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ABSTRACT

Access to realistic, complex graph datasets is criticakegearch
on social networking systems and applications. Simulation
graph data provide critical evaluation of new systems argli-ap
cations ranging from community detection to spam filterimgl a
social web search. Due to the high time and resource costlof g
ering real graph datasets through direct measuremenésrobers
are anonymizing and sharing a small number of valuable efstas
with the community. However, performing experiments usihgred
real datasets faces three key disadvantages: concerngrdpdis
can be de-anonymized to reveal private information, irgirgpcosts
of distributing large datasets, and that a small number ail@ve
social graphs limits the statistical confidence in the tssul

The use of measurement-calibrated graph models is antattrac
alternative to sharing datasets. Researchers can “fit"ghgreodel
to a real social graph, extract a set of model parametersusad
them to generate multiple synthetic graphs statisticaftilar to
the original graph. While numerous graph models have been pr
posed, it is unclear if they can produce synthetic graphisateu-
rately match the properties of the original graphs. In tlaiger, we
explore the feasibility of measurement-calibrated sytithgraphs
using six popular graph models and a variety of real sociplys
gathered from the Facebook social network ranging fromD,0
to 3 million edges. We find that two models consistently predu
synthetic graphs with common graph metric values simildnése
of the original graphs. However, only one produces high ffiglel
results in our application-level benchmarks. While thisvgs that
graph models can produce realistic synthetic graphs, at faitgh-
lights the fact that current graph metrics remain incongpleind
some applications expose graph properties that do not meg-to
isting metrics.

Categories and Subject Descriptors

1.6.4 [Computing Methodologie§: Model Validation and Anal-
ysis; D.4.8 Pperating System$: Performance-Measurements,
Modeling and prediction

General Terms
Experimentation, Measurement

1. INTRODUCTION

Access to realistic measurement data is critical to acewext
search results in a variety of network domains. Prior work on
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wired and wireless networks has shown that the validity @feex
imental results depends on the accuracy of the data used 1.2,
This is especially true for the growing area of online sociel-
works, where evaluation of social applications can produery
different results depending on the social graphs used [85]re-
searchers gain awareness of the need for real data, theyuare f
trated by the difficulty of performing measurements on é@xisso-
cial networks, many of whom now take careful steps to preaent
tomated crawlers. Instead of commiting costly resourcegather
real social graphs, researchers seek access to a small nombe
measurement-generated graphs available to the comrhunity

However, the continued distribution and experimental dsoe
cial graph datasets faces three significant challengest, Biwners
of datasets are increasingly concerned about inadverteseal-
ing private information with their anonymized datasets. céte
work shows that malicious parties can recover informati@mf
anonymized graphs bgle-anonymizinghem using either auxil-
iary graphs or by identifying unique subgraphs in the andmgth
graph [4, 27, 28]. Given recent privacy compromises [7]s¢heon-
cerns act as a strong disincentive against sharing grapisetat
Second, the limited number of available graphs is insufiicte
generate meaningful experimental results. Ideally, reseas would
like to experiment with multiple real graphs to produceistatally
confident results. Finally, social networks are explodingize,
and measured graphs contain millions of nodes and hundrfeds o
millions of edges. Even compressed, graphs from our Faéeboo
study [35] can be over 50GBs in size. Sharing this data regquir
either a multi-day download over a fast network or shippiagdh
drives, neither of which scales with the demand for thesphga

Synthetic graphs generated by measurement-calibratptl grad-
els offer an attractive alternative to sharing large graptaskets.
Trace-driven modeling is popular in research settings &heal
measurement data is difficult to gather, such as wirelesgmnks [16,
22]. In the social graph context, we can “fit” a graph model to
a real social graph, thereby extracting a set of model pamsie
We feed these parameters into the graph model to producermand
ized synthetic graphs that match the original in statisficaper-
ties. If accurate, experimental results from these syitttygaphs
will closely match those from experiments performed on thigi-o
nal graph. This approach addresses all of the aforemeiaiticimed-
lenges: synthetic graphs are randomized, hence no prigamyni-
promised; additional graphs can be generated on demargintiau
proving statistical confidence; and model parameters argpaot,
hence cost of sharing models is trivially low.

But which graph model should we use? Instead of creating a
new graph model, we choose to determine if any of the numerous

!Since being available in May 2009, 31 research groups hade ma
use of social graphs from our recent Facebook study [35].



models in literature are suitable. Of the recent graph nodelly Social Network | _Measurements s  Graoh Fit to
two (dK [23] and Kronecker graphs [19]) are designed to capture (Facebook) ocia rap 5 _Mode/

overall structural characteristics of graphs. Thesacture-driven Mode|
models would be ideal for our use, but they incur very high<os Fidelity Analysis @
memory or computation. To apply them to large social graples, Graph Metrics :_‘T—l Genemmr
must first use parameters to reduce their overheadfimiting d K’ Application <
graphs talK-2, and reducing matrix size and number of iterations Level Results <
for Kronecker graphs. Unfortunately, this also reducesehadcu- Graph
racy. In contrastintent-andfeature-drivermodels such as Nearest
Neighbor and Forest Fire have significantly lower algorithand Figure 1: Our methodology for evaluating graph model fidelity.
computational complexity, but are only designed to capasimgle
graph property. To be inclusive, our work must consider taiké Graphs Nodes Edges
types of graph models. , Monterey Bay, CA| 6,283 | 33,969

We must answer several other key questlons b_efore we can ac- Santa Barbara, CA 12,814 | 92,241
cept the vglldlty of research results using synthe.tlc gs;aqph)er.- Egypt 246.692| 1,618,085
ated by calibrated models. What challenges are involvedtingdi New York, NY 377.712| 3.616.873

graph models to real social graphs? How accurately can model
generated synthetic graphs capture the statistical retficgeal
graphs? We refer to a model’s ability to produce statidticainilar
graphs as itéidelity. Which models demonstrate the highest levels
of fidelity for today’s large social graphs? Do current grapét-
rics capture all of the meaningful properties of real gr&ptisd
finally, can application-level results obtained by reskbars using ) ) . ) )
synthetic graphs match those obtained using the origitaglrg? synthetic graphs against the originals using graph medricsap-
In this paper, we seek to answer these questions by expliring pllcatlon benchm_arks. Here, we summarize our methoo_loldgm—
feasibility of replacing real graphs with synthetic gragiemerated iy 4 challenges in the process, and describe our solutions
from calibrated graph models. We make three key contribatio Collecting Social Graphs.  Facebook is the largest social net-
1. We examine the challenge of fitting graph models to specific work in the world with more than 350 million users. We use sev-
graphs. We explore the problem for several popular graph eral Facebook social graphs we obtained through detailest me
models, and propose a two-phase parameter search approackurements between March and May 2008 [35]. Our data includes
guided by a structural graph similarity metric. anonymized social graphs encompassing more than 10 miifiers
2. We use our me’[hodo|ogy to examine a set of popu|ar graph with over 940 million social links from the 22 Iargest rega'xbrmet-
models from literature, and evaluate how accurately each Works, as well as several smaller regional networks. These+
model captures statistical metrics from graphs of the Face- book social graphs are attractive as target graphs for tork for
book social network ranging from 30,000 to 3 million edges. two reasons. First, our prior analysis [35] showed that treyep-
We find that while most vary significantly in accuracy, two resentativeof measured social graphise. they display graph prop-
graph models (Nearest Neighbor afilf-2) are consistently erties similar to measurements of other popular social owsv
accurate for most metrics across all of our test graphs. such as Orkut [25]. Second, the availability of a wide ranfe o
3. We examine the impact of using synthetic graphs through Facebook graphs means we can choose multiple graphs af diffe
simulations of social network applications. We use these Nt sizes. Ultimately, we chose to use 4 representativemnagi
application-level tests as “end-to-end” metrics to testféa- networks (listed in Table 1) ranging from 6000 nodes and (BD,0
sibility of substituting real graphs with synthetic grapfsur edges to 300,000 nodes and 3 million edges.
results show that the Nearest Neighbor model produces re- Fitting Models to Target Graphs. We compare the fidelity
sults on synthetic graphs closely matching those of reglgra  of different models to determine their suitability as regaents
thus confirming that model-generated synthetic graphs can for measured social graphs. We consider several well-krgpaph
be reliably used in research on social networks. models of social networks developed from the fields of matitem
ics, physics and computer science. For each model, we ug# soc
graphs from Facebook as targets, and determine the optiodgim
parameters that provide the best fit for the model and a gixegrhg
We then use these parameters to generate randomized ghaphs t
attempt to match the target graph’s salient graph propgertie
We face three challenges in this phase of our work. First, ex-

Table 1: Four representative social graphs from Facebook measure-
ments in 2008. They vary in size from very small (Monterey BayCA)
to extremely large (NY, NY).

While this work focuses on social network graphs, we believe
our methodology is general, and we can use similar techaitpue
evaluate the feasibility of measurement-calibrated graptiels for
Internet routers, the web, and biological graphs.

2. METHODOLOGY AND CHALLENGES isting graph models cannot be used directly to generatéstiot
Our goal is to identify which graph models, if any, can getera  graphs because their output is restricted in some mannerexo
synthetic graphs that are sufficiently representative afwerld ample, Nearest Neighbor [33] has been analytically shovwgete

social graphs to be suitable for experimental research. aféa r erate graphs with Power-law coefficients alway®, and Random
to the a model’s ability to reproduce statistically simiggnthetic Walk [33] produces directed graphs that may be disconnebti&d
graphs as itdidelity. Thus, our restated goal is to determine the modify these models to produce general graphs matchingmur s
fidelity of current graph models, and whether any model h&s su  cial graph datasets. For models suchd&s [23] and Kronecker

ciently high fidelity to replace real social graphs in resear graphs [19], we also tune parameters to trade off accuracyddel
Our approach (shown in Figure 1) consists of three stepkeatel complexity. Model modifications are described in Section 3.
ing real-world social graphs, fitting graph models to tagyephs, Our second challenge lies in fitting the models to our taroggilgs,

and quantifying each model’s fidelity by comparing the résgl i.e. for a given graplG and modellM, determining the optimal pa-



rameters forM to generate graphs that best mateh However,
this leads us to the third challenge: “how do we quantify kinity
between graphs?” As we will explain in Section 4, we buildapdr
similarity metric using thel K -series [23], a structure-based graph
metric that, given sufficient space, can uniquely identifiaayet
graph. Using this metric, we perform adaptive precisionrcea
through the parameter space until we find the best fit paramete

Evaluating Model Fidelity. Finally, once we have computed
the best fit parameters for a given model and target graphawe c
compute the fidelity of the model with respect to a given naetri
The final challenge is identifying the correct metric(s)tthap-
ture the properties of interest to experimental researcle. siafrt
with a comprehensive set of accepted social graph metnickd-
ing the power-law degree distribution, node separatiamsteting
coefficient and assortativity. For each target graph, wentfiysa
model’s fidelity by measuring the Euclidean distance betwée
target’s graph metrics and those of the synthetic graphs.

These metrics may not tell the whole story, however. Ultahat
we do not yet understand how these graph metrics are related,
whether existing graph metrics completely capture all progs
of a graph. Therefore, the only reasonable way to deterntiee t
fidelity of a graph model for experimental research is to féex
original and synthetic graphs into “application-levelstg and ex-
amine the difference in their results. We perform a suitdrofia-
tions of well-known social network applications, includiSybil-
guard [36], Reliable Email [13], and Social Shields for anon
mous communication [30]. Examining the “error” betweenlapp
cation results from original graphs and those of synthetéplys
provides an end-to-end test that answers two questionsurdent
graph metrics capture the features of graphs “importansotial
networking research, and can researchers safely rely dhetjm
graphs to produce meaningful and accurate experimentats@s

3. SOCIAL GRAPH MODELS

In this section, we briefly describe six well-known graph relsd
that we consider as potential models to replace real socahg.
We divide these models into three classes based on theiodieth
ology. We classify the classical Barabasi-Albert modeldb{l the
Forest Fire [20] model a®ature-drivensince they focus on repro-
ducing statistical features of a graph such as power-latsildligion
and dynamic changes in graph densitytent-drivengraph mod-
els such as Random Walk [33] and Nearest Neighbor [33] focus
on emulating the creation process of the original graphealj
structure-drivenmodels capture statistics from the graph structure,
allowing a corresponding generator to reproduce randormphgra
with the same structural constraints. This class includem&cker
graphs [19] and K -graphs [23].

We omitted a number of graph models from our study. The
Watts and Strogatz model [34] generates small-world gralphis
is unsuitable for our study because it does not produce grajih
power-law degree distribution. Other models were omitiechiise
they are similar to models in our chosen set. This includes va
ants of the Nearest Neighbor [32], Random Walk, and Forest Fi
models, such as the copying model [17], the duplicationrdimece
model [33] and the random surfer model [8].

3.1 Feature-driven Models

Barabasi-Albert. Barabasi and Albert [5] proposed the classi-
cal model which produces graphs with power-law degreeibistr
tions missing from random graphs [11]. This model proposed a
incremental growth model for graph construction, and pezfgal
attachment: the idea that new nodes tend to attach to existides

with non-uniform probability. The model has two parameters
number of nodes in the graph, and number of edges introduced
from each new node to existing nodes. Given its impact onrothe
models, we include it as a baseline measure.

Forest Fire (modified). Leskovec et al. observed increases in
density and decreases in diameter over time in graphs suitte as
patent citation graph and Internet AS connectivity graphl.[ZTo
capture these dynamic effects, they propose the Forestfeide!,
where the graph grows with each new node connecting to a set of
existing nodes. After the new node connects to an existiwig nio
randomly connects to some of the node’s neighbors. Thisegsoc
is executed recursively, imitating the “burning” of foréises.

Since the Forest Fire model generates directed graphs, Wwe ma
a simple modification for it to generate undirected graphsofo
study. Specifically, we always create undirected edges aliwhf
the edges in both directions in the “burning” process. Thigleh
has two parameters:, number of nodes in the graph, gndhe rate
which decides the number of neighbors “burned” in each séonr

3.2 Intent-driven Models

Intent-driven models attempt to capture how power-law ygsap
form and grow by emulating the processes behind link foromati
between node<.g. formation of friendships in offline social net-
works and adding links on a webpage to other sites.

Random Walk (modified). = The Random Walk model [33] em-
ulates the randomized walk behavior of friend discoveryrifine
social networks. Each new node performs a random walk is¢garti
from a randomly chosen node in the graph. As the walk tragerse
the graph, the new node probabilistically attaches itsedftch vis-
ited node. The original model creates directed graphs. Wiifgno
the model to create undirected edges, and allow the randdkn wa
to traverse edges in any direction. The model has three garam
ters: n, the number of nodesg,, the probability of continuing the
walk after each step, angd, the probability of attaching to a visited
node. The original Random Walk model can generate discoedec
graphs. We fixg, = 1 for each new node’s first edge, in order to
ensure a generated graph with a single connected component.

Nearest Neighbor (modified).  Another model based on social
behaviors is the Nearest Neighbor model [33]. It follows tiee
servation that two people sharing a common friend are mkegyli

to become friends. Each new node added to the graph is caahect
to a random existing node. Additionally, random pairs ofdph
neighbors around the new node are connected. The origindgimo
has two parametersi, the number of nodes, and a probability
that determines at each step if a new node is added or if a pair o
2-hop neighbors are connected.

Analysis shows that the original model always producestygap
with power-law exponent greater tharj33]. This does not match
known measurements of social networks such as FacebooKku'deu
Flickr and Orkut, which all have power-law exponents betwéd
and 1.75 [25, 35]. Thus, we modify the model by adding a param-
eterk. Each time a new node is added, we also conhqmirs of
existing nodes randomly chosen from the graph.

Because the power-law exponent scales with the intensjiyedf
erential attachment in random graphs, adding edges betmasin
pairs selected uniformly at random reduces the level ofpesiial
attachment, and thus the power-law exponent. By extendiag t
analysis in [33] to our modified model, we show that the power-
law exponenty is a function ofk andu: v~ 1 + % where

u (k+1)(1—uw)
s ()

ﬁ:



Monterey | S.B. Egypt New York
dK-1 102 153 416 385
dK-2 4,230 9,477 45,245 51,238
dK-3 | 258,871 | 884,931 6,919,578| 10,475,401

Table 2: The number of values required to represent our graphs using
different d K -series.

This produces the desired reduction in Power-law distidiouwhile
maintaining the intuition behind the model.

3.3 Structure-driven Models

Unlike models that focus on single properties or increnlenta
growth of the graph, structure-driven models focus purelcap-
turing the physical characteristics of the target graphusTtiey
have no graph formation parameters, only parameters Hu wff
accuracy for model complexity. Given their design goalgsth
models should provide the most representative synthetiphg:
While they are likely to capture a graph’s structure, howetreey
are also likely to incur high costs in computation and/or ragm
thus limiting their achievable accuracy in practical sefs.

Kronecker Graphs.  Leskovec et al. proposed using Kronecker
graphs to approximate real graphs [19]. Kronecker graphgen-
erated by the recursive evolution of an initiator graph. sTévo-
lution process, called Kronecker multiplication, is aldeapprox-
imate real graph structures [20]. KronFit is an algorithratthen-
erates synthetic graphs that are structurally similar tivengarget
graph. The similarity is measured by a maximum likelihooliga
i.e., the probability that this model will generate a graph id=ait
to the original.

KronFit includes parameters that tradeoff optimality anthpu-
tation complexity. The most important parameters are the of
the initiator matrixi..,, the sample size for estimating the likeli-
hood and its gradienty-,, and the maximum number of gradient
descent iterations in the seargh,,. Larger parameters map to
higher accuracy as well as higher complexity. With guidaincm
the authors of [19], we chose the following values to keeprtime
ning time comparable to other graph models (less than 4&Hour
Egypt and New York graphs on a server with 32GB of RAK):,
=3, Skro = 500,000 g0 = 50.

dK-graphs. Finally, dK-graphs are a systematic way of ex-
tracting subgraph degree distributions from a target graphhat
similar synthetic graphs can be generated with identiogiestedis-
tributions [23]. As the value ofl increasesd K incorporates de-
gree distributions of increasingly large subgraphs. Femgxe,
the dK-1 metric captures the node degree distributidR;-2 cap-
tures the joint degree distribution, adé -3 captures the clustering
coefficient. Asd increases beyond 3, the distribution becomes in-
creasingly likely to uniquely define the target graph [23].

dK models’ running time and computation state size increase
rapidly asd increases. As shown in Table 2, the amount of state to
capture a graph grows rapidly frod¥-2 to dK-3, and becomes
prohibitively costly for large graphs like New York. In thigork,
we present results usingi -2 model for two reasons: to avoid
extremely large memory requirements for large graphs liesvN
York, and because graph generatorsdéf-3 do not yet exist.

4. FITTING MODELS TO GRAPHS

We now describe our efforts to fit each graph model to Facebook
social graphs. All six models are parameterizednbywumber of
nodes in the graph, and four models require additional patens.

4.1 A Case for Parameter Sampling

Maximum likelihood estimation (MLE) is the best-known sta-
tistical method for fitting a statistical model to data antimeat-
ing a model’s parameters. For different parameters, itutales
the maximum probability that a parameterized model geasiiiie
data exactly matching the original, and chooses the pasmttat
maximizes such probability. Applying MLE to graph modelifig,
however, is very difficult. For large graphs like ours, thare no
efficient solutions to determine if two graphs are physicalen-
tical. This is the well-known graph isomorphism problem who
difficulty has been proven in prior work [14].

Instead, we propose to use a parameter-search based sdiytio
scanning the possible parameter space, and guiding thehsesr
ing a statistical similarity metric between the target grapd the
model generated graphs. We choose this solution for ourhgrap
models because it produces good results within tractalfgata-
tion times, despite the massive sizes of our graphs. Thidiista
attempt at a practical solution, and we leave the search éwem
efficient solutions for future study.

Implementing this solution requires us to solve two tecahic
challenges. First, we need a metric to measure the statisfiic
ference between graphs, for which we propose to leveragéithe
series, a graph distribution that captures subgraph defiseéu-
tions [23]. Second, we need an efficient strategy to searcligh
the large parameter space to quickly locate near-optimanpe:
ters. For this we propose a space-sampling solution witptada
precision.

Structure-Driven Graph Comparison.  We consider the prob-
lem of quantifying the similarity between any two graphs. dive
solution is to organize the accepted social graph metriest{@ 5.1)
into a vector, each with a weight. We can define the statisti¢a
ference between graphs as the distance between the veetivesdd
from each graph. The problem with this approach is that iliass
our graph metrics are comprehensive, and that we can assign t
“right” weight to each metric.

Rather than focusing on known graph metrics, we propose to
use thal K-series as a single similarity metric to capture a graph’s
physical characteristics. We do so for two reasons. Firgth w
increasingd, dK can progressively capture increasingly complex
graph properties [23] until the graph is uniquely definedhedK
model. Second, théK -series captures significantly more detail of
graph structures than alternative metrics. For a gijewe calcu-
late the distance between two graphs as the square distetveedn
thed K vectors of the two graphs.

Given the memory and time complexities®K for higher val-
ues ofd (see Table 2), we limit ourselves to th& -2 series. Using
dK-2, parameter fitting a Nearest Neighbor model to our New York
graph requires 2 days of computation on a quad CPU servere Mor
accuratel K'-3 requires orders of magnitude more values to repre-
sent each graph, making it impractical for larger graphs.

Parameter Sampling with Adaptive Precision.  When itcomes
to parameter fitting models, local search algorithms suchilas
climbing [31] are the most widely used solutions. Hill climb
starts from a random (potentially poor) solution, and iigedy im-
proves the solution by making small changes until no more im-
provements are found. Hill climbing does not work well fomro
convex spaces, however, since it will terminate when it fantiscal
maxima. We have experimented with hill climbing in our model
fitting problem, and confirmed that it produces suboptimallts
because the similarity metrid £ or others) is not strictly convex.
To overcome this problem, we apply a sampling method that
finds the best fit parameters by uniformly scanning the ptessib
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Figure 2: Two-level parameter sampling for the Nearest Neighbor modeon the Monterey Bay graph. Usingd K -2 as the graph similarity metric,
(a) shows the first level sampling with varying values of (values ofk > 3 are not shown). Error (distance from the target graph) is shevn on the
Y-axis. After choosingk=1 from (a), (b) fine-tunes for the parameteru. The final parameters arek = 1 and v = 0.8.

parameter space given a reasonable constraint on the fquelad-
sion. We choose this simple approach because it requirésomm
information on parameter statistics. In contrast, advdnsam-
pling methods such as Gibbs sampling [1] require knowledge o
the conditional distribution of each parameter, which ig/nastly

to compute. We also apply techniques to improve efficienay an
accuracy. First, we use theoretical analysis to narrow dinerpa-
rameter space based on the statistics of the real graph. itopa
the remaining space uniformly to avoid local maxima. Secovel
apply an initial coarse sampling to identify candidate paater re-
gions and then perform fine-grained sampling within thegeores.
Despite the simplicity of this approach, results in SecBaonfirm
that it locates model parameters that produce synthetjghgrehat
closely approximate metrics of the original graph.

4.2 Fitting Algorithms in Detail
We now apply the fitting algorithm to each model.

Nearest Neighbor.  Our modified Nearest Neighbor model has
two parametersd < u < 1, andk = 1,2,3,---. Sinceu andk
determine the power-law exponentwe also examine the result-
ing ~ to eliminate unsuitable choices afandk. In the remaining
two-dimensional parameter space, we apply a multi-leveldiag
method. First, we vary from 1 to 10 and for eack sampleu
coarsely withAw = 0.05. Using the Monterey Bay graph as an
example, Figure 2(a) shows thld(-2 based distance between the
original and Nearest Neighbor-generated graphs. This hpyde
duces graphs with minimal K-2 distance from the target when
k = 1. Next, having fixedk = 1, we apply a fine sampling on
with Au = 0.01. Results in Figure 2(b) show that the fine grain
sampling avoids a significant number of local maxima. Thelfina
parameters for Monterey Bay ake= 1 andu = 0.8.

Random Walk. The modified model has two parameters to
tune: 0 < ¢. < 1 and0 < ¢, < 1. Both are real numbers and
their contributions are inter-related. Our sampling takes steps.
We start from a coarse sampling @n with Age = 0.1, and for
eachq. we sampleg, with the same precisiof\g, = 0.1. Us-
ing these results we identify multiple candidate intervelteere the
synthetic graphs are closer to the original real graph. Negtap-
ply afine-grained sampling across these intervals wigh = 0.01

Barabasi-Albert.  This model has only one unknown parameter
m, the number of edges introduced from each new node to existin
nodes. Sincen is a static parameter, we compute itas= |E|/n.
This follows naturally because givennodes, the total number of
edges in the graph is - m.

Computational Costs.  Our experience shows that the parame-
ter search approach is computationally tractable for lgmgehs.
Running experiments on a Dell 2900 server w/ 32GB of RAM,
most models can be fit to the largest of our graphs (New York,
3.6M edges) within 48 hours. In all cases, model fitting nuetiis
dominated by the time required to generate candidate graphe
search through the model parameter space. Computingih&
distributions is also a factor, but rarely contributes ntbien 1 hour

to the total fitting time. The time required to compai& -2 distri-
butions is negligible (a few ms). Finally, we found that Keaker
graphs and the Forest Fire model are the most computatyanall
tensive to fit.

5. FIDELITY UNDER GRAPH METRICS

Having extracted the best parameters for each model and Face
book graph combination, we can evaluate the fidelity of theleo
by comparing the properties of the Facebook graphs agdiast t
synthetic counterparts. We first evaluate the fidelity opgrenod-
els using graph metrics described in literature. In the oéshe
paper, we identify a grapty asG = (V, E) whereV is the set of
vertices representing social network users, &hid the collection
of undirected edges representing links among users.

We evaluate the six graph models using the Facebook graphs
listed in Table 1. For each target graph, we apply the fittirgina
anism described in Section 4 to compute the best parameters f
each model. We generaf® randomly seeded synthetic graphs
from each model for each target graph, and measure the-differ
ences between them using several popular graph metrics.xWe e
amine model fidelity by computing the Euclidean distancevben
metrics derived from the target and model-produced grapkis.
represent node degree distribution, clustering coeffi@end joint
degree distribution as functions of the node social degumeecom-
pute each metric’s Euclidean distance as the average stp@re
of the total squared errors in metric values. All results arer-
ages from comparing th20 synthetic graphs against the original.
Standard deviation values are consistently low relatithéo/alues

andAg. = 0.01, and choose the best configuration that minimizes hemselves. and are omitted for clarity.

thed K-2 distance.
Forest Fire.

The Forest Fire model has only a single parameter,

5.1 Social Graph Metrics

p the burn rate. For each target graph, we apply a fine-grained We now summarize the suite of graph metrics we use to deter-

sampling \p = 0.01) across its range to find the bestfit

mine the fidelity of our graph models.



Node Degree Distribution (NDD).  Social degree refers to the
number of friends (or edges) each node has. Measuremems sho
that node degree distributions in social graphs follow agrelaw
distribution, i.e. the fractionP(k) of nodes in the graph having

k connections to other nodes grows /aék) ~ k=7, where~ is

a constant exponent. We computeby fitting a graph’s degree
distribution to a power-law using the method described ]n [9

Joint Degree Distribution. There are several different ways
to capture the joint degree distribution, including thg, function,
assortativity, and the s-metric [23k,., computes the correlation
between a node’s degree and the average degree of its neigiibo
graph’s assortativity coefficientS is a value in [-1,1] calculated as
the Pearson correlation coefficient of the degrees of alheoted
node pairs in the graph. A positive value means that nodetsten
to connect with others with similar degrees, and a negataeev
means the contrary [29]. Finally, the s-metric capturesjsiiret
degree distribution of a graph as the probability that highgrde
nodes inter-connect with each other [21]. We compute a#iehr
metrics for all synthetic and target graphs. Given the stestcy
of our results, we omit results for the s-metric, which caniesved
as a subset of the assortativity distribution.

Clustering Coefficient (CC).  Clustering coefficient measures
whether social graphs conform to the small-world princ[Bi. It

is defined as the ratio of the number of links that exist betweee
node’s immediate neighborhood and the maximum number ks lin
that could exist. For a node with degreed,., at mostd, (d. —
1)/2 edges can exist amongs friends (when they form a complete
clique). Letk. be the actual number of edges amatig friends,
the clustering coefficient of node is %. A graph’'s CC is
the mean CC of all nodes. Intuitively, a high CC means thaesod
tend to form highly connected subgraphs with their neigebor

Node Separation.  The degree of node separation is measured
through three metrics: average path length, network raatidset-
work diameter. Average path length refers to the averagdl-of a
pairs-shortest-paths on the social graph. The radius aadedi
ter are calculated using the eccentricity of each node irstioéal
graph. Eccentricity is defined as the maximum shortest-geth

Estimated Power-law

Graph Model Power-law exp.| Fitting error
Real Graph 1.50 0.27
Santa Barbara dK-2 1.50 0.27
12,814 nodes | Nearest Neighboi 1.50 0.28
92,241 edges Random Walk 1.50 0.37
KronFit 1.50 0.24
Forest Fire 1.53 0.19
Barabasi-Albert 2.82 0.007
Real Graph 1.50 0.33
New York dK-2 1.50 0.33
377,712 nodes| Nearest Neighbor 1.50 0.37
3,616,873 edges Random Walk 1.50 0.46
KronFit 1.50 0.37
Forest Fire 151 0.18
Barabasi-Albert 2.86 0.006

Table 3: Examining the power-law effect in node degree distribution
dK-2 and Nearest Neighbor are the two most accurate models.

ting method in [9], we derive the exponent and the fitting lerro
Table 3 summarizes the results for Santa Barbara and New York
Again, dK-2 and Nearest Neighbor outperform other models.

Joint Node Degree Distribution. Next we compare the real
and synthetic graphs in terms of node connectivity, paaityion
metrics of joint node degree distributiok.{, and assortativity).
These metrics have been used to verify whether a graph géspla
scale-freeandsmall-worldproperties. We represeht,,, as a vec-
tor over the node social degree, and use the vector-basdidéarc
distance values in Table 4 to represent the statisticardiffce be-
tween the real and synthetic graphs.

Assortativity is a scalar value representing the same piypps
knn, and reflects the same relative results. For scalar meikies |
assortativity, network diameter, and average path lengthcom-
pare the actual values of both synthetic and target graprethile 5.

The k., and assortativity results show that thé& -2 model is
consistently accurate across all four target graphs, vihdeNear-
est Neighbor model displays some visible differences. Aelo
look at the detailed,,,, values (omitted for brevity) shows that

tance between a node and any other node in the graph. Radius ighe Nearest Neighbor model displays a similar trené,in as the

the minimum of all eccentricities, while diameter is the mnaom.
Because computing all-pairs-shortest-paths is comupually in-
feasible given the size of our social graphs, we estimatesitiies,
diameter and average path length by determining the edcigntr
of 1000 randomly selected nodes in each graph.

5.2 Graph Metric Results

We now describe the results of our fidelity tests. All of ouan
computations are performed on a cluster of Dell Powered&® 17
servers with dual-core Xeon processors. Memory intensivepti-
tations were performed on 2 Dell 2900 servers, each with d-qua
core Xeon CPU and 32GB of memory.

Node Degree Distribution.  We examine the node degree distri-
bution in terms of the cumulative distribution function (EPThe
results across the four Facebook graphs are consistentceHen
Figure 3 we only plot the results for Santa Barbara and Newk.Yor
We see thatl K and Nearest Neighbor are the two models that pro-
duce the most accurate degree distributions, which is coafirby
the Euclidean distance results in Table 4 under “NDD.” Areint
esting observation is that40% users have social degree of 10 or
less, which is not captured by the Barabasi Albert model.

We also examined whether the node degree in the synthefibgra
follows the power-law distribution. Using the power-laweei fit-

real graphs, but produces largey,, values at nodes with higher
social degree. This implies that the model tends to intemeot
nodes with higher social degrees, which can be explainedéy t
fact that the model connects nodes to 2-hop neighbors antd mos
popular nodes are within 2 hops from each other. This is coefir

by its higher assortativity values in Table 5.

Clustering Coefficient.  Prior work [34] shows that social net-
works have a local clustering structuiee. neighbors of a node
in the social graph tend to connect to each other as well. iShis
particularly true for nodes with low social degrees. Figihows
the clustering coefficient as a function of the social defpeéhree
networks. We omit the results for Monterey Bay because they a
highly consistent with those of Santa Barbara. The Eucficis-
tance values associated with all four networks are showaliteT4
under the column “CC.”

In this case, Nearest Neighbor, Random Walk and Forest Fire
are the top three models. They all follow the general trenthén
target graphs: nodes with small social degrees experieeae- h
ier clustering, and the degree of clustering decreasesthgéthode
degree. This is unsurprising, given the model definitiongneh
all three encourage forming local triangles by connectirgof
neighbors (Nearest Neighbor) or connecting new nodes t& wel
connected subgraphs (Random Walk and Forest Fire). Onltke ot
hand, the other three modelé/K -2, KronFit and Barbasi-Albert)
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network models. dK-2 and Nearest Neighbor models closely match the real data.

all produce flat clustering coefficient around 0.05 or less| il
to capture any local clustering effects.

Node Separation Metrics. Finally, we look at how models
capture the separation between nodes through the netwamkedi
ter and average path length metrics. We find that2 is highly
accurate, while Forest Fire also performs well. Nearesghtmir,
however, produces significantly more clustered graphsitieg in
shorter path lengths and a smaller network diameter. \\iatibr
this to Nearest Neighbor’s focus on preferential attachimdrich
increases connections between highly connected nodes.

5.3 Summary of Observations

The above results do not tell us in absolute terms how signifi-

cantly different synthetic graphs are compared to themaigiraphs.
Relatively speaking, however, we see that #i€-2 and Nearest
Neighbor models provide a relatively accurate represiematf

problems. Compared to known graph metrics, all these agifait

tests present new perspectives, since their performanaepartic-

ular graph cannot be easily correlated with a single graphicie
Examining how synthetic graphs compare in these applicatists
versus their original counterparts sheds light on whetbday's

models are accurate enough to replace actual social graiphs
graph models for experimental research.

RE: Reliable Email. RE [13] is a whitelist system for email
that securely marks emails from a user’s friends and friefes

friends as non-spam messages, allowing them to bypass spam fi

ters. Friends in a social network securely attest to eachrgith
email messages while keeping users’ contacts private.

A meaningful evaluation experiment is to examine the level o
potential impact on RE users if accounts in the social ndtware
compromised using phishing attacks. Compromised accaants
flood spam email through the RE system, since their spam bgpas

the target graphs. On the other hand, some models do not accufilters and directly reaches user’s inboxes. Our RE simufatiea-

rately capture particular individual metrics well. TA& -2 model
is especially accurate in capturing the individual andtjoiegree
distributions, but fails to capture the key feature of loclaister-
ing. The Nearest Neighbor model is consistently accuraterms
of the degree distribution and clustering coefficients,ibltiased
towards inter-connecting high-degree nodes, and prodyegshs
with significantly shorter path lengths and network diametdis
results in higher assortativity values that may divergenfigraphs
with more heterogeneous connections like Egypt

Our results are promising, because they show that despite va

sures the portion of the entire user population receivirzgrsps we
increase the number of compromised accounts.

We perform these experiments on our Facebook social graphs,

and plot the results for Santa Barbara, Egypt, and New YoFkgn
ure 5, and list Euclidean distance values for all 4 graphslimon 7
of Table 4. Comparing results across all graphs, Nearegfker
produces the overall best results, with’-2 and Random Walk as
the next best models. It is notable that the best model vadesss
our graphs, perhaps due to specific structural featuresdn efa
the Facebook graphs. One take-away from this experimehais t

ances across models and graphs, two models (Nearest Neighboapplication level results cannot be easily explained usirsingle

anddK) stand out for their ability to capture graph metrics. Ifsbe
metrics are indicative of application performance, thenexpect
these two to also show high fidelity in our application benahks.

6. APPLICATION FIDELITY BENCHMARKS

Since we do not yet understand how graph metrics impact dif-

ferent social applications, the final measure of a modelslifid
must still rely on application-level benchmarks. We impénthe
algorithms from several social network applications, mestg with
both target graph and synthetic graphs as input, and contipare
results to quantify each model’s fidelity. In addition, teessults
allows us to identify whether the existing social graph mestfully
capture the “important features” in social networks.

We chose “Reliable Email” [13], “Sybilguard” [36] and a “So-

cial Shield Anonymous System” [30] as representative $owt
work applications. All are recent research systems tharéme
graph properties in social networks to address networkrigcu

2Unlike Egypt, all of our more than 20 Facebook graphs have AS

values between 0.05 and 0.25.

graph metric. In general, the accuracy of the RE experiragaf-
formance on a synthetic graph is not strongly correlateth aity
of the metrics we track in Table 4.

Sybilguard. A malicious user in an online community can
launch a Sybil attack [10] by creating a large nhumber of wtu
identities. These identities can then work together to ipleothe
owner with some unfair advantage, by outvoting legitimaters in
consensus systems, corrupting data in distributed st@ggems,
or manipulating incentive systems or reputation systemgitform
fraud. SybilGuard [36] proposes a way to detect these Sgbii-
tities using social networks. The main insight of this deterelies
on the fact that it is difficult to make multiple social contiens
between Sybil identities and legitimate users. Becauski®tbn-
crete obstacle, Sybil identities tend to form a strongly nemted
subgraph with a small number of links to honest users.

Using Sybilguard, a nodél seeking to determine if nodB is
a Sybil identity sends a number of random walks. Ndgieloes

3The authors of Sybilguard credit their functionality to téing
Time property of graphs. We cannot confirm this, since curren
Mixing Time algorithms do not scale to large graphs.



Exact metric values
Graphs AS [ Diam. | Path Leng.
Euclidean Distance: Target vs. Synthetic Graphs Monterey Bay 0.29 14 5.00
Graph Models Graph Metrics Applications dK2 0.28 | 11.95 4.9
NDD Knn cC RE Sybil. Nearest Neighborl 0.32 8.2 3.55
dK-2 21.43 62.82 224 | 11797 | 22.13 Random Walk 0.08 8.55 3.35
Monterey Bay | Nearest Neighboq 30.43 | 77.73 | 1.42 | 59.62 15.23 KronFit 0.01 8.45 3.79
6,283 nodes Random Walk 51.96 80.31 1.94 | 313.07 | 22.15 Forest Fire 0.15 15.95 4.77
33,969 edges KronFit 34.30 | 108.91 | 2.35 | 233.81 | 23.05 Barabasi-Albert | 003 | 5 303
Forest Fire 53.24 | 267.78 | 0.91 | 350.73 | 58.67

Barabasi-Albert | 93.03 | 13252 | 2.22 | 529.38 | 17.28 Santa Barabara| 024 | 13 4.31
dK-2 024 | 113 4.76
dK-2 L.70 25.72 | 215 13431 7.90 Nearest Neighbor 0.38 7.35 3.26
Santa Barbara | Nearest Neighbory 16.73 | 155.58 | 1.43 77.36 5.56 Random Walk 0'07 8.15 3'20
12,814 nodes Random Walk 38.64 | 146.86 | 1.71 | 310.00 | 5.30 KronFit 0'15 9 9 3.83
92,241 edges KronFit 4466 | 173.08 | 2.06 | 139.71 8.87 - s : =
} Forest Fire 0.15 16.0 4.69
Forest Fire 93.67 | 336.97 | 1.01| 815.09 | 76.45 Barabasi-Albert | -0.021| 5.0 3.02

Barabasi-Albert | 103.34 | 167.85 | 2.13 | 757.64 | 10.95 - - -
dK-2 15.56 | 178.58 | 1.35 | 306,57 | 6.73 Egypt 0.006 | 15 491
Egypt Nearest Neighbo 29.35 | 1147.31| 0.76 | 399.90 | 4.68 dK-2- 0.005 | 12.9 5.36
246,692 nodes| Random Walk | 64.03 | 537.51 | 0.98 | 1673.20| 6.36 Nearest Neighbor  0.40 | 8.05 3.43
1,618,085 edgeq KronFit 80.16 | 7680.46| 1.34 | 2113.03| 30.39 Random Walk | 0.05 | 9.6 3.46
Forest Fire 68.51 | 6932.16| 2.33 | 2785.04| 72.78 KronFit 0.084 | 11.45 4.22
Barabasi-Albert | 98.60 | 399.31 | 1.25 | 2990.49| 24.24 Forest Fire 0.098 | 14.65 4.03
dK-2 134 | 106.45 | 1.53 | 392.85 | 5.99 Barabasi-Albert | -0.009] 5.0 3.50
New York Nearest Neighbo{ 15.63 | 1281.98( 0.97 | 410.58 | 13.89 New York 0.19 16 4.75
377,712 nodes| Random Walk | 42.18 | 1760.65| 1.11 | 1462.96| 28.91 dK-2 0.18 | 12.7 5.42
3,616,873 edgeg KronFit 31.83 | 373.65 | 1.46 | 416.47 | 30.08 Nearest Neighbor  0.45 7.95 3.36
Forest Fire 133.01| 6741.84| 1.67 | 5177.69| 8.02 Random Walk 0.034 | 8.45 3.23
Barabasi-Albert | 117.39 | 92.49 1.44 | 3686.74| 5.78 KronFit 0.035 8.8 4.10
Forest Fire 0.10 14.8 4.05
Table 4: Euclidean distances between model-generated graphs andetioriginal graphs for Barabasi-Albert | -0.006 | 5.0 321

several graph metrics and application benchmarks. Each pait is the average 0f20 synthetic

to original graph comparisons. For each metric, the value wth the lowest error is under-
lined and in bold, while the second best model is underlinedOverall, Nearest Neighbor is
consistently accurate for most metrics.dK-2 is highly accurate for node degree distribution
(NDD) and joint node degree distribution (k.. ), but not for clustering coefficient (CC) and

application benchmarks.

Table 5: Comparing the original graphs and
their synthetic counterparts w.r.t. assortativity,
network diameter and average path length. Re-
sults shown are the exact metric value, and results
for synthetic graphs are averages ove20 graphs.

the same, andl records the number of intersections between these of friend nodes, such that any passive logging attack witl e

random walks. IfB is a Sybil identity, it is likely to be in a local
subgraph with a small number of pathsAg resulting in a small
number of walk intersections. Otherwise, the number ofrgse-

tions will be high. The rate of success depends on the lerfgtieo
random walks. If the walks are too short then they might nt&rin
sect, andA would have less information aboi&. Our experiment
looks at the portion of random walks that result in interse as

a function of the length of random walks.

Looking at the resulting plots in Figure 6 and Table 4, we baé t
Nearest Neighbor again performs very well, producing thetrao-
curate synthetic graphs for 3 of the 4 target graphs. We ate t
the simple Barabasi-Albert model, which consistently pigesb in-
accurate graphs (measured by graph metrics), actuallgmpesfrel-
atively well in the Sybilguard tests with Euclidean distason par
or even lower than other models. Again, our results reigfdhe
idea that application-level benchmarks do not easily m&méovn
graph metrics, and they must be included in any attemptsderun
stand the fidelity of graph models.

Social shields for anonymous communication.  Puttaswamy
et al. propose using social neighborhoods to protect usarsony-
mous communication protocols against passive loggingk&§s0].
Most anonymous routing protocols provide anonymity by farav
ing traffic through a random sequence of relay nodes. Inigmct
however, malicious relays that observe traffic in the nekwawer
long periods can probabilistically guess the identity & dommu-
nication source. To protect themselves, a communicatiarcedn
the proposed system first relays traffic through a randomesemgu

able to distinguish it from its friend nodes. The solutioopdes
the strongest protection when the user is in a large cliqu@en
social network [30].

Our experiment measures the size of the largest clique esh u
is a part of. Again, this application exploits a graph proypéhat
is not captured by any of the previously analyzed metricse Th
closest related metric is the clustering coefficient, witjohntifies
the level of connectivity within each user’s one-hop newiood.

Figure 7 shows two interesting results. First, we see dif&2
consistently failed to capture the formation of larger wéqg in its
synthetic graphs. This is somewhat intuitive, siddé-2 captures
only joint degree distribution, and not the clustering €io&fnt.
Given its poor correlation with the clustering coefficielfigure 4),
itis clear thatd K'-2 forms fewer and smaller cliques than the other
models. We assume that if a graph generator existed fol fh&
model, it would do a much better job of capturing clusteringfe
ficients as well as clique properties. Second, our resultSémta
Barbara show that the Forest Fire model produces cliquesptiep
most similar to the original graph. This is due to the largmbar
of local connections that Forest Fire introduces with easninmode.
However, this heavy local clustering significantly skewisentmet-
rics, making Forest Fire the least accurate of all our mddelsoth
the Sybilguard and RE tests. In fact, Forest Fire producesasty
local edges that our relatively efficient maximal cliquershaal-
gorithm failed to complete on Forest Fire graphs modeleet #fie
Egypt and New York graphs. For each of these graphs, our algo-
rithm takes more than 2.5 weeks to produce a result. In casgrar
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Figure 6: Portion of all random walks resulting in intersections in Sybilguard, as a function of random walk length.

our clique search algorithm running on other models for Egyyl
New York all completed in less than 30 minutes. Thus, while we
expect Forest Fire to outperform other models for the cligsein
Egypt and New York, its large errors in RE and Sybilguard make
unsuitable for our purposes.

Nearest Neighbor, instead, provides a more consistentancu
both across statistical metrics and application levelltgswhich
is also confirmed in this experiment. Although it is not exisdy
precise in the number of maximum cliques, it performs caestty
well over multiple datasets.

Interaction Graphs.  We have also investigated another dataset,
the “interaction graph” from the New York region, as propbse
in [35]. An interaction graph is a social graph in which edtfest
do not receive interactions between the two endpoints diedcu
In our case, interactions are defined as wall posts or phate co
ment activity. Intuitively, this process removes unimpottedges
from the graph, leaving only active edges that are relevdrgnwy
designing and testing “user-driven” applications.

The interaction graph for NY ha354599 nodes and26165
edges (a 75% reduction in edges compared to the full socahyr
We do not present detailed results regarding the accuradiyeof
models on this graph, because they lead us to the same donslus
derived from other analyzed datasets. For instance, bostect
ing coefficient and degree distribution of the interactioapd look
extremely similar to those of the full social graph for Egyph

generaldK -2 and Nearest Neighbor consistently produce the best

results on the interaction graph.

Final Considerations. A final take-away from our tests is that
despite significant variance in model accuracy, we find thedarN
est Neighbor consistently outperforms its competitorsradpcing
synthetic graphs that not only capture the majority of kngnaph
metrics, but also accurately predict the performance oficgtppn-
level tests such as RE, Sybilguard, and Social Shields. BBase
our graph metric and application-level tests, we conclinde the
Nearest Neighbor model is a viable candidate for reseasdbek-
ing to replace real graphs with model-generated graphs.

7. RELATED WORK

Trace-driven models. Trace-driven network models are pop-
ular in research areas where active measurements are Itlifficu
perform, including wireless networks [16], mobile netwaik5],
and Internet backbone traffic [6]. Researchers continuelyoan
synthetic model-generated traffic traces for experimaestarch,
even as they recognize and continue to reduce the inhenamt er
introduced by these models [15].

OSN measurements.  Several important measurement studies
of online social networks helped derive and shape the keghgra
metrics we use in our study. Some of them focus on static prope
ties by looking at data sets collected at a single time p@irg[25],
while others investigate dynamic properties from a serfedata
sets over time [18, 20, 26]. These studies found a colledfar-
markable properties such as the power-law scaling chaistats,
the small-world phenomena, and clustered community strest

Graph similarity. A number of techniques have been pro-
posed to quantify graph similarity, including graph isoptusm,
edit distance [24], common subgraphs and supergraphs taint s
tical measurements of graph structure. We chose to useististat
cal approach for our study because most of the alternativikads
were computationally intractable for our large graph dettas

8. DISCUSSION AND CONCLUSIONS

We began this work as a search for practical solutions to-chal
lenges we faced while distributing measured social grapltek
leagues in the research community. While experiments usiog-
driven models are common in the study of both wired and ws=ele
networks, an analogous approach has not been applied trchse
on social graphs. It became clear to us that measuremehtatat
graph modeling faced a number of challenges due to the inher-
ent complexity and scale of graphs. Our most important dmntr
tions are proposing this approach to experimental researshbcial
graphs, identifying inherent challenges, and proposingmaber of
simple but feasible solutions.
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Through empirical experimentation, we find that structdirieen

[12]

models such agK and Kronecker are limited by high compu-

tational and memory complexity. The most consistently sateu
model is our modified version of Nearest Neighbor, which des
its simple algorithm, manages to successfully capture keply
metrics of the original graphs. It also produces generaltueate
results in our application-level tests, making it a viabdadidate
for researchers looking to replace real graphs with modekgated

[13]
p [14]

[15]

[16]

graphs. We conclude that graph models can be adequateeaeplac

ments for real social graphs, and that current graph metaosot
completely capture properties used by social network egfdins.

More work needs to be done to further validate and expan@thes

initial findings. A logical next step is to investigate thegmplica-
tions to better understand the properties they rely on focess,

and if these properties correspond to yet unknown graphiceetr
We also need to verify our conclusions using simulations ofem

[17]
(18]
[19]

[20]

social applications. Finally, more work needs to be done it m

imize the operational overheads of structure-driven nwodekh

[21]

asdK. Then we will learn if, given sufficient computational re-

sources, they can generate the most representative sgrtegihs.
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