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The number, size, and user population of bibliographic and full-text document databases are

rapidly growing. With a high document arrival rate, It becomes essential for users of such

databases to have access to the very latest documents; yet the high document arrival rate also

makes It difficult for users to keep themselves updated It is desirable to allow users to submit

profiles, i e., queries that are constantly evaluated, so that they will be automatically informed of

new additions that may be of interest, Such service M traditionally called Selectwe Dissemina-

tion of Information (SDI).

The high document arrival rate, the huge number of users, and the timeliness requirement of

the service pose a challenge in achieving efficient SDI, In this article, we propose several index

structures for indexing profiles and algorithms that efficiently match documents against large

number of profiles. We also present analysis and simulation results to compare their perfor-

mance under different scenarios.
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1. INTRODUCTION

With the improving cost effectiveness of secondary storage and the expanding

volume of digitized textual data, the number and size of bibliographic and

full-text document databases are rapidly growing. At the same time, the

number of users of these databases is also multiplying, as a result of the

proliferation of communication networks. Increasingly, such databases em-
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ploy Information Retrieval (IR) techniques [Salton 1989] for more effective

searching.

With a high document arrival rate, it is essential for users of these

databases to have access to the very latest documents. However, the high

document arrival rate also makes it difficult for users to keep themselves

updated using only retrospective searches, i.e., searches for documents that

are already in the database. It is thus desirable to allow users to submit

profiles, or queries that are constantly evaluated, to capture new documents.

This way, users are immediately and automatically informed of new addi-

tions that may be of interest. Such service should form an integral part of an

IR system, complementary to retrospective search.

Traditionally, libraries and databanks (e.g., Dialog) provide such service

under the name of Selective Dissemination of Information (SDI) [ Salton

1968]. Users submit interest profiles, which are saved and are periodically
run to search for additions after the last run. This style of brute-force batch

processing becomes inefficient as the number of users, profiles, and arriving

documents grows. Furthermore, it is becoming important to provide timely

service, instead of once a week or once a month.

The Netnews [Horton 1986] on the Internet can be considered as another

example of an SDI mechanism. However, in many cases it is not very effective

because it only provides a fixed number of broad categories. Thus, a user

interested in say “relational database systems” needs to receive and read all

articlesl in the newsgroup comp. databases, as well as other related news-

groups. Articles about relational database systems appearing in newsgroups

not explicitly subscribed to will not be seen. Also, it is the site administrator

who decides what newsgroups are locally available. Hence, the database

newsgroup may not even be available for this user. It would be more effective

if a user could specify profiles in the style of IR systems (e.g., find news items

containing the words “relational” and “databases”). The system could then

forward the matching documents to the user, regardless of what newsgroup

they fall into or what the local site administrator thinks is important. A

recent effort [Terry et al. 1992] to enhance the service provided by Netnews,

as well as some other related work, will be discussed in Sec-

tion 7.

In summary, an SDI service should have the following aspects:

—It should allow a rich class of queries as profiles, unlike Netnews.

—It should be able to evaluate profiles continuously and notify the user as

soon as a relevant document arrives, not periodically.

—It should scale to a very large number of profiles and a large volume of new

documents.

—It should efficiently and reliably distribute the documents to subscribers.

lCertain filter mechanisms (e.g., “kill file”) exist in news reader programs, but they are

rudimentary.
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In this article we address the first two aspects, and the third partially. We

consider a server that receives new documents and matches them against a

database of profiles. In particular, we present several index structures and

matching algorithms that the server can use.

To motivate the need for efficient SDI data structures, it is illustrative to

look at some statistics from Netnews. According to Reid [ 1993], as of January,

1993, the total number of Netnews readers worldwide is estimated to be 1.9

million, and estimates for the average traffic are 49.5 MB and 19,400

messages per day (counting cross-posted messages only once). If we consider a

Netnews SDI server that served a small fraction (say 57.) of this user

population, and each user had say ten profiles (of IR style), the server would

have to handle hundreds of thousands of profiles. To match this large number

of profiles against a daily influx of tens of thousands of documents in a timely

fashion, it is apparent that efficient data structures and algorithms are

needed. Furthermore, keep in mind that these Netnews numbers are for a

single information source today. In the future, one would expect many more

sources with even higher volumes.

Even though our matching algorithms will be shown to be efficient, the

single-server concept does not scale to truly large distributed systems. Con-

sider a population of users and a number of information sources in a

networked SDI environment. An SDI server collects information from a set of

sources and routes it to interested users. There can be multiple servers on the

network, each servicing a different set (maybe overlapping) of users and

information sources. Profiles can be posted at one or more servers, and

documents can be sent to one or more servers. We do not address the

architecture of such a distributed system here; however, our index structures

and algorithms can be directly applied to each of the distributed servers.

Thus, this work can be seen as the first but important step in achieving

efficient SDI on a global scale.
To illustrate the problems to be addressed in this article, let us consider a

simple example. Suppose a server has three profiles F’l = (a ~ b), Pz = (a A

c), and Pa == ( f). (The notation PI = (a A b) means that profile PI is sub-

scribing to documents that contain both words a and b.) Say a new document

D with words a, b, and e has arrived. One way to process D is to build a

hash table for D that lets us quickly tell if it has a given word. We can then

run through the profiles and check them. For example, we check that D has

a and b, and so we send D to the user that posted P1.

An improvement is to build an inverted index for the profiles [Belkin and

Croft 1992], which associates every word with a list of profiles that contain it.
Hence the word a has a list containing profiles PI and Pz; the list of b has

profile PI; that of c has profile Pz; and that of f has P~. The situation is

analogous to conventional IR [Salton 1989]. In that case, we receive a query

and check it against an index of documents. In the SDI case, we get a

document and check it against an index of profiles. In IR, to process the query

against the index, we perform set operations on the lists of the queried words,

and the result of the operations is the answer to the query. For example, the

AND ( A ) operator is processed by intersecting the lists; the OR ( v ) operator
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is processed by merging (union) the lists. In processing inverted lists of

profiles, we cannot use set operations directly. In our example, the intersec-

tion of the lists for the words in D (i.e., a, b, and e) gives us nothing (the list

of e is empty). And if we merge the lists, we get both PI and Pz, but Pz does

not match D.

However, all is not lost. The result of the union of the lists contains profiles

that potentially match the document: each shares at least one word with the

document. The merged list is a superset of the desired answer, and so we can

screen out the superfluous profiles by checking them against the document,

using the hash table as described above. With this strategy we avoid checking

all profiles, i.e., profiles that do not contain a, b, or e (PS in our example) will

not be considered. In this article we explore in detail changes that can be

made to this basic index structure and algorithm to make efficient the

screening of potentially matching profiles.

This study is part of the ARPA Electronic Library Project at Stanford. We

have implemented two preliminary SDI servers at Stanford to disseminate

Netnews articles and computer science technical reports. The reader is

encouraged to try out these services. For instructions on how to use these

services, send an electronic mail message to either elib @ db. stanford. edu (for

technical reports) or netnews@db. stand ford.edu (for Netnews) with the word

“help” in the message body. Instructions will be returned automatically. The

current versions of these servers are not efficient (they use the Brute-Force

Method with batching, described later on). However, as more users subscribe

to our servers, there is an obvious need for an efficient implementation, and

this motivated the work reported here.

Section 2 explains the terminology and assumptions we use. In Section 3

we describe several index structures and matching algorithms for profiles.

Details of our analysis and simulations used to evaluate the various strate-

gies are presented in Section 4. The performance evaluation results are given

in Section 5. We then discuss some extensions to our index structures and

algorithms in Section 6. Section 7 surveys related work. Finally, a conclusion

appears in Section 8.

2. TERMINOLOGY AND ASSIJMPTIONS

2.1 Documents

A document consists of a collection of words. ‘l’he set of words that can

appear in documents form the vocabulary. Words in the vocabulary follow a
frequency distribution that describes how often a word appears in a docu-

ment. The words have ranks: the word that appears most (least) frequently

has the highest (lowest) rank. In practice, such rank information can be

collected from a document database.

Traditional SDI services process documents in batches. If the document

arrival rate is high, it may be reasonable to batch the documents to reduce

processing overhead without sacrificing too much response time. On the other
hand, if response time is critical (e.g., documents are news stories or stock

market reports) it may be necessary to process documents individually.
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Hence we study both cases. For the bulk of the article, we assume documents

are processed one at a time as they arrive; batching and its performance will

be discussed in Section 6.3.

2.2 Profiles

Research in IR has given rise to many retrieval models, e.g., the boolean

model, the vector space model, and the probabilistic model, which are applica-

ble to SDI [Belkin and Croft 1992]. We focus on the boolean model, which is

the one used by most commercial systems (e.g., Dialog, LEXIS) and major

library systems (e.g., Melvyl at UC Berkeley, Folio at Stanford), and also

supported by new information systems such as freeWAIS [ CNIDR 1993]. It is

important to study other models also, and indeed, Yan and Garcia-Molina

[1994] report work on the vector space model.

In this article we focus on conjunctive profiles. We assume that a profile P

is a sequence of distinct words (w ~, w ~, . . . . w~ ). A profile matches a docu-

ment if all its words appear in the document. A user can submit a number of

profiles, and a profile may be identical to some other profiles in the system;

we assume each profile has a unique integer identifier. The algorithms we

present below can easily be extended to handle negation in profiles (e.g.,

select documents in which a word w does not alppear). For simplicity we

postpone a discussion of negation to Section 6.1. Profiles with logical ORS can

be handled by converting them to disjunctive normal form, in which case they

can be handled by converting them to disjunctive normal form, in which case

they can be handled as collections of conjunctive profiles. (Example: Posting

profile a ~ (b v c) is equivalent to posting (a A b) V (a A c), which is equiv-

alent to posting two profiles, one for a A b, the second for a A c.) Handling

general profiles as collections of conjunctive profiles may not be the most

efficient strategy, but again, we postpone this discussion to Section 6.1.

IR systems have a number of extensions to queries, such as truncation and

thesaurus expansion [Salton 1989]. The methods we propose can be aug-

mented to handle these extensions. The details are given in Section 6.2.

2.3 Index Structures

In the index structures presented below, for each word w, its inverted set of

profiles, i.e., profiles containing it, are organized into a list or a tree.z The

mapping that maps a word to the location of its inverted set on disk is

implemented as a hash table, called the directory. We assume that the

inverted sets are stored on disk while the directory fits in main memory. The

index structures do not store information about the subscribers of the pro-

files, such as their addresses (i.e., where a document is sent to once a match

is made). We assume such information is stored elsewhere on disk, referenced

by profile identifier. These assumptions are made to obtain a more concrete

scenario for presentation and evaluation. Other scenarios could be feasible,

but are simply not considered here.

‘As detailed below in Section 3, the set may or may not contain all the profiles containing w,
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We assume that words are encoded and stored in the index structures as

integers. Another option is to represent them as strings of characters. By

encoding them as integers, the space required for the index structures is less,

but we have to pay the cost of translation when the profiles are entered into

the index and when the documents come in. The tradeoff between these two

options is not addressed in this article. We assume that each word in the

vocabulary is uniquely identified by an integer word identifier.

The focus here is to devise index structures and algorithms that efficiently

process new documents for selective dissemination. The issue of how to

efficiently update the index as profiles are updated is not addressed. We

assume that the updates are batched; when a document is processed, we

check these updates also. Periodically the updates are installed into the

index. (This is similar to the solution used by commercial IR systems to

handle updates to a standard inverted index of documents.) As profiles

represent relatively long-term interests of users [Belkin and Croft 1992], this

seems a reasonable solution for now; we plan to study this issue further in

the future.

By focusing on inverted sets, we are not saying that other search structures

are not good for SDI. For instance, signature-based retrieval methods

[Faloutsos 1990] can also be used to speed up SDI processing (i.e., building a

signature file of profiles). However, for concreteness, we only study structures

of the “inverted-set” category. We do believe that inverted structures are

more appropriate for applications with uncontrolled vocabulary (e.g., full-text

searching where there are no restrictions on the text) like the ones we are

interested in, but we are not addressing this claim here. Further work would

need to be done to compare the performance of signature-based and inver-

sion-based methods for SDI.

3. INDEX STRUCTURES AND ALGORITHMS

In this section we present our profile-indexing methods, starting with an

enhanced version (called the Counting Method) of the basic solution outlined

in Section 1. For comparison, we also include the brute-force strategy.

To facilitate the matching process, the algorithms below make use of one or

both of these constructs: the distinct-words set, which is the set of distinct

words in a document, and the occurrence table, a hash table that maps a

word w to T if w is in the document, F otherwise.

3.1 The Brute-Force Methods

The Brute-Force Methods simply store profiles sequentially on disk without

any index structures. This way, all profiles must be evaluated whenever a

document arrives.

When a document arrives, we construct the occurrence table. Then we

examine each profile in turn. For a profile (conjunction-only) to match the
document, every word it contains must be in the document. We look up the

words one by one in the occurrence table and stop as soon as we find a word
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not in the document. If all the words appear in the document, the profile

matches.

If we have information about the occurrence frequency of words in docu-

ments, then it is possible to improve performance. The idea is first to look up

in the occurrence table the least frequent word in the profile, then the next

less frequent, and so on. This makes it possible to detect nonmatching profiles

faster, i.e., with fewer probes into the occurrence table. For a matching profile

we do not save anything since all words in the profile need to be probed. We

call this the Ranked Brute-Force Method. If we do not have information about

the frequency distribution, then effectively we have to look up the words in

random order. We call this the Random Brute-Force Method. We stress that

word ranking information may or may not be available. Thus, it is important

to study both types of strategies.

A profile is stored on disk as a variable-length record with several fields:

the profile identifier, the length of the profile (i.e., the number of words in the

profile), and the words.

3.2 The Counting Method

The problem with the Brute-Force Methods is that they must examine all

profiles for each arriving document. To improve, we must reduce the number

of potential profiles that need to be looked at. The idea is to build an inverted

index for the profiles. For each word, we collect all the profiles containing it to

form its inverted set. The inverted set for word w is stored as an inverted list

of postings; each posting contains (only) the identifier of a profile involving

w. Thus, a profile with K words will be found in K postings in K different

lists. When processing a document D, we only need to examine those profiles

in the inverted lists of the words that are in D. This way, the number of

profiles looked at is substantially reduced, since we only look at profiles that

are known to contain at least one word in the document.

Now with this structure, how do we match a document against the profiles?

The solution outlined in Section 1 is to simply merge the lists and then check

each profile in the resultant list. This checking is not necessary if we make

use of the following observation: an occurrence of a profile in an inverted list

examined means that one word in that profile is matched. Thus, if we count

the number of occurrences of a profile in the inverted lists looked at, we can

determine if the profile matches the document. This is called the Counting

Method.

To do the counting efficiently, we need two (main memory) arrays, TOTAL

and COUNT. (This method uses more main memory than the others.) The

number of entries in each array is equal to the number of profiles the system

handles. Each profile has an entry in each array: the TOTAL entry stores the

number of words in the profile, and the COUNT entry is used to keep count of

occurrences of the profile in the inverted lists. Assuming the number of words

in a profile is less than 256, each entry takes one byte.

When a document D arrives, we first initialize the COUNT array to all 0’s.

Then we construct the distinct-words set. For each distinct word, we use the

directory to get its list. For each profile in the list, we increment its entry in
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Sarrple Profiles
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P3 II P5
o

P4 P5

DISK

Fig. 1. Data structures for the Counting Method.

the COUNT array by 1. A profile matches a document when its COUNT entry

becomes equal to the TOTAL entry.

To illustrate, Figure 1 shows a set of sample profiles, a sample document to

be matched, and the various main memory and disk data structures. For

example, notice that the inverted list for word a contains the identifiers for

profiles PI, Pz, P~, indicating that these profiles refer to a. To process the
sample document, we take the first word a in the distinct-words set, retrieve

its list, and add 1 to the COUNT entries for profiles PI, P2, P3. We continue

with b, c, f, obtaining COUNT entries for PI, Pz, P~, Pl, and P5 of 2, 1, 1, 2,

and 2 respectively. For PI, its COUNT (2) is equal to its TOTAL (2), so PI

matches. Similarly, P1 matches.

As we have stated, we need only to keep the profile identifier in an inverted

list posting. Postings in the same list are stored sequentially, so there is no

need to have a pointer to the next posting.

3.3 The Key Methods

In the Counting Method, a profile (w 1, ..., w~) appears in K inverted lists. In

the Key Methods, a profile only appears in the list of one of its words. This

word is called the key. We can randomly pick one of the words as the key; this

is the Random Key Method. If the frequency distribution of words in docu-
ments is known, we can also use the Ranked Key Method and store the

profile in the list of the word with the lowest rank. The idea is to ensure that

the more frequent words have fewer profiles associated with them, and thus,
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Saqie Profiles
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Data structures for the Key Methods.

on the average, fewer profiles have to be examined per document. We

emphasize that word rank information may or may not be available. Thus it

is important to consider both types of strategies.

An inverted list posting for the Key Methods contains the profile identifier,

the length of the profile, and the words except the key. Postings in the same

list are stored sequentially in blocks.

For both Key Methods, when a document comes along, we build the

distinct-words set and the occurrence table. Then we index the directory to

retrieve the inverted lists of each distinct word. For each profile in each list,

we check if it matches the document (using the occurrence table).

Figure 2 shows the directory and the inverted lists (arranged using the

Ranked Key Method, assuming word a has the lowest rank, b the second

lowest rank, and so on) for some sample profiles, and the occurrence table

and distinct-words set for a sample document. Notice for instance that PI is

in the a list but not in the b list. To process the document, we look up words

a, b, c, and f in the directory. Word f has no profiles associated with it, so its

list is empty. We read in the list of, say, a first and check the profiles in the

list. For the first profile in this list (Pl ), we look up the word b in the

occurrence table, which is in the document. Since there are no more words in

the profile, PI matches the document. Then we go on to the next profile, Pz.

We lookup d, which is not in the document; thus Pz does not match. Finally,

we look at P~. There are two words we need to check: d and e. Suppose we

look up d first. It is not in the document, so P~ does not match the document.

The lists for words b and c are processed in a similar fashion.

3,4 The Tree Methods

With users interested in the same area submitting similar profiles, it is likely

that a large number of profiles have similar words. Using this observation, it

ACM Transactions on Database Systems, Vol. 19, No, 2, June 1994.



Index Structures for SDI . 341

is possible to store the profiles more compactly than lists. A possibility is to

use a trie-like structure [Aho et al. 1983].

Consider a profile P of K words, (wl, Wz, ..., w~). We call (wl, ..., w,) a

prefix of P, O < i < K; the corresponding postfix is (w, + ~, ..., wK ). For

example, ( ), (a), and (a, b) are all prefixes of profile (a, b), with correspond-
ing postflxes (a, b), (b), and ( ) respectively. We also call (w ~, . . . . W]) a prefix

of(wl, . . ..wl). i >j. Aprefix(wl, ..., w,) identifies P if i = K or if there is no

other profile, except those identical to P, that has (w ~, ..., w;) as a prefix. The

shortest prefix that identifies a profile is the identifying prefix for that

profile. Note that a prefix is the identifying prefix of two profiles if and only if

they are identical.

The identifying prefixes of the profiles are organized into a tree. The root is

at level O. A node n at level i corresponds to a prefix o = (W I,..., w,) of some

identifying prefixes. All prefixes identical to m are represented by the same

node n. Its children are nodes corresponding to prefixes (w 1, ..., w,, u ) of

some identifying prefixes.

Node n has the following fields: children, which is a list of ( u, P.(v)) pairs,

where u is a word such that ( w ~, . . . , w,, u ) is the prefix corresponding to a

child of n, and p~( u ) is a pointer to that child; profiles, a list of profiles of

which m is the identifying prefix (note that profiles in the list must all be

identical); length, the length of the postfix of the profiles m identifies; and

postfix, words that make up the postfix of the identified profile(s). The last

two fields (length and postfix) exist only if profiles is not an empty list.

Figure 3(a) shows the tree of the identif~ng prefixes for some sample

profiles. For instance, the node labeled x represents the prefix (a). Node y is

for prefix (a, b) and identifies P1. Figure 3(b) shows the internal structure of

the same tree in Figure 3(a). For example, from the root, if we follow a’s

pointer, we get to node x representing the (a) prefix. Following b’s pointer

from this node, we get to node y for prefix (a, b). This node has an empty

children list, a profiles list (identifying Pi), and a length field of O, indicating

the postfix is empty (i.e., PI is only (a, b)).

If we look at the tree as an index structure, we can see that the root

corresponds to the directory, while each of its subtree forms a tree-structured

inverted “list.” For example, in Figure 3(b), the uppermost subtree is formed

by the inverted set of profiles that start with a. To store this index structure,

we place the directory (root), which is implemented as a hash table, in main

memory. Each subtree is packed into contiguous blocks. (This can be done in

a variety of ways; for our simulations, we assume a particular layout in

breadth-first order, as detailed in Yan and Garcia-Molina [19921.) The direc-

tory thus maps a word w to the disk location of the subtree of profiles that

start with w.

When a document arrives, we first construct the distinct-words set and

occurrence table. We index the directory for each distinct word and read into

memory its subtree. To find the matching profiles in the subtree, we do a
breadth-first search [Aho et al. 1983]. We keep a queue of pointers to nodes

that are visited in the search. The queue is initialized to contain the pointer

to the root of the subtree.
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sample Profile,
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Fig. 3. A tree of identifying prefixes and identified profiles.

We repeat the following until the queue becomes empty. We get the first

pointer from the queue and look at the node it points to. We check the

children list for words that are in the document. Pointers that correspond to

words that are in the document are appended to the queue. Next we check

the postfix (if not empty) to see if all the words are in the document. If yes, the

profiles in profiles match the document. If the postfix is empty, then the
profiles also match.
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Consider the tree in Figure 3(b) and the sample document in Figure 2.

Suppose we try to match the profiles in the subtree of CZ. We look at the root

of the subtree (node x). We check the words in the children list. Since b is in

the document and d. is not, we append the pointer corresponding to b (which

points to node y) to the queue. There is no prefix to check, and no profile is

identified; so we are done with this node. Then we get the first (and only)

pointer in the queue, which points to node y. Node Y does not have any

children, so we look at the postiix. The posti[x is empty, so the identified

profile l?l matches the document. The queue is now empty, and we are done

with this subtree.

The tree structure saves space when there are a lot of common prefixes

among the profiles. One heuristic to increase the number of common prefixes

is to sort the words in profiles, e.g., in ascending word identifier order. For

example, if we sort the two profiles (b, a, d, c) and (c, b, e, a), we get the

common prefix (a, b, c). If rank information is available, we can also sort

them by reverse rank order, i.e., lowest-ranked word first. This has the

advantage that (similar to the Ranked 14ey Method) more profiles are put in

the subtrees of the lower-ranked words, which are looked up less often. This

is called the Ranked Tree Method, and the former (sorting by some order

other than rank) is called the Random Tree Method.

4. PERFORMANCE EVALUATION

We have evaluated the performance of the above methods through analysis

and simulations. Below we first describe our document and profile models

and the evaluation metrics. (These models are similar to the document and

query models used in Tomasic and Garcia-Molina [1993 ].) Then we present

the analysis and details of the simulations.

4.1 Document Model

Let T be the size of the vocabulary V (i.e., IV I = T). Each word in V is

uniquely represented by an integer w, 1 < w < T. The probability that any

word appears is described by the probability distribution Z. We rank the

words in nonincreasing order of frequencies, i.e., ‘d w, u, 1 < w < u 5 T, we

have Z(w) > Z(u); for convenience, we use the rank to identify the words. We

assume the frequency distribution follows Zipfs Law [Zipf 1949], i.e.,

z(w) = ~1 <

A new document has W words, and we assume its words follow the same

distribution, Z; it is generated by a sequence of W independent and identi-

cally distributed trials. Each trial produces one word from V.

4.2 Profile Model

While the frequency distribution of words in large collection of text is well

studied [Zipf 1949], there is very little published about the frequency distri-
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Table I. Summary of Parameters Used in Analysis and Simulations

Parameter Base Value Description

T 1.8 Million Vocabulary size

w 12,000 Document size (in words)

s 18,000 Profile vocabulary size

N 300,000 # profiles

K 5 Profile length (in words)

B 4,096 # bits in a disk block

I ~log, N] # bits for a profile identifier

L # bits to represent length of profile

x (lo; T1 # bits for a word identifier

P 20 # bits for a pointer in the Tree Methods

T 10 # instructions for a hash table look-up

# instructions for an array access

bution of words in queries, and even less about words in profiles. In this

article, we adopt the query model used in Tomasic and Garcia-Molina [1993].

The extremely infrequent words (in documents) typically are misspellings

or typos. Thus, we assume profiles, which are long-term queries, do not use

these words. On the other hand, sometimes even frequent words appear in

queries, e.g., “The Who” (British rock-n-roll group) or “NOW (The National

Organization of Women) [DeFazio and Hull 1991]. We model this by assum-

ing that profile words are chosen from the set U = {1, . . . . S}, termed the

profile vocabulary, out of the vocabulary V = {1,...,T}, S < T. (Recall that

we are identifying words by their ranks.) We further assume that each word

in U is equally likely to be chosen for a profile. Hence, we assume that a

profile is a set of K words chosen randomly without replacement from the

profile vocabulary U.

The number of profiles in the system is N. To simplify the study of the

effect of profile size on performance, we assume all profiles have the same

length, i.e., K is fixed for all profiles.

Table I summarizes our parameters, including ones for modeling the size of

disk block and record\posting/node fields. The Base Value column repre-

sents the base case scenario for our study. (In Section 5 we vary these

parameters over wide ranges.) The value for the size of the vocabulary (T) is

from a 8.9 GB document database described in Chapman and DeFazio [ 1990].

For the profile model, the size of the profile vocabulary (S) is chosen to be

18,000, covering over 967. of the occurrences of words in the document

database. We assume 1 and X are the minimum possible. In actual imple-

mentations, these numbers could be somewhat larger, for example, to sim-

plify packing/unpacking operations, or to allow for growth in the number of

profiles and the size of vocabulary.
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4.3 Metrics

To evaluate our SDI index structures and algorithms, we use three funda-

mental cost metrics, each reflecting the storage, CPU, and 1/0 resources

utilized. For the storage cost metric, we look at how much disk space each

structure takes. Although main memory space requirements of the methods

differ, we will not consider these. (That is, we assume main memory require-

ments are relatively minor, and hence, all main memory structures would fit

in a modern computer.)

For the 1/0 cost metric, we measure the number of 1/0s it takes to process

an expected document. For the CPU cost metric, we do not count every single

CPU operation. Instead we focus on the “inner loop” of the document-match-

ing process and count the number of times our key main memory data

structures are probed. We count as one probe a directory access (to get the

inverted set of a word), an occurrence table lookup (to check the presence of a

word in a document), a read of the distinct-word set (to get a distinct word

from a document), and an access to the TOTAL/COUNT arrays. Note that

counting probes is analogous to the way CPU costs of sorting algorithms are

compared. (For sorting algorithms, one counts the number of compare in-

structions executed.) The higher the number of probes (or the number of

compares for sorting), the higher the overall CPU cost is expected to be.

Although a directory probe is comparable to an occurrence table probe

(both structures are hash tables indexed by word identifier), a probe to the
distinct-word set (which can be implemented as an array) or to the

TOTAL/COUNT arrays should be less costly. To take this into account we

introduce a scale factor r that specifies how many array probes are compara-

ble to a hash table probe. We use the number of normalized probes as the

CPU cost metric. The last row of Table I lists the r parameter.

In summary, we look at three metrics:

—the expected total disk space required (in number of blocks),

—the expected number of disk 1/0s needed to match a document, and

—the expected number of normalized probes to main memory data structures

performed in processing a document.

By evaluating these metrics we will understand the fundamental differ-

ences between the indexing strategies. Additionally, they can identify good

strategies for particular scenarios. For example, in an I/O-bound system, the

1/0 metric would be critical, and hence the strategy which minimizes 1/0s

should be selected. If the number of profiles is expected to be relatively small,

perhaps all of the disk structures can be cached in main memory. In this case,

the CPU metric would be the decisive one. If the expected document arrival

rate is low, then perhaps neither the CPU nor the 1/0 metrics would be

critical, and the main criteria should be the storage cost.

Note incidentally that we will not compute expected response times or
throughputs for document processing. These would be useful metrics to

compute after the fundamental tradeoffs between strategies are explored,
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and when one has a particular hardware configuration to evaluate. That is,

computing response times and throughputs requires a large number of

additional parameters (like CPU clock speed, disk seek times, disk scheduling

policy, layout of blocks on the disk, number of CPU instructions for each

operation, arrival rate of documents). We believe that bringing in all these

parameters in this article would obscure the fundamental tradeoffs.

4.4 Analysis

The results in Section 5 were obtained by deriving analytical solutions and

then numerically evaluating the expressions, except those for the Tree Meth-

ods, the CPU metric of the Ranked Key Method, and those given in Section

5.5 (in which we modify the profile model). This subsection contains the

details of the analysis for the first two metrics. The analysis for the third

metric has a similar flavor and is included in the Appendix.

4.4.1 The Brute-Force Methods. The two Brute-Force Methods perform

identically with respect to the first two metrics. Recall that we store in a

record the profile identifier, the length of the profile, and the words in a

profile, and that records are stored sequentially in contiguous blocks. Since

profiles have K words, the space required to store all profiles (in blocks) is

[

N(I+L+XX)
M Brute Force =

1B’

Since all the profiles have to be read to process a document, the number of

blocks read per document is the same:

[

Iv(l+L+Kx)
R Brute Force =

1B“

4.4.2 The Counting Method. Before we analyze the Counting Method, let

us derive a general expression for the expected length of an inverted list in

the Counting and Key Methods. We consider the question: given% postings,

each of size ~, that are to be placed in a number of lists, what is the expected

number of blocks in a certain list, if the block size is a and the probability

that a posting falls in this list is ~? Let us denote this expression by

F(A; 9,9, a).

Let random variable X be the number of postings in the list. X follows the

binomial distribution Bin [J’”, ~]. Let random variable Y be the number of

blocks in the list. X and Y are related by

H9X
Y= —

.!%”
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We want to find E[Y]. First we compute the following probability.

Pr{Y = y} = Pr
{[:1=’1

{

97X
=Pry–1<—<y

@ }

=pr (y-l) @’<x<Y@

( 3? H-}

To efficiently evaluate the last sum, we use the normal approximation when

appropriate, and the poisson approximation when that is not applicable.

Finally, the expression that we are after is thus

S(X,9,LZ?,3) = EIYI

= ~yPr{Y=y}
y>o

(1)

Now we proceed with the analysis of the Counting Method. For a particular

list, the maximum number of postings that can be placed in it is N. (Although

the total number of postings in the index structure is IVK, at most only N of

them can be on the same list.) The probability that a posting is in a list is

K/S. Only the profile identifier is kept in a posting, so the posting size is 1.

The expected number of blocks in each list is thus XN, K/S, 1, B). Since

there are S inverted lists, the expected total space requirement is (in number

of blocks)

For the expected number of 1/0s required per document, we need to know

what is the expected number of inverted lists retrieved per document. First

we note that, given a document D, the probability that a particular word w

(recall that we identify words by ranks) is in D is given by

(1 – (1 –Z(w))w).

This is because for any word in D, the probability that

(1 – z(w)); so the probability that w does not appear in D

ACM Transactions on Database Systems, Vol
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since D has W words. Using (2), we derive W~, the expected number of

distinct words in a document that appear in some profiles, as

w~ = ~ (1 – (1 –Z(w))w).
~=1

Since the inverted lists of these words are read in, the expected number of

blocks read per document is

R
cOUntL?lg

‘4N+’B)XW.

4.4.3 The Key Methods. In the Key Methods, a posting contains the profile

identifier, the length of the profile minus 1, and the words in the profile,

except the key. The posting size is (1 + L + (K – 1)X).

For the Random Key Method, the probability that a posting is in a list is

1/S. Using (l), the expected number of blocks per list is Y2N, 1/S, 1 + L +

(K – 1)X, B). Thus the total space required is

M Random Key
fl )

=>N,:, I+ L+(K–l)X,B xS,

and the average number of blocks read to process a document is

R Random Key
{ )

=Y N,:, I+ L+(K–l)X, B xWs.

Using the Ranked Key Method, the probability that a posting is in the list

foraword w ‘s (::)/(:)
This is the probability that a profile has w as its

lowest-ranked word. Thus the expected length of the inverted list of a word w

is (in number of blocks)

[

()w–l

~N K–1

(1s I,I+L+(K–l)X, B

K

If we add up the expected size of each list, we obtain the expected total space

as:

‘()w–l

M Ranked Key = &z N, ‘; 1

\ () I

,I+L+(K–l)X, B .
~=1

K
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The expected number of blocks read to process a document D is, using (2),

R Ranked Key = ~ Pr( w appears in D) x (number of blocks in list of w )
~=1

= ; (1 -(1 -z(LU))w)
~=1

[

()w–l

K–1
x9N,

(1

s

1

,I+L+(K–l)X, B .

K

4.5 Simulations

Since we found the analysis of the Tree Methods and the CPU metric of the

Ranked Key Method intractable, we use simulations to obtain the results. In

Section 5.5, we modify the profile model, and the results there are also

obtained by simulations. Simulations are also used to validate the analysis in

the above section. The simulation results did match the analytical ones. All

results presented below are analytical ones when they are available; simula-

tion results are given when not.

We wrote our simulation program in C. The program first generates N

profiles according to the profile model, and then computes the size of the
index structures needed to store the profiles. Next the simulation program

generates a document according to the document model and counts the

number of disk reads needed to match it against the N profiles. For each

scenario we have tested, the program is run enough times (with different

random number generator seeds) to make sure that the results are within

+5% of the true values, with a 959% level of confidence.

5. RESULTS

The results for the base case scenario are given in Table II. For space

requirements, we can see the Brute-Force Methods require the least disk

space. In these methods, profiles are packed into sequential blocks, so no

space is wasted (except in the last block). In other methods, since profiles are

stored in different lists or subtrees, and these lists or subtrees are packed

into blocks, disk space is wasted in the last block of every list or subtree. This

internal fragmentation leads to an increase of about 75 to 85~0 in the space

requirements. However, we remark that some of this wastage could be

reduced by packing several of the short lists into a single block.

The expected size of the tree for the Random Tree Method is equal to that

for the Ranked Tree Method. This is because profiles are generated without

rank information, so no matter what sorting order we use to organize the

tree, the expected size should be the same.
With respect to the expected number of blocks read in the matching

process, the indexing methods outperform the Brute-Force Methods by a

ACM TransactIons on Database Systems,Vol 19, No 2, June 1994.



350 . T. W. Yan and H. Garcia-Molina

Table II. Results for the Base Case

Method Size (Blocks) 1/0s Normalized Probes

Random Brute Force 9,668 9,668 356,375

Ranked Brute Force 9,668 9,668 317,492

Counting 18:000 2~849 60:913

Random Key 18,000 2,849 63,547

Ranked Key 16,475 1,139 24,789

Random Tree 18,029 2,841 62,958

Ranked Tree 18,029 1,213 24,737

factor of 3 to 8. Note that the number of blocks read in the Counting Method

is the same as the Random Key Method. This number is equal to the expected

number of distinct document words that appear in profiles, and is thus also

the expected number of lists read in to process a document. This can be

explained by the fact that, under the base case values, the inverted lists in

these two methods all fit in 1 block.

The Ranked Key Method performs the best in terms of number of 1/0s per

document. The Ranked Tree Method requires slightly more 1/0s. We at-

tribute this to the fact that the model of random independent profiles does

not generate a lot of profiles that share common prefixes, even though the

number of profiles is so large.

The number of 1/0s required to process a document appears to be quite

high for the various methods. However, we remark that caching of blocks

between successive documents will reduce these numbers. Another reason the

required number of 1/0s is large is that in our base case documents are large

(12,000 words is roughly twice the size of a conference paper). As documents

become smaller, the number of 1/0s for the indexing methods decreases in

direct proportion (but not for the Brute Force Methods).

For the number of normalized probes, the Ranked Tree Method performs

the best, and all indexing methods are superior to the Brute-Force Methods.

Next we perform a sensitivity analysis, investigating the impact of several

important parameters on performance. (The size of the incoming document,

W, does not affect the relative performance of the methods, and so we omit

the results here.) We also modify the profile model to study how similarity

among profiles affects performance.

5.1 Varying Profile Vocabulary Size S

The first parameter that we vary is S, the size of the profile vocabulary. The

other parameters are kept at their base values. Figures 4, 5, and 6 show the

performance of the methods. The range of S studied is actually wider than

what is shown, but is truncated here to display the interesting range in more
detail.
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Fig. 7. Total disk space required vs. number of profiles N.

In Figures 4 and 5, there are some peculiar zig-zag patterns in the

Counting and Random Key graphs. This can be explained as follows. Consider

the last spike in the Random Key graph in Figure 4. Before the spike, there is

a steady rise in the total size. This is because as S increases, so does the

number of inverted lists. This leads to an increase in the number of blocks. At

the same time, the number of profiles per list decreases (the total number of

profiles is fixed). At some point, the lists begin to shrink their lengths by one

block, and this leads to the drop in the total size.

In general, the indexing methods require more space as S increases, due to

an increasing number of inverted sets. 3 On the other hand, the general

trends for the number of disk reads and the number of normalized probes per

document are downward. This is because when S is large, it becomes more

likely that profiles contain infrequent words that do not appear often in

documents.

The ranked strategies always perform better than their counterparts with-

out rank information. This will be seen to be true under other scenarios

studied below. (Of course, if rank information is not available, then ranked

methods cannot be implemented.)

5.2 Varying Number of Profiles N

Next we study the effect of varying IV, the number of profiles. The base

values are used for the other parameters. Figures 7 and 8 show the perfor-

mance of the various methods with respect to the first two metrics as N is

varied. The relative performance of the methods with respect to the number

of normalized probes does not vary with N, and thus the results are omitted.

3Again, we stress that such increase due to internal fragmentation can be reduced by packing

several short lists into one block.
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For a wide range of values of N, the inverted lists in the Counting and

Random Key Methods all fit in one block. This explains why their graphs stay

flat at the constant value of S in Figure 7. Similar reasoning explains why in

Figure 8 the number of 1/0s for the two methods is equal to the expected

number of distinct document words that appear in profiles. However, notice

that for very large values of IV (greater than 450,000), the space requirement

and the number of 1/0s for the Random Key Method begin to rise, as some of

the lists begin to occupy more than 1 block. We expect to see a similar rise in

the graphs of the Counting Method for larger N.

One would expect that as IV grows, there would be more overlapping

profiles, and the Tree Methods would do better. However, the Tree Methods

do not perform very well, even when the number of profiles is very large. This

again shows that the independent profile model does not generate enough

similarity among profiles to make the Tree Methods attractive.

5.3 Varying Profile Length K

Next we investigate the effect of varying the length of the profiles. We vary K

from 1 to 10 and compare the performance of the various methods. The

results are shown in Figures 9, 10, and 11.

In Figures 9 and 10, we notice some surprising results: with profile size

increasing from 1, the space requirement and the number of disk accesses for

all the indexing methods not only do not increase, but actually decrease for

some methods. This can be explained as follows. For K = 1, all inverted sets
fit in 1 block because the profiles are short. Thus (1) the number of blocks is

equal to S in all indexing methods and (2) the number of 1/0s is equal to the

expected number of distinct words in a document that are queried by some

profiles. As K increases to 2, for the Counting and Random Key Methods, the

lists can still fit in one block, and thus their graphs remain flat. However, for

the Ranked Key and the Tree Methods, there is a choice as to where to place
a profile. Some of the sets become empty while others that grow still Flt in one

block. The net result is a decrease in the total number of blocks required. The
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effect is even more prominent in the number of 1/0s required for the ranked

methods, since the empty lists are associated with the more frequent words

and are thus looked up more often. As K becomes larger, the sets begin to

occupy more than 1 blocks, leading to either an increase in the space

requirement or the number of 1/0s.

For the number of normalized probes, we would expect it to grow with the

profile size. However, the results show that all methods, except Counting, are

relatively insensitive to K, and some even require fewer probes with increas-

ing K. This is because during the matching process, we stop processing a

profile as soon as a mismatch is found. Thus the increasing number of words

per profile only leads to a very slight increase in the number of probes

required. For the methods using rank information, as K increases, it is more

likely that there are infrequent words in a profile. As they are looked up first,

the matching process can terminate early, resulting in even fewer probes.

5.4 Varying Normalizing Factor r

The last parameter that we vary is the normalizing factor r, which affects the

performance of the methods with respect to the number of normalized probes

per document. The results are shown in Figure 12. When r = 1, it means a

hash table lookup is comparable to an array access. When r = 10, it means a

hash table lookup is comparable to 10 array accesses. We have carried out an

experiment and estimated r to be about 1.6 on our machine, a DE Citation

5000/240.

As we can see, the performance of the Counting Method is very sensitive to

r. On a machine where the hash function evaluation is fast (e.g., a machine

with a math coprocessor), the Counting Method is bad, even worse than the

Brute-Force Methods. However, on a machine where a hash table lookup is a
much more expensive operation than a simple array access (e.g., division

required for hashing is done by software), the Counting Method performs

better than the other methods without rank information.
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Fig. 13. Number of blocks read per document vs. profile similarity q.

5.5 Modifying the Profile Model

To model the similarity among profiles, we modify the basic profile model as

described below. We still assume that a profile is a conjunction made up of K

words, where K is fixed for all profiles.

Among the N profiles, a certain fraction (fixed at 10% in our experiments)

of them are generated using the basic model, i.e., assuming they are indepen-

dent. They form the different areas of interests that the users may have, and

are called the base profiles. For each of the rest of the profiles, we assume

that it will be similar to a base profile. We randomly pick one base profile and

mold the new profile after it. The similarity parameter q controls how similar

the new profile and the base profile are. For each word in the new profile,

there is a probability q that it is the same as the corresponding word in the

base profile. If it is not, then a word is randomly drawn from the profile

vocabulary. Hence by varying q from O to 1, we can control the similarity

among the profiles. If q is O, this model degenerates to the original model.

Simulation results show that indeed both Tree Methods improve as the

degree of similarity grows. Figure 13 shows the performance with respect to

the number of 1/0s per document under the modified model, as q is varied

from O to 1. (The graph of the Brute-Force Methods is omitted to show the

variations in the other graphs better.) The Random Tree Method becomes

better than the other methods without rank information for q above 0.5. The

Ranked Tree Method becomes the best method when the similarity parame-

ter is above, say, 0.8.

5.6 Summary

Here we summarize the strengths and weaknesses of the various methods.

Brute-Force Methods are good for storage, but not for execution. The

number of disk 1/0s and the number of normalized probes required per
document are often an order of magnitude worse than the indexing methods,

especially when the number of profiles is large. However, if there are rela-

tively few profiles and they are short (e.g., say less than 50,000 profiles, each
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with fewer than 5 words) and the size of documents is large, then the Brute-

Force Methods may be a good choice.

Under the basic profile model, the Ranked Key Methods almost always

requires the fewest disk 1/0s per document, and requires the second fewest

normalized probes per document (slightly more than the Ranked Tree

Method). For methods without rank information, the Random Key Method

seems to be a good compromise between the total space required, the number

of 1/0s, and the number of normalized probes. The Counting Method also

performs well in terms of the total space required and the number of 1/0s

per document, but is very sensitive to the normalizing factor r with respect

to the number of normalized probes per document.

With independent profiles, the Random Tree Method generally requires

more space than the other indexing methods without rank information. This

also leads to a higher number of disk 1/0s per document. The same is true in

the comparison between the Ranked Tree and Ranked Key Methods. How-

ever, when there is a moderate degree of similarity between profiles, the

Random Tree Method becomes best among methods without rank informa-

tion; and when there is a high degree of similarity, the Ranked Tree Method

surpasses the Ranked Key Method to become the best overall. Real user

profiles may or may not have such similarity, and we plan to investigate this

issue further.

6. EXTENSIONS

6.1 Negation and Disjunction

Negation can be easily handled in the methods discussed above with slight

modifications. For all the methods except Counting, the main addition is that,

during matching, a negated word is taken to be “in” a document if and only if

the word itself is not in the document. A full discussion of what needs to be

changed in all the methods can be found in Yan and Garcia-Molina [ 1992].

If negation is allowed, the space requirements for all the methods will be

slightly higher (e.g., in the Brute-Force Methods, we need a bit per every

word identifier to indicate if the word is negated). As for the number of disk

1/0s, the effect is unclear since it depends on the frequency of the NOT

operator in profiles. If the NOT operator is not frequently used in profiles,

then our results are still applicable.

As discussed in Section 2, a profile with logical ORS can be transformed

into disjunctive normal form and treated as a collection of conjunctive pro-

files. Hence, the algorithms we have presented can still be used. However,

this strategy (splitting profiles) may not be the most efficient, since more disk

space is required to store the profiles, and this possibly will lead to an

increase in the number of 1/0s per document. To fully understand OR

profiles, two issues need to be addressed:

—Are the losses for processing profiles as sets of conjunctive profiles really

significant?
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—How can the indexing algorithms be modified to handle OR profiles di-

rectly?

We plan to study these questions in the future. For now, our intuition is

that more complex algorithms for OR processing will not be worth it, espe-

cially since the most common type of OR profile, using thesaurus expansion

or truncation, can be handled as a special case (see below). Under this

scenario, AND will arguably be the dominant operator used in profiles, and

thus it is reasonable to optimize the index structures and algorithms for the

AND operation.

6.2 Truncation and Thesaurus Expansion

A traditional IR system allows extensions such as truncation and thesaurus

expansion to enrich the class of queries. Conceptually, the word is expanded

into a disjunction of a number of matchable words. For example, the profile

with truncated term PSYCH* matches documents containing words like
“psychology,” “psycholo@st,” “psychiatry,” and others.

To process a profile in which one or more of the words are to be expanded to

a thesaurus class, we can either do the expansion when the profile is first

entered and store it in expanded form, or do the expansion at profile

evaluation time. To process a profile with a thesaurus word using the second

option, we look up a dictionary to find its thesaurus class. Then we check the

words in the class one by one. The thesaurus word is taken to be in the

document if and only if any one of words in the class is in the document.

Since the thesaurus class can be large, the first option may lead to a big

increase in space required for the index structures. In the second option, the

expansion may not be needed at all if we do not look up thesaurus words until

other words in the profile are looked up—some of them may not be in the

document. Thus the second option seems more attractive.

All the methods we have presented, except Counting, can be easily ex-

tended to handle thesaurus expansion using the second option. For the Key

and Tree Methods, the organizations of the index structures are just as

before, except that a profile can only be put in the list of a nonthesaurus

word. During matching, thesaurus words are looked up last, and are taken to

be “in” if any one of the words in the thesaurus class is in the document. For

the Counting Method, run-time expansion is not feasible. Hence, the first

option must be used to handle thesaurus expansion.
For truncation, we have to do run-time evaluation since we do not know

beforehand what the truncated word expands to. To match a truncated word,

we need to be able to do range search over the words in the document, e.g., to

match the truncated term PSYCH*, we do the range search for words that are

“greater than or equal to” PSYcl-i and “less than” PSYCI. To allow this, words

should be stored as strings of characters in the index structures, and then the

occurrence table is implemented as some data structure (e.g., binary tree)

that allows range search. With this change, all the methods except Counting

can be extended to handle truncation.
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6.3 Batching

To process a number of documents as a batch instead of processing them one

at a time may produce savings in terms of total number of 1/0s required, at

the expense of the timeliness of document dissemination. Below we briefly

describe what needs to be done for the methods to handle batches, and then

we evaluate the benefits of batching.

Suppose we process a batch of b documents, (ill, ..., llb), at one time. We

can extend the methods above to efficiently match the profiles against the b

documents simultaneously. The idea is to build a simple combined occurrence

table for the batch. The entry in this hash table for a word w contains a list of

the documents in the batch that contain w. In other words, this combined

occurrence table is an inverted index of the type used for conventional IR,

except that here we assume that the index is small and can fit in memory. In

particular, the list of documents where w occurs can be represented as a bit

vector of b bits, with the ith set to T if w is in ~,. Using this table, the

methods can process batches in a way analogous to the no-batching case.

To illustrate, consider the Key Methods. First we find all the distinct words

in the batch and build the combined occurrence table. Then, for each distinct

word w in the batch, we read in its inverted list. To process a profile in the

list, we start off with the bit vector of w and look up the remaining words in

the occurrence table. The bit vectors are ANDed together. We stop as soon as

all bits become F’s. Bits that remain T after all words in the profile are looked

up correspond to documents that match the profile. Other methods can

similarly be extended; Yan and Garcia-Molina [1992] cover the details.

The performance of batching depends a lot on the document size. Hence we

study batching for small documents (~ = 1,000) and large documents (W =

12,000). First, we investigate how the methods perform under different batch

sizes with respect to the number of 1/0s required per batch. Figure 14 shows

the results for the small document case. The indexing methods remain far

superior to the Brute-Force Methods throughout. For the large document

case, however, the results indicate that the indexing methods approach the

performance of the Brute-Force Methods as the batch size increases to 10.

This is because as the batch size grows, there are lots of (distinct) words in

the batch, and thus most of the inverted sets need to be examined.

Next, we assess the savings obtained by batching. That is, we compare the

total number of 1/0s required to match a number of documents with and

without batching. Our results show that when documents are small, batching

does not save much for the ranked indexing methods. For 10 documents,

batching reduces the number of 1/0s by about 3% for ranked methods. The

reductions for methods without rank information are more significant, at

40%. Also, savings are more impressive when documents are large, with a

reduction of 40 to 60% for a batch of 10 documents.

We conclude that batching may not be good for the ranked indexing

methods, especially when documents are small, since timeliness is sacrificed

for little savings in the total number of 1/0s required. However, when (1)

methods without rank information are used, (2) documents are large, and (3)

timeliness is not critical, it may be beneficial to use batching. Yet, when the
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Fig. 14. Number of blocks read per batch vs. batch size b (small-document case).

batch size is large, the indexing methods approach the performance of the

Brute-Force Methods.

7. RELATED WORK

Related to the idea of selective dissemination is the idea of an active database

(see e.g., N!tcCarthy and Dayal [1989]), one which automatically executes

certain actions under certain conditions, according to some situation\ action

rules. Work on active databases typically focuses on structured data in the

realm of relational databases. A recent work by Terry et al. [1992] proposes

the notion of continuous queries in relational databases. Users issue con-

tinuous queries, which are rewritten into incremental queries and run

periodically. Their work concentrates on relational databases (though with

application to text data such as Netnews articles), while ours is concerned

with the dissemination of unstructured data (documents) using IR tech-

niques.

Wyle and Frei [1989] give an overview of a WAN information server that

extracts information from information sources periodically and disseminates

relevant information to passive users. User profiles, each of which consists of

a number of example messages, are examined periodically, and all profiles

are examined. This falls into the brute-force paradigm in our comparison.

Danzig et al. [1991] present a distributed indexing scheme as a way to

provide efficient retrospective search of a large number of retrieval systems.

Special sites, called index brokers, maintain indexes of remote retrieval

systems. They submit generator queries (similar to profiles) that keep them

informed of changes in these systems. However, these generator queries are

not user-specified profiles discussed in our work. Though segment trees are

proposed to index queries over Library of Congress numbers (e.g., all new

items in the range QA76 to QA77), index structures for boolean queries are

not addressed.
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8. CONCLUSION

We propose in this article several index structures for conjunctive profiles

and algorithms to match profiles against documents. We compare their

performance, together with the Brute-Force Methods that do not use any

index structures. We show that while the Brute-Force Methods require less

disk space, they perform poorly in terms of number of disk 1/0s and CPU

processing required, and thus execution time. We also demonstrate that rank

information of the words can be used to significantly improve the perfor-

mance of the various methods. The relative performance of the indexing

methods under different scenarios is presented. Finally, we show how to

extend the methods to cover negation, disjunction, thesaurus search, trunca-

tion, and batching.

We will be collecting profiles submitted to the two experimental SDI

servers, in order to study the frequency distribution of words in profiles, the

degree of similarity among profiles, and the profile update frequency and

pattern. We also plan to extend our SDI indexing algorithms to cover dy-

namic profile update.

APPENDIX: DETAILS OF ANALYSIS FOR THE CPU PROCESSING METRIC

A.1 Preliminary Calculations

Here we derive a useful expression used later in the analysis, the expected

number of distinct words in a document D:

WT = $ Pr(w isin D)
~=1

= s(1 -(1 -Z(w)) w).
~=1

Also, recall from Section 4.4.2 that the expected number of distinct words in

D that appear in some profiles is

w~ = ; (1 – (1 –z(u)):
U>=l

A.2 The Brute-Force Methods

For the expected number of occurrence table 100_

‘).

:ups per document for the

Random Brute-Force Method, we note that the probability that a word

randomly chosen from U is in a document D is

Ws
~=—

s“

Now consider matching an arbitrary profile against D. With probability
1 – a the first word, which is a word randomly drawn from U, is not in D

and the match ends (1 lookup). With probability a ( 1 – a), the first word
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matches, the second does not, so we do 2 lookups. In general, the expected

number of lookups per profile is

K Random Brute Force = 1(1 – a!) + 2(1 – a)a+ 3(1 – a)a2 + . . . +

+(K– 1)(1– a)a K-2 +Ka~-l

=l+a+a2+... +al-l

l–a K

1–II”

Hence the expected number of occurrence table lookups per document, or the

expected number of normalized probes per document, is

A Random BruteForce = NKRandornBruteFo,ce.

Next we consider the expected number of occurrence table lookups for the

Ranked Brute-Force Method. The probability that the ith lowest-ranked word

of a randomly picked profile is in a document D is

s
al = ~ Pr(the ith word is u and u is in D)

= ~ Pr(the ith word is U) X Pr(u is in D)
“=1

This is because, to pick a profile with the word u as its ith lowest-ranked

word, we have to pick i – 1 words from the S – u words ranked lower than

u, and K – i words from the u – 1 words ranked higher than v. So if we look

()
at all the possible profiles obtained by picking K words out of S words, ~ ~ ~

()
~~ ~ of them have u as the i th lowest-ranked word. Thus, the probability

that a randomly picked profile has u as its ith lowest-ranked word is

(:a(=w
The expected number of lookups per profile is

K Ranked Brute Force = 1(1 – al) + 2al(l – a2) + ““. +

+(K– l)al ... aK_2(l – aK_l) +Kal . . . a~.l

= 1 + al + a’1a2 + . . . +al . . . aK_l,

and the expected number of lookups, i.e., the expected number of normalized
probes, per document is

A RcznkeclBi-uteFoi-ce = ‘KRankedBruteForcw
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A.3 The Counting Method

In the Counting Method, we look up every distinct word from the distinct-

words set and map it to its inverted list using the directory, which is a hash

table. Thus there are W~ array accesses and W~ hash table lookups. There

are no occurrence table lookups for this method. Instead, there are accesses to

the TOTAL/COUNT arrays. First we have to initialize the COUNT array

with N accesses. Then for every word in every posting, we have to probe the

TOTAL/COUNT arrays. Since there are NK/S postings per list, the ex-

pected total number of array accesses is

NK
W~+N+—

s
x w~.

Using the normalizing ratio r-, the expected total number of normalized

probes is

NKWS
W~+N+—

A “W*+
s

C0unt2ng
r

A.4 The Random Key Method

For the Random Key Method, first we have to get the distinct words and

index the lists; this takes W~ array accesses and W~ hash table lookups.

Next, we consider the number of occurrence table lookups. For each posting

in an inverted list, the expected number of lookups needed is

K Random Key =l(l–a) +2(l–a)a +...+

+( K–2)(1–a)a K-3+(K_l)aK-2

=l+a+...+a~-~

~_a K-l

l–a “

Since Ws lists are examined, and each list has an expected number of profiles

of N/S, the expected total number of normalized probes is

A
(1

NWs
Random Key =WT 1++ +— x ‘Random Key.r s

REFERENCES

AHo, A., HOPCROFT, J., AND ULLW, J. 1983. Data Structures and Algorithms. Addison-Wes-

ley, Reading, Mass.

BELKIN, N. J. AND CROFT, W. B. 1992. Information filtering and information retrieval: Two

sides of the same coin. Commun. ACM 35, 12, 29–38.

CNIDR. 1993. Z39.50-92 development efforts. CNZDR News (Jan.).

CHAPMAN, D. AND DEFAZIO, S. 1990. Statistical characteristics of legal document databases.

Tech. Rep,, Mead Data Central, Miamisburg, Ohio.

ACM Transactions on Database Systems, Vol. 19, No. 2, June 1994



364 . T. W. Yan and H. Garcia-Molina

DEFAZIO, S. AND HULL, J. 1991. Toward servicing textual database transactions on symmetric

shared memory multiprocessors. In Proceedings of the International Workshop on High

Performance Transaction Systems.

DANZIG, P.j AHN, J., NOLL, J., AND OBRACZKA, K. 1991. Distributed indexing: A scalable

mechanism for distributed information retrieval. In Proceedings of the ACM SIGZR Conference.

ACM, New York, 220–229.

FALOUTSOS, C. 1990. Signature-based text retrieval methods: A survey. IEEE Database Eng.
13, 1, 2’i-34.

HORTON, M. 1986. How to read the network news. In UNIX Documentation. AT&T Bell

Laboratories, Columbus, Ohio.

MCCARTHY, D. AND DAYAL, U. 1989. The architecture of an active database management

system. In Proceedings of the ACM SIGMOD International Conference on Management of

Data. ACM, New York, 215–224.

REID, B. 1993. USENET readership summary report for January 1993. USENET Newsgroup,

news.lists, Feb. 8. reid@pa.dec.com.

SALTON, G. 1968. Automatic Information Organization and Retrteval. McGraw-Hill, New

York.

SALTON, G. 1989. Automatic Text Processing. Addison Wesley, Reading, Mass.

TOMASIC, A. AND GARCIA-M• LINA,H. 1993. Performance of inverted indices in distributed text

document retrieval systems. In Proceedings of the International Conference on Parallel and

Distributed Information Systems. IEEE Computer Society Press, Los Alamitos, Calif., 8-17.

TERRY, D., GOLDBERG, D., NICHOLS, D., AND OKI, B. 1992. Continuous queries over append-only

databases. In Proceedings of the ACM SIGMOD International Conference on Management of

Data. ACM, New York, 321–330.

WYLE, M. F. AND FREI, H. P. 1989. Retrieving highly dynamic, widely distributed information.

In Proceedings of the ACM SIGIR Conference. ACM, New York, 108-115.

YAN, T. W. AND GARCIA-M• LINA, H. 1994. Index structures for information filtering under the

vector space model. In Proceedings of the International Conference on Data Engineering. IEEE

Computer Society Pressj Los Alamitos, Calif., 337-347.

YAN, T. W. AND GARCIA-M• LINA, H. 1992. Index structures for selective dissemination of

information Tech. Rep. STAN-CS-92-1454, Stanford Univ., Stanford, Calif,

ZIPF, G. K. 1949. Human Behavior and the Prtnciple of Least Effort. Addison-Wesley, Read-

ing, Mass.

Received May 1993; revised September 1993 and October 1993; accepted January 1994

ACM Transactions on Database Systems, Vol. 19, No. 2, June 1994.


