the information source or to capturing information outside of the

design system.

As mentioned in the previous section, ER + has the flexibility to express

“bad schemas. Schemas directly imported from existing relational databases

or flat files may violate recommended design practices, but may still be the
best starting point for redesign.

Another benefit of the common underpinnings is that one can incremen-

tally translate a schema between levels. This avoids a sudden jump into a

logical design which unintentionally embodies physical decisions (since most

DBMSS directly implement tuples as physical records). As another example,

5We did not encourage DDEWS end users to exploit this flexibility-each phase’s user interface
h]d inappropriate information or placed it in a more detailed pop-up window.
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for a new style subset corresponding to object-oriented DBMS, a translator

that for some reason could not handle a construct newly added to ER + may

pass the offending information unchanged into the ER + result.

2.3.4 Complexity of the Unified Model. The unified data model had a price

—complexity. And future extensions to the data model could exacerbate the

problem. Such extensions might include support for generalization hierar-

chies, constructs for non-first-normal-form databases, k-ary relationships,

and physical storage and indexing constraints. We used several tactics to deal

with this complexity, involving both the user interface and the design tools of

DDEW.

(1) DDEW customizes its logical design displays to avoid redundant informa-
tion. For example, the network model builds in the assumption that a

relationship’s child instance participates with at most one parent, so

graphical displays need not show maximum participation. Schema details

are generally viewed graphically within pop-up windows that limit and

focus the information seen by the designer. Mantha [1987] carries these

ideas further, allowing the user to dynamically adjust the information

displayed.

(2) Some transformations apply only to style subsets, so before using the
transform a user is constrained to first produce a schema in that subset.

For example, generators of INGRES DDL will translate only constructs

that belong to relational-style schemas.

(3) We made it possible for DDEW implementors to add constraint types to
the model without invalidating existing tools. Tools that detect an unfa-

miliar constraint (either a new construct or a logic formula) are prevented

from changing the object (entity, relationship, or attribute) that the

constraint references. For example, attribute removal (see Section 3.3)

will remove apparently redundant attributes only if the attributes are not

mentioned in other constraints. Thus, tools degrade gracefully on schemas

that contain a few unfamiliar constructs.

3. REARRANGEMENT TRANSFORMATIONS IN DDEW

A rearrangement is a transformation that preserves the information content

(defined below) of a schema. DDEW demonstrates that a database design
system can be built largely from modular rearrangements and that these

modules may be reused in different contexts and for several model styles.

Since real schemas often violate simplifying assumptions in published algo-

rithms, our transformations do handle null-allowed attributes, multiple keys

in an entity, and allow a pair of (not necessarily distinct) entities to be

connected by several relationships. Our large tools were built as sequences of

these independently verified rearrangements, each of which was a content-
preserving adaptation of a familiar transformation.

Each of the transformations is described below for a single relationship

and its incident entities. In general, a DDEW user command applies a

ACM Transactions on DatabaseSystems,Vol. 19, No. 2, June 1994.



180 . A. Rosenthal and D. Reiner

transformation to all relationships in the design and performs several differ-

ent transformations in sequence. A transformation may include precondi-

tions; no change occurs if these preconditions fail.

Section 3.1 formalizes the notion of content equivalence. Sections 3.2-3.7

show rearrangements that were useful in DDEW. These include attribute

copying, attribute removal, inferring constraints for value-determined rela-

tionships, creating primary keys, transforming a relationship into an entity,

and data model style translations. All the transformations described have

been implemented; however, the descriptions incorporate improvements added

afterward. Section 3.8 discusses extending the ER + infrastructure to support

inheritance.

3.1 Formalization of Content Equivalence

This section first presents an informal example of a transformation in which

constraints must be introduced in order to make the output equivalent to the

input. We then formalize the definition of content equivalence.

Example. Consider the familiar transformation that transforms an

information-bearing relationship (in an ER schema) to a value-determined

relationship (suitable for a relational system).

Before:
Entity EMP(Emp#,Name,Address); Emp# is primary key of EMP
Entity DEPT(Dept#,Dept _ Name, Manager, Budget); Dept# is primary key of DEPT

Relationship EMP_ DEPT, with participations: EMP—(l,l)—(EMP_

DEPT) — (1 ,N) — DEPT

After:
Entity EMP’(Emp#,Name, Address, Dept#); Emp# is primary key of EMP’
Enhty DEPT(Dept#,Dept _ Name, Manager, Budget); Dept# is primary key of DEPT
Relahonship EMP’_ DEPT, with participations: EMP’—(l,l)—(EMP’_

DEPT) — (1 ,N) — DEPT

Additional Constraints

(1) EMP’_DEPT is value determined by matching Dept#, that is,
EMP’_DEPT = {(e,d) I e ● EMP’, d = DEPT, e[Dept#] = d[Dept#l}

(2) EMP’[Dept#l is nonnull

(3) DEPT[Dept#] o EMP’[Dept#]

In some papers and systems, the three additional constraints are not gener-

ated; yet without them it is possible to describe situations that do not hold in
the original schema.

Two schemas are content equivalent if there is a natural 1-1 correspon-

dence between the database populations that instantiate them. We now

formalize this notion. An entity scheme is a set of attributes; a relationship

scheme is a pair of entity names; a schema is a collection of entity and

relationship schemes and a set of constraints. An instantiation of an entity

scheme is a set of tuples of attributes; an instantiation of a relationship

scheme is a set of pairs of entity instances. A schema instantiation is an
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instantiation of all the entity and relationship schemes, such that the con-

straints are satisfied.

Let S1 and S2 denote schemas. A function from {instantiations of S1} to

{instantiations of S2} is called an instance mapping, denoted 1(). 1() is an

equivalence if it is invertible and “natural.” That is, for instantiation s1 and

S2 of S1 and S2 respectively, I is:

(1) ~$1 (for each schema instantiation S1 of S1, 1(s1) is an instantiation of

(2) surjectiue (for every s2, there exists at least one instantiation S1 of S1

such that S2 = 1(s1))

(3) injective (for each s2, there is at most one S1 such that S2 = 1(s1))

(4) natural—attribute values are preserved by the mapping. The technical
definition (called “generic” in Hull [1984]) is that the transformation is

invariant under permutation of nonnull attribute values. Without this

condition, every schema S 1 would be equivalent to a degenerate schema

consisting of a single integer attribute taking values between 1 and the

number of instantiations of S 1.

A schema transformation T is content preserving (i.e., a rearrangement) if for

every schema S, there is an equivalence mapping to T(S). That is, the set of

instantiation of S and T(S) are “equivalent.” Because the composition of

rearrangements is a rearrangement, rearrangements make good modules.

(See Appendix for all proofs.)
The theory of rearrangements is very helpful, but its limitations must be

understood. Content equivalence does not imply that design semantics (i.e.,

natural mappings to the real world) are preserved. For example, a rearrange-

ment would be a disaster if it replaced every entity name by a unique integer

or if it deleted unconstrained relationships whose population is value-

determined by matching attributes.

3.2 Attribute Copying Transformations

A set of attributes can be copied from one entity El into an R-related entity

E2, with constraints adjusted. This transformation has several uses in inter-

model translation and physical design. To express an information-bearing

relationship R in a relational-style ER + schema, one typically imports (i.e.,

copies) a foreign key into E2 (see Section 3.6). To speed queries that need the

attributes of E2 plus a few attributes of E 1, one may denormalize—copying

the desired attributes into E2.

The added constraints below assure content equivalence and prevent

anomalies when updating a denormalized schema. The designer can then

allow performance and interface convenience to govern which schema ought

to be used. We restrict our attention to cases where the constraints on the

resulting schema are expressible with ER + constructs. The preconditions
exclude situations where ER + constraints (excluding logic) are not sufficient

to obtain equivalence, such as copying part of a key, or copying across m:n
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relationships. For simplicity, we assume that attribute names are unique; the

actual DDEW implementation detects conflicts and generates new names.

3.2.1 Key Copying. An entire key may be copied to make a relationship

value determined.

—Copying a key Al of El across a non-value-determined relationship R

from El to E2:

Preconditions for Applicability. R is not value-determined and max_par-

ticipation(E2,R) = 1 (i.e., each e2 is R-related to at most one instance of El).

Al contains a key of El (i.e., is a key or a superset of a key), and El[Al] is

null-not-allowed.

Result. Attributes Al are added to E2. R has the constraint that it is

value determined by Al. E l[A1] > E2[A1]. If R was mandatory from E2, then

E2[A1] is null-not-allowed.

3.2.2 Additional Attribute Copying

—Copying attributes A3 across a value-determined relationship R from El to

E2:

Preconditions for Applicability. R has at most one E 1 for each E2 and is

value-determined with E l[A1] matching E2[A2]. Al contains a key of E 1.

Result. E2 has the additional attributes A3; E l[A1 U A3] > E2[A2 U A3].

Example. Suppose we wish to copy the additional attribute Dept_Name

from DEPT into EMP1 entities. The result is an entity type EMP2 that

includes the Dept_Name in addition to other attributes of EMP 1. The inclu-

sion constraint is modified to be DEPT[Dept#,Dept–Name] o EMP2

[Dept#,Dept_Name].

3.3 Attribute Removal

Attributes that are determined by values in a related entity are deleted. The

Key remoual and Additional attribute removal transformations are the in-

verses of Key copying and Additional attribute copying, respectively, and

will not be stated formally.

Applicability conditions are stringent—attribute removal applies only to

schemas that could have been produced by attribute copying. This means that

(1) there can be no constraints on the attributes to be removed, except for

those imposed by copying and (2) the entity from which attributes are

removed must be related to exactly one instance of the other entity. Postcon-
ditions of each form of attribute copying become preconditions of the corre-

sponding attribute removal.

Redundant nonkey attributes arise when one reverse-engineers nonnormal-

ized schemas and may be created also as a byproduct of integrating separate

user views. Foreign-key references will be ubiquitous when one reverse-

engineers a relational schema by heuristically inferring relationships (Sec-

tion 4.2). Attribute removal is typically invoked after inclusion- and functional-

dependencies have been inferred heuristically or manually added by the user.
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3.4 Inferring Constraints for Value-Determined Relationships

The rearrangements in this section, invoked from several tools, straightfor-

wardly infer constraints that are implied by other constraints. The inverse

rearrangements remove constraints to produce a minimal set. Minimal sets

impose less run-time overhead and are sometimes easier for other transfor-

mations to handle.

In the rules below, R12 denotes a value-determined relationship between

El and E2, determined on matching El[Al] and E2[A2].

—Inferring maximum participation:

If Al contains a key of El, impose the (maximum participation) constraint

that at most one E 1 instance participates in R12 for each E2. For example,

suppose (WORKS–IN) relates EMP and DEPT (based on matching Dept#),

and Dept# is a key of DEPT. Then there can be at most one (WORKS. IN)-

related DEPT instance for each EMP instance.

—Inferring inclusions and null-not-allowed:

If membership in R12 is mandatory for E2 instances, then El[Al] >

E2[A2], and E2[A2] is null-not-allowed. For example, if each Employee

must be related (via WORKS–IN) to a department, then every Dept#

value appearing in an EMP instance must be the number of a DEPT within

this database.

—Inferring minimum participations:

Suppose that instead of specifying nonzero minimum participation, the

user had specified null-not-allowed and inclusion constraints, i.e., that
EMP[Dept#] is nonnull and DEPT[Dept#] includes it. Then the system

could infer that each EMP must be (WORKS_ IN)-related to a DEPT.

Formally: If El[Al] > E2[A2] and E2[A2] is null-not-allowed, then mini-

mum participation of E2 in R12 is at least 1. If the user explicitly allowed

nulls for E2[A2], then minimum participation of E2 in R12 must be O.

Note that although the “minimum participation = O“ declaration im-

poses no constraint, DDEW prefers explicit denials to omission—the denial

is evidence that the question has been examined. In fact, when participa-

tion information has not been supplied, the corresponding half of the

relationship diamond is displayed in an alarming red. As a heuristic, our

transformations propagate “unspecified” values into their result.

3.5 Rearrangements Involving Key Creation

When files or Codasyl databases are being reverse-engineered, DDEWS

direct import may create entities without keys. The following transformations

supply keys, thereby enabling the entities to be treated within the relational

model.

—Creating a primary key for a keykss entity E2:

Suppose that E2 has minimum_ participation = maximum–participation

= 1 in R12. And suppose El has a primary key K1 that can be copied
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across relationship R12 to E2 (using the key-copying rearrangement of

Section 3.2).

{If El has a maximum_ participation= 1 in R12, then
(1) Copy K1 Into E2 and declare copied attributes K2 a key of E2;

else If RI 2 has a null-not-allowed set-key SK, then
(2) COPY key KI of El into E2 (as K2) and declare (SK u K2) a key of E2,

else

(3) create a surrogate key for E2 as described below}

To illustrate case (l), suppose El is EMP and E2 is INSURED_EMP, and

suppose that each insured employee corresponds to exactly one EMP. Then a

key of EMP (e.g., SS#) can be copied into INSURED–EMP to serve as a key.

For case (2), suppose that each employee has a Rank_ in_ Dept, and within a

department, each employee has a different Rank. Then if Dept# is copied into

EMP, (Rank u Dept#) becomes a key.

—Creating a surrogate key for an entity E2:

Add to the entity scheme a surrogate attribute that is null-not-allowed and

a key. We postulate that an arbitrary surrogate does not affect the infor-

mation content.

3.6 Transforming a Relationship to an Entity

The decision of how to model a connection often needs to be changed. For

example, since ER + relationships cannot have attributes, if a designer

wishes to attach an attribute (say, StartDate on a WORKS–IN relationship),

the relationship must be transformed to an entity. Conversions also occur

when m:n relationships need to be represented in a style subset that lacks

that construct. The rearrangements in this section are therefore important

modules for schema enhancements and for the tools that transform schemas

from one model to another (Section 3.7). Their inverses would be important in

reverse engineering.

Relationship-to-entity transformations replace a relationship by a new

entity and two incident (1: 1 or l:n) relationships. We consider two cases,

depending on whether the relationship is value determined. To simplify the

discussion, we assume there is no set-key on the original relationship.

3.6.1 Converting a Non-Value-Determined Relationship to an Entity

—Converting a non-value-determined relationship R12 (between entities El

and E2) into a new entity and two new relationships:

Example. Suppose USED–SK1[LL relates EMP and SKILL entities. The
relationship (USED_ SKILL) is replaced by the entity USED_ SKILL and the

two new relationships (R13) and (R23).

EMP—( l,n)—(USED–SKILL) -( O,m)-S~LL is rearranged to:

EMP-(l,n)-(R13) -(l,l)-USED-S~LL-( l,l)-(R23)-(0,m) -S~LL

The steps in the transformation are:

(a) Create a new entity, bearing the name of the relationship. For clarity, we
denote the new entity E3.
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(b) Create new relationships R13 and R23.

(c) Fix minimum (m) and maximum (M) participations as shown below.

E l—(ml,Ml)—(R12) —(m2,M2)—E2 is rearranged to:

E1—(ml,Ml)—(R13 )—(1,1)—E3—(1,1)—R23 —(m2,M2)—E2

(d) Import keys from incident entities to enforce uniqueness of R12 instances:

— Identify primary keys K1 for El, K2 for E2 (Section 3.5).

— Copy keys K1 from El and K2 from E2 into E3 (Section 3.2).

— Declare (Kl U K2) a primary key of E3.

Step (d) enforces a subtle constraint implicit in the input schema, that a

relationship’s population is a (duplicate-free) set of entity pairs. (Support for

multiset relationships would probably just confuse designers.) Noting that

the uniqueness constraint is not a result of careful user consideration, a

system might reasonably skip step (d) which enforces it.

3.6.2 Converting a Value-Determined Relationship to an Entity

—Converting a value-determined relationship R12 into a new entity and two

new relationships R13 and R23:

The previous transformation created an entity instance for each related

pair, e.g., (emp2, skil13). When the relationship is value determined, a differ-

ent transformation seems more natural. For example, suppose CUSTOMER

and SALESMAN have a value-determined relationship based on CityName.

We want to create a new entity whose only attribute is CityName, and which

contains the name of each city that has both a customer and salesman.G The

steps in the transformation are:

(a) Replace R12 by an entity E3 with attribute set A3 that is a copy of Al

(the set of R12-value-determining attributes in El). Null-not-allowed
constraints are the same as in E 1, except that not all Al attributes can be

null. Declare A3 to be the primary key of E3.

(b) Create R13 between El and E3, value-determined by matching El[All

and E3[A3]. Impose inclusion constraints: El[Al] o E3[A3] and E2[A2] >

E3[A3]. The participation constraints are shown below, where ml- de-

notes min(ml,l), ml+ denotes max(ml, 1), and m2 - and m2 + are defined

similarly.

E1—(ml,Ml)—(R12 )—(m2,M2)—E2 is rearranged to:

El-(ml-,l)-(R13 )-(m2+,M2)-E3-(ml +,Ml)-R23-(m2-,l)-E2

(c) If R12 had an inclusion constraint E2[A21 o El[Al], impose the inclusion
E3[A3] > E l[A1]. Otherwise, generate the (weaker) constraint that all

nonnull values in (E l[A1] U E2[A2]) appear in E3.

GWe also considered two slightly different transformations and instance mappings for the
conversion. One alternative creates an instance of the link entity for each city having either a
customer or a salesman. The second creates a link instance for each city having a customer.
Rather than complicate the semantics of value-determined relationships to distinguish these
cases,we simply allow the user to manually edit the transform output.
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(d) Create R23 between E2 and E3 analogously to the creation of R13.

(e) Infer additional constraints based on key or “mandatory” constraints on
El and E2 (see Section 3.4).

3.7 Rearrangements to Translate between Data Model Styles

This section describes composite rearrangements that produce schemas con-

taining constructs solely in the relational-style or network-style subsets of

ER + . These are not difficult once the basic rearrangements on which they

are built are available. The restricted schemas can then be mapped directly to

the respective target models. The only practical way to produce complex

rearrangements (like these) may be by composition of smaller rearrange-

ments. Otherwise it may be too difficult to get the constraints correct and to

verify invertibility of the instance mapping.

3.7.1 Transformation to Relational Style

(a) Obtain keys for each entity (see Section 3.5).

(b) Ensure that all l:n and 1:1 relationships are value determined and have
no set-keys. To achieve this, copy key attributes across any offending

relationship.

(c) Produce “link” entities to replace all m:n relationships that are not value
determined.

We considered adding a step to check whether the resulting relations were

normalized. However, in our limited use of DDEW, we never encountered a

situation where the created schema was unnormalized (at least according to

the dependencies known when the transformation was performed).

3.7.2 Transformation to Network Style

(a) Convert m:n relationships to “link” entities.

(b) Convert non-value-determined, reflexive relationships to entities.

3.7.3 Transformation from Network to Hierarchical Style. DDEW inferred

missing parent constraints on 1:1 relationships, found a spanning forest

through arbitrary relationship deletion, and determined that all relationships

outside the forest should be handled by applications,

For obvious reasons, that is not a content-preserving transformation. The

DDEW user guide advises the database designer to declare appropriate

parents for 1:1 relationships, to delete relationships to get rid of multiparent

entities, and to break cycles if present—before invoking the transformation.

3.8 Extending the Infrastructure to Accommodate Inhentance

Extensibility is a major requirement for any software engineering environ-

ment. For example, due to resource limitations and sponsor priorities, we did

not include inheritance in 1983 during DDEWS design. Appropriate models

and mapping algorithms for extended-ER (EER) models can now be found in

the literature (e.g., Markowitz [1989]). In this section, we describe how

DDEWS infrastructure would be exploited and extended to support such

approaches.
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A natural approach is to consider an IS-A link to be a relationship, with an

extra annotation that it has the semantics of IS-A, and with participations as

shown in the example: EMP—(1,1)—( )—(O,l)—PERSON. Beyond this sim-

ple embedding, extensions would be needed in three areas.

Display. The display system would need enhancement to provide an

appropriate display (DDEW already supports arrows for Codasyl schemas). It

would also be desirable to modify layout algorithms so generalizations would

appear above specializations.

Data Model. ER + would be extended with constructs that constrain

subtypes of a given supertype. Although EER variants differ in the details,

they tend to include constraint constructs such as disjointness (e.g., EMP and

RETIREE are disjoint) and covering (the union of EXEMPT.EMP and

NONEXEMPT-EMP includes all instances of EMP). Some constructs (m:n

relationships, set-keys) would be excluded from EER-style schemas.

Transformations. New tools would be needed, in order to reverse-engineer

existing schemas to EER by inferring IS-A relationships and to trans-

late EER schemas to relational implementations. For reverse engineering,

Johannesson and Kalman [1989] and Oertly and Schiller [1989] contain

algorithms that infer or guess IS-A relationships. The DDEW infrastructure

contributes to implementing these algorithms by supplying rigorous rear-

rangements for attribute removal, plus relationship inference heuristics.

When selecting a relational-style implementation of an EER schema, any

subset of a supertype’s attributes could be copied to the subtypes (and usually

deleted from the supertype). An alternative physical implementation is to

copy attributes from the subtypes into the supertype (with null allowed). In

both cases, DDEWS attribute-copy rearrangements would do the necessary

lower-level work and create the necessary constraints. Some new low-level

rearrangements should also be supplied, to remove entities that are redun-

dant once all their attributes have been copied. The choice among alternative

relational implementations is difficult and is influenced by the anticipated

transaction load, and sometimes by the assumptions of existing application

software.

4. HEURISTIC TOOLS THAT AUGMENT SCHEMAS

Early in the design process, the schema can be expected to be sketchy,

omitting many relationships, attributes, and constraints. So in initial design,

adding missing information is a higher priority than maintaining content

equivalence. In this section we show how heuristic tools that make likely

guesses can be combined with rearrangements and user input (including

confirmation of guesses) to rapidly improve an initial specification.

The initial DDEW schema may consist only of entities, obtained from

imported descriptions of relations or files, or from a collection of functional
dependencies. Other times the initial design may include relationships and

screen layout information that needs to be preserved. Aided by heuristic

tools, designers have several options for improving the design.
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—Refine the entity definitions in a schema, splitting entities to assure that

each entity is normalized, and eliminating redundant attributes and func-

tional dependencies (Section 4.1).

—Refine the relationships in a schema, adding needed relationships, elimi-
nating spurious and redundant ones, adding constraints, and improving

relationship names (Section 4.2).

—Integrate two or more schemas (Section 4.3).

4.1 Normalization for Redesign of Existing Schemas

DDEW includes a utility that transforms a collection of FDs into a set of

Third Normal Form entities. Since this normalization algorithm is routine,

we will not discuss it further. Instead, we examine how normalization ideas,

which were developed to produce an initial relational schema from functional

dependencies, apply in redesign of an ER + schema. The redesign problem is

important, since evolution of existing systems consumes much of the DP

budget. Normalization of ER + schemas takes the design through six steps:

(1) an initial ER+ diagram display;

(2) set of functional dependencies;

(3) a cover of the original dependencies;

(4) keyed normalized entities;

(5) suggestions for new constructs, relative to the input schema;

(6) a new, user-approved displayable ER+ schema.

The traditional approach to normalization (comprising stages (2)–(4)) can-

not provide a design tool that manipulates arbitrary ER + schemas, for three

reasons. First, normalization does not handle the problem of preserving ER +

information such as relationship names and diagram positions. Second, nor-

malization theory [Cosmadakis and Kanellakis 1984] is inadequate for “bad”

schemas, whose attributes maybe null, or which include arbitrary patterns of

functional and inclusion dependencies. When the input schema is equivalent

to an “ER-compatible” schema [Markowitz and Shoshani 1989], normaliza-

tion can be used, but the transform to ER compatibility alters a schema with

which the user is familiar, and may increase its size. Third, the universal

relation scheme assumption [Maier 1983] (denoted URSA) cannot be relied

on. Certainly, few corporate data administrators can determine whether it

holds in their databases.

Below, we discuss the pragmatic of various approaches to normalization.
Section 4.1.1 compares approaches that normalize each entity separately

versus approaches that deal with all entities’ dependencies simultaneously.

Section 4.1.2 deals with the fact that an entities-only schema is an unsatisfac-

tory result, particularly for a user who supplied a full ER + diagram.

4.1.1 Local versus Global Approaches to Normalization. We compare two

approaches to using normalization starting from an existing ER + (or rela-

tional) schema. The first approach accomplishes little, but does it rigorously.

DDEW used the second approach, which makes faster progress, often in the
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right direction. We relied on interactions with the user to prevent serious

mistakes.

Local normalization takes the functional dependencies defined for each

entity and performs a separate normalization. Dependencies may be obtained

from key constraints and from 1:1 value-determined relationships [Ling

1985]. Since the algorithm works one entity at a time, it cannot detect

redundancy that involves multiple entities. Each entry does indeed satisfy

URSA, so normalization preserves all dependencies.

Unfortunately, we suspect that few users will have the knowledge and

patience to specify the nonkey FDs needed to cause changes. Naive users do

not understand such dependencies. A sophisticated user who discovers a

nonkey dependency seems just as well served by a manual capability to

redesign the entity as it ought to be. Therefore we decided that local normal-

ization for redesign w-as not a priority.7

Global normalization throws functional dependencies from all entities into

a “soup of attributes” and uses normalization to simplify the ensemble (thus

subsuming local normalization). For the duration of normalization, attributes

of the same name in different entities are considered identical (i.e., we

temporarily adopt URSA). The URSA assumption is very unreliable across

entities, so DDEW treats the results of entity normalization solely as sugges-

tions to the designer, who decides whether to merge entities with apparently

identical keys, or where incident relationships should be reconnected after an

entity has been split (normalized).

Local and global normalization represent extreme views about which at-

tributes in different entities are to be considered identical. A middle path

might be to obtain additional information to drive normalization, from a

dictionary of explicit synonyms specified by the user, or from constraint

information (inclusion dependencies and matches between attributes in

value-determined relationships).

4.1.2 Automatic Normalization While Preserving the Input Schema. An

existing input schema has relationships, constraints, names, and diagram

layout; normalization yields just entities and their functional dependencies. If

DDEW were to be extended to have more automated global normalization, we

would need to accommodate the entities-only results from the Normalizer,

without losing all the additional information. A long-term direction would be

to build a very flexible schema integrator and to have it combine the original

schema with the Normalizer output, with a default to use names and display

information from the original schema. Since view integration is also used for

other purposes, one can justify considerable effort to implement its heuristics

and user interactions.

A simpler approach would be to extend normalization to tag each depen-

dency with its source entity name. An entity in the resulting entities-only

7Automatically splitting and merging entities would require substantial new code to reconnect
the incident relationships, provide good names for the new entities, and generate a layout for the
resulting diagram.
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schema is tagged with the names associated with all dependencies used in its

creation. This mechanism makes it easier to establish correspondences among

entities in the two schemas (and hence to preserve each entity’s name and

diagram position). Going further, one could include special logic in the

Normalizer to handle splitting and merging of entities. When entities are

merged, their incident relationships can be redirected. When an entity is

split, relationships incident to the split entity can be allocated based on the

fate of attributes involved in value determination constraints.

4.2 Relationship Heuristics

Schemas need relationships—a display of 40 unconnected boxes is unusable.

But schemas containing just entities do arise, from file descriptions, from a

relational catalog, or as the output of the global normalization algorithm.

Therefore DDEW included transformations (both heuristics and rearrange-

ments) that inferred and refined a set of relationships. After relationship

refinement, we automatically generated diagram positions for nodes and

routings for connecting lines. The results could then be edited interactively.

The work described below improves on several aspects of existing technol-

ogy. First, our input schema need not contain inclusion dependencies (which

are unavailable in most file definitions, existing relational schemas, and

schemas synthesized from sets of functional dependencies). Second, we do not

restrict inclusions to single attributes or to acyclic patterns [ Cosmadakis and

Kanellakis 1984]. Finally, we introduce new, very general rules for identify-

ing redundant relationships. However, unlike Casanova and Amarel de Sa

[1984], our algorithm is not content-preserving, since it adds information by

guessing likely relationships and inclusions. Also, unlike Johannesson and

Kalman [1989], we do not identify IS-A hierarchies or map existing relations

to relationships.

4.2.1 Heuristics for Initial Synthesis of Relationships. This section de-

scribes and illustrates six steps (a)–(f) to identify modifications to a set of

relationships. At the end of the section, we discuss issues that arise if

relationships are present initially. We use the following example schema,

with primary keys underlined:

DEPT(Dept#,Address) EMP(SS#,Dept#,Name,Age)

PROJECT(Proj# ,Dept#,Budget) TASK(Task#,Name ,Proj#,Due_Date)

(a) Create Relationships When Attributes Match. If two entities include a
single attribute of the same name, create a relationship, value-determined by

that attribute. If there are several pairs of attributes with matching names,

create a single relationship, value-determined by that set of attributes.

A decision to create a relationship determined by either nonkey attributes

or by multiple matching attributes ought to be reviewed by the designer.

With nonkey attributes, the relationship is likely to be spurious. With multi-

ple matching attributes, some of the matches may be spurious, or they may

represent different relationships. The heuristic can be improved incremen-
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tally, by making detection of matching attributes more intelligent, e.g., by

identifying matches based on knowledge of prefixes and suffixes (e.g., DEPT,

Dept#, Dept_No), a thesaurus (Worker, Employee), or sound-alikes.

Example. The above schema is augmented by the following five hypothe-

sized relationships (later steps will find one of these to be redundant and

another meaningless):

Synthesized relationship determined bv

DEPT.EMP Dept#
DEPT_PROJECT Dept#
EMP.PROJECT Dept# /“ redundant*/
PROJECT_TASK Proj#
EMP_TASK Name /’ meaningless “/

(b) Infer Maximum Participations. If a value-determined relationship

includes the key attributes of one entity, then maximum participation in that

direction is 1 (using the rearrangements in Section 3.4). For example, maxi-

mum participation is 1 from EMP in DEPT_EMP; from PROJECT in

DEPT-PROJECT; from TASK in PROJECT. TASK.

(c) Guess Inclusion Pattern from Foreign-Key References. Suppose R is
value-determined by matching E l[A1] and E2[A2], while maximum participa-

tion is 1 from E2 to E 1, and unconstrained in the other direction. The

structure appears to be a foreign-key reference for a l:n relationship, so guess

that El[Al] ~ E2[A2].

Example. The following inclusions are guessed:

DEPTIDept#l > EMP[Dept#]
DEPT[Dept#] > PROJECTIDept#]
PROJECTIProj#] ~ TASIQProj#]

Example. We do not guess inclusions for 1:1 relationships. To see why,

notice that in the following schema the three relationships that one can infer

based on SS# give no syntactic clue for guessing inclusions (or which concept

is the generalization):

PERSON(SS#,Name,Age)

EMP(SS#,Salary)

STUDENT(SS#,Grade_ Point)

As can be seen from the previous examples, relationship creation—despite its

benefits-suffers from redundancy, nonsense, and omissions. To ameliorate

these problems, DDEW included steps (d)–(f) below.

(d) Identify and Delete Redundant Relationships. Relationships that
are provably the composition of other relationships are identified and may

be deleted. This step is needed because schemas synthesized by rules

(a)-(c) contain some relationships that humans see as derived rather than
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fundamental. Section 4.2.2 describes the detection algorithm, which provides

some new theoretical results,

(e) Delete Relationships Derived from Meaningless Matches. While many
relationships created by our heuristics are meaningful, some are based on

nonsensical matches (e.g., TASK.Name and EMP.Name). Exhortation to check

tool results will be quite ineffective. Therefore, DDE W has two mechanisms

to bring such situations to the user’s attention. First, value-determined

relationships based on nonkeys are visually distinguished, since they are

particularly likely to be spurious. Second, our tool draws the user’s attention

to each created relationship by requesting a meaningful name to replace the

temporary name.8 Manual deletion is fast for relationships deemed spurious

by the user.

(f) Detect Inadvertent Omissions (where possible). DDEW includes a
primitive navigational, model-independent language in which designers are

asked to specify transactions, as part of conceptual design. These transac-

tions supply an additional check on the completeness of a schema. If a

designer-specified transaction references two entities that are not connected

by a relationship, DDEW generates a warning. After this step, redundant

attributes may be removed (Section 3.3).

For schemas that already have relationships, steps (a)-(f) can be applied to

suggest additions, deletions, and new constraints. For example, if these steps

were applied to a schema produced by view integration, they could identify

relationships between entities that came from different user views and

identify redundant relationships introduced by view integration. As with

normalization, it seems unwise to simply modify a schema based on such

suggestions. It is preferable to treat the suggested relationships as part of a

new schema that is to be integrated with the original one, which is generally

more trustworthy.

4.2.2 Redundant Relationships. Step (a) above may also create unneces-

sary relationships. Unnecessary relationships clutter a schema, making it

hard to understand, transform, and lay out clearly in a diagram. Additionally,

value-determination constraints on an unnecessary relationship can prevent

removal of a redundant attribute along another relationship. This section

therefore explores criteria for identifying relationships that can be deleted.

The difficulty lies first in getting a suitable definition of “unnecessary,” and

second, in finding an easy way to determine which relationships satisfy that
definition.

Our result is a composition-based theory that appears to be substantially

superior to competing approaches in its ability to eliminate unnecessary

relationships and in its minimal need for human-supplied information. A

relationship R is considered to be unnecessary if it is both semantics-unneces-

8The relationship creation tool generates a temporary name as the concatenation of entity
names, with an underscore as separator. Duplicate names are detected and given an integer
suffix.
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sary and content-unnecessary. Unnecessary relationships are deleted at step

(d) of 4.2.1.

—R is semantics-unnecessary if (1) it is the composition of other relation-

ships in the schema (so that its population can be obtained by joining

together those other relationships) and (2) the user has given no hint that

the relationship is semantically useful (i.e., neither created it nor renamed

it manually).

—R is content-unnecessary if deleting R leaves the schema’s information

content unaltered. A value-determined relationship’s population is de-

ducible from entity populations. Hence it will be content-unnecessary if all

attached constraints are redundant. Non-value-determined relationships

are content-unnecessary only in the rare cases where someone has sup-

plied an explicit formula for computing the relationship’s population (Sec-

tion 4.2.3).

The concept of “semantics-unnecessary” is an attempt to capture those

relationships the designer really wants to keep visible. Information content is

not a sufficient criterion—for example, it would lead to the deletion of nearly

all relationships as soon as they had been converted to be value-determined.

This deletion would lose the structure of the schema and the opportunity to

attach additional constraints.

DDEW uses the Composition Theorem below to test the semantics-

unnecessary condition. The main usage was for relationships created by step

4.2. l(a); these relationships were value-determined, had few known con-

straints, and often had not yet been seen by the user (since (a)–(c) were

automated).

COMPOSITION THEOREM FOR RELATIONSHIPS THAT SHARE COMMON AT-

TRIBUTES. Consider the value-determined relationships shown in Figure 4, in

which R13 and R23 are determined by a subset of the attributes determining

R12. (The A and B attributes match, and A’ and B’ match.) Suppose also

that E2[B,B’] > E1[A,A’]. Then R13 is the composition of R12 and R23.

PROOF. To show that R13 equals the composition R12*R23, we show set

containment in each direction.

(1) To prove R12*R23 is contained in R13, suppose (el,e3) = R12*R23. By
definition of composition, R12”R23 = {(el,e3) \ 3e2 such that (el,e2) =

R12 and (e2,e3) e R23}. Because R12 is value determined, el[A,A’] =

e2[B,B ‘]. Hence, el[A] = e2[B]. Since R23 is value determined, e2[B] =

e3[C]. Hence el[A] = e3[C], so (el,e3) ● R13.

(2) TO prove R12*R23 contains R13, suppose (el,e3) c R13. Then el[A] =
e3[C], and el[A] is nonnull. Since E2[B,B’] > E1[A,A’], 3e2 such that

e2[B,B’] = el[A,A’]. Hence e2[B] = el[A], so e2[B] = e3[C]. The equalities

and the fact that R12 and R23 are value determined imply that (e 1,e2) ●

R12 and (e2,e3) ~ R23. Hence (el,e3) is in R12*R23. ❑

Example: “Horizontal” Shortcut. In Figure 5, the relationship EMP-
PROJECT guessed in 4.2.l(a) is redundant. EMP–PROJECT must be the
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El [A,A] matches E2[B,B]

E2[B,B’1 contains symbol C El [A,A] E2[B] matches E3[C]

El[A] matches E3[C]

Fig, 4. Composition of relationships.

6DEP~Dept#] D EMP[Dept#]

DEPT
_EMP LEPT_

ROJEC

& “’’’’’’’’’’’”&,,,$’EMP_ II,
‘F--------- PROJECT(..., Dept#, )‘--’”----’’-lI~JE~jIE~jI

1!, ,,
!,,,,,’

Fig. 5. “Horizontal” shortcut.

composition of DEPT. PROJECT and DEPT–EMP (by the Composition Theo-

rem, with A = B = C = (Dept#), A’ = B’ = ~).

Such “horizontal-shortcut” relationships can substantially complicate a

schema and indeed were the spur for creating our theory of relationship

deletion. If n entity types reference DEPT using Dept# as a foreign key, then

n(n – 1’)/2 redundant “horizontal” relationships are generated. As long as

one inclusion dependency was available, our algorithm was able to delete

these relationships.

Example: “Vertical” Shortcut. In Figure 6, the relationship between
STATE and STREET is redundant. The Composition Theorem appears to be

far more powerful than competing techniques (discussed in the next section).

It requires very little information from users and applies in a wide range of

situations. It is oblivious to keys and requires only a single inclusion to be

present. Unnecessary relationships created in 4.2. l(a) often are deleted with-

out ever being seen by the designer—a major advantage. To see the general-

ity of situations that the Composition Theorem can detect, note that the

vertical shortcut applies (the redundant relationship can be deleted) even

though the database can contain (rural) streets with null city and\or state

ACM Transactions on Database Systems, Vol 19, No 2, June 1994,



Practical Database Des[gn . 195

~“’’’’’’’’’’’’’-’’’’’’’’’’’’””:o(determined by
State_Name)

I
CITY(Ci~_Name, State_Name, ...)

I

,,,,“’’’’1,:,(determmedby
‘,, State_Name),!,,,,,,’

‘0(determined by
City_Name, State_Name)

I

STREET(Street_Name, City_Name, State_Name, . ..) . . . . . . . . . . .

Assume Ci~Cit y_Name, State_Name] ~ STREET[City_Name, State_Name]

Fig. 6. “Vertical” shortcut.

‘7(1’>@-(’N)-(IIk@-(INtiT

‘(1--6+-(’N)J
Fig. 7. Is relationship “ATTENDS” redundant?

names, (foreign) cities that are not in states in the database, states whose

cities are not part of the database, and identically named streets within a

city.

4.2.3 Related Work on Vertical-Shortcut Rules. Alternative approaches to

identifying unnecessary relationships appear to be significantly less powerful

than ours. We consider two cases: (1) vertical-shortcut rules without value

determination and (2) approaches based on inclusion dependencies.

Vertical-shortcut rules have been used in design algorithms proposed

previously [Klug 1979; Teorey et al. 1986]. But without value determination,

there is no formal information in the schema to enable a tool to determine

whether a relationship is redundant. Consider the example in Figure 7, in

which it is recommended that the relationship ATTENDS be dropped [Teorey

et al. 1986].

Segev [1987] observes that the above diagram does not itself determine

whether ATTENDS is redundant. He therefore asks the user to provide

additional constraints, e.g.,

IS_ MEMBER(Student, Club) and ATTENDS(Student, School) *
LOCATED_ IN(Club, School)
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We fear that there is little hope of motivating designers to supply constraints

on triples of relationships—the number of triples is quite large, and straight-

forward manual deletion might be preferred. In ER + , the designer’s duty is

composed of smaller steps, simply checking on the determining attributes

of each relationship individually. Information implicit in having value-

determined relationships over the same attributes then disambiguates the

situation. The designer would model the above situation as follows.

Entity

STUDENT(Stud#,Club#, SchooI#, . ..)
CLUB(Club#, SchooI#, . )
SCHOOL(School#, . )

Relationship Value-determined by

LOCATED.IN(CLUB, SCHOOL) School#
ATTENDS(STUDENT, SCHOOL) School#
IS.MEMBER(STUDENT, CLUB) Club#,School#

Constraint

CLUBIClub#,School#] o STUDENTIClub#,School#]

Both the value-determined constraint is IS–MEMBER and the inclusion

constraint involve multiple attributes, so it makes sense to flag them for

designer attention. This notification would explicitly raise the issue of whether

the attribute STUDENT[ School#] that determines ATTENDS is the same as

the School# at which his or her CLUB is located. In this example shown, the

affirmative answer is captured by the inclusion. Thus the Composition Theo-

rem applies, and the relationship is redundant.

A second approach is to base redundancy detection on inclusion dependen-

cies in relational databases, under the (limiting) assumption that the only

relationships to be considered are ones that involve inclusions. The theory of

inference for inclusions is adequate to handle simple patterns in common

cases of vertical shortcuts [Cosmadakis and Kannellakis 1984]. However, that

theory is of no help if one has relationships that are not based on inclusions

(e.g., horizontal shortcuts) or that involve entities and relationships for which
the user has not yet specified all constraints. The Composition Theorem

handles all these cases, and many more besides.

4.3 View Integration

The research literature on view integration (see Batini et al. [1986] for an
overview) consists principally of careful case-by-case heuristics for resolving

particular types of mismatches between schemas (e.g., conditionally merge-

able relationships [Navathe et al. 1986]). A contrasting approach is given in

Biskup and Convent [1986] and Casanova and Vidal [1983], which give a

rigorous theoretical treatment of integration of relational views.

As system builders, our goals were more global and pragmatic. Over

schemas containing numerous different constructs (entities, relationships,

constraints, datatype declarations, annotations), we needed to detect corre-

spondences and conflicts, to acquaint the designer with the conflicts and
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potential conflict resolutions and to construct automatically a global schema

that preserves and combines the available information.

View integration performs integration of objects at multiple conceptual

levels—schemas having entities and relationships, entities having attributes

and constraints, attributes having constraints and datatypes. With minor

exceptions, we used the same series of processing steps at all levels. This

regularity greatly simplified implementation and user understanding. Early

users of the system reacted quite positively. Although the theory and capabil-

ities of our view integrator were limited, the contribution was that the

regularity of view integration (based on the nesting of the information being

integrated) enabled a very useful heuristic tool to be built with surprisingly

little effort.

The tool helps to merge two views into a single ER schema. First, the view

analyzer component of the tool detects conflicts in the two views and reports

on them to the designer. Second, the designer manually resolves some or all

of the conflicts in the source schemas. Third, the view synthesizer component

of the tool merges them into one, resolving any remaining conflicts. (We give

more details on these three steps next.) The entire view integration process is

tracked graphically at the schema level in DDEWS design tree.

Conflict Detection by the View Analyzer. The first step is to run the view

analyzer that detects synonym and homonym conflicts, at several levels of

detail. This tool examines names, key patterns, and other structural similari-

ties. For example, suppose El and El’ in Schema 1 correspond to E2 and E2’

in Schema 2. If Schema 1 has a relationship between E 1 and E 1‘, and

Schema 2 has a relationship between E2 and E2’, the analyzer guesses that

the relationships correspond, and informs the user. For objects that appear to

correspond, the analyzer detects conflicts in their constraints and other

details. For example, corresponding entities may not have identical key

declarations and attributes; corresponding relationships may differ in their

participation constraints, inclusions, and value determination. To aid ease-of-

use, DDEW avoided technical terminology when reporting results to the

designer. Rather than referring to “synonyms,” the view analysis report

flagged objects with “different types but the same names” in both schemas.

Entity and relationship conflicts were flagged as the most serious; conflicts

involving attributes were described as less of a problem.

Conflict Resolution. Next, in a manual phase, the designer is asked to

modify one or both schemas to resolve ambiguities and conflicts. (This corre-

sponds to providing integration information in Navathe et al. [1986 ].) While

examining the tool report from the conflict detection step, the designer

renames, modifies, or deletes entities, relationships, and attributes as needed.

Objects which are not the same should be given different names. Conflicts at

the attribute level are not so serious, but differences in relationship participa-
tion may signal totally different ways of thinking about the database. For

example, in one schema, employees must belong to a department; in the

other, EMP entities need not be linked to DEPTs. The designer must decide
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which semantics are correct and adjust the schemas accordingly. Another

strategy is to recognize when objects are part of a generalization hierarchy.

View Synthesis. Finally, the automated view synthesizer tool merges ob-

jects with the same names, comparing and matching attribute lists and

constraints. For each type of construct (e.g., entities, attributes, datatypes),

there is a rule for combining information (union, intersection, or designation

of one schema as a more reliable “master” schema). The tool also adds any

additional (nonmatching) objects from the two schemas. Unfortunately, it did

not produce instance mappings among the various schemas.

5. THE ROLE OF DATABASE THEORY IN PRACTICAL DATABASE DESIGN

Theory affects database design practice mostly by being embodied in design

systems. Consequently, the applicability of dependency theory and other

formal models to database design must be judged in terms of how the theory

can contribute to such systems. During initial system design (1983), the only

ER schema rearrangements we found in the literature were: elimination of

redundant constraints and schema normalization based on functional depen-

dencies [D’Atri and Sacca 1984]. But this latter technique required a dubious

assumption (URSA), forbade nulls and other constraints, and was not in a

model that a design system could present to its users. Techniques for rigorous

transformations between models (e.g., Casanova and Amarel de Sa [ 1984] and
Markowitz and Shoshani [1989]) provided a good theoretical setting, but only

for a relational target DBMS.

Some recent work has gone further, for example, using a unified underlying

model to support heterogeneous data model mappings [Kalinichenko 1990],

or offering the designer a choice of alternative logical transformations on a

conceptual generalization hierarchy [ Oertly and Schiller 1989]. There have

also been improvements to underlying algorithms such as normalization

[Diederich and Milton 1989], to constraint specification [Markowitz 1990],

and to graphical formulation of design semantics and process [ Sockut and

Malhotra 1988].

In fairness to theoreticians, while system builders have sometimes com-

plained that much database theory is irrelevant to database design, they

have published few explicit suggestions about what sorts of results are

needed. Next, we contrast the interests of the two groups and then suggest

practically motivated theoretical questions that can be asked about a new

concept.

For an overview of current automated design tools, both research-oriented
and commercial, see Ram [1993] and Reiner [1991].

5.1 Differences in Perspective between Theoreticians and System Builders

Differing views about what is critical in a design system maybe one cause of

the mismatch between database theory and the needs of system builders. To

the theoretical community, the crucial issues are well-specified, elegant,

formal models, possibly incorporated into tools that are in some sense correct

and complete. However, in current commercial database design systems, the

bedrock functionality is to capture, store, and display information, i.e., to
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support an intelligent wall chart. Theoretical completeness of the set of

transformations is not a burning issue, since a low-level editor has the power

to make any change. Global consistency is not assured after each edit

operation—it is accepted that parts of a design (e.g., requirements and the

conceptual schema) are sometimes out of synch.

Ideally, a practical design system will capture, manipulate, and propagate

any kind of information it is handed. It must therefore have an information

model that includes not only the formal aspects of the data model, but also

associated information that receives little theoretical attention, such as an

entity’s name, screen position, creation date, person responsible, arbitrary

constraint predicates, and free-text commentary. Transformation and inter-

model translation tools cannot manipulate just the formal schema; a designer

would hate to start with a fully annotated ER diagram and end up with a set

of normalized relations! Though some formal tools exist, they are decidedly

secondary in the real world.

System builders are driven by the fact that all steps in the design process

must be accomplished, so that any action that a tool does not perform must

be handled by the designer. Imperfect tools plus human guidance and over-

sight may lead to better designs than an unaided designer with a huge

clerical burden and no help in avoiding careless errors. Modules of functional-

ity are therefore important; doing part of a job is still helpful.

Even when a transformation removes a theoretical difficulty, it may impose

an unreasonable practical cost. For example, entity splitting (based on differ-

ent roles) removes cycles from schemas, but increases the size of the schema

that a designer must comprehend. Similarly, a schema with null-allowed

attributes may be transformed to one without nulls. But there may be

excessive costs in forcing the designer to look at an unfamiliar or larger

schema, to rewrite code, or to endure bad performance.

5.2 Suggested Additions to the Theoretical Agenda

When attempting to apply existing theory during the design of DDEW, we

encountered several kinds of issues that required theoretical expertise but

were generally omitted from theoretical papers. Theory can contribute more

to the design of real systems if these concerns—comprehensibility, robust-

ness, and graceful degradation-receive higher priority in research efforts

and also in surveys of available theory.

Comprehensibility. Even the best algorithms are useless to DDEW, or any

other design system, if input data cannot be obtained from the designer. The

formulations in the mathematical literature naturally emphasize generality,

elegance, and mathematical convenience. But system builders need compre-

hensible displays or dialogs that can elicit dependencies and other informa-

tion from a corporate data administrator. For complex dependencies, theoreti-

cians are better qualified than system builders to suggest accessible alterna-

tive formulations equivalent to the original. Where there is no accessible

formulation—even a slightly weakened one—the dependency will surely not
be directly usable in DDEW or any other system. This may be a signal

(ideally, detected early) that the dependency is not fundamental.
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Robustness. Both an initial list of dependencies and a first-cut database

design gathered from a designer ought to be reasonably robust against likely

schema changes. Unfortunately, during the design of DDE W we did not find

any analyses of robustness for the more complex types of dependency. After

the system was completed, Ling [ 1986] proved that existing multivalued

dependencies (MVDS) must be reexamined after addition of any attributes.

Since attribute addition is common even in mature schemas, a wise adminis-

trator may decide that other activities will yield a greater return in schema

quality. This weakness alone seems sufficient to rule out the use of MVDS in

practical database design.

Graceful Degradation of Tool Algorithms. Many algorithms impose sub-

stantial restrictions on the input schema (e.g., typed inclusions, single-

attribute keys, no nulls). But the needs of a single algorithm or tool cannot

determine what information should be captured by the system. Furthermore,

a tool need not be considered inapplicable just because a schema contains

some local problems. Two ways that a tool could be modified to degrade

gracefully are outlined next.

First, offending portions of a schema can sometimes be left untransformed.

Suppose that an object (entity, relationship, or attribute) is subject to a

constraint that is not understood by some tool. The tool can then treat this

constraint as uninterpreted and refrain from modifying that object in produc-

ing the result schema. The damage is localized. Additionally, this technique

makes the system must more extensible—it is not necessary for the internal

code of each tool to know all of the types of information that can be captured

by the system. New constraints can be added without modifying the imple-

mentation of existing tools. This “no-op” strategy does require that the

transformation’s input and output be represented in the same data model.

Superficially, this approach bears some relation to the encapsulation encoun-

tered in object-oriented development environments; the difference is that

here the hidden information is essential, but is just not manipulable in detail

by older tool versions.

A second approach is for the tool to produce its output as if the difficulty

did not exist, but to identify part of its output schema as unreliable. This can

reduce the designer’s clerical burden, while leaving little danger of an unex-

amined error. Displaying dubious decisions or missing information in red is

far more effective than urging designers to examine the entire output schema.

Partially Specified Schemas. Existing theories of schema equivalence,
including ours, assume that one manipulates database schemes. Our tools

were also able to transform partially specified schemas, which had “don’t

know” (denoted “?”) entries for participations and some other constraints. It

was clearly wrong to treat “?” as “no constraint,” so we attempted to propa-

gate the uncertainty appropriately. We are currently producing a theory to

guide “correct” transformations of schemas that include “?”.

Surveys Aimed Also at Practitioners. System builders work under severe
time pressure. At best, some may read survey papers and follow promising
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references. Therefore published surveys need to contain pointers on practi-

cally motivated questions such as the ones above.

6. CONCLUSIONS

We described the tools in DDEW, a comprehensive system for database

design, and showed how they work together to support the design process.

The system uses a rigorous, information-content-preserving approach to

schema transformation, but combines it with heuristics, guesswork, and user

interactions. Within the integrating framework of DDEW, we took unusual

approaches in three areas:

—A unified underlying data model (ER + ) for all processing, including

conceptual, logical, and physical design.

—A reusable and composable library of content-preserving rearrangement

transformations of varying granularity.

—Heuristic tools for normalization, relationship refinement, and view inte-

gration that improve schemas in a nonrigorous but interactive fashion.

Unified Underlying Data Model

Building the system over a unified underlying data model enabled the same

tool code to be run under many different circumstances, minimizing both the

learning burden on users and the implementation effort by system builders.

Both the code and the theory on which it is based are effectively shared

among multiple target models, including the three classical data models. The

contribution of ER + is less in its specific constructs than in showing that it is

possible to meet a very large number of system needs, while keeping model

complexity and redundancy manageable. Because ER + is ubiquitous, DDEW

is not limited by a deep, permanent decision about which data is visible at

each step of design. Tools are also robust; if an intermodel translation tool

cannot handle part of a schema, that part is left unchanged; the schema

remains a valid ER + schema.

Content-Preserving Rearrangements

A design system ought to ensure that a transformation between equivalent

schemas will not introduce new errors into the modeling of the real world. If

late transformations can introduce errors, correctness depends on the de-

signer’s final check, instead of on the union of all accuracy checks in the

design process. DDEW showed the feasibility, utility, and costs of a more

rigorous approach—defining and exploiting rearrangement transformations

whose outputs are guaranteed to be content equivalent to their inputs.

We presented a core set of small but fundamental rearrangements, from

which we were able to build larger tools and transformations that were still
formally justified. Rearrangements in DDEW included: replicating the

attributes of an entity in related entities and (inversely) eliminating

such replication; converting a complicated relationship to an entity and two
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simpler relationships; inferring additional constraints and (inversely) re-

moving redundant constraints; creating keys; and translating among data

models.

Heuristic Tools

We described heuristic tools that attempt to improve a schema, often by

adding missing information. In these tools, unreliable techniques are bol-

stered by system-guided user interactions to remove errors. For normaliza-

tion, we showed that a user/tool partnership allows use of a less reliable but

more effective “global” normalization algorithm. To refine the set of relation-

ships, we alternated heuristic steps and rigorous inferences. In our experi-

ence, it was possible to synthesize automatically a credible set of relation-

ships for a relational schema. Declarations of value-determined relationships

provided crucial information for recognizing redundancy. Lastly, we provided

view integration for a complex system supporting many target data models,

using a consistent multilevel approach to detect and resolve conflicts.

The Role of Database Theory

We examined the relevance of database theory to building these practically

motivated tools and contrasted the paradigms of system builders with those

of theoreticians. Formal considerations played an important role in our

design, but the research literature was of surprisingly little use (except on

the subjects of schema equivalence and normalization of functional dependen-

cies). We needed to develop our own formulations to handle general sets of

constraints and multiple data models with one body of software. Despite

assertions that sophisticated dependency theory can aid database design, the

theory generally imposed unacceptable comprehension and schema analysis

burdens on designers, and techniques were insufficiently robust. This was

partially responsible for our emphasis on heuristics and user interaction.

Finally, we suggested an agenda for making theoretical work more useful

to system builders. Theoretical algorithms should be concerned with all the

information associated with a diagram and should exploit interaction with

the designer. Design information should be reasonably robust against later

schema changes and must be derivable from declarations that corporate data

administrators can supply. Tool algorithms should expect assumptions to be

violated and degrade gracefully. Theory should help a system support design

in a user’s favorite data model.

Summary

We believe that a combination of heuristics, rigorous transformations, and

planned interactions with the designer can indeed lead to powerful database

design tools. For initial conceptual design, where the input information is

unreliable, DDEW emphasizes heuristic tools and human interaction with

tool results. Once the schema becomes an accurate reflection of the real

world, further transformations are formally justified and preserve the

information content of the schema. Throughout, the unified underlying data
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model reduces redundancy and aids both heuristic and content-preserving

transformations.

APPENDIX: PROOFS FOR SECTION 3

This Appendix contains proofs that the formal transformations in Section 3

are indeed rearrangements. Below, E 1 and E2 denote entity types, and R

denotes a relationship between them. In the proofs, S1 and S2 denote the

input and output schemas of the transformation in question. s1 (and s2)

denote schema instantiations conforming to the structure and constraints of

S1 (respectively, S2). Each proof is preceded by a statement of the transfor-

mation, identical to the statement in Section 3.

A direct proof that a transformation is a rearrangement must demonstrate

that there exists an instance mapping (mapping of instances of source and

result schemas) that is injective, subjective, total, and generic. All reasonable

mappings are “natural,” so that condition will not be discussed further.

The proofs were simplified by using the following general techniques:

(1) Composition of rearrangements: A large rearrangement can sometimes be

designed as a sequence of small steps that are already known to be

rearrangements. Since the composition of injective functions is injective,

of total functions is total, and of subjective functions is subjective, the

composition of rearrangements is a rearrangement.

(2) Constraint rearrangements: When a transformation changes only con-
straints, then the “instance mapping” in the proof is just the identity

mapping. Proof complexity is reduced because the instance mapping

needs no complicated definition and is injective (l-l). One need only

verify subjective and total, i.e., that exactly the same set of schemas

satisfy the original and modified sets of constraints.

(3) Perturbing a known rearrangement: Consider a situation where a new
transformation that is alleged to be a rearrangement handles a tricky

constraint and where one already knows of a rearrangement that handles

schemas without that constraint. The verification of the difficult case can

begin by using the same instance mapping I as the easy case. One need

only verify total and subjective, since the instance mapping is known to be

injective. Hence, it is sufficient to define a mapping I-1 such that for any

schema S2 satisfying S2, I- 1(s2) satisfies S1 and 1(1- 1(s2)) = s2. Some

combination of these techniques may help in transporting theory among

data models.

Key Copying

—Copying a key Al of El across a non-value-determined relationship R

from El to I!2:

Preconditions for Applicability. R has at most one E 1 for each E2, and is

non-value-determined. Al contains a key of E 1 (i.e., is a key or a superset of a

key). E l[A1] is null-not-allowed.
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Result. Attributes Al are added to E2. R has

value-determined by Al. El[Al] o E2[A2]. If R was

E2[A1] is null-not-allowed.

The instance mapping I leaves all entities and

the constraint that it is

mandatory from E2, then

relationships unchanged,

except that each instance e2 of E2 is extended with attributes-Al represent-

ing a copy of the related E l[A1] (which was assumed to be unique). If there is

no related E 1, E2[A1] is null for each attribute in Al. The inverse map I-1 is

simply to delete Al attributes from e2.

Total. Old constraints are unaffected. el[Al] and e2[Al] will be equal and

the inclusion constraint satisfied if el and e2 are R-related, since E2[A1]

came from El[Al]. And since El[Al] is a key, e2[Al] will not match any el’

distinct from el; hence the other half of the value determination condition is

satisfied.

Surjectiue. I- 1(s2) is identical to S2 except that attributes of e2[Al] are

deleted. No constraint of S1 mentions e2[Al], and S has fewer constraints

than S2, so no new constraint violations could have occurred.

Injectiue. Suppose distinct instantiations S1 and s1’ are mapped to the

same s2. The only object where they can differ is E2, since other instantia-

tion are unchanged by I. Let e2 be in population(E2 = s 1) but not in

population(E2 ● S1’ ) (that is, in population in instantiation s 1 or s2).

Then I(E2 = s1) includes an instance extending e2 with el[Al], while

I(E2 ~ s 1‘) does not—a contradiction.

Additional Attribute Copying

—Copying attributes A3 across a value-determined relationship R from El to

E2:

Preconditions for Applicability. R has at most one E 1 for each E2 and is

value-determined with E l[A1] matching E2[A2]. Al contains a key of E 1.

Result. E2 has the additional attributes A3. El[Al U A3] ~ E2[A2 u A3].

The instantiation mapping is the same as for key copying.

Injectiue. The key-copying proof of injective still applies.

Total. The only new constraint is inclusion; it is obviously satisfied.

Surjectiue. The only constraint of S 1 that does not appear in S2 is the

inclusion E l[A1] > E2[A2], which is strictly weaker than E l[A1 u A3] >
E2[A2 u A3].

Attribute removal is the inverse of attribute copying, and hence is a

rearrangement.

Inferring Constraints for Value-Determined Relationships

—Inferring maxim urn participation:

If Al contains a key of E 1, impose the (maximum participation) constraint

that at most one E 1 instance participates in R12 for each E2.
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PROOF. Suppose el and elf are both related to e2. Then el[Al] = e2[A2]

= el’[Al]. But since Al contains a key, el = cl’. ❑

—Inferring inclusions and null-not-allowed:

If membership in R12 is mandatory for E2 instances, then: El[Al] >

E2[A2], and E2[A2] is null-not-allowed.

PROOF. For any e2, the required el that matches e2 must have the same

(nonnull) value el[A] = e2[A2]. For the next example, suppose that instead of

specifying minimum participation nonzero, the user had specified null-not-

allowed and inclusion constraints. ❑

—Inferring minimum participations:

If E l[A1] includes E2[A2] and E2[A2] is null-not-allowed, then minimum

participation of E2 in R12 is at least 1.

PROOF. Consider any instance e2. e2[A2] must be nonnull, and hence

there must be a corresponding el such that el[Al] = e2[A2]. And el is

R12-related to e2, by value determination. Hence the participation of e2 in

R12 is at least one. ❑

Key Creation

—Creating a primary key for a keyless entity E2:

Suppose that E2 has minimum. participation = maximum–participation =

1 in R12. And suppose E 1 has a primary key K1 that can be copied across

relationship R12 to E2 (using the key-copying rearrangement of Section 3.2).

{If El also has maximum_ participation= 1 in R12, then
(1) Copy K1 into E2 and declare copied attributes K2 a key of E2;

else If R12 has a null-not-allowed set-key SK, then
(2) Copy key KI of El into E2 (as K2) and declare (SK u K2) a key of E2;

else
(3) create a surrogate key for E2 as described below}

Step (2) uses key copying, which is already known to be a rearrangement. The

proofs for (2) and (3) are simple demonstrations that the extra key con-

straints introduced by the second and third clauses were already implied by

the other constraints. (The text has already argued that surrogate creation

did not really add information to the schema.)

PROOF OF (1). Suppose El has maximum_ participation = 1 in R12. To

show that K2 is a key, we show that any E2 instances e2 and e2’ such that

e2[K2] = e2 ‘[K2] must denote the same entity. Since max participation is 1,

e2 and e2’ must have received their keys from different E 1 instances, denoted

el and cl’. By value determination, el[Kll = e2[K2] = e2’[K2] = el’[Kll.

But since K1 is a key of E 1, el = el’; hence e2 and e2’ must be identical, i.e.,

I&Z is indeed a key of E2.

PROOF OF (2). Suppose R12 has a null-not-allowed set key SK. Consider

any pair of E2 instances such that e2[SK U K2] = e2’[SK U K2]. To show
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that SK U K2 is a key, we show that e2 and e2’ must denote the same entity.

By the same argument as above, e2 and e2’ must correspond to the same

entity el. So we know e2 and e2’ agree on SK and are related to the same

instance of El. By definition of “set key,” e2 and e2’ must be the same entity.

❑

Converting a Non-Value-Determined Relationship to Entity

For convenience in proofs, we define a new model construct, a m ultiset

relationship, whose population is a multiset of entity pairs. A relationship is

a multiset relationship subject to the constraint that the entity pairs not be

duplicates. Our proof strategy is to show first that steps (a)-(c) of the

transformation in Section 3.6.1 constitute a rearrangement for a multiset

relationship R. 12, and then to bring in the uniqueness constraint.

Multiset, Non-Value-Determined Relationship to Entity

—Converting a non-value-determined, multiset relationship R12 ( between

entities E 1 and E2) into a new entity and two new relationships:

The steps in the transformation are:

(a) Create a new entity, bearing the name of the relationship. Here we denote
the new entity E3.

(b) Create new relationships R13 and R23, constrained to be sets rather than
multi sets.

(c) Fix minimum (m) and maximum (M) participations as shown below.

E1—(ml,Ml)—(R12 )—(m2,M2)—E2 is rearranged to:

E1—(ml,Ml)—(R13 )—(1,1)—E3—(1,1) —R23—(m2,M2)—E2

PROOF. Define an instance map I that leaves objects other than R12

unchanged. It populates E2, R13, and R23 by:

population = one instance for each R12 instance (el,e2).

population(R13) = {(el,e3) I e3 corresponds to an R12 instance (el,x) for

some x}

population(R23) = {(e2,e3) I e3 corresponds to an R12 instance (e2,x) for

some x}

Total. E3 has no constraints, so the only constraints to verify are the

participation constraints imposed on R13 and R23. These follow straightfor-

wardly from the constraints on R12.

Subjective. Given an instantiation s2, obtain I- 1(s2) by deleting R13, R23,

and E3 and defining population(R12) as the multiset containing an instance

(el,e2) of R12 for each (el,e3,e2) where (el,e3) was in R13 and (e2,e3) was in
R23. We first verify the new constraints, i.e., participation constraints on R12.

Consider the constraint that each el have minimum participation k, i.e., at

least k pairs of the form (el,x) in R12. el had the same participation

constraint in R13, so there are at least k instances of the form (cl, e3) in R13.

Each e3 has exactly one R23-related e2, so there are at least k triples
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(e1,e3,e2) where (el,e3) is in R13 and (e2,e3) is in R23. These triples corre-
spond by definition to pairs (el,e2) in R12. (The proof for maximum participa-

tion is analogous.)

To verify that I does map I- 1(s2) to s2, we need to be more careful about

handling of the relation as a multiset of entity pairs. We assume that each

element of the multiset R12 has a unique label, i.e., that such multiset

members can be written (L:el,e2). Assume that when I and I-l map R12

relationship instances to and from E3 entity instances, the labels are at-

tached to the created instances. Then for each e3 instance (labeled L) in s2,

I-1 (s2) creates an R12 instance in S1 with that same label, connecting the

unique instances el and e2 that were related to e3. Applying I, we get back

the same e3 instance.

Injectiue. The proof resembles that of key copying. Suppose distinct in-

stantiation s 1 and s 1‘ are mapped to the same s2. The only object where

they can differ is R12, since other objects instantiations are unchanged by I.

Hence there must be a pair (el,e2) in one population (say, population(R12 in

s1)) that is not in the other population(R12 in S1 ‘). Then in 1(s1) (but not

1(s1’)) there is an instance e3 connected to el and e2. Hence 1(s1) and 1(s2)

differ, a contradiction.

Modification to Deal with a Duplicate-Free Relationship

—Converting a non-value-determined relationship R12 (between entities El

and E2) into a new entity and two new relationships.

We compose several other rearrangements to handle the constraint that

relationships have no duplicate tuples. The steps are:

Identify primary keys K1 for E 1, K2 for E2.

Copy keys K1 from El and K2 from E2 into E3.

Declare (Kl U K2) a primary key of E3.

PROOF. Let S1 denote the original schema, and let S1 - denote that

schema with the set relationship constraint omitted. Let S2 denote the result

schema and S2 - denote that schema with the key constraint on E3 omitted.

Let I and I-1 be the mappings from the proof of the previous transformation,

mapping instantiations of S 1- to instantiations of S2 -.

If the troublesome set relationship constraint did not exist, we know that I

would provide the desired mapping. We will show that the restriction of I to

S1 is again injective, subjective, and total.

Injective. A restriction of an injective mapping is still injective.

Total. We know that I provides a total mapping from S1 - to S2’. To show

that it is total from S1 to S2, we show that if S1 is an instance of S1 (i.e., the

set relationship constraint holds), the key constraint holds in 1(s 1).
The primary key attributes cannot be null, since they were copied from a

primary key, over a mandatory relationship. And suppose there were two

entities e3 and e3’ with the same values for (Kl U K2). These attribute
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values could only have come from a unique el (with that value of el[Kl]) and

a unique e2. That is, R12 must have had two appearances of the pair (el,e2),

violating the set relationship constraint, a contradiction.

Subjective. From the previous proof, we know that I provides a subjective

mapping from S1 – to S2 –, i.e., that if S2 is an instance of S2 then I – 1

satisfies the constraints of S1 –, and 1(1 – 1(s2)) = s2. Furthermore, we know

that 1(1- 1(s2)) = s2. So it remains only to show that 1-l maps S2 into S1, i.e.,

that the set relationship constraint holds in I-1 (s2).

I-1 populates R12 by creating one instance for each triple (el,e3,e2’). For

the set relationship constraint on R12 to be violated, S2 must contain e3 and

e3’ satisfying the following: [(el,e3) ● R13 and (e2,e3) G R23] and [(el,e3’) =

R13 and (e2,e3’) e R23].

Let K1 and K2 denote the key attributes of E 1 and E2 and also those same

attributes within E3. Since key copying produces a value-determined rela-

tionship, we have e3[Kl] = el[Kl] = e3’[Kl] and e3[K2] = e2[K2] = e3’[K2].

Hence, e3[Kl,K2] = E3’[K1,K2], which contradicts the constraint in S2 that

[K1,K2] is a primary key. ❑

Converting a Value-Determined Relationship to an Entity

—Converting a value-determined relationship R12 ( between entities El and

E2, by matching El[Al] and E2[A2]) into a new entity and two new

relationships R13 and R23:

The steps in the transformation are:

(a) Replace R12 by an entity E3 with attribute set A3 that is a copy of Al.
Null-not-allowed constraints are the same as in El, except that not all Al

attributes can be null. Declare A3 to be the primary key of E3.

(b) Create R13 between El and E3, value-determined by matching El[Al]
and E3[A3]. Impose inclusion constraints: E l[A1] o E3[A3] and E2[A2] >

E3[A3]. The participation constraints are shown below, where ml- de-

notes min(ml, l), ml+ denotes max(ml, 1), and m2 and m2 + are defined

similarly. E l—(ml,Ml)—(R12) —(m2,M2)—E2 is rearranged to:

El-(ml-,l)-(R13 )-(m2+,M2)-E3-(ml +,Ml)-R23-(m2-,l) -E2

(c) If R12 had an inclusion constraint E2[A21 o El[Al], impose the inclusion
E3[A3] > El[Al]. Otherwise, impose the (weaker) constraint that all

nonnull values in (E l[A1] U E2[A2]) appear in E3.

(d) Create R23 between E2 and E3 analogously to the creation of R13.

(e) Infer additional constraints based on key or “mandatory” constraints on
El and E2.

PROOF. We show that steps (a)-(d) produce a rearrangement. Adding

an additional rearrangement (step (e)) to a rearrangement still yields a

rearrangement.
The instance mapping 1(s1) (as illustrated in Section 3.6) creates an e3

instance with value e3[A3] for each nonnull value that appears in both
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El[Al] and E2[A2]. The populations of R12 and R13 are established by value

determination. Other entities and relationships are unchanged. The inverse

I-1 deletes E3, R13, and R23 and reinserts the value-determined relationship

R12.

Total. The null-not-allowed constraints on E3 hold, since el instances

were copied directly. Inclusions hold, since only values appearing in both

El[Al] and E2[A2] were copied. The populations of R13 and R23 were defined

by the value-determined constraints and so must satisfy them. Furthermore,

if E2[A2] > El[Al], then all values from E l[A1] generated tuples of E3, so

E3[A3] ~ El[Al] applies.

Now we must verify the participation constraints. We verify constraints on

R13; the proof for R23 is analogous.

—Verification of min_participation > ml-: If ml = O, ml-= O, and there is

no constraint. As long as ml > 0, el is R12-related to at least one e2; hence

there is an e3 such that el[Al] = e3[A3].

—Verification of “max-participation < l“: A3 is a key of E3, so only one e3

can match the value el[Al].

—Verification of “min_participation > m2 +”: For each instance e3, there is

at least one instance e2 such that e3[A3] = e2[A2]. By the minimum

participation on E2, at least m2 instances of E 1 match this value. At least

one matches, since e3 instances are created only when there are matching

values in both.

—Verification of “max-participation < M2”: For each e2, at most M2 in-

stances of E 1 can have el[Al] = e2[A2]. Hence at most M2 instances can

match the corresponding e3.

Surjectiue. Suppose S2 is an instantiation of S2. We show that 1- 1(s2)

satisfies the constraints on s 1 and that I – 1 is an inverse.

—Proof of constraint satisfaction: Since 1-1 populates R12 by value determi-

nation, R12 is a relationship satisfying the value-determined constraint.

—Proof that inclusions are satisfied: We consider the case where an inclu-

sion on R12 generated the constraint E3[A3] > El[Al] on S2. Since E2[A2]
> E3[A3] we have E2[A2] > E l[A1] in s2. Since I-l does not alter the

populations of El and E2, the constraint will also apply to 1- 1(s2).

—Proof that participations are satisfied: In S2, the number of e3 for each El

is at least (ml- *ml+) and at most (l*Ml). A case analysis (ml zero and

nonzero) shows that the first expression equals m 1. Hence the constraints

(ml,Ml) are satisfied.

—Proof that 1(1- 1(s2)) = s2, i.e., that 1-1 is an inverse: When I creates R3,

the population has one instance for each value matched between E l[A1]

and E2[A2]. The extra constraint introduced at step (c) says that any

population of S2 must have exactly that population for R3. (Inclusion

would imply this constraint.)

Injectiue. Suppose distinct instantiations of S1 (denoted S1 and S1’) are

mapped to the same instantiation S2 of S2. For every object x other than R12,
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I does not change the population. Hence s1[x] = s2[x] == s1’[x]. For R12, the

population is value determined; since E 1 and E2 have identical populations

in s 1 and s2, R12 must be identical also. Hence S1 and S2 have identical

populations everywhere ❑
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