Analyzing Blocking to Debug
Performance Problems on Multi-Core Systems

Pierre-Marc Fournier, Michel R. Dagenais

Ecole Polytechnique de Montréal
Département de génie informatique et génie logiciel
C.P. 6079, succ. Centre-Ville
] Montréal, Québec, H3C 3A7, Canada
{pierre-marc.fournier, michel.dagenais}@polymtl.ca

ABSTRACT

Multi-core systems are rapidly becoming more prevalent.
Consequently, developers frequently face performance bugs
caused by unexpected interactions between parallel software
components. The location of these bugs is difficult to iden-
tify with current tools. Indeed, the process exhibiting the
slowness may be separated from the root cause of the prob-
lem by a blocking chain involving several other processes.

This article introduces a new approach for analyzing block-
ing on multi-core systems and reports on its implementa-
tion in the LTTV Delay Analyzer. It enables developers to
quickly understand the dependencies among processes and
see how the total elapsed time is divided into its main com-
ponents. The LTTV Delay Analyzer was used to analyze
and rapidly correct complex performance problems, some-
thing not possible with the existing tools. The Linux Trace
Toolkit, LTTng, is used for most of the instrumentation and
the trace recording, allowing the tracing of production sys-
tems with great accuracy and minimal impact. This ap-
proach uses solely kernel instrumentation and does not re-
quire the instrumentation or recompilation of processes. The
analysis time is linear with respect to trace size.

1. INTRODUCTION

As systems become more parallel, developers face an increas-
ing number of performance problems. These problems often
have a system-wide scope and occur only on production sys-
tems. Since they do not produce execution errors or incor-
rect results, but only take more time than expected, tradi-
tional debugging tools are ineffective against them, making
them challenging and time-consuming for developers.

The observable manifestation of a performance bug is that a
process takes more time than expected to accomplish a given
task — that is, to bring the system from one user observable
state to another. In order to fix the underlying problem, the
developer must work his way down to the root cause by first
finding out how the total elapsed time was spent. This time
might have been consumed in three ways.

1. The process was using the processor. Too much time
spent this way indicates an intrinsically challenging
problem with unavoidable high processor usage, or an
algorithmic bug internal to the process.

2. The process was too frequently interrupted by exter-

77

nal and often asynchronous events like IRQs, bottom
halves® or preemption by the operating system.

3. The process was blocked on an operating system wait
queue for an excessive amount of time, waiting for
some hardware or another process to do something.
For example, it might have been blocked in a read()
system call waiting for data to arrive from a file de-
scriptor, possibly pending a disk read access.

When encountering a performance problem on a small sys-
tem, developers might guess in which of these states the
system is spending too much time by a combination of the
usage of operating system metrics (as displayed by tools such
as time, ps or strace), the general feel of the system and
instinct. On larger or more complex systems, however, do-
ing so is much more difficult. For example, X Window is a
complex application that involves many processes, commu-
nication among processes and with hardware, either directly
or via the kernel. If X is slow to start on a system, finding
out why is difficult with traditional tools. If the problem is
hard to reproduce or lasts for very short periods of time, this
difficulty is even greater. The proposed approach, however,
makes debugging this type of problem much easier, as will
be shown in section 2.4.

The way to fix a performance problem depends on its cat-
egory. Problems of type 1) have been studied for a long
time and can be further investigated with the traditional
gprof[15] profiler, or, on a live system, with less costly pro-
filing methods like sysprof[20] or oprofile[16]. The nature
of problems of type 2) can be further understood by looking
at operating system metrics such as the number of times
each IRQ fired, the number of scheduling events related to
the process, or the time other processes on the systems ran
while the performance problem occurred. Means to investi-
gate problems of type 3) (blocked process) are however much
less readily available.

When a process spends too much time blocked, the problem
can ultimately be tracked down to specific hardware not
working fast enough. This means that some other processes
in the system need to use the CPUs or that some hardware
like a hard disk or a network card needs to produce data
before the process can be unblocked. Although the process

! Bottom halves are also known as second level interrupt han-
dlers or software interrupts.

itself can be directly blocked on this hardware resource, it is
often not the case. Frequently, there is a chain of processes
blocked on other processes for several levels until the direct
blocking on hardware.

In this paper, we describe a method to debug performance
bugs involving blocked processes. In order to do so, we de-
fine a set of instrumentation points to add to the operating
system in order to get the necessary data in an execution
trace. We propose a trace analysis method that enables the
user to determine easily whether the performance problem
he is facing is blocking-related. Finally, we contribute an
algorithm to extract the chains of blocked processes, that
lead down to hardware root causes.

The LTTV Delay Analyzer, which implements the proposed
approach, is designed to run on production systems with
minimal performance impact. Furthermore, the approach
does not necessitate recompilation of code, as it relies on op-
erating system instrumentation only. This black box model
of processes enables the use of the method even if the source
code to the processes involved is unavailable.

1.1 Previous Work

The DTrace dynamic tracer allows the debugging of blocking-
related performance problems, as shown in the case study
in [10]. The approach for debugging such problems with
DTrace consists in initially writing a D script that instru-
ments the symptom and procures more knowledge about the
condition in which it occurs. This in turn allows to write
other scripts that instrument that condition, walking the
causality chain down to the root cause and writing numer-
ous scripts along the way. Such a method requires advanced
knowledge of the operating system in order to know where
to instrument the code at each step. Also, the bug must
be highly reproducible to allow for this iterative method.
Finally, because DTrace works on a live system, a D script
must contain code to filter out events not related to the bug,
which can be a challenge.

Trace analysis tools with control flow views also allow de-
bugging of blocking-related performance problems to a cer-
tain extent. Such tools include LTTV[2], the Wind River
Workbench[8] and QNX Momentics[5]. Unlike DTrace, they
work on a recorded trace which, if the instrumentation was
sufficient, contains enough information to understand the
problem without need for further instrumentation and trac-
ing iterations. The trace can also be recorded with minimal
resource usage for a long period of time, waiting for a rare
bug to occur, using the flight recorder mode. The approach
with these tools is however a manual one. The developer
must inspect the Gantt chart of the control flow view in or-
der to detect the unexpected behavior. This view contains a
huge quantity of information and, unless one knows exactly
what to look for, is mostly suited to help locate long states.
Delays that result from the accumulation of short episodes
are more difficult to identify visually. Another disadvantage
is the absence of distinction between Blocked states with dif-
ferent causes on the screen. One must manually verify each
one of them, which is a time consuming operation.

TIPME[14] helps identifying causes of user-perceived latency
in interactive environments by summarizing the time passed

78

in running, runnable and blocked states between a user in-
put and the resulting graphical update. It does not however
extract the chain of blocked processes.

Pip[18] generates a symbolic specification of the behavior
of the program. This output can then be reviewed by the
programmer to find anomalies. This specification can also
serve as a reference that Pip can use to automatically com-
pare a system behavior with. Alternatively, the programmer
can manually write this specification. By including time
constraints in it, Pip may be used to verify where the sys-
tem spends an excessive amount of time. Such an approach
makes a compromise between the detail level of the specifi-
cation and the amount of bugs that can be detected. On a
complex and evolving system, maintaining such a specifica-
tion is challenging.

Magpie[9] traces the progression of a request through the
various software components of a system as well as its re-
source usage. The path is deduced by correlating arguments
of events generated by these components using an event
schema. Magpie helps the programmer understand in what
component a request that exhibited performance problems
spent too much time. The detail level of this information is,
however, related to the detail of the application instrumen-
tation and event schema provided.

Paradyn[17] is a tool to find performance bottlenecks in par-
allel and distributed systems. It uses dynamic instrumen-
tation that is activated and deactivated during the trace
while testing various hypotheses. Paradyn tries to locate
the performance problem under three axes: “why”, “where”
and “when”. For each of these axes, a tree of possible causes
is defined. Instrumentation is activated selectively for at
most one node of a given depth at a time. Such an ap-
proach requires that the performance problem lasts for long
enough and is dependent on the precision of the model.

DeBox[19] is a tool to provide system call performance be-
havior to the calling application. It does so by "returning” a
structure of metrics and other information after each system
call. Among this information are details about each time the
call blocked. These include the cause, the kernel source file
and line, and sleep duration. While this approach proves
useful for debugging single applications, it is limited for de-
bugging complex systems when performance is affected due
to a chain of blocked tasks.

In the subsequent sections, we first explain the architec-
ture of the proposed analysis; we describe the instrumen-
tation, the tracing method and the analysis algorithm it-
self. We then present the outputs of the Analyzer using a
case study, followed by some results regarding the perfor-
mance and memory usage of our technique. We conclude
by discussing the advantages of the method and future work
avenues.

2. ARCHITECTURE

The approach used consists in instrumenting the Linux ker-
nel and tracing the system with LTTng. The trace is there-
after analyzed by a specially designed LTTV plugin. This
analysis tool can execute on a machine whose architecture is
different from that on which the trace was recorded. State

machines track blocking-related process data and make it
available to report creation modules. These produce out-
puts that may be used by developers in order to understand
blocking-related problems in the system.

2.1 Instrumentation
We instrumented the Linux kernel with the Linux Kernel
Markers[11, 13], an in-kernel API for instrumenting its code.

Markers offer virtually undetectable performance impact when

deactivated and minimal performance impact when acti-
vated.

We instrumented scheduling changes (and whether they are
caused by preemption or blocking), process wakeups, IRQ
entry /exit, softIRQ entry/exit, trap entry/exit and process
forking. Additionally, special state dump events are gen-
erated at the beginning of the trace that indicate in what
control flow state (see section 2.3.1) each process is initially.
All this instrumentation is kernel-based, no application in-
strumentation is necessary.

In order to display detailed information in reports, the De-
lay Analyzer also consumes events that give the following
information.

e Mapping between IRQ number and name of hardware
using it

e Mapping between softIRQ number and the function
handling it

e Mapping between a process ID and its name

e Arguments of the open() system call, in order to save
the mapping between file descriptor and file name

e Arguments of the read () system call, in order to know
what file caused the system call to block

e What file descriptors caused a poll() system call to
wake up

Work is under way to instrument yet more specific system
calls.

2.2 Tracing

To trace the system, we use the LT Tng[12] tracer. Its per-
formance impact is very low, which allows recording traces
on production systems. It provides accurate timestamping
of events even on multi-processor systems, where the hard-
ware permits. It is partly integrated in the Linux kernel and
its integration is ongoing. Furthermore, it allows for an easy
extension of its default instrumentation of the kernel.

A trace may be recorded in buffered write-to-disk mode or
in flight recorder mode. The latter consists in recording the
trace in circular buffers, in memory, without consuming their
contents. This mode minimizes impact on performance. It
is well suited to catch bugs that occur randomly or rarely
and therefore require to record a trace for a long period. The
tracing can go on for days if necessary; a specially designed
script may then detect the first occurrence of the bug and
stop the recording. Only then are the buffers transferred

79

to disk. Their contents describe the system activity in the
seconds or minutes preceding the bug occurrence, depending
on the chosen buffer size. Hybrid approaches that use flight
recorder for some buffers and write-to-disk for others are
also available. Write-to-disk has the advantage of supporting
traces larger than the memory.

2.3 Trace Analysis

An a posteriori analysis of the trace file produces reports
that developers may use to study the performance problems
at hand. We implemented this analysis in the form of a spe-
cially designed LTTV plugin? of about 2500 lines. LTTV is a
trace viewing and analysis application. It is designed to han-
dle efficiently traces many times larger than the workstation
memory. LTTV may also read traces that were recorded on
a system with different byte ordering and integer sizes than
the analyzing system.

When debugging a performance problem, the developer wants
to know why a process did not get in a certain state (the tar-

get state) more quickly, starting from a given time, at which

it was in a different state (the initial state). For example,

he might want to know why a reply from a server did not

arrive more quickly, starting from the time the client sent

the request. He could also want to know why an application

was not started more quickly, starting from the moment he

clicked on the icon to start it.

Normally, the recorded trace will cover the time span be-
tween these initial and target states. The trace will also
generally include extra time spans at the beginning and at
the end. Therefore, the developer must specify what these
initial and target states are to the Analyzer®. He does so
by specifying a timestamp that corresponds to the initial
state, and a trace event that indicates the entry in the tar-
get state. The timestamp of this target state event is used as
the time at which to end the analysis; moreover this event’s
process — the process in the context of which it occurred
— is the process that will be analyzed. This process needs
not be the process that is the root cause of the delay. It
only needs to be a process that is exhibiting performance
problems, mere symptoms. The analyzer will automatically
follow the dependency chain down to the root cause of any
blocking problem.

If this target process did not exist yet during a part of the
time range that is analyzed, its closest parent is analyzed
instead during that period. What the developer wants to
know is indeed what the closest parent was doing that was
preventing it from creating a closer parent (or the target
process itself) earlier.

At this point, the start and end timestamps are used solely
for the purpose of creating the reports. The part of the trace
that precedes the analysis area is read fully, regardless of
the requested initial and target states, in order to build the
state of each process. In future versions, however, we plan

2This implementation is available in the LTTV repository
at http://1lttng.org/.

3In many cases however, this is not necessary because per-
formance bottlenecks will often stand out even if there are
extra time ranges that were traced at the beginning and at
the end of the trace.

to integrate the state information into the LTTV checkpoint
mechanism, which will require starting to read at the closest
preceding checkpoint, rather than the beginning of the trace.

The architecture of the analysis consists of two state ma-
chines. Reports are created using the state inferred by these
state machines. Figure 1 shows the interaction between
them. The next sections explain the meaning of these states
and how they are inferred.

2.3.1 First Sate Machine: Control Flow State Stack

During its execution, a process enters and leaves control flow
states. The first column of Table 1 lists these states. Con-
trol flow states refer to the type of code that the control
flow is executing at a given time, or to the fact that it is
not executing. Control flow states can be nested in vari-
ous ways. For instance, the kernel code that handles an
interrupt may nest over a process running in userspace, in
a system call, in a trap, in another interrupt, etc. When
the execution of the kernel interrupt handler is finished, the
kernel looks at the stack to find out what address to jump
to, to return to the previous state. Because of this, the ker-
nel instrumentation of the control flow state transitions of
processes only yields events about relative state transitions.
For example, an event might tell that a process just exited
the IRQ context, but it will not tell what state it is going
back to. Therefore, in order to be able to deduce the control
flow state of a process at any time, when reading the trace,
a model of the system must be maintained with a stack of
these nested states.

This is the purpose of the control flow state stack. While the
trace is being read, when an event indicating a state transi-
tion is encountered, the control flow state stack of the active
process is updated. When an “entry” event occurs, a state is
pushed onto the stack; when an “exit” event is encountered,
the state at the top of the stack is popped and the new state
is taken to be the one that was underneath. Each state has
its specific entry and exit events. The context change event
(event kernel sched_schedule) is a special case. It indicates
both that a process is being scheduled out (Scheduled out is
then pushed on its stack) and that another is being sched-
uled in (Scheduled out is then popped from its stack) on a
given CPU.

The Scheduled out state can occur in three different circum-
stances. 1. When a process is preempted by the operating
system. In this case, it is pushed and later popped as a con-
sequence of distinct kernel_sched_schedule events. 2. When
a process gets scheduled out while blocked, waiting, via a
wait queue, for a resource to become available. This state is
pushed following a sched_schedule event, but popped follow-
ing a sched try_wakeup event that wakes it up. 3. Finally,
the third case occurs just after (2): the process has been wo-
ken up but is still not running, it is waiting to be scheduled.
Therefore, when a blocked process is woken (announced by
a sched_try_wakeup event), a “blocked”type Scheduled out
is popped and a “waiting for schedule after blocking”-type
Scheduled out is pushed on its control flow state stack.

Some control flow states are accompanied by additional im-
portant information. Some of this information is available
immediately upon state entry. For example, the kernel -

80

Control flow state Additional information

In userspace -
In system call syscall #, some syscall

arguments
In trap trap #
In IRQ IRQ #
In softIRQ softIRQ #
Scheduled out (not exe- Type: “blocked”, “pre-
cuting) empted” or “waiting for

schedule after blocking”

Table 1: Control flow states and the additional in-
formation kept with them.

arch_syscall_entry (entry in a system call) event is accompa-
nied by the syscall_id argument, which identifies the system
call. Other information is not included directly in the event;
it is rather delivered in later events. For example, the file
name associated with an open() system call is announced
in a distinct event that comes after the system call entry
event. This is necessary because the events that announce
entry into a control flow state must fire as close as possible
to the actual state boundary in order to obtain a trace that
reflects accurately the system state. At such an early point
in the system call, its arguments have yet to be decoded.

2.3.2 Second State Machine: Working / Interrupted
/ Blocked (WIB) State

While the Control flow state corresponds to the real process
stacks, the WIB (working/interrupted/blocked) state is a
higher-level abstraction with no direct equivalent in kernel or
user memory. It is more suitable for the study of the blocking
behavior of the process. The WIB state is deduced from the
Control flow state. Therefore, each time the Control flow
state changes, the WIB state is updated if needed. The
values it can take are the following.

When a process is running in userspace, it is running code
that makes it progress toward fulfilling its purpose; it is
therefore Working. The same is true when running in
a system call. Even though the code being executed was
not designed by the application programmer, it is still help-
ing the application progress toward its goal by manipulating
hardware and kernel structures for it. The same applies to
traps.

If an IRQ or a softIRQ occurs in the context of the pro-
cess, then it is considered Interrupted. It is also the case
if the process is preempted. Additionally, if the process was
blocked, then woken up but not rescheduled yet, it is con-
sidered Interrupted.

If the process is scheduled out and is not runnable, it is
considered Blocked. In this case, it asked for a resource
and that request blocked. This can be either directly or
accidentally. Direct requests are done via system calls (for
example, a blocking file reading operation, a blocking wait
for a network packet). Accidental requests are done via traps
(for example, a page fault). A process that is in a trap or
a system call is Blocked only while it is actually scheduled
out. Otherwise, it is in the Working state.

Working /
Interrupted / Blocked

Control flow state stack
Track absolute state

Sch. out
Syscall

£ o @6 s &9@@ S
F & & F
& & $ & &

NS S NSRS

Raw trace events
Relative state

sched_schedule

Syscall_entry

sched_schedule

sched_try_wakeup

Irg_exit

rap_entry

syscall_exit
sched_schedule
sched_schedule
trap_exit
Irq_entry

Figure 1: The entry and exit events from the raw trace (bottom) are used to infer the Control flow states,
which are kept in a stack. These are in turn used to deduce the WIB states, which serve as main input to

the report generation.

The time spent in any process p between times ¢; and t2 is
composed of the sum of time spans during which process p
was working, interrupted and blocked. Therefore,

w
prthtz

I B
Totip =t2 —t1 = + Tp,thtz + Tpvtlth'

These components themselves are the sum of each occurence
of the state in the process. For instance,

n
= Z(t,endiw — t_start)")

i=1

w
prthtz
gives the total working time for process p by adding the
time spans of the n occurences of the Working state the

process was in. The same applies to the other WIB states
(Interrupted and Blocked).

Unlike control flow states, WIB states are not stacked, as
they can be deduced by examining the Control flow state
stack. Table 2 shows how the WIB state is deduced from
the Control flow state stack.

WIB states are also accompanied by additional information
about the state of the process (Table 3). This information
is extracted from the Control flow state stack and the addi-
tional information that accompanies the states in the stack.

The WIB state of each process serves as input to the report
generation which is described in the next sections.

2.3.3 Sate Holdback

As explained previously, some information associated to the
control flow state comes after the event that indicates the
entry in that state. However, the WIB state must be up-
dated at each change in the control flow state. If this is
done as soon as the control flow state changes, some needed
information will not be available for the WIB state. For ex-
ample, a process enters an open() system call. When the
kernel arch_syscall entry event occurs, the name of the file
to be opened is not known yet. The process might block in

81

WIB State Accompanying information
Working start time, end time

Interrupted start time, end time

Blocked start time, end time, wakeup time,

waking process, control flow state
stack of waking process at wakeup
time

Table 3: Information that accompanies each WIB
state.

this open(), and the file name may still not be know. In
fact, the event that announces the file name arrives just be-
fore the event that announces the exit from the system call.
The file name must, however, be stored with the Blocked
state as its cause.

In order to compensate for this, our approach uses a hold-
back mechanism. Some Control flow state push operations
are not executed immediately on the stack. Rather, they are
kept in a queue, if necessary as long as the event command-
ing the corresponding state pop does not arrive. When it
does, its push and pop are processed and, in between, those
of the states that were nested on top of it. Therefore, when
the WIB state machine sees the control flow states, all their
accompanying information is present. This mechanism is
only used where necessary.

2.4 Reportsand Case Study

The last part of the processing is the production of reports.
Three reports are output by the LTTV Delay Analyzer.
Each is described below through a case study.

On our dual-core 3 GHz system with 4 GB of RAM, starting
Xorg and the KDE[1] desktop took 2.5 seconds. Although
this is much better than some of our older systems, the fact
that this machine had a very fast feel once the desktop was
loaded left us under the impression that X was blocked at

Control flow state
(top of stack)

Resulting WIB state

Running in userspace Working
Running in system call Working
Running in trap Working
Running in TRQ Interrupted
Running in softIRQ Interrupted
Scheduled out (runnable) Interrupted
Scheduled out (preempted) Blocked
Scheduled out (waiting for schedule after blocking) Interrupted

Table 2: Correspondence between control flow states and WIB states. The reason for which a state was sched-
uled out, which is enclosed in parentheses, accompanies each Scheduled out state in the memory structure.

some point during the starting sequence. We thus traced
the starting of X and KDE.

On this system, running the startx script starts X and
KDE. We started the trace just before running startx, in
the same command. In order to know when the desktop was
completely loaded, we put a script in the KDE Autostart
directory (7/.kde/Autostart). Scripts in this directory are
run as soon as the desktop is loaded, enabling us to locate
quickly that point in the trace. The script ran a command
to stop the trace. Although it was convenient to have the
trace contain exclusively the interesting time span, it was
not mandatory. We could have manually started the trace
well before running startx and stop it well after the execu-
tion of the Autostart script.

We then ran the Delay Analyzer on the trace. As start and
end points for the analysis, we used respectively an event
at the beginning of the startx process and an event at the
beginning of our Autostart script. As process to analyze, we
chose the Autostart script, since the goal was to understand
why it was not started earlier.

The Autostart script is run at the end of the trace, so the
analyzer must look at its closest parent while analyzing the
time range before its creation. This resulted in a chain of
eight processes illustrated in Figure 2. The startup oper-
ation of X/KDE is relatively complex; other processes not
involved in this parental chain run concurrently with it. One
of them is Xorg, the process of the X server.

24.1 Report: WIB State Summary

The Delay Analyzer outputs a series of reports, the first of
which is the WIB State Summary. Figure 3 shows an exerpt
of the one that was obtained with this trace.

This summary indicates how much time was spent in each
WIB state for a given process, during the time span being
analyzed. The summary takes the form of a tree where each
node is a state that is a subpart of its parent. The root
represents the total elapsed time spent in all states. The In-
terrupted WIB state is further divided in “IRQ”, “softIRQ”,
“preempted” and “waiting for schedule after blocking”. Time
passed in IRQs and softIRQs is further classified by its ID.
As for the blocked time, it is further classified as having oc-
curred within a system call or in userspace (in which a trap
occurred), then even further by syscall ID or trap ID. Yet

82

even further, the time blocked in some system calls is clas-
sified by special system call-specific criteria. For example, a
Blocked state in the read() system call will be classified by
the file that was being read.

In most cases, this report should give a first indication as to
what caused a performance problem between the initial and
the target states. The programmer can, by comparing the
time spent in each of the three WIB states with estimations
of normal values, deduce which one lasted too long.

The WIB State Summary for this critical path showed the
usage of time in each of the processes of Figure 2 before it
created the next one in the chain — that is, the time that
delayed the execution of the Autostart script.

The first process we looked at was xinit, as it accounted
for about half the start time. Figure 3, the part of the WIB
State Summary that concerns xinit, shows that it basically
spent the 1.3 seconds waiting in select() system calls.

2.4.2 Report: WIB Sate Instances

The WIB State Instances report shows, for each line of the
WIB State Summary, the list of time spans during which the
process was in that state. The labels (for example “<8>”) in
the state summary refer to such a list of state instances.
These instances are ordered by decreasing duration because
usually the longest ones will be the ones that a programmer
will want to investigate first. This list can serve to locate
instances of the states in the trace in order to study them
with another LTTV view. The Control Flow View is most
useful for this. The timestamps of each time span can also be
used to find instances of blocking in the Blocking Causality
report, which is described next.

Jumping to the WIB State Instances report for the select ()
calls in xinit gives Figure 4. Only one select() is respon-
sible for 1.29 seconds of blocking. The Blocking Causality
Report, described in the next section will reveal why this
call blocked for so long.

2.4.3 Report: Blocking Causality

The Blocking Causality report shows the chronological list
of time spans during which a process was blocked. It shows
in what circumstances it was blocked, as well as how it was
woken up (by what process, what IRQ or what softIRQ).

After the start event,
startx (pid 420) ran for 0.005269443 s
before creating
xinit (pid 438) which ran for 1.309108247 s
before creating
x-session-manager (pid 445) which ran for 0.116666736 s
before creating
kdeinit (pid 500) which ran for 0.029303945 s
before creating
kdeinit (pid 503) which ran for 0.240340942 s
before creating
kdeinit (pid 519) which ran for 0.009239575 s
before creating
kdeinit (pid 520) which ran for 0.806551758 s
before creating
the autostart script (pid 542) which ran for 0.000002343 s
before reaching the end event

Figure 2: Parental relationships from startx to the autostart script.

Process 438 [/usr/bin/xinit]
Total (1.309108247) <0>
Blocked (1.294384393) <1>
Syscall 23 [sys_select+0x0/0x16c]
Syscall 57 [stub_fork+0x0/0x11]
Syscall 59 [stub_execve+0x0/0xc0]
Interrupted (0.009927037) <5>

Scheduled out (0.009908719) <7>

Waiting for schedule after blocking (0.000018318)

Working (0.004796817) <3>

(1.294379908) <8>
(0.000002859) <2>
(0.000001626) <4>

<6>

Figure 3: WIB State Summary for xinit before it created x-session-manager.

Additionally, it recursively shows what the processes that
unblocked the process were doing in turn.

Figure 5 shows the report that was obtained. A line that
is indented one level deeper than the previous line means it
refers to a Blocked state that occurred within the waking
process of the Blocked state described in the previous line.
Blocked states at the same indentation level occurred in the
same process sequentially.

Therefore, a developer wanting to explore a particular block-
ing type found in the WIB State Summary can use the WIB
State Instances report to find the timestamps of the blocking
instances, which will lead him to the right point in the Block-
ing Causality report. In it, the chain of blocked processes
may be followed down to the root cause of the Blocked state.
The root cause can either be a process (that is CPU-bound
or waiting to be scheduled) or a busy hardware resource.

When the deepest cause of a long Blocked state is a Blocked
state ultimately woken by a process, the system call or trap
within which the last Blocked state occurred gives informa-
tion about the cause. If this is not enough, the analysis can
be run on the time span of that deepest Blocked state to
get a WIB State Summary for its waker, that details what
it was doing. This state summary will contain only Work-
ing and Interrupted states. On the other hand, when the
deepest Blocked state is woken by an TRQ or softIRQ, then
its ID indicates the hardware that was responsible for the
delay.

83

The method used to produce this report is the following.
The WIB states of the process are read sequentially until a
Blocked state is found. Information about it is printed. The
control flow state stack of the waking process, as it was at
the moment it woke the process up, is examined. If it was
in a softIRQ or IRQ, this fact is printed and the unblocking
cause is considered hardware based and unrelated to the
process in the context of which it occurred. Otherwise the
process was Working and is responsible for the unblocking.
In this case, the WIB states of the waking process are read
from the time the Blocked state began to the time it ended.
The exact same algorithm is applied to it, but the printing
is nested, indented one more level. The search for Blocked
states then resumes and so on.

The Blocking Causality report obtained (Figure 5) shows
that the 1.29 second long select() was woken by Xorg,
the X server process. We were surprised to see that during
that time, Xorg was itself blocked on a series of more than
40 nanosleep() calls, each lasting between 0.01 and 0.03
seconds.

An examination of the raw trace events was done with LTTV
near the timestamps of these Blocked states. It showed that
between the nanosleep() calls, X reads and writes data to a
file descriptor, which is opened just before the nanosleep()
sequence starts. This file is /dev/psaux, the character device
used in Linux to talk to PS/2 devices.

Looking at the Xorg configuration file revealed that it was

Figure 4: WIB State Instances report for blocking on select() in xinit.

Node id: <8>

439924 .976620220-439926.270851832 (1.294232)
439926.270856657 -439926.270922847 (0.000066)
439926.271033308-439926.271045577 (0.000012)
439926.271070723 -439926.271079202 (0.000008)
439926.271061869-439926.271068187 (0.000006)
439926.271231493-439926.271237701 (0.000006)
[...]

Process 438 [/usr/bin/xinit]

Blocked in RUNNING, SYSCALL 59 [stub_execve+0x0/0xcO], (times: [...
in WIB state UNKNOWN

[sys_select+0x0/0x16¢c],
[sys_open40x0/0x17],

Woken up in context of 3 [migration/0]
Blocked in RUNNING, SYSCALL 23
Blocked in RUNNING, SYSCALL 2
Woken up by a SoftIRQ: SoftIRQ 8
Blocked in RUNNING, SYSCALL 35
Woken up by an IRQ: IRQ 239 []
Blocked in RUNNING, SYSCALL 23

[sys_select+0x0/0x16¢c],

[rcu_process_callbacks+0x0/0x47]
[sys_nanosleep+0x0/0x62],

], dur: 0.000002)
(times: [...], dur: 1.294232)
(times: [...], dur: 0.013940)
(times: [...], dur: 0.200006)
(times: [...], dur: 0.203262)

Woken up by a SoftIRQ: SoftIRQ 1 [run_timer_softirq+0x0/0x21a]

Blocked in RUNNING, SYSCALL 35 [sys_nanosleep+0x0/0x62], (times: [...], dur: 0.010002)
Woken up by an IRQ: IRQ 239 []

Blocked in RUNNING, SYSCALL 35 [sys_nanosleep+0x0/0x62], (times: [...], dur: 0.010001)
Woken up by an IRQ: IRQ 239 []

Blocked in RUNNING, SYSCALL 35 [sys_nanosleep+0x0/0x62], (times: [...], dur: 0.010002)
Woken up by an IRQ: IRQ 239 []

Blocked in RUNNING, SYSCALL 35 [sys_nanosleep+0x0/0x62], (times: [...], dur: 0.010005)
Woken up by an IRQ: IRQ 239 []

Blocked in RUNNING, SYSCALL 35 [sys_nanosleep+0x0/0x62], (times: [...], dur: 0.010002)

[... 37 other nanosleep() calls
Woken up in context of 440 [/usr/bin/Xorg]
[

Figure 5: Blocking Causality report showing the Blocked state of xinit caused by a
Blocked states it depends on (indented). Time ranges were removed for lack of space.

lasting 0.01 to 0.03 seconds ...]
in WIB state WORKING

select() call and the
Each ”Blocked in...”

line shows the contents of the control flow stack of the blocked process.

indeed setup to use /dev/psaux to communicate with the
mouse. PS/2 is a serial communication protocol that re-
quires to wait for a certain time between the transmission
of each bit, thus explaining the nanosleep() calls. It so
happens that the only mouse connected to this system is
actually a USB mouse. Therefore the character device was
only being used as an emulator to the much slower PS/2 pro-
tocol. Even worse, the X driver was configured for protocol
auto-detection, which consumed even more time during its
start sequence.

After changing the X configuration to use the more mod-
ern evdev interface to communicate with the mouse, X took
around 1.5 seconds to start, a 40% improvement from the
original value.

25 Implementation
In this section, we describe and discuss our experimental
implementation.

The analyzer reads a trace once, from its beginning to the
end of the range to analyze. The trace must be read from
the beginning in order to build the initial system state at
the point where the analysis must start. Afterwards, at each
interesting event, the control flow state of the corresponding
process is updated (possibly with holdback), and its WIB
state is computed. If it changed, the new one is added to an
in-memory list of the WIB states through which the process

84

passed.

Once the trace is fully read and the WIB state list is com-
plete, the reports are prepared. The creation of the WIB
State Summary and of the WIB State Instances report is
straightforward. It necessitates a single pass through the
array of WIB states for each process. The creation of the
Blocking Causality report requires to iterate through the
WIB states of each process, printing each Blocked state.
For each Blocked state that depends on another process, the
corresponding range is found in the WIB state array of that
process using a dichotomic search. The chains of blocking
are explored this way, recursively.

We have not found a way to build the Blocking Causality
report incrementally while reading the trace in one pass,
freeing the old WIB states. These old states cannot be freed
because it is always possible that a Blocked state that lasts
since the beginning of the trace will be unblocked. The old
states of the waker will therefore need to be accessible to
print the chain of blocking. Unfortunately, the waker is not
known until the waking time.

Our implementation builds WIB state arrays for all pro-
cesses because the process being analyzed can be unblocked
by any process, and we will then want to know what that
process was blocked on in order to display it in the Blocking
Causality report.

This approach to the analysis has the advantage that its run
time is roughly linear with respect to the size of the trace.
However, its memory usage also grows linearly with respect
to the trace size because every WIB state is kept in memory.
This limits its ability to analyze long traces taken on very
busy systems.

We plan to make the memory usage close to constant by
not saving these states in memory. Instead, the algorithm
will read the trace for only one process at a time — ini-
tially, the process containing the target state — and create
the reports incrementally while reading the trace. For the
Blocking Causality report, when a Blocked state is found
in the process, the trace will be read until the end of the
state is found. When it is, and the waking process is known,
the analyzer will seek in the trace to the beginning of the
Blocked state and read events related to its waking process,
providing the indented content for that state in the report.
If further nested Blocked states are found, another seek will
occur, and so on, until the analyzer is back to the initial
process and done reading it.

This improved implementation will use much less memory,
but will likely take more time, as the trace will be read more
than once. However, the analysis time will be bounded by
the nesting level of Blocked states, which is quite low on the
traces we saw. Furthermore, it will permit analysis of huge
traces on any recent workstation.

3. RESULTS
3.1 tbench - AnalysisTime

We recorded several traces on a system running the tbench[6]
benchmark. Thench generates a workload of network traffic
between an arbitrary number of client and server processes.
Both the tbench server and client processes were run locally,
on the traced system, as the goal was to produce Blocked
states between local processes, rather than real network traf-
fic. All traces were recorded and analyzed on a dual-core 3
GHz system with 4 GB of RAM.

Figure 6 shows the analysis time with several trace sizes,
recorded both with one and two processors. For the single-
processor traces, one of the cores was deactivated using the
Linux CPU hotplug facility. The analysis itself was always
run with both cores enabled, but is single-threaded and
therefore used only one core. Figure 7 shows similar mea-
surements, but with a varying number of tbench clients.

Figure 6 indicates that with either one or two processors,
the analysis time grew linearly with the size of the trace.
The nth point for one processor corresponds to a trace of
the same duration as the nth point for two processors. The
clusters from left to right represent traces of 1 to 8 seconds,
at 1 second intervals. For a given trace duration, the analysis
time doubles when the number of processors doubles. This
is not surprising, because the system can accomplish twice
as much work, therefore the trace size doubles.

Figure 7 indicates that the analysis time grows linearly with
the trace size, with different numbers of tbench clients. The
analysis time appears independent of the number of clients.

85

Analysis time of a trace versus its size (tbench, 10 clients)
90 T T T T T T T T

80 | —

70 B

60 - B

Analysis time (seconds)

w *
20 E
*
30 | X 4 4
+
20 X+ -
+
10 x# i
+ 1processor +
2 processors X
0 I I I I I I N I
0 50 100 150 200 250 300 350 400 450

Trace size (megabytes)

Figure 6: Analysis time versus trace size, system
traced while running tbench, with one and two
cores. Clusters, from left to right, correspond to
traces that lasted 1 to 8 seconds.

Analysis time of a trace versus its size (tbench)

100 T T T T T T T T T
4
% | - g
80 + 4
X
70 q
5 3
3 *
é 60 | R
X+
> 0
£ 50 —
@
E # E
<
<
30 | # 4
L X
20 - * 1
10 * 5processes + 1
10 processes x
15 processes, %
0 | | | | | |] |
0 50 100 150 200 250 300 350 400 450 500

Trace size (megabytes)

Figure 7: Analysis time versus trace size, system
traced while running tbench, with various numbers
of tbench client processes. Clusters, from left to
right, correspond to traces that lasted 1 to 8 seconds.

3.2 tbench - Memory Usage

Figures 8 and 9 show the memory usage of the analyzer
while it is analyzing 8 second traces recorded on a system
loaded with tbench. The memory usage is quite high for
such short traces because of the correspondingly high rate
of system calls done by tbench. Figure 8 shows two traces,
one recorded on the same dual-core machine as before, the
other recorded on the same system, with one core disabled.
Figure 9 shows similar measurements done with both cores
active, but with a varying number of tbench clients.

In Figure 8, the memory usage increases linearly as the trace
is read. The analyzer working on the one-core trace stops in-
creasing its memory usage about twice as fast as its counter-
part. This is because the 8 second trace taken on a two-core
system is twice as big as the one taken on the single-core
system, because the system was able to do twice as much
work. Its parsing takes twice as long. Afterwards, both have

Memory needed for analysis versus analysis time elapsed for one and two processors (tbench trace)

3 T T T T T T T
25 F M R
X
x
X
X
. 2r X><X 7
o
) ;<X
o
g X
g 15 X 4
>
<) X
£ 3
o)
= #
1t gx R
05 K 4
%
5
X 8seconds, 1CPU +
8 seconds, 2 CPUs X
0 | | | | | h I
0 10 20 30 40 50 60 70 80

Analysis time (seconds)

Figure 8: Evolution through time of the analyzer
memory usage while processing 8 second traces
recorded on a system running tbench on one and
two cores.

Memory needed for analysis versus analysis time elapsed for varying client counts (tbench trace)
3 T T T T T T T T

25

15

Memory usage (GB)

8 seconds, 5 clients +
8 seconds, 10 clients ~ x
8 seconds, 15 clients

I I
0 10 20 30 40 50 60 70 80 90
Analysis time (seconds)

Figure 9: Evolution through time of the analyzer
memory usage while processing 8 second traces
recorded on a system running tbench with varying
client counts.

a constant memory usage for some time while the reports are
being generated. The largest portion of the report creation
time is for the Blocking Causality report. Creating this re-
port for the two processor trace takes about twice as long
because there are about twice as many WIB states.

Figure 9 shows that the memory usage is about the same
for all client counts. In all cases, the two processors were
saturated by a number of clients greater than the number
of CPUs, resulting in traces roughly equal in size and in
parsing time.

3.3 Web Server

To get an impression of the performance of the analyzer
under a real-life load, we traced a web server.

We hosted a copy of the Tracing Wiki[7] on the same system
as before. We used the MediaWiki[3] engine 1.13.2 with

86

Analysis time of a trace versus the number of HTTP clients

60 T T T T T T 600
x
¢
50 (4 + 500
i 40 -, q 400 g
2 O T M IV 3z
8 [l ¥ F ¥ H ¥ g
v 5
o £
£ 30 | - 300 8
2 g
@ <
2 S
g g
< 20Ff 4200 3
10 + 4 100
Analysis time ~ +
Trace size -->---
0 I I I I I 1 0
0 10 20 30 40 50 60 70

Number of clients

Figure 10: Analysis time and trace size versus num-
ber of web clients.

memcached[4] 1.2.2, that we hosted with Apache 2.2.9 and
MySQL 5.0.51a.

We traced the server while two other machines were down-
loading each a full copy of the wiki (pages, images, docu-
ments). We used wget as client. For each run, we varied the
total number of wget clients (half on each server) between
which the full download was spread.

Figure 10 confirms that the analysis time does not vary with
the number of clients but is rather constant. The abnormally
high value for two clients accompanies a correspondingly
large trace size. This is due to the fact that the system
is not fully used with only two clients. It therefore takes
longer for the downloads to complete, resulting in a larger
trace that takes longer to analyze.

Figure 11 shows the increase of analysis time versus the num-
ber of events in a trace. To obtain this graph we used one
of the traces recorded for Figure 10. We ran the analysis
simulating the end of the trace after varying event counts.
As expected, the analysis time seems to grow linearly with
the number of events read.

4. CONCLUSION

We have described a method for analyzing performance prob-
lems on multi-core systems using LTTng and the LTTV De-
lay Analyzer. The instrumentation required and the method
used for recording traces were explained. Afterwards, we
described the method used for analyzing the trace and pro-
ducing reports that allow the programmer to understand
performance problems exhibited by a system. Finally, we
presented performance measurements.

Our current implementation may exhibit memory usage prob-
lems on extremely large traces, since it increases slowly but
linearly with the trace size. However, modifications that
would result in nearly constant memory usage while retain-
ing a linear execution time increase, with respect to trace
size, were described.

Analysis time of a trace versus the number of events
16

14 | 4

12 + B

10 .]

Analysis time (seconds)
®
T
L

0 L L L L
0 1 2 3 4 5

Number of events (in millions)

Figure 11: Analysis time versus the number of
events in a web server trace.

41 FutureWork

Our approach could be extended to follow dependencies be-
tween processes on different computers communicating through
a network. This case is similar to the one of communicat-
ing processes on the same computer. For example, when

a process is blocked waiting for a packet to arrive from the
network, the Blocking Causality report could show what the
process that eventually sends that packet was blocked on.
Tracing several nodes simultaneously would be necessary.
Algorithms to reconcile packet sends and receives would also
be required.

Another similar application is to follow blocking chains across
the physical/virtual machine boundary. Applying our ap-
proach as presented in this paper to virtual machines presents
challenges. Indeed, the virtual hardware causing a delay
may be software emulated. LTTYV is already able to com-
bine traces taken simultaneously on a virtual machine and
its host, provided a common time base is used by the tracer.

The addition of a graphical tool to explore the reports would
allow to display more information and to cross-reference it
with that of other LTTV plugins. Finally, more instrumen-
tation, notably for system call arguments, would permit the
production of more detailed reports.

5. ACKNOWLEDGEMENTS

We wish to thank Mathieu Desnoyers for his insightful com-
ments about tracing and performance analysis, and for an-
swering the first author’s numerous questions about LTTV
and LTTng.

6. REFERENCES
[1] K Desktop Environment (KDE).
http://www.kde.org. Verified 2009/01/05.
[2] LTTV. http://1tt.polymtl.ca. Verified 2009/01/05.

87

B3]

(13]

(14]

20]

MediaWiki. http://www.mediawiki.org. Verified
2009/01/05.

memcached. http://www.danga. com/memcached/.
Verified 2009/01/05.

QNX Momentics. http://www.qgnx.com. Verified
2009/01/05.

tbench.
http://samba.org/ftp/tridge/dbench/README.
Verified 2009/01/05.

Tracing Wiki. http://1tt.polymtl.ca/tracingwiki.
Verified 2009/01/05.

Wind River Workbench.
http://www.windriver.com/products/workbench/.
Verified 2009/01/05.

P. Barham, A. Donnelly, R. Isaacs, and R. Mortier.
Using Magpie for request extraction and workload
modelling. In Symposium on Operating Systems
Design and Implementation, pages 259-272, 2004.
B. Cantrill, M. Shapiro, and A. Leventhal. Dynamic
instrumentation of production systems. pages 1528,
Boston, MA, USA, 2004.

J. Corbet. Kernel markers. LWN.net, Aug. 2007.
http://lwn.net/Articles/245671/. Verified
2009/01/05.

M. Desnoyers and M. R. Dagenais. The LTTng tracer:
A low impact performance and behavior monitor for
GNU/Linux. In Linuz Symposium, Ottawa, Ontario,
Canada, June 2006.

M. Desnoyers and M. R. Dagenais. LTTng: Tracing
across execution layers, from the hypervisor to
user-space. In Linux Symposium, 2008.

Y. Endo and M. Seltzer. Improving interactive
performance using TIPME. SIGMETRICS Perform.
Ewval. Rev., 28(1):240-251, 2000.

S. Graham, P. Kessler, and M. McKusick. gprof: a call
graph execution profiler. volume 17, pages 1206,
Boston, MA, USA, 1982.

J. Levon and P. Elie. Oprofile: A system profiler for
Linux, 2005.

P. Miller Barton, D. Callaghan Mark, M. Cargille
Jonathan, et al. The Paradyn Parallel Performance
Measurement Tool. IEEE Computer, 28(11):37-46,
1995.

P. Reynolds, C. Killian, J. Wiener, J. Mogul, M. Shah,
and A. Vahdat. Pip: Detecting the unexpected in
distributed systems. In Symposium on Networked
Systems Design and Implementation, pages 115128,
2006.

Y. Ruan and V. Pai. Making the” box” transparent:
system call performance as a first-class result. In
Proceedings of the annual conference on USENIX
Annual Technical Conference. USENIX Association
Berkeley, CA, USA, 2004.

S. Sandmann. Sysprof-a system-wide linux profiler.
http://www.daimi.au.dk/"sandmann/sysprof/.
Verified 2009/01/05.

