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ABSTRACT
Access to realistic, complex graph datasets is critical to research
on social networking systems and applications. Simulations on
graph data provide critical evaluation of new systems and appli-
cations ranging from community detection to spam filtering and
social web search. Due to the high time and resource costs of gath-
ering real graph datasets through direct measurements, researchers
are anonymizing and sharing a small number of valuable datasets
with the community. However, performing experiments usingshared
real datasets faces three key disadvantages: concerns thatgraphs
can be de-anonymized to reveal private information, increasing costs
of distributing large datasets, and that a small number of available
social graphs limits the statistical confidence in the results.

The use of measurement-calibrated graph models is an attractive
alternative to sharing datasets. Researchers can “fit” a graph model
to a real social graph, extract a set of model parameters, anduse
them to generate multiple synthetic graphs statistically similar to
the original graph. While numerous graph models have been pro-
posed, it is unclear if they can produce synthetic graphs that accu-
rately match the properties of the original graphs. In this paper, we
explore the feasibility of measurement-calibrated synthetic graphs
using six popular graph models and a variety of real social graphs
gathered from the Facebook social network ranging from 30,000
to 3 million edges. We find that two models consistently produce
synthetic graphs with common graph metric values similar tothose
of the original graphs. However, only one produces high fidelity
results in our application-level benchmarks. While this shows that
graph models can produce realistic synthetic graphs, it also high-
lights the fact that current graph metrics remain incomplete, and
some applications expose graph properties that do not map toex-
isting metrics.

Categories and Subject Descriptors
I.6.4 [Computing Methodologies]: Model Validation and Anal-
ysis; D.4.8 [Operating Systems]: Performance—Measurements,
Modeling and prediction

General Terms
Experimentation, Measurement

1. INTRODUCTION
Access to realistic measurement data is critical to accurate re-

search results in a variety of network domains. Prior work on
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wired and wireless networks has shown that the validity of exper-
imental results depends on the accuracy of the data used [12,16].
This is especially true for the growing area of online socialnet-
works, where evaluation of social applications can producevery
different results depending on the social graphs used [35].As re-
searchers gain awareness of the need for real data, they are frus-
trated by the difficulty of performing measurements on existing so-
cial networks, many of whom now take careful steps to preventau-
tomated crawlers. Instead of commiting costly resources togather
real social graphs, researchers seek access to a small number of
measurement-generated graphs available to the community1.

However, the continued distribution and experimental use of so-
cial graph datasets faces three significant challenges. First, owners
of datasets are increasingly concerned about inadvertently reveal-
ing private information with their anonymized datasets. Recent
work shows that malicious parties can recover information from
anonymized graphs byde-anonymizingthem using either auxil-
iary graphs or by identifying unique subgraphs in the anonymized
graph [4, 27, 28]. Given recent privacy compromises [7], these con-
cerns act as a strong disincentive against sharing graph datasets.
Second, the limited number of available graphs is insufficient to
generate meaningful experimental results. Ideally, researchers would
like to experiment with multiple real graphs to produce statistically
confident results. Finally, social networks are exploding in size,
and measured graphs contain millions of nodes and hundreds of
millions of edges. Even compressed, graphs from our Facebook
study [35] can be over 50GBs in size. Sharing this data requires
either a multi-day download over a fast network or shipping hard-
drives, neither of which scales with the demand for these graphs.

Synthetic graphs generated by measurement-calibrated graph mod-
els offer an attractive alternative to sharing large graph datasets.
Trace-driven modeling is popular in research settings where real
measurement data is difficult to gather, such as wireless networks [16,
22]. In the social graph context, we can “fit” a graph model to
a real social graph, thereby extracting a set of model parameters.
We feed these parameters into the graph model to produce random-
ized synthetic graphs that match the original in statistical proper-
ties. If accurate, experimental results from these synthetic graphs
will closely match those from experiments performed on the origi-
nal graph. This approach addresses all of the aforementioned chal-
lenges: synthetic graphs are randomized, hence no privacy is com-
promised; additional graphs can be generated on demand, thus im-
proving statistical confidence; and model parameters are compact,
hence cost of sharing models is trivially low.

But which graph model should we use? Instead of creating a
new graph model, we choose to determine if any of the numerous

1Since being available in May 2009, 31 research groups have made
use of social graphs from our recent Facebook study [35].



models in literature are suitable. Of the recent graph models, only
two (dK [23] and Kronecker graphs [19]) are designed to capture
overall structural characteristics of graphs. Thesestructure-driven
models would be ideal for our use, but they incur very high costs in
memory or computation. To apply them to large social graphs,we
must first use parameters to reduce their overheads,i.e. limiting dK
graphs todK-2, and reducing matrix size and number of iterations
for Kronecker graphs. Unfortunately, this also reduces model accu-
racy. In contrast,intent-andfeature-drivenmodels such as Nearest
Neighbor and Forest Fire have significantly lower algorithmic and
computational complexity, but are only designed to capturea single
graph property. To be inclusive, our work must consider all three
types of graph models.

We must answer several other key questions before we can ac-
cept the validity of research results using synthetic graphs gener-
ated by calibrated models. What challenges are involved in fitting
graph models to real social graphs? How accurately can model-
generated synthetic graphs capture the statistical metrics of real
graphs? We refer to a model’s ability to produce statistically similar
graphs as itsfidelity. Which models demonstrate the highest levels
of fidelity for today’s large social graphs? Do current graphmet-
rics capture all of the meaningful properties of real graphs? And
finally, can application-level results obtained by researchers using
synthetic graphs match those obtained using the original graphs?

In this paper, we seek to answer these questions by exploringthe
feasibility of replacing real graphs with synthetic graphsgenerated
from calibrated graph models. We make three key contributions:

1. We examine the challenge of fitting graph models to specific
graphs. We explore the problem for several popular graph
models, and propose a two-phase parameter search approach
guided by a structural graph similarity metric.

2. We use our methodology to examine a set of popular graph
models from literature, and evaluate how accurately each
model captures statistical metrics from graphs of the Face-
book social network ranging from 30,000 to 3 million edges.
We find that while most vary significantly in accuracy, two
graph models (Nearest Neighbor anddK-2) are consistently
accurate for most metrics across all of our test graphs.

3. We examine the impact of using synthetic graphs through
simulations of social network applications. We use these
application-level tests as “end-to-end” metrics to test the fea-
sibility of substituting real graphs with synthetic graphs. Our
results show that the Nearest Neighbor model produces re-
sults on synthetic graphs closely matching those of real graphs,
thus confirming that model-generated synthetic graphs can
be reliably used in research on social networks.

While this work focuses on social network graphs, we believe
our methodology is general, and we can use similar techniques to
evaluate the feasibility of measurement-calibrated graphmodels for
Internet routers, the web, and biological graphs.

2. METHODOLOGY AND CHALLENGES
Our goal is to identify which graph models, if any, can generate

synthetic graphs that are sufficiently representative of real-world
social graphs to be suitable for experimental research. We refer
to the a model’s ability to reproduce statistically similarsynthetic
graphs as itsfidelity. Thus, our restated goal is to determine the
fidelity of current graph models, and whether any model has suffi-
ciently high fidelity to replace real social graphs in research.

Our approach (shown in Figure 1) consists of three steps: collect-
ing real-world social graphs, fitting graph models to targetgraphs,
and quantifying each model’s fidelity by comparing the resulting
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Figure 1: Our methodology for evaluating graph model fidelity.

Graphs Nodes Edges
Monterey Bay, CA 6,283 33,969
Santa Barbara, CA 12,814 92,241

Egypt 246,692 1,618,085
New York, NY 377,712 3,616,873

Table 1: Four representative social graphs from Facebook measure-
ments in 2008. They vary in size from very small (Monterey Bay, CA)
to extremely large (NY, NY).

synthetic graphs against the originals using graph metricsand ap-
plication benchmarks. Here, we summarize our methodology,iden-
tify 4 challenges in the process, and describe our solutions.

Collecting Social Graphs. Facebook is the largest social net-
work in the world with more than 350 million users. We use sev-
eral Facebook social graphs we obtained through detailed mea-
surements between March and May 2008 [35]. Our data includes
anonymized social graphs encompassing more than 10 millionusers
with over 940 million social links from the 22 largest regional net-
works, as well as several smaller regional networks. These Face-
book social graphs are attractive as target graphs for this work for
two reasons. First, our prior analysis [35] showed that theyarerep-
resentativeof measured social graphs,i.e. they display graph prop-
erties similar to measurements of other popular social networks
such as Orkut [25]. Second, the availability of a wide range of
Facebook graphs means we can choose multiple graphs of differ-
ent sizes. Ultimately, we chose to use 4 representative regional
networks (listed in Table 1) ranging from 6000 nodes and 30,000
edges to 300,000 nodes and 3 million edges.

Fitting Models to Target Graphs. We compare the fidelity
of different models to determine their suitability as replacements
for measured social graphs. We consider several well-knowngraph
models of social networks developed from the fields of mathemat-
ics, physics and computer science. For each model, we use social
graphs from Facebook as targets, and determine the optimal model
parameters that provide the best fit for the model and a given graph.
We then use these parameters to generate randomized graphs that
attempt to match the target graph’s salient graph properties.

We face three challenges in this phase of our work. First, ex-
isting graph models cannot be used directly to generate synthetic
graphs because their output is restricted in some manner. For ex-
ample, Nearest Neighbor [33] has been analytically shown togen-
erate graphs with Power-law coefficients always> 2, and Random
Walk [33] produces directed graphs that may be disconnected. We
modify these models to produce general graphs matching our so-
cial graph datasets. For models such asdK [23] and Kronecker
graphs [19], we also tune parameters to trade off accuracy for model
complexity. Model modifications are described in Section 3.

Our second challenge lies in fitting the models to our target graphs,
i.e. for a given graphG and modelM , determining the optimal pa-



rameters forM to generate graphs that best matchG. However,
this leads us to the third challenge: “how do we quantify similarity
between graphs?” As we will explain in Section 4, we build a graph
similarity metric using thedK-series [23], a structure-based graph
metric that, given sufficient space, can uniquely identify atarget
graph. Using this metric, we perform adaptive precision search
through the parameter space until we find the best fit parameters.

Evaluating Model Fidelity. Finally, once we have computed
the best fit parameters for a given model and target graph, we can
compute the fidelity of the model with respect to a given metric.
The final challenge is identifying the correct metric(s) that cap-
ture the properties of interest to experimental research. We start
with a comprehensive set of accepted social graph metrics, includ-
ing the power-law degree distribution, node separation, clustering
coefficient and assortativity. For each target graph, we quantify a
model’s fidelity by measuring the Euclidean distance between the
target’s graph metrics and those of the synthetic graphs.

These metrics may not tell the whole story, however. Ultimately,
we do not yet understand how these graph metrics are related,or
whether existing graph metrics completely capture all properties
of a graph. Therefore, the only reasonable way to determine the
fidelity of a graph model for experimental research is to feedthe
original and synthetic graphs into “application-level” tests and ex-
amine the difference in their results. We perform a suite of simula-
tions of well-known social network applications, including Sybil-
guard [36], Reliable Email [13], and Social Shields for anony-
mous communication [30]. Examining the “error” between appli-
cation results from original graphs and those of synthetic graphs
provides an end-to-end test that answers two questions: do current
graph metrics capture the features of graphs “important” tosocial
networking research, and can researchers safely rely on synthetic
graphs to produce meaningful and accurate experimental results?

3. SOCIAL GRAPH MODELS
In this section, we briefly describe six well-known graph models

that we consider as potential models to replace real social graphs.
We divide these models into three classes based on their method-
ology. We classify the classical Barabasi-Albert model [5]and the
Forest Fire [20] model asfeature-driven, since they focus on repro-
ducing statistical features of a graph such as power-law distribution
and dynamic changes in graph density.Intent-drivengraph mod-
els such as Random Walk [33] and Nearest Neighbor [33] focus
on emulating the creation process of the original graphs. Finally,
structure-drivenmodels capture statistics from the graph structure,
allowing a corresponding generator to reproduce random graphs
with the same structural constraints. This class includes Kronecker
graphs [19] anddK-graphs [23].

We omitted a number of graph models from our study. The
Watts and Strogatz model [34] generates small-world graphs, but
is unsuitable for our study because it does not produce graphs with
power-law degree distribution. Other models were omitted because
they are similar to models in our chosen set. This includes vari-
ants of the Nearest Neighbor [32], Random Walk, and Forest Fire
models, such as the copying model [17], the duplication divergence
model [33] and the random surfer model [8].

3.1 Feature-driven Models
Barabasi-Albert. Barabasi and Albert [5] proposed the classi-
cal model which produces graphs with power-law degree distribu-
tions missing from random graphs [11]. This model proposed an
incremental growth model for graph construction, and preferential
attachment: the idea that new nodes tend to attach to existing nodes

with non-uniform probability. The model has two parameters: n,
number of nodes in the graph, andm, number of edges introduced
from each new node to existing nodes. Given its impact on other
models, we include it as a baseline measure.

Forest Fire (modified). Leskovec et al. observed increases in
density and decreases in diameter over time in graphs such asthe
patent citation graph and Internet AS connectivity graph [20]. To
capture these dynamic effects, they propose the Forest Firemodel,
where the graph grows with each new node connecting to a set of
existing nodes. After the new node connects to an existing node, it
randomly connects to some of the node’s neighbors. This process
is executed recursively, imitating the “burning” of forestfires.

Since the Forest Fire model generates directed graphs, we make
a simple modification for it to generate undirected graphs for our
study. Specifically, we always create undirected edges and follow
the edges in both directions in the “burning” process. This model
has two parameters:n, number of nodes in the graph, andp, the rate
which decides the number of neighbors “burned” in each recursion.

3.2 Intent-driven Models
Intent-driven models attempt to capture how power-law graphs

form and grow by emulating the processes behind link formation
between nodes,e.g. formation of friendships in offline social net-
works and adding links on a webpage to other sites.

Random Walk (modified). The Random Walk model [33] em-
ulates the randomized walk behavior of friend discovery in online
social networks. Each new node performs a random walk starting
from a randomly chosen node in the graph. As the walk traverses
the graph, the new node probabilistically attaches itself to each vis-
ited node. The original model creates directed graphs. We modify
the model to create undirected edges, and allow the random walk
to traverse edges in any direction. The model has three parame-
ters: n, the number of nodes,qe, the probability of continuing the
walk after each step, andqv, the probability of attaching to a visited
node. The original Random Walk model can generate disconnected
graphs. We fixqv = 1 for each new node’s first edge, in order to
ensure a generated graph with a single connected component.

Nearest Neighbor (modified). Another model based on social
behaviors is the Nearest Neighbor model [33]. It follows theob-
servation that two people sharing a common friend are more likely
to become friends. Each new node added to the graph is connected
to a random existing node. Additionally, random pairs of 2-hop
neighbors around the new node are connected. The original model
has two parameters:n, the number of nodes, andu, a probability
that determines at each step if a new node is added or if a pair of
2-hop neighbors are connected.

Analysis shows that the original model always produces graphs
with power-law exponent greater than2 [33]. This does not match
known measurements of social networks such as Facebook, YouTube,
Flickr and Orkut, which all have power-law exponents between 1.5
and 1.75 [25, 35]. Thus, we modify the model by adding a param-
eterk. Each time a new node is added, we also connectk pairs of
existing nodes randomly chosen from the graph.

Because the power-law exponent scales with the intensity ofpref-
erential attachment in random graphs, adding edges betweennode
pairs selected uniformly at random reduces the level of preferential
attachment, and thus the power-law exponent. By extending the
analysis in [33] to our modified model, we show that the power-
law exponentγ is a function ofk andu: γ ≈ 1 + 1

β
, where

β =
u

2(1 − u)

 

−1 +

r

1 + 4
(k + 1)(1 − u)

u
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Monterey S. B. Egypt New York
dK-1 102 153 416 385
dK-2 4,230 9,477 45,245 51,238
dK-3 258,871 884,931 6,919,578 10,475,401

Table 2: The number of values required to represent our graphs using
different dK-series.

This produces the desired reduction in Power-law distribution while
maintaining the intuition behind the model.

3.3 Structure-driven Models
Unlike models that focus on single properties or incremental

growth of the graph, structure-driven models focus purely on cap-
turing the physical characteristics of the target graph. Thus they
have no graph formation parameters, only parameters that trade off
accuracy for model complexity. Given their design goals, these
models should provide the most representative synthetic graphs.
While they are likely to capture a graph’s structure, however, they
are also likely to incur high costs in computation and/or memory,
thus limiting their achievable accuracy in practical settings.

Kronecker Graphs. Leskovec et al. proposed using Kronecker
graphs to approximate real graphs [19]. Kronecker graphs are gen-
erated by the recursive evolution of an initiator graph. This evo-
lution process, called Kronecker multiplication, is able to approx-
imate real graph structures [20]. KronFit is an algorithm that gen-
erates synthetic graphs that are structurally similar to a given target
graph. The similarity is measured by a maximum likelihood value,
i.e., the probability that this model will generate a graph identical
to the original.

KronFit includes parameters that tradeoff optimality and compu-
tation complexity. The most important parameters are the size of
the initiator matrixikro, the sample size for estimating the likeli-
hood and its gradientskro, and the maximum number of gradient
descent iterations in the searchgkro. Larger parameters map to
higher accuracy as well as higher complexity. With guidancefrom
the authors of [19], we chose the following values to keep therun-
ning time comparable to other graph models (less than 48 hours for
Egypt and New York graphs on a server with 32GB of RAM):ikro

= 3, skro = 500,000,gkro = 50.

dK-graphs. Finally, dK-graphs are a systematic way of ex-
tracting subgraph degree distributions from a target graph, so that
similar synthetic graphs can be generated with identical degree dis-
tributions [23]. As the value ofd increases,dK incorporates de-
gree distributions of increasingly large subgraphs. For example,
thedK-1 metric captures the node degree distribution,dK-2 cap-
tures the joint degree distribution, anddK-3 captures the clustering
coefficient. Asd increases beyond 3, the distribution becomes in-
creasingly likely to uniquely define the target graph [23].

dK models’ running time and computation state size increase
rapidly asd increases. As shown in Table 2, the amount of state to
capture a graph grows rapidly fromdK-2 to dK-3, and becomes
prohibitively costly for large graphs like New York. In thiswork,
we present results usingdK-2 model for two reasons: to avoid
extremely large memory requirements for large graphs like New
York, and because graph generators fordK-3 do not yet exist.

4. FITTING MODELS TO GRAPHS
We now describe our efforts to fit each graph model to Facebook

social graphs. All six models are parameterized byn, number of
nodes in the graph, and four models require additional parameters.

4.1 A Case for Parameter Sampling
Maximum likelihood estimation (MLE) is the best-known sta-

tistical method for fitting a statistical model to data and estimat-
ing a model’s parameters. For different parameters, it calculates
the maximum probability that a parameterized model generates the
data exactly matching the original, and chooses the parameters that
maximizes such probability. Applying MLE to graph model fitting,
however, is very difficult. For large graphs like ours, thereare no
efficient solutions to determine if two graphs are physically iden-
tical. This is the well-known graph isomorphism problem whose
difficulty has been proven in prior work [14].

Instead, we propose to use a parameter-search based solution by
scanning the possible parameter space, and guiding the search us-
ing a statistical similarity metric between the target graph and the
model generated graphs. We choose this solution for our graph
models because it produces good results within tractable computa-
tion times, despite the massive sizes of our graphs. This is afirst
attempt at a practical solution, and we leave the search for more
efficient solutions for future study.

Implementing this solution requires us to solve two technical
challenges. First, we need a metric to measure the statistical dif-
ference between graphs, for which we propose to leverage thedK
series, a graph distribution that captures subgraph degreedistribu-
tions [23]. Second, we need an efficient strategy to search through
the large parameter space to quickly locate near-optimal parame-
ters. For this we propose a space-sampling solution with adaptive
precision.

Structure-Driven Graph Comparison. We consider the prob-
lem of quantifying the similarity between any two graphs. A naive
solution is to organize the accepted social graph metrics (Section 5.1)
into a vector, each with a weight. We can define the statistical dif-
ference between graphs as the distance between the vectors derived
from each graph. The problem with this approach is that it assumes
our graph metrics are comprehensive, and that we can assign the
“right” weight to each metric.

Rather than focusing on known graph metrics, we propose to
use thedK-series as a single similarity metric to capture a graph’s
physical characteristics. We do so for two reasons. First, with
increasingd, dK can progressively capture increasingly complex
graph properties [23] until the graph is uniquely defined by thedK
model. Second, thedK-series captures significantly more detail of
graph structures than alternative metrics. For a givend, we calcu-
late the distance between two graphs as the square distance between
thedK vectors of the two graphs.

Given the memory and time complexities ofdK for higher val-
ues ofd (see Table 2), we limit ourselves to thedK-2 series. Using
dK-2, parameter fitting a Nearest Neighbor model to our New York
graph requires 2 days of computation on a quad CPU server. More
accuratedK-3 requires orders of magnitude more values to repre-
sent each graph, making it impractical for larger graphs.

Parameter Sampling with Adaptive Precision. When it comes
to parameter fitting models, local search algorithms such ashill
climbing [31] are the most widely used solutions. Hill climbing
starts from a random (potentially poor) solution, and iteratively im-
proves the solution by making small changes until no more im-
provements are found. Hill climbing does not work well for non-
convex spaces, however, since it will terminate when it findsa local
maxima. We have experimented with hill climbing in our model
fitting problem, and confirmed that it produces suboptimal results
because the similarity metric (dK or others) is not strictly convex.

To overcome this problem, we apply a sampling method that
finds the best fit parameters by uniformly scanning the possible
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Figure 2: Two-level parameter sampling for the Nearest Neighbor model on the Monterey Bay graph. UsingdK-2 as the graph similarity metric,
(a) shows the first level sampling with varying values ofk (values ofk > 3 are not shown). Error (distance from the target graph) is shown on the
Y-axis. After choosingk=1 from (a), (b) fine-tunes for the parameteru. The final parameters arek = 1 and u = 0.8.

parameter space given a reasonable constraint on the level of preci-
sion. We choose this simple approach because it requires minimum
information on parameter statistics. In contrast, advanced sam-
pling methods such as Gibbs sampling [1] require knowledge of
the conditional distribution of each parameter, which is very costly
to compute. We also apply techniques to improve efficiency and
accuracy. First, we use theoretical analysis to narrow downthe pa-
rameter space based on the statistics of the real graph. We partition
the remaining space uniformly to avoid local maxima. Second, we
apply an initial coarse sampling to identify candidate parameter re-
gions and then perform fine-grained sampling within these regions.
Despite the simplicity of this approach, results in Section5 confirm
that it locates model parameters that produce synthetic graphs that
closely approximate metrics of the original graph.

4.2 Fitting Algorithms in Detail
We now apply the fitting algorithm to each model.

Nearest Neighbor. Our modified Nearest Neighbor model has
two parameters:0 < u < 1, andk = 1, 2, 3, · · · . Sinceu andk
determine the power-law exponentγ, we also examine the result-
ing γ to eliminate unsuitable choices ofu andk. In the remaining
two-dimensional parameter space, we apply a multi-level sampling
method. First, we varyk from 1 to 10 and for eachk sampleu
coarsely with∆u = 0.05. Using the Monterey Bay graph as an
example, Figure 2(a) shows thedK-2 based distance between the
original and Nearest Neighbor-generated graphs. This model pro-
duces graphs with minimaldK-2 distance from the target when
k = 1. Next, having fixedk = 1, we apply a fine sampling onu
with ∆u = 0.01. Results in Figure 2(b) show that the fine grain
sampling avoids a significant number of local maxima. The final
parameters for Monterey Bay arek = 1 andu = 0.8.

Random Walk. The modified model has two parameters to
tune: 0 < qe < 1 and0 < qv < 1. Both are real numbers and
their contributions are inter-related. Our sampling takestwo steps.
We start from a coarse sampling onqe with ∆qe = 0.1, and for
eachqe we sampleqv with the same precision∆qv = 0.1. Us-
ing these results we identify multiple candidate intervalswhere the
synthetic graphs are closer to the original real graph. Next, we ap-
ply a fine-grained sampling across these intervals with∆qv = 0.01
and∆qe = 0.01, and choose the best configuration that minimizes
thedK-2 distance.

Forest Fire. The Forest Fire model has only a single parameter,
p the burn rate. For each target graph, we apply a fine-grained
sampling (∆p = 0.01) across its range to find the best fitp.

Barabasi-Albert. This model has only one unknown parameter
m, the number of edges introduced from each new node to existing
nodes. Sincem is a static parameter, we compute it asm = |E|/n.
This follows naturally because givenn nodes, the total number of
edges in the graph isn · m.

Computational Costs. Our experience shows that the parame-
ter search approach is computationally tractable for largegraphs.
Running experiments on a Dell 2900 server w/ 32GB of RAM,
most models can be fit to the largest of our graphs (New York,
3.6M edges) within 48 hours. In all cases, model fitting runtime is
dominated by the time required to generate candidate graphsas we
search through the model parameter space. Computing thedK-2
distributions is also a factor, but rarely contributes morethan 1 hour
to the total fitting time. The time required to comparedK-2 distri-
butions is negligible (a few ms). Finally, we found that Kronecker
graphs and the Forest Fire model are the most computationally in-
tensive to fit.

5. FIDELITY UNDER GRAPH METRICS
Having extracted the best parameters for each model and Face-

book graph combination, we can evaluate the fidelity of the models
by comparing the properties of the Facebook graphs against their
synthetic counterparts. We first evaluate the fidelity of graph mod-
els using graph metrics described in literature. In the restof the
paper, we identify a graphG asG = (V, E) whereV is the set of
vertices representing social network users, andE is the collection
of undirected edges representing links among users.

We evaluate the six graph models using the Facebook graphs
listed in Table 1. For each target graph, we apply the fitting mech-
anism described in Section 4 to compute the best parameters for
each model. We generate20 randomly seeded synthetic graphs
from each model for each target graph, and measure the differ-
ences between them using several popular graph metrics. We ex-
amine model fidelity by computing the Euclidean distance between
metrics derived from the target and model-produced graphs.We
represent node degree distribution, clustering coefficient and joint
degree distribution as functions of the node social degree,and com-
pute each metric’s Euclidean distance as the average squareroot
of the total squared errors in metric values. All results areaver-
ages from comparing the20 synthetic graphs against the original.
Standard deviation values are consistently low relative tothe values
themselves, and are omitted for clarity.

5.1 Social Graph Metrics
We now summarize the suite of graph metrics we use to deter-

mine the fidelity of our graph models.



Node Degree Distribution (NDD). Social degree refers to the
number of friends (or edges) each node has. Measurements show
that node degree distributions in social graphs follow a power-law
distribution, i.e. the fractionP (k) of nodes in the graph having
k connections to other nodes grows asP (k) ∼ k−γ , whereγ is
a constant exponent. We computeγ by fitting a graph’s degree
distribution to a power-law using the method described in [9].

Joint Degree Distribution. There are several different ways
to capture the joint degree distribution, including theknn function,
assortativity, and the s-metric [23].knn computes the correlation
between a node’s degree and the average degree of its neighbors. A
graph’s assortativity coefficientAS is a value in [-1,1] calculated as
the Pearson correlation coefficient of the degrees of all connected
node pairs in the graph. A positive value means that nodes tends
to connect with others with similar degrees, and a negative value
means the contrary [29]. Finally, the s-metric captures thejoint
degree distribution of a graph as the probability that high degree
nodes inter-connect with each other [21]. We compute all three
metrics for all synthetic and target graphs. Given the consistency
of our results, we omit results for the s-metric, which can beviewed
as a subset of the assortativity distribution.

Clustering Coefficient (CC). Clustering coefficient measures
whether social graphs conform to the small-world principle[34]. It
is defined as the ratio of the number of links that exist between a
node’s immediate neighborhood and the maximum number of links
that could exist. For a nodex with degreedx, at mostdx(dx −
1)/2 edges can exist amongx’s friends (when they form a complete
clique). Letkx be the actual number of edges amongx’s friends,
the clustering coefficient of nodex is 2kx

dx(dx−1)
. A graph’s CC is

the mean CC of all nodes. Intuitively, a high CC means that nodes
tend to form highly connected subgraphs with their neighbors.

Node Separation. The degree of node separation is measured
through three metrics: average path length, network radiusand net-
work diameter. Average path length refers to the average of all-
pairs-shortest-paths on the social graph. The radius and diame-
ter are calculated using the eccentricity of each node in thesocial
graph. Eccentricity is defined as the maximum shortest-pathdis-
tance between a node and any other node in the graph. Radius is
the minimum of all eccentricities, while diameter is the maximum.
Because computing all-pairs-shortest-paths is computationally in-
feasible given the size of our social graphs, we estimate theradius,
diameter and average path length by determining the eccentricity
of 1000 randomly selected nodes in each graph.

5.2 Graph Metric Results
We now describe the results of our fidelity tests. All of our graph

computations are performed on a cluster of Dell Poweredge 1750
servers with dual-core Xeon processors. Memory intensive compu-
tations were performed on 2 Dell 2900 servers, each with a quad-
core Xeon CPU and 32GB of memory.

Node Degree Distribution. We examine the node degree distri-
bution in terms of the cumulative distribution function (CDF). The
results across the four Facebook graphs are consistent. Hence in
Figure 3 we only plot the results for Santa Barbara and New York.
We see thatdK and Nearest Neighbor are the two models that pro-
duce the most accurate degree distributions, which is confirmed by
the Euclidean distance results in Table 4 under “NDD.” An inter-
esting observation is that≈40% users have social degree of 10 or
less, which is not captured by the Barabasi Albert model.

We also examined whether the node degree in the synthetic graphs
follows the power-law distribution. Using the power-law curve fit-

Estimated Power-law
Graph Model Power-law exp. Fitting error

Real Graph 1.50 0.27
Santa Barbara dK-2 1.50 0.27
12,814 nodes Nearest Neighbor 1.50 0.28
92,241 edges Random Walk 1.50 0.37

KronFit 1.50 0.24
Forest Fire 1.53 0.19

Barabasi-Albert 2.82 0.007
Real Graph 1.50 0.33

New York dK-2 1.50 0.33
377,712 nodes Nearest Neighbor 1.50 0.37

3,616,873 edges Random Walk 1.50 0.46
KronFit 1.50 0.37

Forest Fire 1.51 0.18
Barabasi-Albert 2.86 0.006

Table 3: Examining the power-law effect in node degree distribution.
dK-2 and Nearest Neighbor are the two most accurate models.

ting method in [9], we derive the exponent and the fitting error.
Table 3 summarizes the results for Santa Barbara and New York.
Again,dK-2 and Nearest Neighbor outperform other models.

Joint Node Degree Distribution. Next we compare the real
and synthetic graphs in terms of node connectivity, particularly on
metrics of joint node degree distribution (knn and assortativity).
These metrics have been used to verify whether a graph displays
scale-freeandsmall-worldproperties. We representknn as a vec-
tor over the node social degree, and use the vector-based Euclidean
distance values in Table 4 to represent the statistical difference be-
tween the real and synthetic graphs.

Assortativity is a scalar value representing the same property as
knn, and reflects the same relative results. For scalar metrics like
assortativity, network diameter, and average path length,we com-
pare the actual values of both synthetic and target graphs inTable 5.

The knn and assortativity results show that thedK-2 model is
consistently accurate across all four target graphs, whilethe Near-
est Neighbor model displays some visible differences. A closer
look at the detailedknn values (omitted for brevity) shows that
the Nearest Neighbor model displays a similar trend inknn as the
real graphs, but produces largerknn values at nodes with higher
social degree. This implies that the model tends to inter-connect
nodes with higher social degrees, which can be explained by the
fact that the model connects nodes to 2-hop neighbors and most
popular nodes are within 2 hops from each other. This is confirmed
by its higher assortativity values in Table 5.

Clustering Coefficient. Prior work [34] shows that social net-
works have a local clustering structure,i.e. neighbors of a node
in the social graph tend to connect to each other as well. Thisis
particularly true for nodes with low social degrees. Figure4 shows
the clustering coefficient as a function of the social degreefor three
networks. We omit the results for Monterey Bay because they are
highly consistent with those of Santa Barbara. The Euclidean dis-
tance values associated with all four networks are shown in Table 4
under the column “CC.”

In this case, Nearest Neighbor, Random Walk and Forest Fire
are the top three models. They all follow the general trend inthe
target graphs: nodes with small social degrees experience heav-
ier clustering, and the degree of clustering decreases withthe node
degree. This is unsurprising, given the model definitions where
all three encourage forming local triangles by connecting 2-hop
neighbors (Nearest Neighbor) or connecting new nodes to well-
connected subgraphs (Random Walk and Forest Fire). On the other
hand, the other three models (dK-2, KronFit and Barbasi-Albert)



 0

 20

 40

 60

 80

 100

 1  10  100

%
 o

f U
se

rs
 (

C
D

F
)

Social Degree

Forest Fire
KronFit

Nearest Neighbor
Real Data

dK-2
Random Walk

Barabasi Albert

(a) Santa Barbara

 0

 20

 40

 60

 80

 100

 1  10  100

%
 o

f U
se

rs
 (

C
D

F
)

Social Degree

Forest Fire
KronFit

Real Data
dK-2

Nearest Neighbor
Random Walk

Barabasi Albert

(b) New York

Figure 3: CDFs of the node degrees of the real Facebook graphs and thosegenerated by the six
network models.dK-2 and Nearest Neighbor models closely match the real data.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 50  100  150  200  250

C
lu

st
er

in
g 

C
oe

ffi
ci

en
t

Social Degree

Forest Fire
Real Data

Nearest Neighbor
Random Walk

KronFit
dK-2

Barabasi Albert

Figure 4: CC in Santa Barbara as a function of
social degree. The best models are Forest Fire,
Nearest Neighbor and Random Walk.

all produce flat clustering coefficient around 0.05 or less, and fail
to capture any local clustering effects.

Node Separation Metrics. Finally, we look at how models
capture the separation between nodes through the network diame-
ter and average path length metrics. We find thatdK-2 is highly
accurate, while Forest Fire also performs well. Nearest Neighbor,
however, produces significantly more clustered graphs, resulting in
shorter path lengths and a smaller network diameter. We attribute
this to Nearest Neighbor’s focus on preferential attachment which
increases connections between highly connected nodes.

5.3 Summary of Observations
The above results do not tell us in absolute terms how signifi-

cantly different synthetic graphs are compared to the original graphs.
Relatively speaking, however, we see that thedK-2 and Nearest
Neighbor models provide a relatively accurate representation of
the target graphs. On the other hand, some models do not accu-
rately capture particular individual metrics well. ThedK-2 model
is especially accurate in capturing the individual and joint degree
distributions, but fails to capture the key feature of localcluster-
ing. The Nearest Neighbor model is consistently accurate interms
of the degree distribution and clustering coefficients, butis biased
towards inter-connecting high-degree nodes, and producesgraphs
with significantly shorter path lengths and network diameter. This
results in higher assortativity values that may diverge from graphs
with more heterogeneous connections like Egypt2.

Our results are promising, because they show that despite vari-
ances across models and graphs, two models (Nearest Neighbor
anddK) stand out for their ability to capture graph metrics. If these
metrics are indicative of application performance, then weexpect
these two to also show high fidelity in our application benchmarks.

6. APPLICATION FIDELITY BENCHMARKS
Since we do not yet understand how graph metrics impact dif-

ferent social applications, the final measure of a model’s fidelity
must still rely on application-level benchmarks. We implement the
algorithms from several social network applications, run tests with
both target graph and synthetic graphs as input, and comparethe
results to quantify each model’s fidelity. In addition, these results
allows us to identify whether the existing social graph metrics fully
capture the “important features” in social networks.

We chose “Reliable Email” [13], “Sybilguard” [36] and a “So-
cial Shield Anonymous System” [30] as representative social net-
work applications. All are recent research systems that leverage
graph properties in social networks to address network security

2Unlike Egypt, all of our more than 20 Facebook graphs have AS
values between 0.05 and 0.25.

problems. Compared to known graph metrics, all these application
tests present new perspectives, since their performance ona partic-
ular graph cannot be easily correlated with a single graph metric3.
Examining how synthetic graphs compare in these application tests
versus their original counterparts sheds light on whether today’s
models are accurate enough to replace actual social graphs with
graph models for experimental research.

RE: Reliable Email. RE [13] is a whitelist system for email
that securely marks emails from a user’s friends and friends-of-
friends as non-spam messages, allowing them to bypass spam fil-
ters. Friends in a social network securely attest to each others’
email messages while keeping users’ contacts private.

A meaningful evaluation experiment is to examine the level of
potential impact on RE users if accounts in the social network were
compromised using phishing attacks. Compromised accountscan
flood spam email through the RE system, since their spam bypasses
filters and directly reaches user’s inboxes. Our RE simulation mea-
sures the portion of the entire user population receiving spam as we
increase the number of compromised accounts.

We perform these experiments on our Facebook social graphs,
and plot the results for Santa Barbara, Egypt, and New York inFig-
ure 5, and list Euclidean distance values for all 4 graphs in column 7
of Table 4. Comparing results across all graphs, Nearest Neighbor
produces the overall best results, withdK-2 and Random Walk as
the next best models. It is notable that the best model variesacross
our graphs, perhaps due to specific structural features in each of
the Facebook graphs. One take-away from this experiment is that
application level results cannot be easily explained usinga single
graph metric. In general, the accuracy of the RE experiment’s per-
formance on a synthetic graph is not strongly correlated with any
of the metrics we track in Table 4.

Sybilguard. A malicious user in an online community can
launch a Sybil attack [10] by creating a large number of virtual
identities. These identities can then work together to provide the
owner with some unfair advantage, by outvoting legitimate users in
consensus systems, corrupting data in distributed storagesystems,
or manipulating incentive systems or reputation systems toperform
fraud. SybilGuard [36] proposes a way to detect these Sybil iden-
tities using social networks. The main insight of this defense relies
on the fact that it is difficult to make multiple social connections
between Sybil identities and legitimate users. Because of this con-
crete obstacle, Sybil identities tend to form a strongly connected
subgraph with a small number of links to honest users.

Using Sybilguard, a nodeA seeking to determine if nodeB is
a Sybil identity sends a number of random walks. NodeB does

3The authors of Sybilguard credit their functionality to theMixing
Time property of graphs. We cannot confirm this, since current
Mixing Time algorithms do not scale to large graphs.



Euclidean Distance: Target vs. Synthetic Graphs
Graph Models Graph Metrics Applications

NDD Knn CC RE Sybil.
dK-2 21.43 62.82 2.24 117.97 22.13

Monterey Bay Nearest Neighbor 30.43 77.73 1.42 59.62 15.23
6,283 nodes Random Walk 51.96 80.31 1.94 313.07 22.15
33,969 edges KronFit 34.30 108.91 2.35 233.81 23.05

Forest Fire 53.24 267.78 0.91 350.73 58.67
Barabasi-Albert 93.03 132.52 2.22 529.38 17.28

dK-2 1.70 25.72 2.15 134.31 7.90
Santa Barbara Nearest Neighbor 16.73 155.58 1.43 77.36 5.56
12,814 nodes Random Walk 38.64 146.86 1.71 310.00 5.30
92,241 edges KronFit 44.66 173.08 2.06 139.71 8.87

Forest Fire 93.67 336.97 1.01 815.09 76.45
Barabasi-Albert 103.34 167.85 2.13 757.64 10.95

dK-2 15.56 178.58 1.35 306.57 6.73
Egypt Nearest Neighbor 29.35 1147.31 0.76 399.90 4.68

246,692 nodes Random Walk 64.03 537.51 0.98 1673.20 6.36
1,618,085 edges KronFit 80.16 7680.46 1.34 2113.03 30.39

Forest Fire 68.51 6932.16 2.33 2785.04 72.78
Barabasi-Albert 98.60 399.31 1.25 2990.49 24.24

dK-2 1.34 106.45 1.53 392.85 5.99
New York Nearest Neighbor 15.63 1281.98 0.97 410.58 13.89

377,712 nodes Random Walk 42.18 1760.65 1.11 1462.96 28.91
3,616,873 edges KronFit 31.83 373.65 1.46 416.47 30.08

Forest Fire 133.01 6741.84 1.67 5177.69 8.02
Barabasi-Albert 117.39 92.49 1.44 3686.74 5.78

Table 4: Euclidean distances between model-generated graphs and the original graphs for
several graph metrics and application benchmarks. Each point is the average of20 synthetic
to original graph comparisons. For each metric, the value with the lowest error is under-
lined and in bold, while the second best model is underlined.Overall, Nearest Neighbor is
consistently accurate for most metrics.dK-2 is highly accurate for node degree distribution
(NDD) and joint node degree distribution (knn), but not for clustering coefficient (CC) and
application benchmarks.

Exact metric values
Graphs AS Diam. Path Leng.

Monterey Bay 0.29 14 5.09
dK-2 0.28 11.95 4.94

Nearest Neighbor 0.32 8.2 3.55
Random Walk 0.08 8.55 3.35

KronFit 0.01 8.45 3.79
Forest Fire 0.15 15.95 4.77

Barabasi-Albert -0.03 5 3.23

Santa Barabara 0.24 13 4.31
dK-2 0.24 11.3 4.76

Nearest Neighbor 0.38 7.35 3.26
Random Walk 0.07 8.15 3.20

KronFit 0.15 9.9 3.83
Forest Fire 0.15 16.0 4.69

Barabasi-Albert -0.021 5.0 3.02

Egypt 0.006 15 4.91
dK-2 0.005 12.9 5.36

Nearest Neighbor 0.40 8.05 3.43
Random Walk 0.05 9.6 3.46

KronFit 0.084 11.45 4.22
Forest Fire 0.098 14.65 4.03

Barabasi-Albert -0.009 5.0 3.50

New York 0.19 16 4.75
dK-2 0.18 12.7 5.42

Nearest Neighbor 0.45 7.95 3.36
Random Walk 0.034 8.45 3.23

KronFit 0.035 8.8 4.10
Forest Fire 0.10 14.8 4.05

Barabasi-Albert -0.006 5.0 3.21

Table 5: Comparing the original graphs and
their synthetic counterparts w.r.t. assortativity,
network diameter and average path length. Re-
sults shown are the exact metric value, and results
for synthetic graphs are averages over20 graphs.

the same, andA records the number of intersections between these
random walks. IfB is a Sybil identity, it is likely to be in a local
subgraph with a small number of paths toA, resulting in a small
number of walk intersections. Otherwise, the number of intersec-
tions will be high. The rate of success depends on the length of the
random walks. If the walks are too short then they might not inter-
sect, andA would have less information aboutB. Our experiment
looks at the portion of random walks that result in intersections as
a function of the length of random walks.

Looking at the resulting plots in Figure 6 and Table 4, we see that
Nearest Neighbor again performs very well, producing the most ac-
curate synthetic graphs for 3 of the 4 target graphs. We note that
the simple Barabasi-Albert model, which consistently produces in-
accurate graphs (measured by graph metrics), actually performs rel-
atively well in the Sybilguard tests with Euclidean distances on par
or even lower than other models. Again, our results reinforce the
idea that application-level benchmarks do not easily map toknown
graph metrics, and they must be included in any attempts to under-
stand the fidelity of graph models.

Social shields for anonymous communication. Puttaswamy
et al. propose using social neighborhoods to protect users of anony-
mous communication protocols against passive logging attacks [30].
Most anonymous routing protocols provide anonymity by forward-
ing traffic through a random sequence of relay nodes. In practice,
however, malicious relays that observe traffic in the network over
long periods can probabilistically guess the identity of the commu-
nication source. To protect themselves, a communication source in
the proposed system first relays traffic through a random sequence

of friend nodes, such that any passive logging attack will not be
able to distinguish it from its friend nodes. The solution provides
the strongest protection when the user is in a large clique inthe
social network [30].

Our experiment measures the size of the largest clique each user
is a part of. Again, this application exploits a graph property that
is not captured by any of the previously analyzed metrics. The
closest related metric is the clustering coefficient, whichquantifies
the level of connectivity within each user’s one-hop neighborhood.

Figure 7 shows two interesting results. First, we see thatdK-2
consistently failed to capture the formation of larger cliques in its
synthetic graphs. This is somewhat intuitive, sincedK-2 captures
only joint degree distribution, and not the clustering coefficient.
Given its poor correlation with the clustering coefficient (Figure 4),
it is clear thatdK-2 forms fewer and smaller cliques than the other
models. We assume that if a graph generator existed for thedK-3
model, it would do a much better job of capturing clustering coef-
ficients as well as clique properties. Second, our results for Santa
Barbara show that the Forest Fire model produces clique properties
most similar to the original graph. This is due to the large number
of local connections that Forest Fire introduces with each new node.
However, this heavy local clustering significantly skews other met-
rics, making Forest Fire the least accurate of all our modelsfor both
the Sybilguard and RE tests. In fact, Forest Fire produces somany
local edges that our relatively efficient maximal clique search al-
gorithm failed to complete on Forest Fire graphs modeled after the
Egypt and New York graphs. For each of these graphs, our algo-
rithm takes more than 2.5 weeks to produce a result. In comparison,
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Figure 5: Penetration of spam in a social graph running RE as function of number of spammers in the network.
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Figure 6: Portion of all random walks resulting in intersections in Sybilguard, as a function of random walk length.

our clique search algorithm running on other models for Egypt and
New York all completed in less than 30 minutes. Thus, while we
expect Forest Fire to outperform other models for the cliquetest in
Egypt and New York, its large errors in RE and Sybilguard makeit
unsuitable for our purposes.

Nearest Neighbor, instead, provides a more consistent accuracy
both across statistical metrics and application level results, which
is also confirmed in this experiment. Although it is not extremely
precise in the number of maximum cliques, it performs consistently
well over multiple datasets.

Interaction Graphs. We have also investigated another dataset,
the “interaction graph” from the New York region, as proposed
in [35]. An interaction graph is a social graph in which edgesthat
do not receive interactions between the two endpoints are culled.
In our case, interactions are defined as wall posts or photo com-
ment activity. Intuitively, this process removes unimportant edges
from the graph, leaving only active edges that are relevant when
designing and testing “user-driven” applications.

The interaction graph for NY has254599 nodes and926165
edges (a 75% reduction in edges compared to the full social graph).
We do not present detailed results regarding the accuracy ofthe
models on this graph, because they lead us to the same conclusions
derived from other analyzed datasets. For instance, both cluster-
ing coefficient and degree distribution of the interaction graph look
extremely similar to those of the full social graph for Egypt. In
general,dK-2 and Nearest Neighbor consistently produce the best
results on the interaction graph.

Final Considerations. A final take-away from our tests is that
despite significant variance in model accuracy, we find that Near-
est Neighbor consistently outperforms its competitors in producing
synthetic graphs that not only capture the majority of knowngraph
metrics, but also accurately predict the performance of application-
level tests such as RE, Sybilguard, and Social Shields. Based on
our graph metric and application-level tests, we conclude that the
Nearest Neighbor model is a viable candidate for researchers look-
ing to replace real graphs with model-generated graphs.

7. RELATED WORK
Trace-driven models. Trace-driven network models are pop-
ular in research areas where active measurements are difficult to
perform, including wireless networks [16], mobile networks [15],
and Internet backbone traffic [6]. Researchers continue to rely on
synthetic model-generated traffic traces for experimentalresearch,
even as they recognize and continue to reduce the inherent error
introduced by these models [15].

OSN measurements. Several important measurement studies
of online social networks helped derive and shape the key graph
metrics we use in our study. Some of them focus on static proper-
ties by looking at data sets collected at a single time point [2, 3, 25],
while others investigate dynamic properties from a series of data
sets over time [18, 20, 26]. These studies found a collectionof re-
markable properties such as the power-law scaling characteristics,
the small-world phenomena, and clustered community structures.

Graph similarity. A number of techniques have been pro-
posed to quantify graph similarity, including graph isomorphism,
edit distance [24], common subgraphs and supergraphs, and statis-
tical measurements of graph structure. We chose to use a statisti-
cal approach for our study because most of the alternative methods
were computationally intractable for our large graph datasets.

8. DISCUSSION AND CONCLUSIONS
We began this work as a search for practical solutions to chal-

lenges we faced while distributing measured social graphs to col-
leagues in the research community. While experiments usingtrace-
driven models are common in the study of both wired and wireless
networks, an analogous approach has not been applied to research
on social graphs. It became clear to us that measurement-calibrated
graph modeling faced a number of challenges due to the inher-
ent complexity and scale of graphs. Our most important contribu-
tions are proposing this approach to experimental researchon social
graphs, identifying inherent challenges, and proposing a number of
simple but feasible solutions.
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Figure 7: CDF graphs showing the size of the largest clique each user belongs to in the Monterey Bay, Santa Barbara, and New York graphs.

Through empirical experimentation, we find that structure-driven
models such asdK and Kronecker are limited by high compu-
tational and memory complexity. The most consistently accurate
model is our modified version of Nearest Neighbor, which despite
its simple algorithm, manages to successfully capture key graph
metrics of the original graphs. It also produces generally accurate
results in our application-level tests, making it a viable candidate
for researchers looking to replace real graphs with model-generated
graphs. We conclude that graph models can be adequate replace-
ments for real social graphs, and that current graph metricscannot
completely capture properties used by social network applications.

More work needs to be done to further validate and expand these
initial findings. A logical next step is to investigate theseapplica-
tions to better understand the properties they rely on for success,
and if these properties correspond to yet unknown graph metrics.
We also need to verify our conclusions using simulations of more
social applications. Finally, more work needs to be done to min-
imize the operational overheads of structure-driven models such
asdK. Then we will learn if, given sufficient computational re-
sources, they can generate the most representative synthetic graphs.
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