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ABSTRACT

Personalized web services strive to adapt their serviche(tse-
ments, news articles, etc.) to individual users by making aofs
both content and user information. Despite a few recentrazhs
this problem remains challenging for at least two reasorisst,F
web service is featured with dynamically changing pools afi-c
tent, rendering traditional collaborative filtering medisainappli-
cable. Second, the scale of most web services of practitakist
calls for solutions that are both fast in learning and coratbor.

In this work, we model personalized recommendation of news
articles as a contextual bandit problem, a principled aggtan
which a learning algorithm sequentially selects articlesérve
users based on contextual information about the users &inkksy
while simultaneously adapting its article-selection tetgg based
on user-click feedback to maximize total user clicks.

The contributions of this work are three-fold. First, we pose
a new, general contextual bandit algorithm that is compmrtatly
efficient and well motivated from learning theory. Seconée, av-
gue that any bandit algorithm can be reliably evaluattiihe us-
ing previously recorded random traffic. Finally, using tbffline
evaluation method, we successfully applied our new algarito
a Yahoo! Front Page Today Module dataset containing 8der
million events. Results showed12.5% click lift compared to a
standard context-free bandit algorithm, and the advariiagemes
even greater when data gets more scarce.
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Algorithms, Experimentation
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1. INTRODUCTION

This paper addresses the challenge of identifying the npmsba
priate web-based content at the best time for individualauddost
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service vendors acquire and maintain a large amount of gbinte
their repository, for instance, for filtering news artic[éd] or for
the display of advertisements| [5]. Moreover, the contersumh a
web-service repository changes dynamically, undergaiagufent
insertions and deletions. In such a setting, it is cruciajuickly
identify interesting content for users. For instance, asélter
must promptly identify the popularity of breaking news, gtalso
adapting to the fading value of existing, aging news stories

Itis generally difficult to model popularity and temporakbeiges
based solely on content information. In practice, we uguat-
plore the unknown by collecting consumers’ feedback in tiead
to evaluate the popularity of new content while monitorihgieges
in its value [3]. For instance, a small amount of traffic cardes-
ignated for such exploration. Based on the users’ respassh (
as clicks) to randomly selected content on this small slicead-
fic, the most popular content can be identified and exploitethe
remaining traffic. This strategy, with random exploratiamane
fraction of the traffic and greedy exploitation on the resknown
ase-greedy. Advanced exploration approaches suctex$3 [8]
or UCBL [[7] could be applied as well. Intuitively, we need to dis-
tribute more traffic to new content to learn its value moreciiyi
and fewer users to track temporal changes of existing canten

Recently, personalized recommendation has become aldesira
feature for websites to improve user satisfaction by taifpcon-
tent presentation to suit individual users’ needs| [10]. sBeal-
ization involves a process of gathering and storing useibates,
managing content assets, and, based on an analysis oftcangn
past users’ behavior, delivering the individually bestteom to the
present user being served.

Often, both users and content are represented by sets of fea-
tures. User features may include historical activitiesrabggre-
gated level as well as declared demographic informatiomtea
features may contain descriptive information and categoin this
scenario, exploration and exploitation have to be depl@eh in-
dividual level since the views of different users on the same-
tent can vary significantly. Since there may be a very largaber
of possible choices or actions available, it becomes atit@ rec-
oghize commonalities between content items and to tranisétr
knowledge across the content pool.

Traditional recommender systems, including collaboeafil-
tering, content-based filtering and hybrid approaches,pcavide
meaningful recommendations at an individual level by lagarg
users’ interests as demonstrated by their past activitjaarative
filtering [25], by recognizing similarities across usersdaon their
consumption history, provides a good recommendation isoltid
the scenarios where overlap in historical consumptionsscusers
is relatively high and the content universe is almost st@mntent-
based filtering helps to identify new items which well mateh a


http://arxiv.org/abs/1003.0146v2

existing user's consumption profile, but the recommendenhst
are always similar to the items previously taken by the U2€}.[
Hybrid approaches [11] have been developed by combining two
or more recommendation techniques; for example, the iityabil
collaborative filtering to recommend new items is commonlg-a
viated by combining it with content-based filtering.

However, as noted above, in many web-based scenarios,the co
tent universe undergoes frequent changes, with contenilgmep
ity changing over time as well. Furthermore, a significantnau
ber of visitors are likely to be entirely new with no hist@icon-
sumption record whatsoever; this is known asotd-start situa-
tion [21]. These issues make traditional recommendeegystp-
proaches difficult to apply, as shown by prior empirical ssd12].

It thus becomes indispensable to learn the goodness of rhatch
tween user interests and content when one or both of theneare n
However, acquiring such information can be expensive ang ma
reduce user satisfaction in the short term, raising thetoresf
optimally balancing the two competing goals: maximizingnsat-
isfaction in the long run, and gathering information abcatdness

of match between user interests and content.

The above problem is indeed known as a feature-based explo-
ration/exploitation problem. In this paper, we formuldtad acon-
textual banditproblem, a principled approach in which a learning
algorithm sequentially selects articles to serve useradan con-
textual information of the user and articles, while simaétausly
adapting its article-selection strategy based on usek-&liedback
to maximize total user clicks in the long run. We define a bandi
problem and then review some existing approaches in Segtion
Then, we propose a new algorithitipUCB, in Sectior B which
has a similar regret analysis to the best known algorithmsdm-
peting with the best linear predictor, with a lower compiagiadl
overhead. We also address the problenoffline evaluation in
Section[%, showing this is possible fany explore/exploit strat-
egy when interactions are independent and identicallyidiged
(i.i.d.), as might be a reasonable assumption for diffeneets. We
then test our new algorithm and several existing algorithsiag
this offline evaluation strategy in Sectigh 5.

2. FORMULATION & RELATED WORK

In this section, we define th&-armed contextual bandit prob-
lem formally, and as an example, show how it can model the per-
sonalized news article recommendation problem. We thetusiés
existing methods and their limitations.

2.1 A Multi-armed Bandit Formulation

The problem of personalized news article recommendation ca
be naturally modeled as a multi-armed bandit problem wititext
information. Following previous work [18], we call it@ontextual
bandit] Formally, a contextual-bandit algorith&proceeds in dis-
cretetrials = 1,2, 3, ... Intrial ¢:

1. The algorithm observes the current userand a setA; of

arms or actions together with their feature vecteys, for
a € A;. The vectorx,, , summarizes information dfoththe
useru; and arma, and will be referred to as tteontext
. Based on observed payoffs in previous tridlsshooses an
arma; € A, and receives payoff; ,, whose expectation
depends on both the user and the arnu,.

. The algorithm then improves its arm-selection strategi w
the new observation(x:,q;, at,T+,q, ). It is important to em-

n the literature, contextual bandits are sometimes calbetits
with covariate, bandits with side information, assocetbandits,
and associative reinforcement learning.

phasize here thato feedback (namely, the payoff ) is
observed fouunchoserarmsa # a:. The consequence of
this fact is discussed in more details in the next subsection
In the process above, thetal T-trial payoff of A is defined as
ZL rt,q, - Similarly, we define theptimal expected’-trial pay-

off asE [ZtT:th,a:} , whereay is the arm with maximum ex-

pected payoff at triad. Our goal is to desigA so that the expected
total payoff above is maximized. Equivalently, we may findadn
gorithm so that itgegretwith respect to the optimal arm-selection
strategy is minimized. Here, tli-trial regretRa (7") of algorithm

A is defined formally by

RA(T) ¥ E - E 1)

T T
E Tt,a}f E Tt,ag | -
t=1 t=1

An important special case of the general contextual bamdti-p
lem is the well-knownK -armed bandiin which (i) the arm set.
remains unchanged and contaiisarms for allz, and (ii) the user
u¢ (or equivalently, the contextx:,1, - - ,x¢ x)) is the same for
all t. Since both the arm set and contexts are constant at evaly tri
they make no difference to a bandit algorithm, and so we g a
refer to this type of bandit as@ntext-freebandit.

In the context of article recommendation, we may view agtcl
in the pool as arms. When a presented article is clicked, afpay
of 1 is incurred; otherwise, the payoff & With this definition
of payoff, the expected payoff of an article is preciselydlisk-
through rate (CTR)and choosing an article with maximum CTR
is equivalent to maximizing the expected number of clicksrr
users, which in turn is the same as maximizing the total expec
payoff in our bandit formulation.

Furthermore, in web services we often have access to user inf
mation which can be used to infer a user’s interest and tosghoo
news articles that are probably most interesting to herekample,
itis much more likely for a male teenager to be interestedhiaré-
cle about iPod products rather than retirement plans. Torereve
may “summarize” users and articles by a set of informatiedtfiess
that describe them compactly. By doing so, a bandit algorithn
generalizeCTR information from one article/user to another, and
learn to choose good articles more quickly, especially éwv nsers
and articles.

2.2 Existing Bandit Algorithms

The fundamental challenge in bandit problems is the need for
balancing exploration and exploitation. To minimize thgret in
Eg. (@), an algorithmA exploitsits past experience to select the arm
that appears best. On the other hand, this seemingly op&imal
may in fact be suboptimal, due to imprecisionis knowledge. In
order to avoid this undesired situatiohhas toexploreby actually
choosing seemingly suboptimal arms so as to gather moranafo
tion about themd.f., stefB in the bandit process defined in the pre-
vious subsection). Exploration can increakert-termregret since
some suboptimal arms may be chosen. However, obtaining-info
mation about the arms’ average payoffe.( exploration) can re-
fine A’s estimate of the arms’ payoffs and in turn redimeg-term
regret. Clearly, neither a purely exploring nor a purelyleiting
algorithm works best in general, and a good tradeoff is n&tede

The context-freeil-armed bandit problem has been studied by
statisticians for a long time [9, 24, 26]. One of the simpiasd
most straightforward algorithms isgreedy. In each trialt, this
algorithm first estimates the average paypff, of each arma.
Then, with probabilityl — ¢, it chooses thgreedyarm (.e., the
arm with highest payoff estimate); with probabilityit chooses a
random arm. In the limit, each arm will be tried infinitely eft,



and so the payoff estimafg, converges to the true valye, with
probability1. Furthermore, by decayingappropriately €.g, [24]),
the per-step regref2a(7") /T, converges t® with probability 1.

In contrast to thaunguidedexploration strategy adopted hy
greedy, another class of algorithms generally known as upper con-
fidence bound algorithms][4] [7,117] use a smarter way to balanc
exploration and exploitation. Specifically, in trial these algo-
rithms estimate both the mean paygff, of each arnu as well
as a corresponding confidence interwal,, so that|fit,a — pa| <
¢t,o holds with high probability. They then select the arm that
achieves a highest upper confidence bound (UCB for shost}
arg maxq (fit,a + ct,q). With appropriately defined confidence in-
tervals, it can be shown that such algorithms have a smallTot
trial regret that is only logarithmic in the total number obts T,
which turns out to be optimal [17].

While context-freek-armed bandits are extensively studied and
well understood, the more general contextual bandit protias
remained challenging. THEXP4 algorithm [&] uses the exponen-
tial weighting technique to achieve 8h(v/T) regred but the com-
putational complexity may be exponential in the number @t fe
tures. Another general contextual bandit algorithm isepech-
greedy algorithm [18] that is similar te-greedy with shrinking
e. This algorithm is computationally efficient given an omopti-
mizer but has the weaker regret guarante® 6f%/*).

Algorithms with stronger regret guarantees may be designed
der various modeling assumptions about the bandit. Assyithie
expected payoff of an arm is linear in its features, Auer [6] d
scribes theLinRel algorithm that is essentially a UCB-type ap-
proach and shows that one of its variants has a regréi(efT’), a
significant improvement over earlier algorithms [1].

Finally, we note that there exist another class of bandit al-

gorithms based on Bayes rule, such as Gittins index meth-

ods [15]. With appropriately defined prior distributionsgy@sian

among different arms. LeD, be a design matrix of dimension
m X d at trial t, whose rows correspond ta training inputs €.g,
m contexts that are observed previously for artigjeandb, €
R™ be the corresponding response vectog( the corresponding
m click/no-click user feedback). Applying ridge regresstorthe
training data(D., c.) gives an estimate of the coefficients:

.= (D,D,+1;) 'D,ca, 3)

wherel,; is thed x d identity matrix. When components i, are
independent conditioned on corresponding row®ig, it can be
shown [27] that, with probability at least— 4,

xzaéa — E[r,o]x¢,0]| < a\/xza(DIDa + 1) '%¢0 (4

foranys > 0 andx;, € R?, wherea = 1+ /In(2/6)/2 is a
constant. In other words, the inequality above gives a redsy
tight UCB for the expected payoff of arm from which a UCB-
type arm-selection strategy can be derived: at eachttridgloose

T 5 T -1
(xt’aaa +oay/x{ A xt,a> ,
def

whereA, =D/ D, + 1.

The confidence interval in Eq.](4) may be motivated and ddrive
from other principles. For instance, ridge regression dao ke
interpreted as a Bayesian point estimate, where the postis-
tribution of the coefficient vector, denoted pd. ), is Gaussian
with meanéa and covariancel;'. Given the current model, the
predictive variance of the expected payﬁffaoz is evaluated as

©)

def
a¢ — arg max
ac Ay

X/ oAy 'Xt.q, and theny /x/, A7 'x; . becomes the standard de-

viation. Furthermore, in information theory [19], the diféntial
entropy ofp(8..) is defined as-1 In((27)* det A,). The entropy

approaches may have good performance. These methodserequirof p(8.) when updated by the inclusion of the new paint, then

extensive offline engineering to obtain good prior modetsl are
often computationally prohibitive without coupling wittproxi-
mation techniques [2].

3. ALGORITHM

Given asymptotic optimality and the strong regret bound GBU
methods for context-free bandit algorithms, it is temptingde-
vise similar algorithms for contextual bandit problemsvesi some
parametric form of payoff function, a number of methods &tas
estimate from data the confidence interval of the parametiths
which we can compute a UCB of the estimated arm payoff. Such
an approach, however, is expensive in general.

In this work, we show that a confidence interval can be com-
putedefficiently in closed formvhen the payoff model is linear,
and call this algorithniLinUCB. For convenience of exposition, we
first describe the simpler form fatisjoint linear models, and then
consider the general casehgfbrid models in Sectiof 312. We note
LinUCB is a generic contextual bandit algorithms which applies to
applications other than personalized news article recamdatén.

3.1 LinUCB with Disjoint Linear Models

Using the notation of Sectign 2.1, we assume the expectaaffpay
of an arma is linear in itsd-dimensional feature; , with some
unknown coefficient vectd®,; namely, for allt,

T *
Xt o0q.

@)

This model is calledlisjoint since the parameters are not shared

E[Tt,a|xt,a]

2Note O(-) is the same a@(-) but suppresses logarithmic factors.

becomes—2 In((2m)* det (Aa + X¢,0X; ,)). The entropy reduc-
tion in the model posterior ié In(1 + xZaAglxt,a). This quan-
tity is often used to evaluate model improvement contrithditem
xt,q. Therefore, the criterion for arm selection in Hg. (5) casoal
be regarded as an additive trade-off between the payofihatdi
and model uncertainty reduction.

Algorithm[d gives a detailed description of the entii@UCB
algorithm, whose only input parameterds Note the value ofx
given in Eq. [[4) may be conservatively large in some appboat
and so optimizing this parameter may result in higher toasbffs
in practice. Like all UCB methodd,inUCB always chooses the
arm with highest UCB (as in EJ.](5)).

This algorithm has a few nice properties. First, its comtboital
complexity is linear in the number of arms and at most cubic in
the number of features. To decrease computation furthemaye
updateA ,, in every step (which take®(d?) time), but compute

and cacheQadéfA;1 (for all a) periodically instead of in real-
time. Second, the algorithm works well for a dynamic arm set,
and remains efficient as long as the sizedgfis not too large. This
case is true in many applications. In news article recomaia,

for instance, editors add/remove articles to/from a poditae pool
size remains essentially constant. Third, although it tamefocus

of the present paper, we can adapt the analysis from [6] o e
following: if the arm setA; is fixed and containg” arms, then the
confidence intervalife., the right-hand side of Eq](4)) decreases
fast enough with more and more data, and then prove the strong
regret bound oO(\/ K dT), matching the state-of-the-art result [6]
for bandits satisfying Eq[{2). These theoretical resultiidate
fundamental soundness and efficiency of the algorithm.



Algorithm 1 LinUCB with disjoint linear models.

Algorithm 2 LinUCB with hybrid linear models.

O: Inputsia € Ry
1: fort=1,2,3,...,Tdo
2. Observe features of all armse A;: x;,, € R?

3: forall a € A: do

4 if a is newthen

5: A, + 1, (d-dimensional identity matrix)

6: b, < 04x1 (d-dimensional zero vector)

7 end if

8 0, — A.'b,

9: Dt,a 9Ixt,a + ay /xzaAglxtﬁa

10: endfor

11: Choose arm; = arg maxqc A, pt,o With ties broken arbi-
trarily, and observe a real-valued payoff

120 A, + Ag, +Xt,0, X/,

13:  bg, < ba, + 7tXt,a;

14: end for

Finally, we note that, under the assumption that input festu
X¢,o Were drawn i.i.d. from a normal distribution (in additionthe
modeling assumption in E4.1(2)), Pavlidisal. [22] came up with
a similar algorithm that uses a least-squares solutpimstead of
our ridge-regression solutioéﬂ( in Eqg. (3)) to compute the UCB.
However, our approach (and theoretical analysis) is moneigé
and remains valid even when input features are nonstatioktre
importantly, we will discuss in the next section how to extehe
basic Algorithnl to a much more interesting case not covbyed
Pavlidiset al.

3.2 LinUCB with Hybrid Linear Models

Algorithm[1l (or the similar algorithm i [22]) computes the i
verse of the matrixP] D, + I, (or D] D,), whereD, is again
the design matrix with rows corresponding to features intthie-
ing data. These matrices of all arms have fixed dimengiond,
and can be updated efficiently and incrementally. Morea¥eiy
inverses can be computed easily as the parameters in Algdit
aredisjoint the solutiond,, in Eq. [3) is not affected by training

data of other arms, and so can be computed separately. We no

consider the more interesting case witfbrid models.

In many applications including ours, it is helpful to usetteas
that are shared by all arms, in addition to the arm-specigésoRor
example, in news article recommendation, a user may prefgr o
articles about politics for which this provides a mechanistance,
it is helpful to have features that have both shared and hared
components. Formally, we adopt the followihgbrid modelby
adding another linear term to the right-hand side of Ejg. (2):

(6)

E[rtalxtal = 28" +%[.05,

0: Inputsia € Ry

1: Ay < I, (k-dimensional identity matrix)
2. bo « 0y (k-dimensional zero vector)
3:fort=1,2,3,...,Tdo

4:  Observe features of all armsc A;: (24,0, Xt,0) € R*T?
5. B+ Aj'bo
6: forall a € A:do
7: if a is newthen
8: A, + 1, (d-dimensional identity matrix)
9: B < 04xx (d-by-k zero matrix)
10: b, + 04x1 (d-dimensional zero vector)
11 end if .
122 0.« A;" (b~ Bup)
13: Sta —  ZiaAJ'Za — 22/ A7 Bl A Xea +
X{ oA Xt 0 + X AT BLAS B AL Xt 0
14: Dt,a zzaﬁ + xzaéa +ay/5ta
15:  end for
16: Choose arm; = arg maxqc A, Pt,o With ties broken arbi-
trarily, and observe a real-valued payoff
17: Ao+ Ao+ B/, A;'B,,
18:  bo + bo + B, A;'ba,
19: A, «— Ag, + xt,a,xzat
20: B,, < Bg, + xt,a,zzat
21: bat <— bat + TtXt,as
22: Ao < Ao+ %020, — Ba,Ay'Ba,
23:  bg ¢+ bo + 720, — B, A b,
24: end for

only point out the important fact that the algorithm is corgion-
ally efficient since the building blocks in the algorithrA{, bo,
A,, B,, andb,) all have fixed dimensions and can be updated
incrementally. Furthermore, quantities associated withsanot
existing in.A; no longer get involved in the computation. Finally,
we can also compute and cache the inverges'(and A ;') pe-
riodically instead of at the end of each trial to reduce thetpal
Wcomputational complexity t®(d* + k?).

4. EVALUATION METHODOLOGY

Compared to machine learning in the more standard supdrvise
setting, evaluation of methods in a contextual banditrsgis frus-
tratingly difficult. Our goal here is to measure the perfoncgof a
bandit algorithms, that is, a rule for selecting an arm at each time
step based on the preceding interactions (such as thethigsrde-
scribed above). Because of the interactive nature of thiglgmy it
would seem that the only way to do this is to actually run tigoal
rithm on “live” data. However, in practice, this approactikely to

wherez, . € R¥ is the feature of the current user/article combina- be infeasible due to the serious logistical challengesitpagsents.

tion, andB™ is an unknown coefficient vector common to all arms.
This model is hybrid in the sense that some of the coeffici8fits
are shared by all arms, while othé&$are not.

Rather, we may only haveffline data available that was collected
at a previous time using an entiretjfferentlogging policy. Be-
cause payoffs are only observed for the arms chosen by tgapg

For hybrid models, we can no longer use Algorithin 1 as the policy, which are likely to often differ from those chosen the

confidence intervals of various arms are not independentadite
shared features. Fortunately, there is an efficient way topte

algorithm being evaluated, it is not at all clear how to evaluate
« based only on such logged data. This evaluation problem may

an UCB along the same line of reasoning as in the previous sec-be viewed as a special case of the so-called “off-policyuatiin

tion. The derivation relies heavily on block matrix invensitech-
nigues. Due to space limitation, we only give the pseudodnde
Algorithm [2 (where line§15 and 12 compute the ridge-regoessi
solution of the coefficients, and lilgll3 computes the confide
interval), and leave detailed derivations to a full papeeré{ we

problem” in reinforcement learning (se®f., [23]).

One solution is to build a simulator to model the bandit pssce
from the logged data, and then evaluateith the simulator. How-
ever, the modeling step will introdud®asin the simulator and so
make it hard to justify the reliability of this simulator$ed evalu-



ation approach. In contrast, we propose an approach thanfses Algorithm 3 Policy_Evaluator.
to implement, grounded on logged data, amhiased . Inputs:T > 0; policy 7; stream of events

In this section, we describe a provably reliable technigqueér- . ho < @ {An initially empty history}
rying out such an evaluation, assuming that the individvahes . Ry + 0{Aninitially zero total payoff}
are i.i.d., and that the logging policy that was used to gathe cfort=1,2,3,...,Tdo
logged data chose each arm at each time step uniformly abmand repeat
Although we omit the details, this latter assumption can kaky Get next evenxi, ..., Xk, a,7q)
ened considerably so that any randomized logging policjdead until w(hi—1, (X1,...,XK)) = a
and our solution can be modified accordingly using rejecsiam- hi < CONCATENATE(hi—1, (X1, ..., XK,Q,Ta))
pling, but at the cost of decreased efficiency in using data. R+ Ri_1+1q

More precisely, we suppose that there is some unknown dis- 9: end for
tribution D from which tuples are drawn i.i.d. of the form  10: Output:Rr/T
(x1,...,Xx,71,...,7K), €ach consisting of observed feature vec-
tors anchiddenpayoffs for all arms. We also posit access to a large
sequence of logged events resulting from the interactidheofog-
ging policy with the world. Each such event consists of thetext
vectorsxy, ..., Xk, a selected arm and the resulting observed pay-

ONTRONMREO

under both methods of evaluation. In the inductive casejrass
that we have for alt — 1:

off r,. Crucially, only the payoff-, is observed for the single arm ) Pr (ht=1) = Pr(ht-1)

a that was chosen uniformly at random. For simplicity of preae Policy_Evaluatogr,s) P

tion, we take this sequence of logged events to be an infridaj and want to prove the same statement for any histerysince the
stream; however, we also give explicit bounds on the actoaéfi data is i.i.d. and any randomization in the policy is indegesnt of
number of events required by our evaluation method. randomization in the world, we need only prove that condiib

Our goal is to use this data to evaluate a bandit algorithm o the historyh,_; the distribution over the-th event is the same
Formally, 7 is a (possibly randomized) mapping for selecting the fgr each process. In other words, we must show:
arma, attimet based on the history;_1 of ¢t —1 preceding events,

together with the current context vectots, ..., Xtk .
Our proposed policy evaluator is shown in Algoritlilh 3. The
method takes as input a polieyand a desired number of “good” =Pr(x¢1,...,Xe,K,7t,0) Pr (a] Xe1,...,Xe,K).
eventsT' on which to base the evaluation. We then step through b m(he-1)
the stream of logged events one by one. If, given the currisat h  Since the arma is chosen uniformly at random in the logging pol-

. PI‘ Xt,1yoey Xt, K,y Tt,a h,l
Pollcy_EvaIuatqrﬂ,s)(( %1y 6K, Tea) | hee1)

tory h:—1, it happens that the policy chooses the same awmras icy, the probability that the policy evaluator exits the éntoop is
the one that was selected by the logging policy, then thetdsen identical for any policy, any history, any features, and any, im-
retained, that is, added to the history, and the total pakeftip- plying this happens for the last event with the probabilifytte

dated. Otherwise, if the policy selects a different arm from the  last eventPrp (x¢,1, ..., X¢,k, Tt,a). Similarly, since the policyr’s
one that was taken by the logging policy, then the event isedyt distribution over arms is independent conditioned on thstony
ignored, and the algorithm proceeds to the next event withoy h¢—1 and feature§xe,1, ..., X+, ), the probability of armu is just
other change in its state. Pron,_y(alxe1, ..., X6 x).

Note that, because the logging policy chooses each arm uni- Finally, since each event from the stream is retained witt@r
formly at random, each event is retained by this algorithrthwi  bility exactly1/ K, the expected number required to ret@ievents
probability exactlyl/K, independent of everything else. This isexactyKT. O
means that the events which are retained have the saméuliistni
as if they were selected hy. As a result, we can prove that two
processes are equivalent: the first is evaluating the patieynst’ 5. EXPERIMENTS
real-world events fromD, and the second is evaluating the policy

using the policy evaluator on a stream of logged events. In this section, we verify the capacity of the propodsdUCB

algorithm on a real-world application using the offline eslon
method of Sectiohl4. We start with an introduction of the peob
setting in Yahoo! Today-Module, and then describe the itser/
attributes we used in experiments. Finally, we define peréorce
(hr) metrics and report experimental results with comparisoa tew
standard (contextual) bandit algorithms.

THEOREM 1. For all distributions D of contexts, all policies,
all T, and all sequences of everits,

) Pr (hr) = Pr

Policy_Evaluatorr,s) D

whereS is a stream of events drawn i.i.d. from a uniform random 5 1  Yahoo! Today Module

logging policy andD. Furthermore, the expected number of events

obtained from the stream to gather a histary of lengthT" is KT The Today Module is the most prominent panel on the Yahoo!

Front Page, which is also one of the most visited pages omthe |
ternet; see a snapshot in Figlite 1. The default “Featurédhttne
Today Module highlights one of four high-quality articlesainly
news, while the four articles are selected from an hourfseshed
article pool curated by human editors. As illustrated inurajd,
there are four articles at footer positions, indexed by Bl-fach
article is represented by a small picture and a title. Ona@fdour
articles is highlighted at the story position, which is feat by a
PROOF The proof is by inductionon= 1, ..., T starting with large picture, a title and a short summary along with reléitéd.
a base case of the empty history which has probatilthent = 0 By default, the article at F1 is highlighted at the story fosi A

This theorem says thaveryhistory hr has the identical prob-
ability in the real world as in the policy evaluator. Manyts&#cs
of these histories, such as the average pajtaff/T returned by
Algorithm[3, are therefore unbiased estimates of the vafube
algorithms. Further, the theorem states thaf” logged events are
required, in expectation, to retain a sample of §ize
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Figure 1: A snapshot of the “Featured” tab in the Today Mod-

ule on Yahoo! Front Page. By default, the article at F1 positin
is highlighted at the story position.
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» More: Featured | Buzz

user can click on the highlighted article at the story posito read
more details if she is interested in the article. The everedsrded
as a story click. To draw visitors’ attention, we would likerank
available articles according to individual interests, higtlight the
most attractive article for each visitor at the story pasiti

5.2 Experiment Setup

This subsection gives a detailed description of our expemiad
setup, including data collection, feature constructi@rfgrmance
evaluation, and competing algorithms.

5.2.1 Data Collection

We collected events from a random bucket in May 2009. Users
were randomly selected to the bucket with a certain proltaipier
visiting viewf In this bucket, articles were randomly selected from
the article pool to serve users. To avoid exposure bias defoo
positions, we only focused on users’ interactions with Riclas
at the story position. Each user interact@rentconsists of three
components: (i) the random article chosen to serve the (i§er,
user/article information, and (iii) whether the user cick the ar-
ticle at the story position. Sectifh 4 shows these randomtswmn
be used to reliably evaluate a bandit algorithm’s expectsafib.

There were about.7 million events in the random bucket on
May 01. We used this day’s events (called “tuning data”) fodel
validation to decide the optimal parameter for each compedan-
dit algorithm. Then we ran these algorithms with tuned patans
on a one-week event set (called “evaluation data”) in theloem
bucket from May 03-09, which contained abg&étmillion events.

5.2.2 Feature Construction

We now describe the user/article features constructeduioex-
periments. Two sets of features for the disjoint and hybratiets,
respectively, were used to test the two formd.ofUCB in Sec-
tion[3 and to verify our conjecture that hybrid models canriong
learning speed.

We start with raw user features that were selected by “sdfppor
The support of a feature is the fraction of users having taiLire.
To reduce noise in the data, we only selected features wigh hi
support. Specifically, we used a feature when its suppottleaat
0.1. Then, each user was originally represented by a raw feature
vector of overl 000 categorical components, which include: (i) de-
mographic information: gende? ¢lasses) and age discretized into
10 segments; (ii) geographic features: ab20® metropolitan lo-
cations worldwide and U.S. states; and (iii) behavioraégaties:

*We call it view-based randomization. After refreshing her
browser, the user may not fall into the random bucket again.

about1000 binary categories that summarize the user’'s consump-
tion history within Yahoo! properties. Other than thesddees, no
other information was used to identify a user.

Similarly, each article was represented by a raw featurtoved
about100 categorical features constructed in the same way. These
features include: (i) URL categories: tens of classes iatefrom
the URL of the article resource; and (ii) editor categoriesis of
topics tagged by human editors to summarize the articleeobnt

We followed a previous procedure [12] to encode categorical
user/article features as binary vectors and then normetizk fea-
ture vector to unit length. We also augmented each featw®wre
with a constant feature of value Now each article and user was
represented by a feature vecto8fand1193 entries, respectively.

To further reduce dimensionality and capture nonlineaitity
these raw features, we carried out conjoint analysis basadre
dom exploration data collected in September 2008. Follgvén
previous approach to dimensionality reductibnl[13], wejguoted
user features onto article categories and then cluster@s usth
similar preferences into groups. More specifically:

e We first used logistic regression (LR) to fit a bilinear model
for click probability given raw user/article features sath
¢, W, approximated the probability that the useclicks
on articlea, whereg,, andg,, were the corresponding feature
vectors, andW was a weight matrix optimized by LR.

Raw user features were then projected onto an induced space

by computingy, “Lé] W. Here, thei'® component inp,,

for useru may be interpreted as the degree to which the user
likes thei'" category of articles. K-means was applied to
group users in the inducefl, space intd clusters.

The final user feature was a six-vector: five entries corre-
sponded to membership of that user in theskusters (com-
puted with a Gaussian kernel and then normalized so that
they sum up to unity), and the sixth was a constant feature
At trial ¢, each article: has a separate six-dimensional feature

that is exactly the six-dimensional feature constructeabase for
useru:. Since these article features do not overlap, they are for
disjoint linear models defined in Sectih 3.

For each article, we performed the same dimensionality reduc-
tion to obtain a six-dimensional article feature (incluglaconstant
1 feature). Its outer product with a user feature géve 6 = 36
features, denoted, , € RS, that corresponded to the shared fea-
tures in Eq.[(), and thugz, ., x:..) could be used in the hybrid
linear model. Note the features , contains user-article interac-
tion information, whilex; , contains user information only.

Here, we intentionally used five users (and articles) groups
which has been shown to be representative in segmentatan an
ysis [13]. Another reason for using a relatively small featspace
is that, in online services, storing and retrieving largeoants of
user/article information will be too expensive to be preaiti

5.3 Compared Algorithms

The algorithms empirically evaluated in our experiments lsa
categorized into three groups:
I. Algorithms that make no use of features.These correspond to
the context-fred{-armed bandit algorithms that ignore all contexts
(i.e., user/article information).

e random: A random policy always chooses one of the candi-
date articles from the pool with equal probability. Thisalg
rithm requires no parameters and does not “learn” over time.

e c-greedy: As described in Sectidn 2.2, it estimates each arti-
cle’s CTR; then it chooses a random article with probability
¢, and chooses the article of the highest CTR estimate with
probability1 — e. The only parameter of this policy is
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Figure 2: Parameter tuning: CTRs of various algorithms on the one-day tuning dataset.

e uch: As described in Sectidn 2.2, this policy estimates each
article’s CTR as well as a confidence interval of the estimate
and always chooses the article with the highest UCB. Specifi-
cally, following UCBL1 [7], we computed an article’s confi-
dence interval by o = % wheren; . is the number of

timesa was chosen prior to trial anda > 0 is a parameter.
omniscient: Such a policy achieves the best empirical
context-free CTR fronhindsight It first computes each ar-
ticle’s empirical CTR from logged events, and then always
chooses the article with highest empircal CTR when it is
evaluated using theamelogged events. This algorithm re-
quires no parameters and does not “learn” over time.

1. Algorithms with “warm start” —an intermediate step towards
personalized services. The idea is to provide an offlineresed
user-specific adjustment on articles’ context-free CTRer die
whole traffic. The offset serves as an initialization on CERreate

for new content, a.k.a.“warm start”. We re-trained thertgiér lo-
gistic regression model studied [n[12] on Sept 2008 randaffid
data, using features . constructed above. The selection criterion
then becomes the sum of the context-free CTR estimate and a bi
linear term for a user-specific CTR adjustment. In traini@dR
was estimated using the context-fregreedy with e = 1.

e c-greedy (warm): This algorithm is the same asgreedy
except it adds the user-specific CTR correction to the aisicl
context-free CTR estimate.

e ucb (warm): This algorithm is the same as the previous one
but replaces-greedy with uch.

Ill. Algorithms that learn user-specific CTRs online.

e c-greedy (seg): Each user is assigned to the closest user
cluster among the five constructed in Secfion .2.2, and so al
users are partitioned into five groups (a.k.a. user segiments
in each of which a separate copy«freedy was run.

uch (seq): This algorithm is similar ta-greedy (seg) ex-
cept it ran a copy ofichb in each of the five user segments.
e-greedy (disjoint): This ise-greedy with disjoint models,
and may be viewed as a close varianepbch-greedy [18].
e linucb (disjoint): This is Algorithm[3 with disjoint models.
e c-greedy (hybrid): This is e-greedy with hybrid models,
and may be viewed as a close varianepbch-greedy.
linucb (hybrid): This is Algorithm2 with hybrid models.

5.4 Performance Metric

An algorithm’s CTR is defined as the ratio of the number of
clicks it receives and the number of steps it is run. We uskd al
algorithms’ CTRs on the random logged events for perforreanc
comparison. To protect business-sensitive informatios report
an algorithm’srelative CTR which is the algorithm’s CTR divided
by the random policy’s. Therefore, we will not report a ramdool-
icy’s relative CTR as it is always$ by definition. For convenience,
we will use the term “CTR” from now on instead of “relative CTR

For each algorithm, we are interested in two CTRs motivated
by our application, which may be useful for other similar léggp
tions. When deploying the methods to Yahoo!'s front pages on
reasonable way is to randomly split all traffic to this page imvo
buckets[[3]. The first, called “learning bucket”, usuallynststs of
a small fraction of traffic on which various bandit algorithrare
run to learn/estimate article CTRs. The other, called “dgmplent
bucket”, is where Yahoo! Front Page greedily serves usdrgus
CTR estimates obained from the learning bucket. Note tleatrti-
ing” and “deployment” are interleaved in this problem, adirs
every view falling into the deployment bucket, the articlghithe
highestcurrent (user-specific) CTR estimate is chosen; this esti-
mate may change later if the learning bucket gets more datRsC
in both buckets were estimated with Algoritfin 3.



algorithm size = 100% size = 30% size =20% size = 10% size = 5% size = 1%
deploy | Tearn [ deploy | Tearn | deploy | Tearn [ deploy [ Tearn [ deploy | Tearn | deploy [ Tearn
T.506 | 1.326 | 1.541 | 1.326 | 1.549 | 1.273 | 1.465 | 1.326 | 1.400 | 1.202 | 1.234 | 1.139
e-greedy 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
b 1504 | 1.560 | 1.582 | 1.535 | 1.569 | 1.488 | 1.541 | 1.446 | 1.541 | 1.465 | 1.354 | 1.22
0% | 18.3% | 2.7% | 15.8% | 1.3% | 16.9% | 5.2% | 9% | 9.4% | 13.4% | 9.7% | 7.1%
1.742 | 1.446 | 1.652 | 1.46 | 1.585 | 1.119 | 1.474 | 1.284 | 1.407 | 1.281 | 1.245 | 1.072
e-greedy (se9) | 105 | 906 | 7.2% | 10.1% | 2.3% | —12% | 0.6% | —3.1% | 0% | —0.8% | 0.9% | —5.8%
uch (seq) T.781 | 1.677 | 1.742 | 1.555 | 1.689 | 1.446 | 1.636 | 1.529 | 1.532 | 1.32 | 1.398 | 1.25
11.6% | 26.5% | 13% | 17.3% | 9% | 13.6% | 11.7% | 15.3% | 8.7% | 2.2% | 13.3% | 9.7%
— T.760 | 1.300 | 1.686 | 1.337 | 1.624 | 1.529 | 1.529 | 1.451 | 1.432 | 1.345 | 1.262 | 1.183
e-greedy (disjoint) | 46 gon | _1206 | 9.4% | 0.8% | 4.8% | 201% | 4.4% | 9.4% | 1.6% | 41% | 2.3% | 3.9%
linuch (disjoing) | 1795 | L0647 | 1710 | 1507 | 1714 | 1384 | 1655 | L1387 | 1574 | 1245 | 1382 | 1197
12.5% | 24.2% | 11.6% | 13.7% | 10.7% | 8.7% | 13% | 4.6% | 11.7% | —3.5% | 12% | 5.1%
. T.730 | 1.521 | 1.68 | 1.345 | 1.636 | 1.440 | 1.58 | 1.348 | 1.465 | 1415 | 1.342 | 12
e-greedy (hybrid) | 900" | 14706 | 9% | 1.4% | 5.6% | 13.8% | 7.8% | 1.7% | 4% | 95% | 8.8% | 5.4%
linuch (hybrid) T.73 | 1.663 | 1.601 | 1.591 | 1.708 | 1.619 | 1.675 | 1.535 | 1.588 | L.507 | 1.482 | 1.446
8.4% | 25.4% | 9.7% | 20% | 10.3% | 27.2% | 14.3% | 15.8% | 12.7% | 16.6% | 20.1% | 27%

Table 1: Performance evaluation: CTRs of all algorithms on he one-week evaluation dataset in the deployment and leamg buckets
(denoted by “deploy” and “learn” in the table, respectively). The numbers with a percentage is the CTR lift compared tc:-greedy.

Since the deployment bucket is often larger than the legrnin

Third, e-greedy algorithms (on the left of Figurk 2) achieved sim-

bucket, CTR in the deployment bucket is more important. How- ilar CTR as upper confidence bound ones (on the right of F@ure

ever, a higher CTR in the learning bucket suggests a fagtanitey
rate (or equivalently, smaller regret) for a bandit aldorit There-
fore, we chose to report algorithm CTRs in both buckets.

5.5 Experimental Results

5.5.1 Results for Tuning Data

Each of the competing algorithms (excephdom and omni-
scient) in Sectio 5.8 requires a single parametefor e-greedy
algorithms andx for UCB ones. We used tuning data to optimize
these parameters. Figurk 2 shows how the CTR of each algorith
changes with respective parameters. All results were moédaby
a single run, but given the size of our dataset and the untiess
result in Theorerfill, the reported numbers are statistioaliigble.

First, as seen from Figulcé 2, the CTR curves in the learnieg-bu
ets often possess the inverted U-shape. When the pararmaeter (
«) is too small, there was insufficient exploration, the aldpons
failed to identify good articles, and had a smaller numbenlioks.
On the other hand, when the parameter is too large, the Higmi
appeared to over-explore and thus wasted some of the opjitrsu
to increase the number of clicks. Based on these plots onguni
data, we chose appropriate parameters for each algoritidnnazn
it once on the evaluation data in the next subsection.

Second, it can be concluded from the plots that warm-start in
formation is indeed helpful for finding a better match betwaser
interest and article content, compared to the no-featursiores of
e-greedy and UCB. Specifically, bothgreedy (warm) anduch
(warm) were able to beabmniscient, the highest CTRs achiev-
able by context-free policies in hindsight. However, perfance
of the two algorithms using warm-start information is noseable
as algorithms that learn the weights online. Since the effiitodel
for “warm start” was trained with article CTRs estimated dman-
dom traffic [12],c-greedy (warm) gets more stable performance
in the deployment bucket wheris close tol. The warm start part
also helpsich (warm) in the learning bucket by selecting more at-
tractive articles to users from scratch, but did not hedp (warm)
in determining the best online for deployment. Sinmb relies
on the a confidence interval for exploration, it is hard toreor
the initialization bias introduced by “warm start”. In coast, all
online-learning algorithms were able to consistently leatmni-
scient policy. Therefore, we did not try the warm-start aidpons
on the evaluation data.

in the deployment bucket when appropriate parameters v u
Thus, both types of algorithms appeared to learn compagadie
cies. However, they seemed to have lower CTR in the learning
bucket, which is consistent with the empirical findings ohtext-
free algorithms[[2] in real bucket tests.

Finally, to compare algorithms when data are sparse, watege
the same parameter tuning process for each algorithm witarfe
data, at the level 080%, 20%, 10%, 5%, and1%. Note that we
still used all data to evaluate an algorithm’s CTR as donelgoA
rithm[3, but then only a fraction of available data were rantjo
chosen to be used by the algorithm to improve its policy.

5.5.2 Results for Evaluation Data

With parameters optimized on the tuning datd.(Figure(2), we
ran the algorithms on the evaluation data and summarizedTRs
in Table[1. The table also reports the CTR lift compared to the
baseline ok-greedy. The CTR ofomniscient was1.615, and so
a significantly larger CTR of an algorithm indicates its effee use
of user/article features for personalization. Recall thatreported
CTRs were normalized by the random policy’s CTR. We examine
the results more closely in the following subsections.

On the Use of Features.

We first investigate whether it helps to use features inlartic-
ommendation. It is clear from Tablé 1 that, by consideringrus
features, bothe-greedy (seg/disjoint/hybrid) and UCB methods
(ucb (seg) andlinucb (disjoint/hybrid)) were able to achieve a
CTR lift of around10%, compared to the baseliaggreedy.

To better visualize the effect of features, Figure 3 shows &o
article’s CTR (when chosen by an algorithm) was lifted coraga
to its base CTR (namely, the context-free CTiRjere, an article’s
base CTR measures how interesting it is to a random user, and w
estimated from logged events. Therefore, a high ratio ofiftesl
and base CTRs of an article is a strong indicator that an itthgor
does recommend this article to potentially interested uséig-
ure[3(a) shows neithergreedy nor ucb was able to lift article
CTRs, since they made no use of user information. In contadst

“To avoid inaccurate CTR estimates, orilp articles that were
chosen most often by an algorithm were included iroiis plots.
Hence, the plots for different algorithms are not comparabl
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the other three plots show clear benefits by consideringopals
ized recommendation. In an extreme case (Fipuré 3(c)), btreo
article’s CTR was lifted froni.31 to 3.03—a 132% improvement.

Furthermore, it is consistent with our previous resultsworirng
data that, compared tegreedy algorithms, UCB methods achieved
higher CTRs in the deployment bucket, and the advantageweas e
greater in the learning bucket. As mentioned in Sediioh 2.2,
greedy approaches anaguidedbecause they choose articlas-
formly at random for exploration. In contrast, exploration in uppe
confidence bound methods are effectivglyided by confidence
intervals—a measure of uncertainty in an algorithm’'s CTR- es
mate. Our experimental results imply the effectivenessppfen
confidence bound methods and we believe they have simila-ben
fits in many other applications as well.

On the Size of Data.

One of the challenges in personalized web services is tHe sca
of the applications. In our problem, for example, a smalllpafo
news articles were hand-picked by human editors. But if we&hwi
to allow more choices or use automated article selectiomaoaist
to determine the article pool, the number of articles carmbédrge
even for the high volume of Yahoo! traffic. Therefore, it bews
critical for an algorithm to quickly identify a good matchtixeen
user interests and article contents when data are sparser Bx-
periments, we artificially reduced data size (to the levél808%,
20%, 10%, 5%, and1%, respectively) to mimic the situation where
we have a large article pool but a fixed volume of traffic.

To better visualize the comparison results, we use bar graph
Figure[4 to plot all algorithms’ CTRs with various data sjitsrs
levels. A few observations are in order. Firstadltdata sparsity
levels, features were still useful. At the level ¥, for instance,
we observed &40.3% improvement ofinuch (hybrid)’'s CTR in the
deployment bucketl(493) overucb’s (1.354).

Second, UCB methods consistently outperformepteedy ones
in the deployment buckBtThe advantage overgreedy was even
more apparent when data size was smaller.

Third, compared taich (seg) andlinucb (disjoint), linucb (hy-

brid) showed significant benefits when data size was small. Re-

call that in hybrid models, some features are shared by tidles,
making it possible for CTR information of one article to beafts-
ferred” to others. This advantage is particularly usefuewthe
article pool is large. In contrast, in disjoint models, feadk of

5In the less important learning bucket, there were two exoegt
for linucb (disjoint).

one article may not be utilized by other articles; the santeugsfor
ucb (seg). Figure[4(a) shows transfer learning is indeed helpful
when data are sparse.

Comparingucb (seg) and linucb (disjoint).

From Figurg 4(3), it can be seen thab (seg) andlinucb (dis-
joint) had similar performance. We believe it was no coincidence.
Recall that features in our disjoint model are actually ralined
membership measures of a user in the five clusters described i
Section[5.ZP. Hence, these features may be viewed as & “soft
version of the user assignment process adoptattby(seg).

Figure[® plots the histogram of a user’s relative membership
measure to the closest cluster, namely, the largest compohthe
user’s five, non-constant features. It is clear that mostsusere
quite close to one of the five cluster centers: the maximum -mem
bership of abou85% users were higher thans, and about0% of
them were higher thad.8. Therefore, many of these features have
a highly dominating component, making the feature vectwilar
to the “hard” version of user group assignment.

We believe that adding more features with diverse companent
such as those found by principal component analysis, waiteb-
essary to further distinguidmucb (disjoint) from ucb (seg).

6. CONCLUSIONS

This paper takes a contextual-bandit approach to perzeaali
web-based services such as news article recommendatioprdi/e
posed a simple and reliable method for evaluating bandi-alg
rithms directly from logged events, so that the often prota&c
simulator-building step could be avoided. Based on realogah
Front Page traffic, we found that upper confidence bound rdstho
generally outperform the simpler yet unguidedreedy methods.
Furthermore, our new algorithinnUCB shows advantages when
data are sparse, suggesting its effectiveness to persedakieb
services when the number of contents in the pool is large.

In the future, we plan to investigate bandit approaches herot
similar web-based serviced such as online advertising,cana
pare our algorithms to related methods such as Banditrdn f6
second direction is to extend the bandit formulation andrétigms
in which an “arm” may refer to a complex object rather than an
item (like an article). An example is ranking, where an arnreo
sponds to a permutation of retrieved webpages. Finally,inger-
ests change over time, and so it is interesting to considepdeal
information in bandit algorithms.
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