Memory Protection at Option’

Michael Stilkerich Daniel Lohmann Wolfgang Schréder-Preikschat
{stilkerich,lohmann,wosch}@cs.fau.de

Friedrich-Alexander University Erlangen-Nuremberg, Germany

ABSTRACT

There is hardware- and software-based memory protection
that can improve the dependability of software systems. The
two variants vary in the degree of protection and the amount
and sites of overhead. The decision for a particular mech-
anism therefore highly depends on the application and de-
ployment scenario.

We propose a system suited for deeply embedded systems
that allows to choose among no protection, software-based
protection, hardware-based protection or a combination of
the two without the need to change the application. In
this paper, we present the current state of this work and
support our claim that the best-suited memory protection
type depends on the application by a preliminary evaluation.

1. INTRODUCTION

Electronic support functions in cars have rapidly developed
in the past decade [2]. A modern mid-class car is equipped
with about 80 electronic control units (ECUs), which com-
municate with each other through up to five different bus
systems. This development is problematic in several aspects:
the multitude of ECUs and wires that connect the ECUs
with each other are costly, especially with the ever increasing
copper price; the wires with about 50 kg noticeably con-
tribute to the weight of the car; the connectors that attach
the wires to the ECUs are known to be fault-prone and a
major cause of hardware defects. To address these issues, the
automotive industry is currently consolidating the number of
ECUs in a car by replacing multiple ECUs with fewer, but
more powerful microcontrollers, where multiple applications
that formerly ran on a dedicated ECU now share a common
microcontroller.

The coexistence of multiple applications on a microcon-
troller introduces the requirement to the underlying system
software to enable the isolation of the applications with re-
spect to different aspects. One of the key aspects is memory

*This work was partly supported by the DFG under grant
no. SCHR 603/4 and SCHR 603/7-1

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CARS 2010, April 27, Valencia, Spain

Copyright 2010 ACM 978-1-60558-915-2/10/04 ...$10.00.

17

protection (MP), which is one of the points in that AU-
TOSAR OS [1] improves over its predecessor OSEK OS [10] in
that it mandates write-protection in some scalability classes.
The protection model of AUTOSAR is region-based and re-
quires the presence of a memory protection unit (MPU) on
the target microcontroller. On controllers without an MPU,
MP is not supported.

Besides hardware-based MP there is software-based MP,
where safety is constructively ensured by the executing pro-
gram itself. Normally this is achieved by writing software
in a type-safe programming language or employing run-time
safety checks. Past research has shown that software-based
protection based on the use of a type-safe high-level lan-
guage [3, 4, 9] is superior in terms of overhead compared
to lower level approaches [6], as it enables high-level static
analyses that can validate many safety checks at compile
time.

Both of these approaches have advantages and disadvan-
tages compared to each other. MPU-based MP requires
hardware support, has a limited set of range registers which
limits flexibility, but requires only little effort to support
legacy applications, is efficient in terms of space overhead
and execution time of code that stays within a particular
protection domain. Software-based protection introduces
runtime-checks that add to the ROM size and execution
time, may require applications to be (re)written in a safe
language and is more susceptible to transient or permanent
hardware faults than hardware-based protection, but allows
very efficient domain transitions and inter-domain communi-
cation (IDC), can run on any hardware and can also detect
memory access errors within a particular application. In
addition, software-based MP is not limited to a particular
number of memory ranges and does not require a particu-
lar placement of data in the address space. Which of the
approaches is the better suited one highly depends on the
application, the target platform and the environment the
application is deployed in. Memory protection is not a one
or the other decision and should be a configurable property
of the system software.

In this paper, we present an approach, that, to the best
of our knowledge, is the first system that supports both
hardware-based and software-based MP as an optional and
configurable non functional property. The two key contribu-
tions of our approach are (1) the ability, to directly compare
the cost of MPU-based protection and the cost of software-
based protection in the embedded systems domain using
the same, unmodified application, and (2) the possibility to
configure the level of MP as required by the application.

v

untrusted

trusted programming language

| software protection | | hardware protection |

composition rule:
software protection requires Java

Figure 1: Memory Protection Variants

2. DESIGN

Our protection model is designed according to the needs
of the domain of embedded systems and similar to that
of AUTOSAR OS with some extensions. For hardware-
based MP, we require the presence of an MPU that allows
to restrict memory access to regions of the address space.
Memory management units that manage the memory at
the finer granularity of pages are found on only very few
microcontrollers.

The AUTOSAR OS protection model distinguishes trusted
and non-trusted applications. An application comprises a
number of tasks and ISRs. The data that belongs to an ap-
plication is the stacks of its tasks and ISRs plus the private
data segment of the application. Trusted applications run
with memory protection features disabled and thus become
part of the trusted computing base, whereas non-trusted
applications only have write access to their own data. Read
protection additionally restricts read accesses of an applica-
tion to its own data and is optional in AUTOSAR. Trusted
applications may provide services (trusted functions) to other
applications, which can be used to extend the APT of the OS.
When a trusted function (TF) is called from a non-trusted
application, it will—like an OS service—run with MP dis-
abled. MP is restored to the restrictions that apply for the
caller application upon return from the trusted function. We
extend this scheme by non-trusted functions, that allow non-
trusted applications to offer services to other applications. A
non-trusted function (NTF) will be executed in the protec-
tion context of the application that offers this function, even
when called from a trusted application.

2.1 Hardware-based MP

CiAO [7] (CiAO is Aspect-Oriented) is a family of operat-
ing systems for embedded applications that has been designed
and developed to be highly configurable by AOP [5]. The
implementation language of CiAO is AspectC++. CiAO’s
system design allows to configure even fundamental and
highly crosscutting OS policies, thereunder hardware-based
MP which we presented in a previous paper [8]. The pri-
mary target platform for CiAO is the Infineon TriCore, an
architecture of 32-bit microcontrollers mostly used in the au-
tomotive industry that also serves as a reference platform for
AUTOSAR. CiAO provides an API as defined by AUTOSAR
OS. Since CiAO already supports optional hardware-based
MP, it provides the ideal infrastructure for this project.

Protection in CiAO can be applied at two different lev-
els: write protection only protects data from modification,
whereas the optional read protection also prevents data from
being read by other applications. Write protection is suf-
ficient to ensure safety (not security) and allows read-only

18

Untrusted Code

_—---.~ _—--.,~
. .
'.‘ s“ . K S .,
7 . V' “
’ AppC AppH | AppS) AppU

combined-protection hardware-protection = software-protection ! unsafe
3 Java E Java/C [Java .' Java/C
LY o A Y :

s, * S, .

..h.- "'- "'
CiAO Kernel

Trusted Code (TCB)

u: ": Software Protection Boundary I:I Hardware Protection Boundary

Figure 2: Application Variants

logical IDC operations (most notably, system services that
only query state such as GetTaskID()) to be performed with-
out any overhead. Read protection may be desirable in
testing environments, since it may detect bugs in software
that would not be detected by pure write protection.

2.2 Software-based MP

For software-based MP, we use KESO [11], an ahead-of-
time Java Compiler that generates ISO C code from Java
bytecode. The main goal of the KESO project is to provide
software-based MP tailored towards the domain of embed-
ded systems. KESO does not support all aspects of the
Java language and the Java virtual machine and does not
provide the full Java standard class library. In particular,
KESO requires static applications and does neither support
dynamic class loading nor Java reflection. The class library
provided by KESO provides access to the system services of
an OSEK/VDX or AUTOSAR OS, which is presumed as in-
frastructure software, and a safe and lightweight mechanism
to access device registers from Java code without affecting
the type-safety of the program. KESO supports optional
garbage collection for applications that want to use dynamic
memory allocation.

KESO is a Multi-JVM, that is, it allows tasks to be isolated
in different protection domains, each of which appears as a
JVM of its own from the application’s point of view. This
isolation is constructively ensured by preventing any shared,
global data among the different domains. Initially, this is
established by providing each of these domains with an own
set of global data (i.e., the static fields of classes in Java),
and later on sustained by preventing object references from
being passed to other domain through the available IDC
mechanisms. Domains in KESO are conceptually similar to
applications in CiAO and are also containers for tasks and
ISRs.

2.3 Putting Things Together

By running KESO applications on top of CiAO, we extend
the choices of protection types for a particular application.
The feature tree in Figure 1 shows the available protection
variants for an application (hollow arcs describe an alter-
native, i.e., exactly one child has to be selected; filled arcs
describe an option, i.e., at least one child has to be selected).
Note that while an application that is written in Java can
choose from all possible variants, an application that is writ-
ten in the unsafe C language can only opt for hardware
protection. It is nonetheless possible to have both Java and
C applications running on the same system.

2.3.1 Protection Variants

Figure 2 shows an example with the four protection vari-

enterPrivMode ()

ApplicationID caller_app = getCurrentAppID();
changeApplication (*tjp->arg<0>());

void *caller_stackBound = getStackBound() ;
exportStack(getCurrentStackPtr()) ;

NTF (CALLEE_ID) ; o 0

exportStack(caller_stackBound) ;
changeApplication(caller_app);

leavePrivMode () ;

Figure 3: IDC Context Switch Operations

ants that are possible in our system.

No protection (AppU) is an unsafe configuration in which
we disable MP in the CiAO OS and additionally in-
struct the KESO compiler not to generate any runtime
safety checks. This configuration does not infer any
MP runtime overhead to the application, but still offers
the added value of static safety checks compared to an
unsafe C(++) application. Since such an application
is not subject to any memory access restrictions, it
becomes part of the trusted code base and is what is
called a trusted application in AUTOSAR.

Software-based Protection (AppS) relies purely on con-
structive MP, wherefore the application needs to be
written in the safe Java language. From the view point
of the operating system, such an application is seen as
a trusted application that is not subject to hardware-
based memory protection, however, logically the appli-
cation is non-trusted code in the sense that constructive
means ensure that memory accesses are limited to the
memory regions belonging to the application.

Hardware-based Protection (AppH) uses only CiAO’s
MPU based MP while no runtime checks are generated
by the KESO compiler. This configuration is compa-
rable to containing unsafe applications in hardware-
enforced memory regions but again has the added ro-
bustness that stem from the use of a safe language with
soundness partially checked at compile time.

Combined Protection (AppC) uses both hardware- and
software-based MP to achieve maximum robustness for
highly critical environments. It combines the strengths
and costs of both variants and offers the fine-grained
protection provided by software-based MP with the ro-
bustness with respect to hardware failures (e.g., caused
by EMC influence) of hardware-based protection.

In the following, we discuss the operations taken upon the
invocation of a non-trusted function to give an insight into
an implementation detail.

2.3.2 Interdomain Communication

Our primary interdomain communication (IDC) mech-
anism is control-flow-oriented services; these services are
explicitly exported by the respective applications and thus
statically known to our toolchain. Depending on whether the

19

| AppU AppS AppH AppC | Caused by
GetTaskID() 0.05 0.05 0.05 0.05
ActivateTask() 0.44 0.60 1.76 1.78 | @, ®, RT-Check
Service() 1.26 1.40 5.66 5.77 | ©-©, RT-Check
Sensor App 22.73 30.79 22.73 31.21 | RT-Checks

Table 1: microbenchmark results (runtimes in us)

exporting application is trusted or untrusted, these services
correspond to AUTOSAR’s TF or NTF. System services are
special in that they are implicitly known to our toolchain but
do not otherwise differ from TF. Upon invocation of such a
service, the control-flow temporarily changes its protection
context (the application) to that of the callee application.
The operations that need to be performed in order to switch
the protection context depend on the protection types of the
caller and the callee application. The KESO compiler is able
to statically identify the call sites and the callee domain.

Figure 3 shows a simplified version of the operations that
can surround the call of a non-trusted function NTF(). Each
service call site is affected by nested pairs of operations that
perform elements of the protection context switch before and
after the actual execution of the NTF. These operations pairs
are in detail:

@ enterPrivMode () switches the CPU to supervisor mode
and disables the MPU to be able to perform the nec-
essary changes on system data structures and MPU
registers. The corresponding final leavePrivMode ()
re-enables the MPU and returns to user mode. Applies
to: caller application of type AppH or AppC.

® Backup the ID of the caller application on the stack,
and set the application of the control-flow to the ID
of the callee application. After the service, restore
the saved ID. *tjp->arg<0>() hereby returns the first
argument to the NTF call, CALLEE_ID. Applies to: any
service call.

©® Backup the previous stack bound, and set it to the
current value of the stack pointer, which makes the
rest of the stack accessible to the callee application
for the duration of the service call. Applies to: callee
application of type AppH or AppC.

O Reconfigure the MPU registers to the regions of the
callee application, and restore them to the caller applica-
tion after the service call. Applies to: callee application
of type AppH or AppC.

® Enable hardware protection for the execution of the
service itself, and return to supervisor mode after the
call has finished. Applies to: callee application of type
AppH or AppC.

For the reader, who is familiar with AOP: we use As-
pectC++ around advice to technically implement the above.

3. PRELIMINARY EVALUATION

This first evaluation is meant to show that the decision,
which type of MP is the better suited one for a particular
application, does not only depend on the differing degrees of
protection but also on the imposed runtime overhead. For
this, we chose four microbenchmarks that show the cost of
different types of inter-domain communication as well as an
application that rarely communicates with other domains.

The results in Table 1 show the average over 1000 iterations
taken on a Tricore TC1796 controller clocked at 50 MHz.
The programs were compiled with tricore-gce 3.4.5 (-03) and
loaded to the internal no-wait-state RAM. The times were
determined using a Lauterbach hardware trace analyzer.

GetTaskID() is an AUTOSAR system call that determines
the ID of the currently running task. This is an example
of a read-only system call that does not change any system
state and—due to our design decision to only provide write
protection—does not require a change to the processor mode
or the MPU configuration, wherefore none of the MP variants
introduces any overhead to this call.

ActivateTask() is a state changing AUTOSAR system
call, which—in the case of hardware MP—requires to enter
supervisor mode and disable the MPU. This results in a 300%
runtime overhead compared to the actual cost of the service
(unsafe). The use of software MP in our implementation
requires a null reference check, since the task’s AUTOSAR id
needs to be determined from a task object, which explains the
differences between unsafe/software and hardware/combined.

Service() is an example of a NTF. With software MP,
this service invocation requires a null pointer check. The use
of hardware MP requires two MPU reconfigurations and four
CPU mode switches (Section 2.3.2), which lead to a 350%
runtime overhead.

Obviously, hardware MP performs worse than software
MP for applications that frequently perform state changing
IDC operations. To give an example for an application type
where software MP infers the higher overhead we chose a
small application that collects sensor data in regular intervals,
and, at less frequent intervals, computes the average of the
values collected during the last collection interval and passes
them as input to a control application (requiring a NTF
operation, which is not part of the measured time). Collection
and computation in this application requires multiple null
reference and array bounds checks when software MP is being
used, which introduce a overhead of 35%, whereas hardware
MP does not introduce any added cost since all needed
memory operations are to regions of the active application.

4. CONCLUSION

In this paper we presented first results of an approach that
enables to choose the type of memory protection transparent
to the application. To achieve this, we combined the CiAO
operation system, which provides the option of hardware
MP through aspect-oriented implementation techniques with
KESO, an ahead-of-time Java compiler with the ability to
optionally disable unsafe code to remove the overhead of
software MP. This combination enables the developer to
freely choose among four types of memory protection for
an application, unsafe, software-only, hardware-only and
hardware-and-software-combined MP. We showed that the
decision for the best suited type of protection highly depends
on the particular application with respect to both the offered
degree of protection and the runtime overhead. The decision
may also depend on the type of deployment, for instance,
software MP is helpful to detect bugs in a program that
would not be detected by hardware MP, wherefore it could
be used during the testing phase but be disabled in the
shipped product.

20

5. FUTURE WORK

In our current implementation the choice of MP can only
be done for all applications in the system, however, in most
cases the desired MP type will not be the same for all applica-
tions in the system. We are therefore working on supporting
mixed-mode operation where the MP type becomes an indi-
vidual option for each application. We also want to support
applications written in unsafe languages such as C in the
system, where MP can only be provided by hardware. This
is already possible, but we do not yet have a communication
mechanism that would allow communication between C and
Java domains.

Another direction that we are currently working on is to
provide fine-grained configurability of the various MP vari-
ants, that allow making a more distinctive tradeoff between
degree of protection and costs. We also seek to exploit more
the available ahead-of-time knowledge (e.g., properties of
the hardware that could be used to reduce the costs of the
different variants).

We are currently porting a complex control application for
a quadrocopter to CiIAO/KESO. This application comprises
multiple protection domains of great variety with respect to
the amount of IDC performed. We hope that this applica-
tion will provide a real-world scenario to demonstrate the
usefulness of a mixed-mode operation and to provide a direct
comparison of the costs of hardware versus software MP.

6. REFERENCES

[1

AUTOSAR. Specification of operating system (version 2.0.1).
Technical report, Automotive Open System Architecture GbR,
June 2006.

M. Broy. Challenges in automotive software engineering. In
28th Int. Conf. on Software Engineering (ICSE ’06), pages
33-42, New York, NY, USA, 2006. ACM.

J. Condit, M. Harren, Z. R. Anderson, D. Gay, and G. C.
Necula. Dependent types for low-level programming. In R. D.
Nicola, editor, ESOP, volume 4421 of LNCS, pages 520-535.
Springer, 2007.

T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney,
and Y. Wang. Cyclone: A safe dialect of C. In 2002 USENIX
TC, pages 275-288, Berkeley, CA, USA, 2002. USENIX.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In M. Aksit and S. Matsuoka, editors, 11th Eur.
Conf. on OOP (ECOOP ’97), volume 1241 of LNCS, pages
220-242. Springer, June 1997.

[6] R. Kumar, E. Kohler, and M. Srivastava. Harbor:
Software-based memory protection for sensor nodes. In IPSN
’07: 6st Int. Conf. on Information Processing in Sensor
Networks, pages 340-349, New York, NY, USA, 2007. ACM.
D. Lohmann, W. Hofer, W. Schréder-Preikschat, J. Streicher,
and O. Spinczyk. CiAO: An aspect-oriented operating-system
family for resource-constrained embedded systems. In 2009
USENIX TC, pages 215228, Berkeley, CA, USA, June 2009.
USENIX.

D. Lohmann, J. Streicher, W. Hofer, O. Spinczyk, and

W. Schroder-Preikschat. Configurable memory protection by
aspects. In 4th W’shop on Progr. Lang. and OSes (PLOS
’07), pages 1-5, New York, NY, USA, Oct. 2007. ACM.

[9] G. C. Necula, S. McPeak, and W. Weimer. CCured: type-safe
retrofitting of legacy code. In POPL ’02: 29th ACM
SIGPLAN-SIGACT Symp. on Principles of Programming
Languages, pages 128-139, New York, NY, USA, 2002. ACM.

[10] OSEK/VDX Group. Operating system specification 2.2.3.
Technical report, OSEK/VDX Group, Feb. 2005.
http://portal.osek-vdx.org/files/pdf/specs/0s223.pdf, visited
2009-09-09.

[11] C. Wawersich, M. Stilkerich, and W. Schréder-Preikschat. An

OSEK/VDX-based multi-JVM for automotive appliances. In

Embedded System Design: Topics, Techniques and Trends,

IFIP International Federation for Information Processing, pages

85-96, Boston, 2007. Springer.

2

3

4

5

[7

8

