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Point displacement constraints constitute an attractive technique for interactive design of
smooth curves, surfaces, and volumes. The user defines an arbitrary number of “control points”
on the object and specifies their desired spatial location, while the system computes the object’s
degrees of freedom so that the constraints are satisfied. A constraint-based interface gives a
feeling of direct manipulation of the object. In this article we introduce soft constraints,
constraints which do not have to be met exactly. The softness of each constraint serves as a
nonisotropic, local shape parameter enabling the user to explore the space of objects conforming
to the constraints. Additionally, there is a global shape parameter which determines the amount
of similarity of the designed object to a rest shape, or equivalently, the rigidity of the rest shape.

We present an algorithm termed probabilistic point constraints ( PPC ) for implementing sotl
constraints. The PPC algorithm views constraints as stochastic measurements of the state of a
static system. The softness of a constraint is derived from the couariarzce of the “measurement.”
The resulting system of probabilistic equations is solved using the Kalman filter, a powerful
estimation tool in the theory of stochastic systems. We also describe a user interface using
direct-manipulation devices for specifying and visualizing covariances in 2D and 3D.

The algorithm is suitable for any object represented as a parametric blend of control points,
including most spline representations. The covariance of a constraint provides a continuous
transitian from exact interpolation to controlled approximation of the constraint, The algorithm
involves only linear operations and allows real-time interactive direct manipulation of curves
and surfaces on current workstations.
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1. INTRODUCTION

Smooth objects such as parametric curves, surfaces, and volumes are of great
importance in geometric modeling and computer graphics. To facilitate the
usage of such objects a convenient interface for their specification must be
provided. The interface must be suitable for all stages in the design process.
The strongest requirements are posed by the conceptual design stage, in
which ease of specification and experimentation and rapid system response
are critical,

Interactive design is usually an incremental refinement process in which
the general shape is specified first and then local refinements are made.
During local refinement it is of great advantage if the system provides
arbitrarily located shape parameters with local effect whose tuning aids the
user in exploring the space of possible objects. Additionally, control over the
amount of deviation from the current object is favorable,

Internally, smooth parametric objects are usually represented as a linear
combination of parametric blending functions, The type of blending functions
and their domain determine the type and general properties of the object. The
coefficients of the blending functions constitute the object’s degrees of free-
dom ( DOF), and determine the actual shape of the specific object.

1,1 Current Design Techniques

Direct Control oiler Object DOF. In commercial systems the prevalent meth-
od for interactive design of smooth parametric objects is by direct control of
the user over the DOF defining the object. For example, B-splines are usually
specified by manipulating their control points, which are the coefficients of
the B-spline blending functions. In this scheme there is a direct relation
between the internal object representation and the interface provided to the
user. Interactive design using this metaphor is often cumbersome, since the
user has to manipulate a large number of DOF to achieve a desired result. It
is difficult to assess which DOF should be manipulated and exactly how to do
it, and it is close to impossible to place an arbitrary object point in an
arbitrary location. Additionally, the necessary display of the control mesh
clutters the screen considerably.

Direct-Manipulation Constraint-Based Interface. It is generally believed
that the designer should be provided with a higher-level interface than
directly setting the object DOF. Recently, several authors have suggested the
use of a constraint-based interface, whereby the user selects points or curves
lying on the object and specifies a new desired location. The configuration of
the DOF that satisfies the constraints is automatically computed.

Bartels and Beatty [ 1989] and Fowler [ 1992] use heuristics as to which
DOF should be modified; in Borrel and Bechmann [ 1991], Borrel and Rappa-
port [ 1994], and Hsu et al. [ 1992] the modified DOF are determined by the
underlying mathematical representation of the object; typically every con-
straint influences only a small number of DOF. In these papers the
constraints are satisfied using direct linear methods. Borrowing from regular-
ization techniques developed originally for computer vision [Kass et al. 1988;
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Terzopoulos et al. 1987], minimization of an energy functional subject to
user-defined constraints is performed in Celniker and Gossard [1991], Fang
and Gossard [1992], Moreton and S6quin [1992], and Welch and Witkin
[1992]. The energy functional is usually based on physical analogues of
resistance to stretching and bending; Moreton and S6quin used rate of
change of curvature instead.

The constraint-based scheme has the feel of directly manipulating the
designed object. The user is not limited to a fixed set of controls; each point on
the object can be used as a “control point.” Additionally, the system has more
freedom in choosing internal representations, since these are not presented
directly to the user. Internal representation can be chosen according to
desired mathematical properties rather than suitability for direct interaction.
Among the new internal representations suggested are refinement and sums
of B-splines [Forsey and Bartels 1988; Welch and Witkin 1992], constraint-
centered basis functions [Borrel and Rappaport 1994], quintic Hermite
patches [Moreton and S6quin 1992], triangular finite elements [Celniker and
Gossard 1991], and modulated superquadrics [Metaxas and Terzopoulos
1992].

Drawbacks of Current Methods. A disadvantage in most current methods
is that the user can specify only completely rigid constraints. In many
situations what the user actually wants is to specify a general position for an
object point rather than an exact position. The fact that constraints are
treated as completely rigid constitutes overspecification. Instead, it is more
attractive to let the user define a softness for a constraint which specifies the
degree to which the constraint must be satisfied. Such a technique would be
in accord with the relaxed-design modeling paradigm [Hel-Or et al. 1993], in
which the designer is not committed to early design decisions.

In some sense, load forces [Celniker and Gossard 1991] do provide some
form of softness, but only in the context of variational modeling. The combi-
nation of a triangular finite-element internal representation, a direct-mani-
pulation constraint-based user interface, and functional optimization is
attractive for many reasons. However, global optimization has two draw-
backs. First, many users claim that it takes away control; they actually like
the feeling of controlling every little piece of the object. Second, these meth-
ods are currently not suitable for truly interactive design of large objects.
Current algorithms for real-time minimization of the energy functional while
interactively manipulating constraints do not scale well to large problems
[Kallay 1993]. We do not rule out the usage of such techniques for fairing an
existing design, nor their future applicability, but currently only the tech-
niques which use direct linear methods [Borrel and Bechmann 1991] provide
real-time performance that scales to models with a large number of DOF.

Cheng’s interproximation scheme [Cheng and Barsky 1991] can in principle
be regarded as providing soft rectangular constraints. However, the scheme
was only presented for curves, and it is too slow for interactive design.

Shape Parameters. As stated above, a very attractive feature of a design
scheme is the provision of shape parameters that let the user navigate inside
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the space of objects “close” in some sense to the current object, for the
purpose of local refinements. Interactive manipulation of shape parameters
suggests to the user a multitude of objects to choose from.

The Beta parameters in Beta-splines [Bartels et al. 1988] and the control
point weights in the NURBS representation [Farin 1992] are shape parame-
ters. However, no one has yet formulated these in terms of constraint-based
interaction. The stress, shear, and bend coefficients, and the load vectors in
physically-based methods [Celniker and Gossard 1991; Welch and Witkin
1992], can be viewed as shape parameters, but their application is currently
too time consuming for interactive design. Additionally, these papers have
not described any user interface for defining shape parameters in arbitrary
localized regions.

In many cases, the importance of staying “close” to the current object
during automatic computation of DOF is somehow neglected. Welch and
Witkin [ 1992] suggest defining an arbitrary situation as a “rest shape.”
However, the issue is mostly taken care of by keeping the set of constraints
that the user used in order to define the object and using them in each stage
of the computation.

1.2 Sofl Constraints on an Existing Object

The Proposed Scheme. In this article we introduce the soft-constraints

scheme for interactive design of smooth objects. In this scheme, the user
starts from an existing object and pulls it by using soft constraints, con-
straints which are not completely rigid and do not have to be met exactly.

Each constraint possesses a user-determined softness tensor. Softness is
nonisotropic; it can be defined differently along different spatial directions.
This softness determines the amount by which the new object is similar to
the currently existing one locally, in the vicinity of the constraint. Hence, it
serves as an arbitrarily located nonisotropic local shape parameter.

Additionally, a global shape parameter is available for determining the
global amount of deviation of the new object from the existing one. This shape
parameter can be tuned to make the existing object very rigid, necessitating a
strong pull to modify, or very soft.

Following are some figures which serve as simple examples for the pro-
posed scheme. Figure 1 shows an existing flat surface (dark, bottom) with
three soft constraints that yield the upper, lighter surface. Figure 2 shows the
same situation but with a larger softness of the top constraint. The surface
area near the constraint is less affected by it and conforms more to the
original surface. Figure 3 shows an identical configuration but with a greater
weight of the existing surface. The new surface is globally less affected by all
of the constraints. Finally, in Figure 4 the designed surface has been made
the reference object, and new constraints have been defined on it. Once the
designer is satisfied from the overall shape of an object, it can be made a
reference object, and a new refinement design cycle commences.

<~ontrihution. The three basic ingredients of the proposed scheme are
softness of a constraint, control of similarity to the existing object, and truly
interactive performance. No previous method possesses all three ingredients
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Fig. 1. Three  constraints defined on a surface.  The  one on the right  has a zero  covariance.

Fig. 2. The  same  constraints as in Figure  1, but with  a much larger  covariance  of the top
constraint.  Note  how the surface  is less attracted  to the constraint.

together.  Energy minimization methods  provide  some form of softness  and
control  of similarity, but they take away some of the user’s control  over the
designed  object  and do not scale  well  to interactive design  of large objects.
Direct linear methods,  although efficient and sometimes providing control  of
similarity, do not provide  softness.
ACM  Transactions on Graphics,  Vol.  13, No.  2, April  1994.
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Fig.  3. The same constraints as in Figure  2, but with  a smaller initial covariance  estimate.  Note
how the surface  is closer to the initial one.

Fig.  4. The  designed  object  has been  made the reference  object.

Our method bears  closest  resemblance to weighted least  squares.  One could
think of augmenting the constraints in the direct linear methods  with non-
isotropic  weights, whose  relative  sizes  would  serve  as softness  parameters.
However,  this scheme  does not provide  control  of similarity to the existing
object.  Additionally,  for the weights to act as softness  parameters there  would
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have to be more constraints than DOF; otherwise all constraints would be
exactly interpolated, nullifying the softness concept. Finally, we are not
aware of any work actually applying weighted least square to interactive
design. This application is not trivial, since any such work would have to
provide a suitable user interface. Our Kalman filter-based algorithm (see
below) in fact computes a particular kind of a least-squares solution.

The algorithm is applicable to every object which can be represented as a
linear combination of parametric blending functions; this includes most
spline-based representations. The equations solved by the algorithm are all
linear, and no global optimization is performed, enabling real-time interac-
tion on current workstations.

The advantages of our algorithm can be summarized as:

—Provision of softness to constraints and a continuous transition from
interpolation to approximation of a constraint.

—Arbitrarily located, nonisotropic, local shape parameters.

—A global shape parameter for controlling similarity to the existing object.

—Real-time performance on current workstations.

—It is suitable for most parametric smooth object representations.

Method of Implementation The scheme is implemented using a novel
algorithm, which we term probabilistic point constraints (PPC). The process
of specif~ng the constraints is viewed as a stochastic measurement process.
The desired location of an object point is the mean of a suitably distributed
random variable. The rigidity of the constraint is determined by the uncer-
tainty (covariance) of the random variable. When equipped with a suitable
user interface, the covariance can be used as a shape parameter. Moreover,
this shape parameter is both local and nonisotropic, enabling fine control.
The resulting system of probabilistic equations is expressed and solved using
the Kalman filter, a powerful estimation tool from the theory of stochastic
systems. The objects’ L)OF constitutes the process’s state vector. Control of
the amount of deviation from the currently existing object is achieved through
the use of an a priori estimate to the object’s DOF and a covariance matrix
associated with it.

In this article we do not treat the issue of automatic insertion of DOF when
the constraints cannot be satisfied. We feel that this issue is rather orthogo-
nal to the issues discussed in the article.

In Section 2 we give our notations for smooth parametric objects. Section 3
explains in detail how constraints are represented and how to generate and
solve the system of probabilistic equations using the PPC algorithm. Section
4 discusses some properties of the algorithm, most notably, the role of the
covariance as a shape parameter, Finally, our implementation and user
interface issues are discussed in Section 5.

2. REPRESENTATION OF A SMOOTH PARAMETRIC OBJECT

The probabilistic point constraints (PPC) algorithm presented in this article
is suitable for any object represented as a linear blend of “control points.” The
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only strict requirement is linearity in the DOF. This requirement poses no
practical limitation, since most spline representations conform to it. In this
section we introduce notations regarding object representation which are
used in the rest of the article. The object does not have to be parametric,
although it is more convenient to describe it as such.

A smooth parametric object is represented by

w(u) = ib,(zdp, (1)
1=1

where u E I] c 2?’[ is a point in a parameter space; b,(u) is a scalar-valued
blending function defined on U; and p, is a point in R k. In most applications
k is 3 or 2. A point on the object corresponding to a particular parameter
value is a linear combination of “control points” whose dimensionality k is
that of the space in which the object resides, such that the scalar coefficient of
a control point is obtained as the value of a blending function taken at the
parameter. We refer to the set of m = kn components of the p,’s as the
degrees of freedom determining the object. In the context of specification by
constraints, we refer to the pi’s as the internal control points of the object.

In the case of curves, the dimension d of the parameter space U is one, and
the blending functions are simple one-dimensional functions. Common func-
tions are the B6zier and B-spline blending functions, for which the “control
points” have a clear geometric meaning [Bartels et al. 1988; Farin 1992]. In
the case of surfaces and volumes the blending functions are usually defined
as tensor products of two and three one-dimensional functions or as polyno-
mials defined over triangles and tetrahedral, respectively.

Equation 1 can be written as

u!(u) =( Bl(u). .. B,, (u))p =B(u)p (2)

where p is an m-dimensional vector concatenating all the degrees of freedom,

P
‘Z’=( p~’. . p;); B,( z4) = bl( u)Z is a k x k identity matrix scaled by the

value of a blending function, and B(u) is a k x m matrix obtained by
horizontal concatenation of the B,( u )’s (Figure 5).

3. PROBABILISTIC POINT CONSTRAINTS (PPC)

In the previous section we saw that an object is represented internally using
a vector p of DOF. The user does not manipulate p directly. Rather, the user
grabs a point on an existing object and drags it to a desired location,
specifying its rigidity and the desired amount of similarity to the current
object. The system automatically computes a vector p that satisfies the
constraints. In this section we describe how constraints are represented and
present the PPC solution algorithm.

3.1 Representation of Constraints

The central idea is the probabilistic constraints scheme is to treat the point
constraints as stochastic measurements of the state of a static system. The
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B(u)

Fig. 5. The structure of the matrix ENu ) defining a parametric object, in the case when k = 3,

general stochastic-measurement model of a static system is

@= f(x)+e, (3)

where x is the vector of parameters describing the state of the system; f(x) is
a function of the state which can be measured; ~ is the vector of actual
measurements; and e is the measurement noise, whose covariance (or uncer-
tainty) is assumed known [Anderson et al. 1979; Schweppe 1973]. The central
problem in the theory of such systems is to estimate the state vector x from
the measurement vector q. By convention, actual measurements and esti-
mates are denoted with hats (~) while “true” measurements (without the
noise vector e) are written without the hat. We will omit the hats for clarity
since there are no true measurements in our model. In a general stochastic
system both the model and the measurement process can be time varying
(dynamic). We present only the static version for simplicity of notation.

A probabilistic point constraint c, is represented as a tuple Ci = (q,, u,, Ri )
which specifies a desired spatial location qi with a covariance matrix R i for a
parameter vector u;. R, is a k x k matrix where k is the dimension of qi. We
refer to the q,’s as external control points of the object. Naturally, the user is
not expected to deal directly with covariance matrices. A possible user
interface for specifying the softness of a constraint is given in Section 5.

The r constraints must satisfy a system of equations

9,= B(ut)P+e, i=l... r, (4)

which can be written as

q= Hp+e (5)

where q is a kr-dimensional vector which concatenates all desired locations
q~= (q;... q:); H is a kr x kn matrix obtained by vertical concatenation of
the matrices B(ul) . . . B( Ur); and e is a kr-dimensional vector concatenating
the vectors e,, e~ = (e; . . . e;).

Equation (5) has the same form as Eq. (3) where the system’s state is the
vector p of the object’s degrees of freedom; the state function being measured
is the linear operator H, and the measurements are the desired locations of
the constraints. The constraint location is the position with highest probabil-
ity for the specified object point, but other locations have a nonzero probabil-
ity. The covariance of a constraint determines principal directions for the
softness of a constraint and its magnitude along each direction.
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As will be explained below, we do not need to have explicit knowledge of
the vector e, only of its covariance matrix R. R is a kr x kr matrix which is
all zeros except at r blocks on the main diagonal, of size k x k each. Each
such block is the covariance matrix R, of the noise e, associated with
constraint c,. The upper row in Figure 8 shows the matrix R (left) and the
corresponding matrix H (right) generated by three constraints. Zero entries
in the matrices are shown in white. One of the constraints has a zero
covariance, which is reflected as a white block of R. Figure 8 is fully
discussed in Section 5.3.

We say that an internal control point p, is affected by a constraint c1 if
II,( u, ) # O. We will use this term in Section 4.

3.2 Kalman Filter Solution

The main tool which we use is the Kalman filter, which estimates the state of
a stochastic linear system from measurements. Here we briefly describe the
Kalman filter for static systems and measurement models, and state some of
its properties. For a complete discussion see Anderson and Moore [ 1979] and
Schweppe [ 1973], for example.

The static Kalman filter is suited for a measurement model q = Hp + e,
i.e., a special case of Eq. (3) with a linear operator H relating the state vector
p and the measurements q. The filter needs to be given the covariance matrix
of the noise ( E denotes the expectation operator)

R = E{ee7}. (6)

Also provided are an a priori estimate of the state vector with its associated
covariance

E{p} = p{), E((P ‘p~)(p ‘po)~} ‘~(,. (7)

For interactive design there are three main alternatives for the a priori
estimates: the current state vector, a fixed reference object, and a very large
uncertainty. These are elaborated upon in Section 4.4. A “black-box” view of
the filter is shown in Figure 6.

The Algorithm Given an a priori estimate ( p., X.), measurements ( q, R ),
and measurement model H, the Kalman filter first computes the Kalman
gain matrix K

K= XOH7”(HXOHT +R) 1. (8)

When the matrix H >OHT + R is singular, its pseudoinverse [Boullion and
Odell 1971] is used instead of the inverse. The gain matrix is then used to
produce an estimate p to the state vector

P ‘P() +K(q ‘Hpo) (9)

and, if needed, an estimate Z to the uncertainty of p

y–>.—. ~ - KHx(,. (lo)
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a priori estimate
I

Kalman
measurements

new
filter estimate

model I I

Fig. 6. A black-hx view of the static Kalman filter.

The process as described is a one-step process, not an iterative one, since we
treat all measurements at once. An alternative is to fuse the constraints one
by one, by using a matrix H that corresponds to a single constraint, estimat-
ing p and Z, and using these as a priori estimates for the next constraint.
The latter option can be more efficient when there is a large number of
constraints (see Section 4.5). The Kalman filter has the following statistical
properties

—It is an unbiased estimator of p (i.e., the estimator has the same mean as
p).

—It is optimal in the sense of linear mifiim.al variance (i.e., among all linear
estimators of a certain form it produces the smallest unconditional error
covariance matrix, hence yielding the minimum squared error).

—When the noise e is normally distributed the estimator is optimal in the
maximum-likelihood sense (i.e., it is the estimator for which the input
measurement vector is the event with maximum probability).:

Note that we can neglect the a priori estimate and treat all constraints as
completely rigid by setting e = pO = O, 20 = Z. In this case, and if H and
HHT are square and nonsingular, the filter estimates p to be p = H- lq,
which is the obvious way of satisfying the constraints. In this degenerate case
the PPC algorithm behaves similar to the algorithms in Borrell and Bech-
mann [1991], Borell and Rappoport [1994], and Hsu et al. [1992].

4. PROPERTIES OF THE PPC ALGORITHM

In this section we discuss a few properties of the PPC algorithm. The most
important of these is the fact that varying the covariance of a constraint
yields a continuous transition from exact interpolation to a controlled approx-
imation; thus the covariance can serve as a shape parameter. We also discuss
the influence of the a priori estimate, the situations in which the algorithm
fails, and its complexity.

4.1 Existence of a Solution and Filter Failure

When the covariance matrix of a constraint is not completely zero, the
constraint has a nonzero probability of being anywhere in space; hence every
estimation of the DOF produces “a solution.” The only situation in which a
constraint may not be satisfied is when its covariance is zero, i.e., when exact
interpolation is required. Section 4.2 shows that when the system is not
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overconstrained the filter achieves exact interpolation for a zero covariance,
Here we show that the situations in which the filter fails correspond to
overconstrained systems.

By filter failure we mean singularity of the matrix H>() H1’ + R, whose
inverse is required during the computation of the Kalman gain matrix (Eq.
(8)). Denote B = H>. HT. Let us first assume that R = O, i.e., exact interpo-
lation is required for all the constraints. In this case we are interested in the
singularity of B.

Recall that for every n x m matrix A we always have Rank(A) <
min( n, m), that for every two matrices A, B we have Rank (AB) <
min( Rank( A), Rank( B )), and that a square matrix is singular if and only if
its rank is smaller than its dimensions. In our case,

Rank(B) =Rank(HXOH~) < min(Rcmk(H ), Rank(20)) < min(kn, kr).

Suppose that the number r of constraints is greater than the number n of
internal control points, in which case Rank(B) < kr. B is kr x kr; hence it is
singular.

We have shown that a necessary condition for B to be nonsingular is that
the number of constraints is not greater than the number of internal control
points. This condition is intuitive, since in overconstrained systems it is in
general impossible to satisfy all the constraints.

In fact, by repeating the above analysis for submatrices of B, we can
phrase a more precise necessary condition: for every subset of the constraints,
their number should not exceed the number of control points affected by
them. This condition is more restricted than the previous one, since the total
number of constraints may be smaller than the total number of control points
but greater than the number of affected control points.

Another obvious necessary condition is that there are no two constraints
defined for the same parameter value, since this would cause identical rows
in the matrix H and reduce its rank.

So far we have dealt with the more difficult case, R = O. When R + O the
situation improves, since R is block diagonal, which raises the chances that
its addition to another matrix B will result in a nonsingular matrix.

When B + R is singular we use its pseudoinverse instead of the inverse.
The statistical properties of the filter do not hold anymore, but the effect is
nonetheless what the user expects. The pseudoinverse computes a least-square
solution, which is the type of solution produced by the Kalman filter. Addi-
tionally, practical experience with the application of the pseudoinverse for
interactive design [Bechmann and Dubreuil 1992; Borrell and Rappoport
1994; Hsu et al. 1992] shows that it conforms to user’s intuition.

4.2 Influence of the Covariance of a Constraint

The main novelty in the PPC algorithm is the usage of covariances. The
covariance matrix associated with a constraint determines its rigidity, i.e.,
the amount by which the constraint is satisfied, and enables a continuous
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R R (B+R) “ M

Fig, 7. The matrices R, R(B + R)-], and M.

transition from exact interpolation to a controlled approximation. In the
following we prove these statements.

Denote M = HK = B(B + R)-l = 1120Zl~(lY201-1~ + R)-l. Assume that
the matrix B = H ZOH~ is nonsingular, i.e., the system is not overcon-
strained. Without loss of generality, assume that R is arranged such that the
diagonal blocks corresponding to constraints with nonzero covariances come
before those with zero covariances. Denote the nonzero block of R by A
(Figure 7.) We have Z = (B + R)(B +R)-l = B(B +R)-l +R(B +R)-l =
A4+R(B + R)-l, hence

iW=HK=Z-R(B+R)-l.

Each zero k x k block on the diagonal of R generated from a zero covariance
matrix Ri of a constraint induces a corresponding k x k identity block on the
diagonal of M; the other entries in the rows of this block are zero. We refer to
such rows as an “identity row block” (Figure 7, right).

The new internal control points given by the Kalman filter are p = PO +
K(q – HpO) (Eq. (9)). Premultiplying each side of the equation by H, we
obtain

Hp =HpO + M(q –HPO).

For a vector x in the dimensions of q, denote by x’ the part of x correspond-
ing to constraints with zero covariance. For each identity row block of M the
terms ( HpO)’ and M( HpO)’ cancel each other, and we get ( HpY = q’. Con-
versely, ( HpY = q’ is obtained only when the corresponding rows in M
constitute an identity row block. In other words, a constraint is satisfied if
and only if ita covariance is zero.

Note that when a k X k block in R approaches zero, the corresponding
rows in M approach an identity row block. The smaller the entries in a
constraint’s covariance matrix, the farther the constraint gets from the initial
estimate PO and the closer it gets to exact interpolation. It is now clear that
the covariance can serve as a shape parameter to explore the range of objects
lying “between” the initial estimate and the exact interpolant object.

Figure 8 shows the matrices R (top left), H (top right), M(bottom left), and
Z – M (bottom right) resulting from three constraints. The last constraint has
a zero covariance, and we see a corresponding zero block in R and 1 – M and
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Fig.  8. The matrices  R (upper left),  H (upper  right),  M(lower left),  and I - M (lower  right)
resulting  from the situation  in Figure  1.

an identity row block in M. Of the other two constraints, one of them has a
larger covariance, which shows  as more  saturated  color  in R. We see that  the
corresponding entries  in Z - M have  a larger absolute  value.

4.3 Estimated  Covariance

The Kalman filter  gives  an estimate  Z = &, - ZCZZX,,  to the covariance of the
estimated  state vector  p (Eq. 10).  Premultiplying both side by H we obtain

HX=(I-MIHX,.

Again,  for every  zero  constraint covariance we have  a corresponding identity
row block of M and a corresponding zero  block of H 2. The equation  is true
for every H; hence  the corresponding block of I; must be zero.  In other  words,
when a constraint is supposed  to be satisfied  its estimated uncertainty is
zero, which is what  we would  expect.  The norm of a 2 block  corresponding to
a constraint is a measure of the desired  degree  of rigidity of the constraint.

Naturally, if an estimated  covariance is not needed  there  is no reason  to
compute  X at all. The estimated  covariance is useful  for automatic refine-
ment  schemes  [Welch and Witkin 19921 in which a measure for the desired
degree  of satisfaction  of a constraint is needed.  In addition  to this, the
estimated  z can be given  as an a priori  estimate  to the next  solution  stage.

4.4 A Priori State  Estimate

The Kalman  filter equations  (8), (9), and (10)  utilize  a priori  estimates of the
state vector and its covariance.  The new estimate  is directly influenced  by the
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a priori estimates. The first factor on the left of the Kalman gain matrix is
the a priori covariance 2.. The smaller this covariance, the smaller the gain
matrix. Since the new state estimate is computed as the sum of the a priori
state and a vector times the gain matrix, it is clear that a small gain matrix
will cause the new estimate to be close to the a priori estimate. This behavior
is in accord with the interpretation of the covanance, since a small covariance
matrix of the a priori estimate means that it has a high certainty.

For interactive shape design, there are four main alternatives in providing
the necessary a priori estimates. First, we can supply an a priori state vector
defining a fixed reference object. The new object will “follow the shape” of the
reference object to the degree given by the a priori covariance and the
constraints. This alternative is perhaps the one most useful for interactive
design, since design proceeds by refinement of an existing object.

A related alternative exists when fusing the constraints one by one instead
of at the same time. In this case both the new state and the new covariance
are used as a priori estimates when fusing the next constraint, but the first
constraint still uses the initial a priori.

The influence of the reference object can be made nonuniform by using a
more complex a priori covariance matrix. The matrix can be composed of
diagonal blocks, each one corresponding to an internal control point, and can
have different values on the diagonal of each block whose relative sizes
weight the influence of the internal control points of the reference object. The
matrix can even be arbitrary, thereby modifying the preferred direction of
influence,

A third alternative is to set the a priori estimate to be the current state
while the user interactively modifies the location of constraints, and initialize
the a priori covariance each time. The object smoothly follows the constraints
as they are manipulated. In this mode an almost exact interpolation is
achieved, since the initial estimate and the new object are very close to each
other. These two methods can also be used in physically based design [Welch
and Witkin 1992].

Finally, we can force the system to practically neglect the a priori estimate
by using a very large matrix 20, corresponding to a high uncertainty. By a
very large matrix we mean a diagonal matrix with entries that are large
relative to the numbers in which the other covariance matrices are expressed.

4.5 Complexity

Each iteration of the Kalman filter involves matrix inversion and several
matrix multiplications. Practical algorithms for computing the inverse and
the pseudoinverse of an h x h matrix take 0( h3) time. There are algorithms
which are asymptotically more eftlcient, but it is not clear that they are
better in practice [Press et al. 1988].

The dimensions of the matrix that is being inverted are kr x hr. The
largest dimensions of multiplied matrices are those involving the state vector
p, kn X kn. Only when there are more constraints than internal control
points, the complexity of all steps is dominated by that of matrix inversion.
Consequently, 0( r3 ) is the worst-case complexity of the algorithm. Improved
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algorithms for inversion of sparse matrices can improve this worst-case
behavior,

Practically, however, the algorithm’s performance is much better. In many
cases r can be counted as a constant, and the complexity is only 0( nz ). When
the blending functions that define the smooth object (cf. Eq. ( 1)) possess finite
local support, as with B-splines and finite elements, each constraint will
affect only a small number of internal control points. We can exclude from the
estimated state vector p all those control points that are not affected, since
they are guaranteed not to be modified. This includes all internal control
points whose regions of support in parameter space do not contain the
parameter value of any constraint. This exclusion can significantly improve
the performance of the algorithm, since in most cases design is done incre-
mentally by local refinement, so at each manipulation stage the constraints
will influence only a small subset of the internal control points.

Finally, performance can also be improved by using hardware implementa-
tions of the Kalman filter [Anderson and Moore 1979].

5. IMPLEMENTATION

A prototype system for experimenting with probabilistic point constraints
was implemented in C under Unix, on Sun and Silicon Graphics workstations
using the X/Motif user interface toolkit, X and GL for 2D graphics, and GL
for 3D graphics. The system enables interactive design of curves and surfaces
and visualization of the matrices used during the solution. The internal
representation chosen for smooth objects is the B-spline representation,
because B-splines are very common in computer graphics and geometric
modeling. Our emphasis was on experimenting with the probabilistic con-
straints methods more than on investigating internal representations. It may
well be that B-splines are not the best internal representation for constraint-
based interfaces. Some of our work on internal representations is described in
Borrel and Rappoport [ 1994].

5.1 Covariance as a Local Coordinate System

The main novelty of the system from the user’s point of view is the ability to
define a softness for each constraint. Internally, softness is represented as a
covariance matrix. A conceptual model for intuitive reasoning about covari-
ance matrices is needed.

The system uses a normally distributed, zero-mean multidimensional noise
vector e. The standard deviation along each principal dimension corresponds
to the rigidity of the constraint along that dimension. The normal distribution
yields a softness which is symmetric along its principal axes. The standard
deviations along the directions can be different, yielding a nonisotropic
softness. This is advantageous since it enables the user to use the covariance
for pulling and pushing the object in a certain arbitrary direction.

We can think of the covariance matrix as defining a local coordinate system
(Lcs) centered at the desired location of the point, rotated according to the
desired principle directions, and scaled by any desired amount along its local

A(IM Transactions on C,raphics, Vol 13. No 2, April 1994



172 . Ari Rappoporl et al,

axes. The scale factor along an axis could be, for example, the variance of the
random variable on that axis.

Let S be the diagonal matrix such that Si,, is the standard deviation along
axis i. Let L be the rotation matrix that brings the global coordinate system
to the desired local coordinate system of the constraint. The covariance
matrix R is obtained by R = LTSL, a similarity transform that modifies the
eigenvectors of S to coincide with the desired principal directions.

5.2 Direct-Manipulation Device User Interface

An interface is needed for transforming user’s intents into local coordinate
systems, which in turn will be converted to covariance matrices. To visualize
and specifi Lcs’s we use direct-manipulation devices (Dmds). A Dmd is an
abstract data type augmented with a visual representation and with methods
for interactive specification of the operations defined for the abstract data
type [Rappoport 1993]. Our naming convention is to call a Dmd whose data
type is Name by DmdName.

We experimented with two DmdLcs’s, one in 2D and one in 3D. In 2D, the
Lcs is visualized as a rectangle centered at the Lcs’s location, scaled and
oriented appropriately. In 3D, it is visualized as a 3D cross. Interaction is
mostly done using the left mouse button. Translation, Scale, and Rotate
handles are provided to interactively support these operations. In 3D, the
translation handle operates like the well-known 3D cursor of Nielson and
Olsen [1986]. Scale and Rotate are overloaded into the same handle, and the
distinction between them is done using gestures. The parameters to the
operations are computed such that the handles follow the mouse. The middle
mouse button is used to toggle between degenerate transformation (e.g., zero
scale) and the previous Lcs. The 3D DmdLcs and other Dmds are described in
detail in Emmerik et al. [1993].

Note that the rectangle is not to be interpreted as defining a “tolerance”
region beyond which the probability of the constraint is zero. The probability
of a randomly distributed event is nonzero everywhere, unless a zero covari-
ance is used (in which case the rectangle degenerates into a point anyway).
The rectangle only serves for visualization and direct manipulation of the
covariance. The choice of the standard deviations as the rectangle scale
factors is completely arbitrary; any consistent choice would be as suitable.
Because of this possible misunderstanding, we concluded that a cross (either
2D or 3D) is more suitable than a rectangle or a box for interacting with
covariances.

5.3 Examples

We describe some example images created using our prototype implementa-
tion. Figure 1 shows three constraints on a flat reference surface. The
reference surface is shown in a darker color than the color of the designed
surface. The user can turn off the display of the reference object if desired.
The constraint on the right has a zero covariance, which is visualized by not
showing the scale and rotate handles on the Dmd. The white spots on the
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designed surface are the preimages of the constraints. We can see that the
surface exactly interpolates the constraint with the zero covariance.

Figure 2 shows the same situation, but after increasing the covariance of
the top constraint along one of its axes. The surface is less attracted by the
constraint. Figure 3 shows the same constraint, with a decreased initial
covariance estimate, making the designed surface more similar to the refer-
ence surface. A value of zero for the initial covariance freezes the designed
surface to be identical to the initial one. In Figure 4 the designed surface has
been made the reference object, and new constraints have been defined on it.

Figure 8 visualizes some matrices resulting from the situation in Figure 1.
Zero entries are shown in white, while the absolute value of nonzero entries
is encoded into saturation of the color. Larger values are shown in a deeper
saturation. The matrix R of the covariances of the constraints is shown on
the top left. R is a 9 x 9 matrix since there are three constraints, each lying
in 3D. The diagonal block corresponding to the zero covariance constraint is
white. The upper block is not diagonal since the Dmd of the uppermost
constraint was scaled nonisotropically and rotated.

The matrix H is 9 x 48, since there are three 3D constraints (defining the
number of rows) and 16 3D internal control points (defining the number of
columns). Note the block structure of the matrix (cf. Figure 5). Most of the
entries are zero (white) because two of the constraints were defhed on
extreme parameter values, for which the surface basis functions are zero. The
matrices M and 1 – M are 9 x 9, like R. Note that the zero block in R
results in an identity row block in M, which causes a zero block in I – M.
This zero block guarantees that the constraint will be exactly interpolated
since the system is not overconstrained.

Figure 9 shows a 2D face. The small squares on the curve serve for
visualization of some of the B-spline knots, to convey a feeling for the amount
and location of the DOF available. Overall, there are hundreds of DOF. The
reference object for the face is a circle. The face was designed using about 20
constraints, but only one of them is shown, connected to the mouth. In Figure
10 the covariance of this constraint along one of its axes was increased,
pushing the mouth toward the reference circle. Interactive modifications of
the orientation and size of the rectangle produce many subtly differing mouth
shapes. The designer “plays” with the rectangle to let the system suggest
many shapes similar to the designed one, among which the most satisfying
can be chosen.

6. CONCLUSION

In this article we presented soft constraints for interactive design of smooth
objects. We described the probabilistic point constraints (PPC) algorithm for
implementing and solving soft constraints. Each constraint has an associated
covariance matrix, which can serve as a local, nonisotropic shape parameter.
The covariance provides a means for continuously moving from exact interpo-
lation to approximation of a constraint. The algorithm is linear, enabling
real-time interactive design. We demonstrated the algorithm for curves and
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Fig.  9. A 2D face  designed  with  probabilistic constraints. The  reference  object  is a circle.  Only  a
single  constraint is shown,  on the mouth.

Fig. 10. The  face  from  Figure  8, with a different magnitude of the covariance  of the mouth
constraint along one  of its axes.
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surfaces; it could easily be used for smooth volumes (commonly called “free-
form deformations”), by modifying the picking and display mechanisms.

We used a scaled identity matrix as the covariance of the current object,
providing a global parameter for the amount of similarity between the
current and new objects. Currently this parameter is set through a slider
widget. Improved user interface techniques for specifying nonuniform simi-
larity controls should be pursued.

Probabilistic constraints are applicable for every object represented as a
linear blend of “control points.” However, there may be representation which
are more suitable than others. In the future we plan to extend our research
on internal representations [Borrel and Rappoport 1994] to probabilistic
constraints.

Curve constraints are very useful as design operations. We plan to investi-
gate probabilistic curve constraints, perhaps by sampling many points on the
curve and fusing them as constraints one by one. Another direction for future
research is how to provide the effects of minimization of energy functional in
the context of probabilistic constraints.

Finally, we have already applied the probabilistic-constraints idea to re-
laxed parametric design [Hel-Or et al. 1993], mostly for mechanical CAD
applications. The present application is very different (the type of object
designed, the representation of constraints, linearity vs. nonlinearity of con-
straints, and more). There are many more possible applications of the concept
in geometric modeling and computer graphics.
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