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Agents and Creativity

hen Alice had finished reciting You are old,
Father Wifliam, at the Caterpillar’s request,
the following exchange ensued:

“That is not said right,” said the Carerpillar.
“Not guite right, I'm afraid.” said Alice, tim-
idly: “Some of the words have got altered.”
“It is wrong from beginning to end,” said the Caterpillar

decidedly.

After that, Lewis Carroll tells us, there was silence for
sOIme minutes.

The silence was hardly surprising. How can one com-
pare two things—sitill less judge the closeness of their re-
lationship—if they are different (or "wrong™) in every re-
spect? Without a series of intermediate structures, one
cannot be understood in terms of the other. Even if they
do share some similarities, these have to be noticed—and
they have to be recognized as significant. Had Alice
pointed out that her poem, presumably similar to the one
the Caterpillar had in mind, contained several instances
of the word “the,” the creature would not have been per-
suaded. Where poems are concerned, metres, rhyming
patterns, and many individual words are significant, but
“the” counts are not. To argue with the Caterpillar, Alice
would have had to identify the important features of her
poem, and of his, before being able to compare them.

What has this got to do with creativity, and with
agents? Creativity involves coming up with something
novel, something different. And this new idea, in order to
be interesting, must be intelligible. No matter how differ-
ent it 1s, we must be able to understand it in terms of what
we knew before. As for agents, their potential uses in-
clude helping us by suggesting, identifving, and even
evaluating differences between familiar ideas and novel
ones. (You'll be relieved, perhaps, if I don’t attempt to
define just what an agent is—and isn't. Instead, I'll rely
on the intuitive notion that an agent is a part of a pro-
gram which can act, and/or be asked to act, in relative
independence of others.}

No one would choose the Caterpillar as an assistant; he
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was both grumpy and unhelpful. What Alice wanted to
know was just where she had “gone wrong,” just where
her recital differed from what she had learned before.

But the Caterpillar was in no mood to tell her. A comput-
erized agent cannot be grumpy. Whether it can be specif-
ically helpful to someone trying to come up with (or te
assess) creative ideas, 1s what we must consider.

How is creativity possible? How can a person, or a
computer for that matter, generate novel ideas? Many
scientifically minded individuals would argue that there
is nothing especially problematic about creativity. A cre-
ative idea, they would say, is merely a novel (and valu-
able) combination of familiar ideas. Accordingly, creativ-
ity could be explained by a scientific theory showing how
such novel combinations can come about.

Up to a point, they're right. Samuel Taylor Coleridge’s
questions about “the hooks and eyes of memory,” for in-
stance, could be answered by psychological theories de-
scribing the associative processes in the poet’s mind (or
brain). Indeed, current computer models of neural nets
provide some preliminary ideas about just how such asso-
ciations could happen. Using those ideas, we can lay com-
putational foundations for the Road to Xanadu described
in a fascinating literary study of the sources of Coleridge’s
poetic imagery [1, 10].

Moreover, we can see, in outline, how such theories
might lead to helpful agents of diverse kinds. For exam-
ple, the units (on various levels) within a computer model
of a rich semantic network could communicate not only
with each other but also with a human user. A writer
might use the set of intercommunicating agents as an in-
telligent thesaurus, or even a computerized literary critic
For agents of this type might aid someone stuck for a new
image, or someone attempting to assess (or interpret) one
suggested by another writer. And they might help to
show whether (and how) a series of images fits together,
or to diagnose the mixture in a mixed metaphor. An
agent within a semantic network could not only effect an
association but also trace the associative pathways in-
volved, which in itself might prompt the user to new in-
sights. If such agents were unable always to tell the difter-
ence between an interesting image and an inappropriate
one, they would be little the worse for that. Human
brainstorming sessions, too, produce a lot of rubbish.
Nuggets can be found within the rubbish, even though
they may require further polishing.

Analogy, too, is the novel combination of familiar
ideas. In analogy, the structural similarity between two
ideas is especially important. Moreover, the analogy (un-
like many associations of ideas) may be systematically
developed, for purposes of rhetoric or problem solving.

Several current computer models suggest how two
ideas can be seen as analogous, being matched in various
ways according to the context of thought [1]. Some are
relatively rigid, in the sense that analogies are sought be-
tween things having pregiven descriptions, which de-
scriptions are not altered if a new analogy is found [2, 7].
We can think of these programs in agentive terms if we
focus separately on the various criteria they use in seek-
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ing analogies (semantic, structural, or pragmatic). Inter-
active versions might be helpful to human writers or
problem solvers wanting to find, assess, or compare anal-
ogies. {As in the previous discussion of associative agents,
this presupposes the availability of a rich database of po-
tentially relevant concepts.)

One analogy model, in particular, is readily seen as a
community of agents. The Copycat system [6, 11] uses
many independent descriptors in trying to interpret a
given analogy and to find a new (but similar) one. These
descriptors, or “codelets,” are applied in parallel, com-
peting with one another to find the strongest analogy.
The domain this program works in is very simple: alpha-
betic letter strings. But there are hidden complexities
even in this simple domain. For instance, one and the
same structure can be described differently on different
occasions, according not only to probabilistic variations
but to the specific context surrounding it. Thus, the mini-
string mm will be described as a letter repetition if it oc-
curs within the larger string aaffmmppzz, but as two sepa-
rate letters (identified respectively as the last and the first
member of a successor triplet) if it occurs in the string
abcfghklmmno. A description can be used for a while and
then discarded, as Copycat finds a more integrated, high-
level, analogy involving other descriptions.

This program has come up with many unexpected al-
phabetic analogies, some of which are highly persuasive.
For example, it was told that abe 1s analogous to (can be
changed into) abd, and was asked to find a matching anal-
ogy for xyz. Among the many answers it offered were not
only xyd, xyzz, and xyy, but also the surprising and elegant
wyz. This involves, among other things, mapping a onto z
and left onto right, and also swapping successor and prede-
cessor. In embryo, then, we have a set of agents which can
say not only “Think of it this way” and “Think of it that
way,” but also “Better still, think of it like this.” If these
techniques were made available in an interactive system,
they might help human users to see analogies in some
unexpected places.

Combinational creativity, then, can be thought of in
agentive terms—and might be aided by computer sys-
tems made up of many largely independent agents. But is
that enough? Can we explain all creativity by reference to
novel combinations? If not, can we explain other cases in
other terms—and would these also be suitable for com-
puter implementation?

Creative ideas include scientific theories; musical com-
positions; literary genres; instances of choreography,
painting, and architecture; theorems of mathematics;
and the inventions of engineers. Some of these can be
understood as mere novel combinations of familiar ideas.
But many cannot, especially those which not only solve
the creator’s initial problem but also engender a whole
new set of problems, to be solved perhaps by the creator’s
successors over many years. Exploring the implications of
a radical new scientific theory, or of a new visual or musi-
cal genre, is not a matter of mere combination juggling.
On the contrary, it is a structured, disciplined, sometimes
even systematic search for the meanings promised.



But how can this be? How can a new idea be pregnant
with such promise? Imagine trekking through a desert
and up a barren mountainside only to see, from the crest
of the hill, a verdant valley stretched out before you. The
promise, the possibilities, are enormous. But to find
them, you will have to explore the valley — perhaps
sketchily at first, but later seeking treasures in many a

nook and cranny. Creative thinkers (which means all of

us, on a good day) explore the possibilities inherent in
their own minds, wherein the spaces are not geographi-
cal but conceptual.

A conceptual space is a style of thinking, a mental skill
that may be expressed in marble, music, or movement, in
poetry, prose, or proof [1]. It is defined by a set of con-
straints (the dimensions of the space) guiding the genera-
tion of ideas in the relevant domain. Some of these con-
straints are accepted, by the thinker and by the relevant
social group (the Caterpillar?), as being more inescapable
than others. And some are more fundamental than oth-
ers. Together, they form a mental landscape with a char-
acteristic structure and potential.

Conceptual spaces are analogous to geographical ones
in several ways: they can be mapped, explored, and su-
perficially altered, with many valuable results. In one
way, however, they are very different. Unlike physical
terrain, a conceptual space can be fundamentally trans-
formed. The result of such a transformation is the ap-
pearance of a new space of possibilities, a mental terrain
which simply did not exist before. It does not follow that
creativity involves only transformations, although many
of the most exciting examples do. Many creative achieve-
ments result from exploring conceptual spaces in system-
atic and imaginative ways.

For exploring and transforming our thinking styles—
and for understanding and appreciating the results—we
need good “maps” of the relevant space. Intuitive maps
exist within our heads, mostly inaccessible to conscious-
ness. In more explicit form, they can be found (though
usually only in outline) in the humanities: in literary crit-
icism and musicology, in the philosophy of science
and aesthetics, and in the history of art, science, and
mathematics.

Think of the disciplined beauty of a Palladian villa, for
instance, with its symmetrical plan and elegant facade. Ox
consider the clean lines and interconnecting volumes of a
Frank Lloyd Wright open-plan “Prairie House.” Think
of the conventions of New Orleans jazz, and how they
differ from Dizzy Gillespie. And remember how organic
chemistry was changed by Kekulé's discovery of the ben-
zene ring, which engendered not just one molecular
structure but a vast space of structural potential (aromatic
chemistry), whose contents, pathways, and boundaries
have now been largely mapped.

Even the Caterpillar might be able to sense the similar-
ity between one Palladian villa and another, or between
the various Prairie Houses. And a 20th-century Caterpil-
lar might be able to recognize New Orleans jazz, and dis-
tinguish it from later varieties. But Alice’s invertebrate
friend would not be able to specify the relevant similari-

ties. A well-educated Caterpillar could enumerate the
dimensions of the space of benzene derivatives, for these
have been made explicit by theoretical chemists. With
respect to architecture and jazz, however, things are
much less clear.

Generations of architectural historians have disagreed
on just what principles of design underlie Palladian de-
sign. And an expert on Lloyd Wright's work pronounced
the (intuitively evident) architectural balance of his Prai-
rie Houses to be “occult” [8]. However, the crucial stylis-
tic similarities concerned have been explicitly identified
within a computer program [3] and a computationally
inspired “space-grammar” [8], respectively. Each of these
formal systems describes the relevant conceptual space,
making it possible to say just why two structures share (o1
do not share) the same style, and just how (and how fun-
damentally) they differ.

In addition, each of these systems can generate an in-
definite number of structures lying within the relevant
conceptual space. Some of these match buildings already
designed by Palladio or Lloyd Wright. Others are new,
depicting houses of the same general type.

For instance, the plan of a Palladian villa is designed by
starting with a rectangle (certain proportions being pre-
ferred), and generating internal rectangles (the rooms)
by making vertical and horizontal “splits” of various
kinds (Palladio himself described this method). Not just
any splits will do, if the resulting design is to be one that
Palladio would have approved. Splits are unacceptable if
they produce internal corridors; long, thin rooms; too
many rooms; rooms of greatly disparate size; many inter-
nal (windowless) rooms; and the largest rooms lying off
the central axis. Early versions of the Palladian program
made all of these mistakes, but the relevant design con-
straints have now been incorporated. Further non-
Palladianisms, produced in the past by human imitators
(such as Lord Burlington), include rectangular bays jut-
ting out from the rectangular perimeter.

As well as designing plans, this program designs Pal-
ladian facades appropriate to a given plan. It knows
(among other things) the difference between Doric,
Ionic, and Corinthian columns, and the constraints gov-
erning the placement of windows and pediment. On sev-
eral occasions, it has produced a plan-and-facade design
virtually identical to one drawn by Palladio himself. In
short, the Palladian program, and the Lloyd Wright
shape-grammar too, has generated new architectural
designs (though not new architectural styles).

The question here, however, is not whether an entire
program can do something “creative,” or even useful,
but whether an agent can help a person to do so. The
computational work on architectural styles suggests some
ways in which computer agents might help a human
architect.

For example, someone designing a Palladian villa, or
even combining aspects of Palladianism with some other
style, might find it helpful if an informed agent were to
suggest—or to forbid—a split at a certain place in the
plan. This would be especially useful to architects, or ar-
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chitectural students, with little experience of working in
this genre. Left to themselves, such a person might de-
sign asymmetrical splits, overly narrow rooms, or bays
spoiling the clean perimeter line. Similarly, once the
house plan had been approved, various agents might
offer advice on the facade. Some could suggest the num-

ber, and the type, of columns. Others might argue for
and against an attic story, or for and against a particular

type of pediment or architrave.

The agent initiators and critics could communicate
among themselves as necessary (to check for bilateral
symmetry, for instance, or for numbers of rooms). But
they need not insist on universal agreement. If they are
being used as assistants to human beings, then responsi-
hility for the overall integration of the design could be left
to the person. However, in some circumstances, the
human could not be relied on to achieve a satisfactory
design, because of either inexperience or complexity. In
producing a set of computerized agents (a program) for
practical use, careful judgments would have to be made
about just which decisions and evaluations could be left
entirely to the user, and which should be monitored, or
even made, by the agents. (This is a special case of the
familiar problem about the use of “expert systems” in
general.)

Agents could be used to help people map, explore,
tweak, and (ultimately) transform conceptual spaces ot
many different kinds. It is not necessary to restrict our-
selves to examples such as Palladian architecture, which
has long been described in formalist, mathematical,
terms. Once a conceptual space has been mapped, agents
could help us to move around it in some surprising ways.

Take jazz, for instance. Suppose the Caterpillar in Al-
ice’s Adventures in Wonderland had not been holding a
hookah, but a saxophone. And suppose that Alice, an
uncommonly precocious child, had taken some jazz cas-
settes with her to Wonderland, and played them to the
Caterpillar. Could the Caterpillar have been helped to
learn to play music in that style by a set of computer
agents (also presciently provided by Alice)? Surely, this
idea is too nonsensical even for Carroll? The spontaneous
creativity of jazz improvisation, you may believe, is simply
not the sort of thing computers could help.

Well, that belief might not survive experience of a pro-
gram that can help people to improvise jazz (4, 5, 14].
This program knows about various dimensions of the
musical space of jazz, and various ways of traveling
through it. For instance, it can produce fragments of as-
cending or descending scales, ensuring the scale chosen
is the one relevant to the harmony at that particula:
point. It can provide “call” and "reply” over two or more
bars. It can replace the current melody note by another
note drawn from the same scale, or provide a chromatic
run between this melody note and the next. It can “cut
and paste” a library of melodic and rhythmic patterns, o1
play fractionally ahead of or behind the beat. And it, and
the human user, can vary the frequency with which it
does any of these things.

If left to wander through the space by itself, this pro-
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gram will improvise—on a given melody, harmony, ana
rhythm—by making (random) choices on many dimen-
sions simultaneously. Working in this fashion, it often
creates novel musical ideas that professional jazz musi-
cians find interesting, and may wish to develop in their
own playing. Alternatively, the human user can make the
program concentrate on one (or more) dimension at a
time, and explore 1t (or them) in a very simple way. This
is why it can help jazz novices, who can focus on the as-
pect of jazz that is currently causing them difficulty.

The separability of the various musical dimensions
suggests the activity of a number of independent musical
agents. An improved version of this system might include
evaluative modules (agents) which could discriminate
between equally legal phrases, or identify weaknesses in
an improvisation (its own or the user’s) and show how
they can be avoided. A really knowledgeable system
might even be able to teach the user how to recover from,
or even make the best of, a mistake that had not been
avoided. (Oliver Sacks has described a patient with
Tourette’s syndrome who is a jazz drummer, able to turn
his unpredictable muscular tics into the seeds of exciting
improvisations.) In general, mistakes can be thought of as
a sort of serendipity. If knowledgeable agents were devel-
oped to help us make the best of our mistakes (not just
avoid them), they could lead to some real surprises.

Mention of mistakes raises the question, mevitable in
discussions of creativity: “When is a mistake not a mis-
take?” The answer, sometimes, is “when it is a transfor-
mation.” Going beyond the familiar conceptual space—
generalizing a constraint, specializing it, dropping it,
negating it, adding another—could always be described
as a mistake, relative to the original style of thinking. In-
deed, it often is so described: one of Kekulé's contempo-
raries dismissed his account of the benzene ring as “a
tissue of chemical fancies,” and new art forms are com-
monly rejected when they first appear.

A transformation may be more or less fundamental:
changing a string molecule to a ring molecule by closing
the formerly open curve, is more fundamental than
switching between methyl and ethyl alcohol by making
different attachments to the hydroxyl group. And several
transformations may be combined: one could include
both bays and cylindrical rooms in a basically Palladian
design. But not everything can be transformed at once.
The new conceptual space is generated from its predeces-
sor, and must be intelligible in certain terms if it is to be
accepted. If Alice’s recital was literally “wrong from be-
ginning to end,” the Caterpillar wouldn’t have known
what poem she was reciting.

Heuristics for transforming conceptual spaces, includ-
ing the space of heuristics, have been applied in a num-
ber of programs [9]. One of these, whose task is to gener-
ate new mathematical concepts from very simplc bases,
also has criteria for evaluating the mathematical “inter-
est” of the results. Some of the evaluations are mutually
exclusive (if the union of two sets either has or does not
have some property possessed by both the original sets,
that is counted, rightly, as interesting). Likewise, some



heuristics are opposites: to specialize a concept, and to
generalize it, for instance. There is nothing wrong with
that, for a concept does not need to satisfy every possible
criterion to be interesting, nor does every heuristic need
to be applied simultaneously.

These generative heuristics and evaluative rules can all
be thought of as agents. Despite being called the “Auto-
matic Mathematician,” this program has often been used
interactively. For example, a human mathematician
would guide a concept into certain pathways by giving ita
name, which the program would interpret as a hint to
give that concept priority for a while. Versions of this
program might be developed for other domains, in
which the knowledge and judgment of human users
could aid, and be aided by, the application of the trans-
formational and evaluative heuristics. Indeed, its heu-
ristic-altering successor has been applied to several dif-
ferent problem areas, and has generated at least one
patentable idea.

The most surprising—though not necessarily the best—
transformations would be able to change the conceptual
space in unpredictable ways and at unpredictable levels.
The clearest example at present is given by genetic algo-
rithms. A crossover operator, for instance, might be
thought of as an independent agent that transforms, at
random, certain types of constraint represented in the
target code.

The targeted constraints may be more or less restric-
tive. For example, in one graphics program the cross-
overs and mutations can get right into the heart of the
image-generating code [12]. The results are always “vi-
able,” in the sense that the newly transformed code will
generate some visible image or other. But the process is
utterly undisciplined. Although it could be used to help
graphic designers come up with images they would never
have thought of themselves, it cannot be used to explore
or refine an image space in a systematic way. However,
that is possible if the mutating agents are allowed to alter
only the superficial parameters of the code. Significantly,
these less powerful agents are preferred by a professional
artist working on “computer sculpture,” who uses them
to explore specific classes of 3D forms [13].

In both these cases, the evaluation is done by the
human user. At each generation, he or she chooses the
image or image pair to be used in “breeding” the next
generation. In principle, evaluation could be made auto-
matic (in whole or in part) and it might be useful for the
artist to be able to avoid having to consider certain sorts
of image, or to be presented up front with the most
“promising” ones. But if one’s interest here is in the de-
velopment of agent systems for interactive use, evalua-
tion should not be entirely handed over to the computer.

I've concentrated on the practical question of whether
agent systems might help to further human creativity.
But my discussion can be seen also as an outline of how
creativity might be scientifically understood. Many differ-
ent psychological processes are involved, ranging across
combinational and exploratory-transformational think-
ing. And many questions remain unanswered, or un-

asked. However, despite all the unclarities, we are begin-
ning to understand the computational resources that
underlie creativity in its various forms.

Creativity at Lewis Carroll's level seems magical, but
there is no reason to think that it is magic. Wonderland
(and the world behind the Looking-Glass, too) owes
many of its surprising features to tweakings and transfor-
mations of conceptual spaces familiar even to a child.
Other Wonderland surprises are grounded in serendipi-
tous assoclations within the author’s mind. We shall never
know what all of these were (still less could they have
been predicted beforehand). Who can say where the
hookah came from? But the Caterpillar and his mush-
room may have owed their existence to a real caterpillar
and a real mushroom, falling under Carroll’s eye on that
golden summer afternoon. @
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