
EXTENDED SHARED-VARIABLE SESSIONS

Karl Soop
IBM ESRI, 135 Chaussee de Bruxelles, B-1310 La Hulpe, Belgique

Roderic A. Davis II
IBM Data Systems Division, Box 390, Poughkeepsie, N.Y. 12602, USA

We shall regard the (degree of) coupling as a boo-
lean vector C made up of the partners specific
couplings, representing connected (1) and discon-
nected (0). The combined coupling is +/C, but is
reported (e.g. by OSLO) to the respective partners
as Cx+/C.

Abstract
This paper proposes two extensions to make shared We shall say that the SVP discards a shared variable
variables of APL more useful: Shared variables V, when it deletes all information about it. V then
that persist across APL sessions, and a facility ceases to be shared and neither partner can connect
to reject incoming offers. to it. Discard does not mean, of course, that the

value of V need be lost; either partner can normally
continue to use the variable in her own workspace.

1. Introduction

We observe that communication between two partners
can span over several APL sessions, where each
signoff and later signon of either or both partners
forms an interruption that may be due to factors
outside the communication protocol or the logic of
the application. Using the shared variables of
conventional APL, the partners must reinstate the
communication where it left off, which, if at all
possible, can be extremely cumbersome. This appears
an unnecessary requirement, imposed by the short-
comings of the present mechanism.

The existence of a Shared-Variable Processor (SVP)
with a memory for shared variables and ancillary
information, suggests that this memory be made per-
manent on demand, thus allowing the communicating
processors to bridge gaps in the on-going session.
This forms the rationale for the first proposed ex-
tension (Section 2).

The second extension, Shared-Variable Rejection,
partly stems from the first. It is motivated and
presented in Section 3.

In the following, the term specific, with reference
to a shared-variable attribute such as Access Con-
trol, refers to the value contributed by one of the
partners, whereas combined refers to a value com-
puted from the two specific values by the SVP.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

@ 1985 ACM 0-89791-157-l/85/005/0148 $00.75

2. Shared-Variable Persistency

To overcome the first deficiency discussed in the
introduction, we propose persistency, a new attri-
bute of a shared variable. This is a two-element
boolean vector P, with a specific value associated
with either partner. The value represents persist-
ent (11, or volatile (0). The combined persistency
is defined as v/P.

In current APL, only volatile shared variables are
defined, which means that the SVP discards the var-
iable when the coupling becomes 0 0. This does not
happen with a persistent variable. Any one of the
partners can later reconnect to the variable by
making the appropriate offer. If the other partner
matches the offer, communication can continue where
it left off without any further preparation.

2.1 SPECIFICATION

Persistency is specified by a new system function,
Shared-Variable Persistency. The expression:

kr DSVP N

sets the specific persistency of each shared vari-
able in the character matrix N to corresponding
values in the boolean vector W. Enquiry is effected
by a monadic variant of USVP. The explicit result
of both functions is a boolean vector, stating the
combined persistencies of the variables in N, with
zero wherever a shared variable is not specified.
Thus (with the earlier notation):

CXV/P

is reported to the respective partner.

Conformability and rules for the specification of
N are the same as for OSVO. The use of OSVP does
not engender an SPP signal.

EXTENDED SV SESSIONS -148- KARL SOOP AND ROOERIC DAVIS

http://crossmark.crossref.org/dialog/?doi=10.1145%2F255315.255360&domain=pdf&date_stamp=1985-05-12

2.2 EFFECT

We define the effect of persistency in terms of two
partners A and B, who share a variable V:

1. When A retracts F, the SVP examines its at-
tributes:

4 If A's specific persistency is zero, the
SVP resets A's specific Access Control.

-'- Then, if (and only if) the coupling becomes
0 0 and the persistency of F is 0 0, the
SVP discards F.

-'- E 1 s e , the SVP will retain all its informa-
tion about P (namely the surrogate name,
the value, the partners' processor Ids, the
Access State, and all specific attributes).

2. A reconnects to the persistent V by offering
it to the previous partner B. A must use the
previous surrogate name, but the variable
name need not be the same as before. If the
coupling was 0 0, the offer is chronologi-
cally a new one.

3. On reconnection, A will see the variable au-
tomatically reinstated. This includes the
value (if any), the Access State, and A's
specific attributes.

4. A shared variable in a general offer may be
made persistent, and will be retained on re-
traction as any other shared variable.

5. The co-domain of OSVQ is expanded to report
to A not only all outstanding offers to A,
but also all persistent offers of coupling
0 0 where A is a partner. In short, A may
use IISVQ to find out which variables he may
currently connect to.

Note, that to have the SVP retain the shared vari-
able, it is enough if one partner makes it persist-
ent. If A does but B doesn't, it is enough if, at
a later stage, A alone makes the variable volatile
to have it eventually discarded. If, on the other
hand, both had made it persistent, both must make
it volatile for it to be discarded. Note also, that
the coupling, and the manner it changes, is not af-
fected by the proposal.

3. Shared-Variable Rejection

In current APL the SVP retains outstanding offers
to a processor A, and these are reported by OSVQ,
whether wanted or unwanted.
"reject"

The only way for A to
an unwanted offer is to ignore it - that

is, not to match it. Matching, and then retracting
the variable, makes the SVP re-offer the variable
to A.

An outstanding offer will persist as long as the
shared variable persists: in current APL, until
the Partner retracts the variable. With the Per-
sistency extension, the shared variable may persist
indefinitely.

Now, if A intends to be responsive to other offers
that it considers suitable, the continued presence
of unwanted offers will require additional process-
ing on its part. In order to get rid of them, A is
dependent on the goodwill of his partners for re-
traction, possibly preceded by a persistency reset.

EXTENDED SV SESSIONS - 149-

To avoid this problem, we propose that a processor
be able to reject a shared variable. Rejection means
that the SVP forces a retraction of the variable
from each connected partner, and then discards the
variable irrespective of persistency.

Rejection is achieved by a dyadic extension of
OSVR :

P CISVR N

where N is a matrix of names, and P is a vector of
corresponding processor IDS. Conformability of the
arguments is the same as for OSVU.

The effect of dyadic IISVR is as follows:

1. If a row in N contains one name S, an un-
matched offer of the surrogate name S to A
from the corresponding processor in P is re-
jected. If several such offers are extant,
the chronologically first one is rejected.
The coupling before rejection may be 0 1 or
(if persistent variable) 0 0.

2. A general offer can not be rejected.

3. If a row in N contains two names V and S,
the shared variable specified by that variable
name and surrogate (which may be identical)
is rejected. The coupling before rejection
may be 1 1 or 1 0; in the latter case, re-
jection is equivalent to retraction of a vol-
atile variable by monadic OSlrR.

4. Rejection is always accompanied by an SVP
signal to the partner.

The corresponding element in the explicit result of
dyadic USVR is the combined coupling before re-
jection, i.e. the same as for monadic CISVR.

One may object that the meaning of one versus two
names in the argument is contrary to the semantics
of the other system functions, such as OSVO. But
there is a precedent: The name matrix produced by
OSVQ consists of surrogates only. Note also the
highly desirable construction P DSVR OSVQ P.

4 _ Application

Shared-Variable Persistency opens up several inter-
esting applications, among others of the "mail-box"
type. You can establish communication protocols
with a number of partners, using shared variables
with suitable surrogate names, and ascertain with
suitable Access Control that your partner read your
message before replying. Using the system function
OSVS of APL2 [Gerth], you may ascertain whether
your partner has read your mail or not, even after
he has signed off. This mode of operation caters
to team work in a distributed environment, and is
especially useful, e.g. in CA1 applications.

You can make a one-sided connection by offering to
any non-existent processor, thereby ensuring that
the offer is never matched. If you make the variable
persistent, it will be saved across workspace
LOADS and across sessions. You will be able to pass
large objects from one workspace to another, reduc-
ing the transient workspace size in many applica-
tions. (Although not part of the current proposal,
we suggest that a processor be allowed to offer a
variable to itself for this purpose.)

KARL SOOP AND RODERIC DAVIS

Persistent variables have a key utility in connexion
with another proposed extension: Processor Attach-
ment [Soop], where one processor may sign on to an-
other. Here the single user of a number of
cooperating processors can close down the session
in such a way that all shared variables, including
their states, are conserved. She may then later
resume the session exactly where she left off.

Rejection is useful in cases where the application
provides some service to other applications. Typi-
cally, the multi-server processor must be responsive
to new offers requesting service, while at the same
time be able to 'shut off" old requests that have
been satisfied. The service function must also be
able to reject offers that do not observe the proper
protocol in terms of order, timing, and surrogate
naming. The capabilities needed to achieve this are
all the more important when the multi-server is
waiting for shared-variable events (through OWIE
[Gerth]). Short of asking the potential partners
to comply by doing their bit of clean-up, rejection
will be the only method to clear undesired events
so that waiting will not be vacuous. The proposed
facilities are crucial when the waiting processor
runs in an attached mode [Hartigan].

5. Practical Limitations

Although some SVPs use either partner's workspace
to store the shared variables, many SVP implementa-
tions manage their own shared storage, and hence
maintain a certain symmetry between the partners.

EXTENDED SV SESSIONS - i50-

On an SVP crash, all variables in the shared storage
are potentially lost. In particular, it may not be
possible for either partner to recover the value of
a shared variable. In addition, such SVPs usually
apply a storage quota per user, and evoke an error
to any user who attempts to share more than allotted
to him.

The notion of persistent shared variables merely
adds permanence to the shared-storage mechanism.
This means that also a disconnected, but persistent,
variable will use up quota. In the case only one
partner has set the specific persistency to 1, the
used-up quota may have to be transferred to him at
the time of retraction. On a crash more information
may get lost than without persistency.

Even with a quota system an SVP may get clogged
with obsolete persistent variables that the partners
may have forgotten about, despite the extension to
OSVQ. Therefore, the APL system engineer should
have a utility to check, and eventually purge, the
shared storage of obsolete material after an appro-
priate warning sequence.

References

John Gerth: "Toward Shared Variable Events, Im-
plications of USVE in APL2", Proc APL83,
APL Quote Quad 13,3 p.265, 1983

Bruce Hartigan: "AP19 -- a Shared Variable Ter-
minal I/O Interface for APL Systems", Proc
APL81, APL Quote Quad 12,l p.137, 1981

Karl Soop: "Attached Processors in APL", Proc
APL83, APL Quote Quad 13.3 p.129, 1983

KARL SOOP AND RODERIC DAVIS

